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内容提要

本书较为系统地介绍了非线性最优化问题的基本理论和算法及其主要算法

的Matlab 程序设计. 主要内容包括 (精确或非精确)线搜索技术, 最速下降法与

(修正)牛顿法, 共轭梯度法, 拟牛顿法, 信赖域方法, 非线性最小二乘问题的解

法, 约束优化问题的最优性条件, 罚函数法, 可行方向法, 二次规划问题的解法,

序列二次规划法以及附录等. 设计的Matlab 程序有精确线搜索的 0.616 法和抛

物线法, 非精确线搜索的 Armijo 准则, 最速下降法, 牛顿法, 再开始共轭梯度法,

BFGS 算法, DFP 算法, Broyden 族方法, 信赖域方法, 求解非线性最小二乘问题

的 L-M 算法, 解约束优化问题的乘子法, 求解二次规划的有效集法, SQP 子问题

的光滑牛顿法以及求解约束优化问题的 SQP 方法等. 此外, 书中配有丰富的例

题和习题, 同时, 作为附录介绍了Matlab 优化工具箱的使用方法. 本书既注重计

算方法的实用性, 又注意保持理论分析的严谨性, 强调数值方法的思想和原理在

计算机上的实现.

本书的主要阅读对象是数学与应用数学和信息与计算科学专业的本科生, 应

用数学、计算数学和运筹学与控制论专业的研究生, 理工科有关专业的研究生,

对最优化理论与算法感兴趣的教师及科技工作人员. 读者只需具备微积分、线性

代数和Matlab 程序设计方面的初步知识.



前言

运筹学的理论与方法广泛应用于工业与农业、交通与运输、国防与建筑以

及通信与管理等各个部门各个领域; 它主要解决最优计划、最优分配、最优决策

以及最佳设计和最佳管理等最优化问题. 本书所介绍的最优化方法又称为数学规

划, 是运筹学的一个重要分支, 也是计算数学和应用数学的一个重要组成部分.

本书系统地介绍了非线性优化的理论与方法及其Matlab 程序设计, 其主要

阅读对象是数学与应用数学和信息与计算科学专业的本科生, 应用数学、计算数

学和运筹学与控制论专业的研究生, 理工科有关专业的研究生, 对最优化理论与

算法感兴趣的教师及科技工作人员. 读者只需具备微积分、线性代数和Matlab

程序设计方面的初步知识.

本书的主要内容包括: 最优化理论基础; (精确或非精确)线搜索技术; 最速

下降法与 (修正)牛顿法; 共轭梯度法; 拟牛顿法; 信赖域方法; 非线性最小二乘问

题的解法; (约束优化问题的)最优性条件; 罚函数法; 可行方向法; 二次规划问题

的解法; 序列二次规划法以及附录等. 设计的Matlab 程序有精确线搜索的 0.616

法和抛物线法, 非精确线搜索的 Armijo 准则, 最速下降法, 牛顿法, 再开始共轭

梯度法, 对称秩 1 算法, BFGS 算法, DFP 算法, Broyden 族方法, 信赖域方法, 求

解非线性最小二乘问题的 L-M 算法, 解约束优化问题的乘子法, 求解二次规划

的有效集法, 牛顿-拉格朗日算法, SQP 子问题的光滑牛顿法以及求解约束优化

问题的 SQP 方法等. 此外, 书中配有丰富的例题和习题, 同时, 作为附录介绍了

Matlab 优化工具箱的使用方法. 本书既注重计算方法的实用性, 又注意保持理论

分析的严谨性, 强调数值方法的思想和原理在计算机上的实现.

本书具有如下特点:

1. 介绍非线性优化中最重要最基础的理论与方法, 它们是研究各种复杂的

最优化问题的基础和工具.

2. 最优化方法与 Matlab 程序设计相结合, 采用当前最流行的数学软件

Matlab 编制了主要优化算法的Matlab 程序. 所有程序都在计算机上经过调试和
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运行, 简洁而不乏准确.

3. 本书所给的每一程序之后都给出了相应的计算实例. 这不仅能帮助学生

理解程序里所包含的最优化理论知识, 而且对培养学生处理数值最优化问题的能

力也大有裨益.

4. 全书每章都配备了一定数量的习题, 习题包括理论分析题和编程实验题,

以加强学生对所学知识的理解和巩固.

本书的编写和出版得到了国家自然科学基金项目 (编号: 10661005)福建省自

然科学基金项目 (编号: 2009J01002)的部分资助, 在此作者表示由衷的感谢. 作

者还要感谢福建师范大学教务处及数学与计算机科学学院给予的帮助和支持. 此

外, 本书之所以能够顺利付梓, 在很大程度上要归功于夫人刘菊庄女士给予的理

解和支持, 深表感谢.

由于作者水平有限, 加之时间仓促, 书中的缺点和错误在所难免, 敬请专家

和读者批评指正.

作者

2009 年 12 月

于福建师范大学
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第一章 最优化理论基础

1.1 最优化问题的数学模型

通俗地说，所谓最优化问题，就是求一个多元函数在某个给定集合上的极

值. 几乎所有类型的最优化问题都可以用下面的数学模型来描述:

min 𝑓(𝑥),

s.t. 𝑥 ∈ 𝐾,
(1.1)

这里，𝐾 是某个给定的集合 (称为可行集或可行域)，𝑓(𝑥) 是定义在集合 𝐾 上

的实值函数. 此外，在模型 (1.1) 中，𝑥 通常称为决策变量, s.t. 是 subject to (受

限于) 的缩写.

人们通常按照可行集的性质对最优化问题 (1.1) 进行一个大致的分类:

∙ 线性规划和非线性规划. — 可行集是有限维空间中的一个子集;

∙ 组合优化或网络规划. — 可行集中的元素是有限的;

∙ 动态规划. — 可行集是一个依赖时间的决策序列;

∙ 最优控制. — 可行集是无穷维空间中的一个连续子集.

本书主要考虑在工程设计中有着重要应用的非线性规划，其数学模型为

min 𝑓(𝑥), (1.2)

s.t. ℎ𝑖(𝑥) = 0, 𝑖 = 1, · · · , 𝑙, (1.3)

𝑔𝑖(𝑥) ≥ 0, 𝑖 = 1, · · · ,𝑚, (1.4)

其中，𝑓(𝑥), ℎ𝑖(𝑥) (𝑖 = 1, · · · , 𝑙) 及 𝑔𝑖(𝑥) (𝑖 = 1, · · · ,𝑚) 都是定义在 R𝑛 上连续可

微的多元实值函数, 且至少有一个是非线性的. 记

𝐸 = {𝑖 : ℎ𝑖(𝑥) = 0}, 𝐼 = {𝑖 : 𝑔𝑖(𝑥) ≥ 0}. (1.5)

1



第一章 最优化理论基础 回回回目目目录录录 S1.2 向量和矩阵范数

若指标集 𝐸 ∪ 𝐼 = ∅, 称之为无约束优化问题，否则称为约束优化问题. 特别

地, 把 𝐸 ̸= ∅ 且 𝐼 = ∅ 的优化问题称为等式约束优化问题; 而把 𝐼 ̸= ∅ 且
𝐸 = ∅ 的优化问题称为不等式约束优化问题. 𝑓(𝑥) 称为目标函数, ℎ𝑖(𝑥), 𝑔𝑗(𝑥)

(𝑖 = 1, · · · , 𝑙; 𝑗 = 1, · · · ,𝑚) 称为约束函数. 此外，通常把目标函数为二次函数而

约束函数都是线性函数的优化问题称为二次规划；而目标函数和约束函数都是

线性函数的优化问题称为线性规划.

1.2 向量和矩阵范数

在算法的收敛性分析中，需要用到向量和矩阵范数的概念及其有关理论.

设 R𝑛表示实 𝑛维向量空间，R𝑛×𝑛表示实 𝑛阶矩阵全体所组成的线性空间.

在这两个空间中，我们分别定义向量和矩阵的范数.

向量 𝑥 ∈ R𝑛的范数 ‖𝑥‖是一个非负数，它必须满足以下条件：
（1） ‖𝑥‖ ≥ 0，‖𝑥‖ = 0 ⇐⇒ 𝑥 = 0;

（2） 𝜆𝑥‖ = |𝜆|‖𝑥‖, 𝜆 ∈ R;
（3） ‖𝑥+ 𝑦‖ ≤ ‖𝑥‖+ ‖𝑦‖.
向量 𝑥 = (𝑥1, · · · , 𝑥𝑛)𝑇 的 𝑝-范数定义为

‖𝑥‖𝑝 =
(︀ 𝑛∑︁

𝑖=1

|𝑥𝑖|𝑝
)︀ 1

𝑝 . (1.6)

常用的向量范数有

1-范数：‖𝑥‖1 =
𝑛∑︀

𝑖=1

|𝑥𝑖|;

2-范数：‖𝑥‖2 =
(︀ 𝑛∑︀
𝑖=1

|𝑥𝑖|2
)︀ 1

2 ;

∞-范数：‖𝑥‖∞ = max
1≤𝑖≤𝑛

|𝑥𝑖|.

矩阵 𝐴 ∈ R𝑛×𝑛的范数是一个非负实数，它除了满足跟向量范数相似的三条

性质之外，还必须具备乘法性质：

（4） ‖𝐴𝐵‖ ≤ ‖𝐴‖‖𝐵‖, 𝐴,𝐵 ∈ R𝑛×𝑛.

如果一矩阵范数 ‖ · ‖𝜇相对于某向量范数 ‖ · ‖满足下面的不等式
（5） ‖𝐴𝑥‖ ≤ ‖𝐴‖𝜇‖𝑥‖, 𝑥 ∈ R𝑛,

则称矩阵范数 ‖ · ‖𝜇和向量范数 ‖ · ‖是相容的. 进一步，若存在 𝑥 ̸= 0使成立

‖𝐴‖𝜇 = max
𝑥 ̸=0

‖𝐴𝑥‖
‖𝑥‖

= max
‖𝑥‖=1

‖𝐴𝑥‖, 𝐴 ∈ R𝑛×𝑛, (1.7)

· 2 ·



第一章 最优化理论基础 回回回目目目录录录 S1.2 向量和矩阵范数

则称矩阵范数 ‖ · ‖𝜇是由向量范数 ‖ · ‖诱导出来的算子范数，简称算子范数，有
时也称为从属于向量范数 ‖ · ‖的矩阵范数. 此时向量范数和算子范数通常采用

相同的符号 ‖ · ‖.
不难验证，从属于向量范数 ‖𝑥‖∞, ‖𝑥‖1, ‖𝑥‖2的矩阵范数分别为

‖𝐴‖∞ = max
1≤𝑖≤𝑛

𝑛∑︁
𝑗=1

|𝑎𝑖𝑗|,

‖𝐴‖1 = max
1≤𝑗≤𝑛

𝑛∑︁
𝑖=1

|𝑎𝑖𝑗|,

‖𝐴‖2 = max{
√
𝜆 | 𝜆 ∈ 𝜆(𝐴𝑇𝐴)},

它们分别称作行和范数、列和范数和谱范数.

本书在讨论各种迭代算法的收敛性时，通常采用谱范数和按下述方式定义

的 F-范数:

‖𝐴‖𝐹 =
(︁ 𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑎2𝑖𝑗

)︁1/2
=
√︀

tr(𝐴𝑇𝐴) (1.8)

现在我们来讨论向量序列和矩阵序列的收敛性. 我们知道，若 {𝑥(𝑘)}∞𝑘=1 ⊂
R𝑛，则

lim
𝑘→∞

𝑥(𝑘) = 𝑥⇐⇒ lim
𝑘→∞

𝑥
(𝑘)
𝑖 = 𝑥𝑖, 𝑖 = 1, · · · , 𝑛.

类似地，若 {𝐴(𝑘)}∞𝑘=1 ⊂ 𝑅𝑛×𝑛，则

lim
𝑘→∞

𝐴(𝑘) = 𝐴⇐⇒ lim
𝑘→∞

𝑎
(𝑘)
𝑖𝑗 = 𝑎𝑖𝑗, 𝑖, 𝑗 = 1, · · · , 𝑛.

为了利用范数来描述上述极限，必须建立向量范数的等价定理以及矩阵范数的

等价定理.

定理 1 (1)设 ‖ · ‖和 ‖ · ‖′是定义在 𝑅𝑛上的两个向量范数，则存在两个正

数 𝑐1, 𝑐2，对所有 𝑥 ∈ R𝑛均成立

𝑐1‖𝑥‖ ≤ ‖𝑥‖′ ≤ 𝑐2‖𝑥‖.

(2) 设 ‖ · ‖ 和 ‖ · ‖′ 是定义在 R𝑛×𝑛 上的两个矩阵范数，则存在两个正数

𝑚1, 𝑚2，对所有 𝐴 ∈ R𝑛×均成立

𝑚1‖𝐴‖ ≤ ‖𝐴‖′ ≤ 𝑚2‖𝐴‖.

· 3 ·
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下面，我们利用范数的概念来等价地定义向量序列和矩阵序列的收敛性.

定理 2 (1)设 {𝑥(𝑘)}为 𝑛维向列序列，‖ · ‖为定义在 R𝑛上的向量范数，则

lim
𝑘→∞

𝑥(𝑘) = 𝑥⇐⇒ lim
𝑘→∞

‖𝑥(𝑘) − 𝑥‖ = 0;

(2)设 {𝐴(𝑘)}为 𝑛× 𝑛矩阵序列，‖ · ‖为定义在 R𝑛×𝑛上的向量范数，则

lim
𝑘→∞

𝐴(𝑘) = 𝐴⇐⇒ lim
𝑘→∞

‖𝐴(𝑘) − 𝐴‖ = 0.

1.3 函数的可微性与展开

本节主要介绍后文经常需要用到 𝑛 元函数的一阶和二阶导数以及泰勒展开

式.

定义 1 设有 𝑛 元实函数 𝑓(𝑥), 其中自变量 𝑥 = (𝑥1, · · · , 𝑥𝑛)𝑇 ∈ R𝑛. 称向量

∇𝑓(𝑥) =
(︂
𝜕𝑓(𝑥)

𝜕𝑥1
,
𝜕𝑓(𝑥)

𝜕𝑥2
, · · · , 𝜕𝑓(𝑥)

𝜕𝑥𝑛

)︂𝑇

(1.9)

为 𝑓(𝑥) 在 𝑥 处的一阶导数或梯度. 称矩阵

∇2𝑓(𝑥) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕2𝑓(𝑥)

𝜕𝑥21

𝜕2𝑓(𝑥)

𝜕𝑥1𝜕𝑥2
· · · 𝜕2𝑓(𝑥)

𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑓(𝑥)

𝜕𝑥2𝜕𝑥1

𝜕2𝑓(𝑥)

𝜕𝑥22
· · · 𝜕2𝑓(𝑥)

𝜕𝑥2𝜕𝑥𝑛
...

...
...

𝜕2𝑓(𝑥)

𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓(𝑥)

𝜕𝑥𝑛𝜕𝑥2
· · · 𝜕2𝑓(𝑥)

𝜕𝑥2𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.10)

为 𝑓(𝑥) 在 𝑥 处的二阶导数或 Hesse 矩阵. 若梯度∇𝑓(𝑥) 的每个分量函数在 𝑥 都

连续, 则称 𝑓 在 𝑥 一阶连续可微；若 Hesse 阵 ∇2𝑓(𝑥) 的各个分量函数都连续，

则称 𝑓 在 𝑥 二阶连续可微.

若 𝑓 在开集 𝐷 的每一点都连续可微，则称 𝑓 在 𝐷　上一阶连续可微；若 𝑓

在开集 𝐷 的每一点都都二阶连续可微，则称 𝑓 在 𝐷　上二阶连续可微.

由上述定义不难发现，若 𝑓 在 𝑥 二阶连续可微，则

𝜕2𝑓(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗
=
𝜕2𝑓(𝑥)

𝜕𝑥𝑗𝜕𝑥𝑖
, 𝑖, 𝑗 = 1, 2, · · · , 𝑛,

即 Hesse 阵∇2𝑓(𝑥) 是对称阵.

· 4 ·
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例 1 设二次函数

𝑓(𝑥) = 𝑐𝑇𝑥+
1

2
𝑥𝑇𝐻𝑥,

其中 𝑐 ∈ R𝑛, 𝐻 ∈ R𝑛×𝑛 是对称阵. 那么，不难计算它在 𝑥 的梯度及 Hesse 为

∇𝑓(𝑥) = 𝑐+𝐻𝑥, ∇2𝑓(𝑥) = 𝐻.

例 2 (泰勒展开). 设函数 𝑓 : R𝑛 → R 连续可微，那么

𝑓(𝑥+ ℎ) = 𝑓(𝑥) +

∫︁ 1

0

∇𝑓(𝑥+ 𝜏ℎ)𝑇ℎd𝜏

= 𝑓(𝑥) +∇𝑓(𝑥+ 𝜉ℎ)𝑇ℎ, 𝜉 ∈ (0, 1)

= 𝑓(𝑥) +∇𝑓(𝑥)𝑇ℎ+ 𝑜(‖ℎ‖).

进一步, 若函数 𝑓 是二次连续可微的, 则有

𝑓(𝑥+ ℎ) = 𝑓(𝑥) +∇𝑓(𝑥)𝑇ℎ+

∫︁ 1

0

(1− 𝜏)ℎ𝑇∇2𝑓(𝑥+ 𝜏ℎ)ℎd𝜏

= 𝑓(𝑥) +∇𝑓(𝑥)𝑇ℎ+
1

2
ℎ𝑇∇2𝑓(𝑥+ 𝜉ℎ)ℎ, 𝜉 ∈ (0, 1)

= 𝑓(𝑥) +∇𝑓(𝑥)𝑇ℎ+
1

2
ℎ𝑇∇2𝑓(𝑥)ℎ+ 𝑜(‖ℎ‖2)

及

∇𝑓(𝑥+ ℎ) = ∇𝑓(𝑥) +
∫︁ 1

0

∇2𝑓(𝑥+ 𝜏ℎ)𝑇ℎd𝜏

= ∇𝑓(𝑥) +∇2𝑓(𝑥+ 𝜉ℎ)𝑇ℎ, 𝜉 ∈ (0, 1)

= ∇𝑓(𝑥) +∇2𝑓(𝑥)𝑇ℎ+ 𝑜(‖ℎ‖).

下面简单介绍一下向量值函数的可微性及中值定理. 设有向量值函数

𝐹 = (𝐹1, 𝐹2, · · · , 𝐹𝑚)
𝑇 : R𝑛 → R𝑚. 若每个分量函数 𝐹𝑖 都是 (连续) 可微的，则

称 𝐹 是 (连续) 可微的. 向量值函数 𝐹 在 𝑥 的导数 𝐹 ′ ∈ R𝑚×𝑛 是指它在 𝑥 的

Jacobi 矩阵, 记为 𝐹 ′(𝑥) 或 𝐽𝐹 (𝑥), 即

𝐹 ′(𝑥) := 𝐽𝐹 (𝑥) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝐹1(𝑥)

𝜕𝑥1

𝜕𝐹1(𝑥)

𝜕𝑥2
· · · 𝜕𝐹1(𝑥)

𝜕𝑥𝑛

𝜕𝐹2(𝑥)

𝜕𝑥1

𝜕𝐹2(𝑥)

𝜕𝑥2
· · · 𝜕𝐹2(𝑥)

𝜕𝑥𝑛
...

...
...

𝜕𝐹𝑚(𝑥)

𝜕𝑥1

𝜕𝐹𝑚(𝑥)

𝜕𝑥2
· · · 𝜕𝐹𝑚(𝑥)

𝜕𝑥𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

· 5 ·
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考虑到标量函数的梯度定义, 有时也把向量函数 𝐹 的 Jacobi 矩阵的转置称为 𝐹

在 𝑥 的梯度，记为

∇𝐹 (𝑥) = 𝐽𝐹 (𝑥)
𝑇 =

(︀
∇𝐹1(𝑥),∇𝐹2(𝑥), · · · ,∇𝐹𝑚(𝑥)

)︀
.

不难发现，例 2 中关于多元实函数的一些结论可以推广到向量值函数的情形. 例

如，若向量值函数 𝐹 : R𝑛 → R𝑚 是连续可微的，则对于任意的 𝑥, ℎ ∈ R𝑛, 有

𝐹 (𝑥+ ℎ) = 𝐹 (𝑥) +

∫︁ 1

0

∇𝐹 (𝑥+ 𝜏ℎ)𝑇ℎd𝜏.

对于向量值函数 𝐹 , 也可以定义 Lipschitz 连续性的概念.

定义 2 设向量值函数 𝐹 : R𝑛 → R𝑚, 𝑥 ∈ R𝑛, 称 𝐹 在 𝑥 是 Lipschitz 连续

的，是指存在常数 𝐿 > 0, 使得对任意的 𝑦 ∈ R𝑛, 满足

‖𝐹 (𝑥)− 𝐹 (𝑦)‖ ≤ 𝐿‖𝑥− 𝑦‖, (1.11)

其中, 𝐿 称为 Lipschitz 常数. 若 (1.11) 式对任意的 𝑥, 𝑦 ∈ R𝑛 都成立, 则称 𝐹 在

R𝑛 内是 Lipschitz 连续的.

在迭代法的收敛性分析中, 有时需要用到向量值函数的“中值定理”, 现引

述如下.

定理 3 设向量值函数 𝐹 : R𝑛 → R𝑚 连续可微, 那么

(1) 对任意的 𝑥, 𝑦 ∈ R𝑛, 有

‖𝐹 (𝑥)− 𝐹 (𝑦)‖ ≤ sup
0≤𝑡≤1

‖𝐹 ′(𝑦 + 𝑡(𝑥− 𝑦))‖ ‖𝑥− 𝑦‖.

(2) 对任意的 𝑥, 𝑦, 𝑧 ∈ R𝑛, 有

‖𝐹 (𝑦)− 𝐹 (𝑧)− 𝐹 ′(𝑥)(𝑦 − 𝑧)‖ ≤ sup
0≤𝑡≤1

‖𝐹 ′(𝑧 + 𝑡(𝑦 − 𝑧))− 𝐹 ′(𝑥)‖ ‖𝑥− 𝑦‖.

由上述定理的结论 (2) 可推得下面的结论.

推论 1 设向量值函数 𝐹 : R𝑛 → R𝑚 是连续可微的, 且其 Jacobi 矩阵映射

是 Lipschitz 连续的, 即存在常数 𝐿 > 0 使得

‖𝐹 ′(𝑢)− 𝐹 ′(𝑣)‖ ≤ 𝐿‖𝑢− 𝑣‖, ∀𝑢, 𝑣 ∈ R𝑛. (1.12)

则对任意的 𝑥, ℎ ∈ R𝑛, 有

‖𝐹 (𝑥+ ℎ)− 𝐹 (𝑥)− 𝐹 ′(𝑥)ℎ‖ ≤ 1

2
𝐿‖ℎ‖2. (1.13)

· 6 ·
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1.4 凸集与凸函数

本节介绍凸集、锥和多面体的有关概念.

定义 3 设集合 𝐷 ⊂ R𝑛. 称集合 𝐷 为凸集, 是指对任意的 𝑥, 𝑦 ∈ 𝐷 及任意

的实数 𝜆 ∈ [0, 1], 都有 𝜆𝑥+ (1− 𝜆)𝑦 ∈ 𝐷.

由上述定义不难知道凸集的几何意义. 即对非空集合 𝐷 ⊂ R𝑛, 若连接其中

任意两点的线段仍属于该集合，则称该集合 𝐷 为凸集.

不难证明凸集的下列基本性质.

引理 1 设 𝐷,𝐷1, 𝐷2 是凸集，𝛼 是一实数, 那么

(1) 𝛼𝐷 = {𝑦|𝑦 = 𝛼𝑥, 𝑥 ∈ 𝐷} 是凸集.

(2) 交集 𝐷1 ∩𝐷2 是凸集.

(3) 和集 𝐷1 +𝐷2 = {𝑧|𝑧 = 𝑥+ 𝑦, 𝑥 ∈ 𝐷1, 𝑦 ∈ 𝐷2} 也是凸集.

例 3 𝑛 维欧氏空间中的 𝑙 个点的凸组合是一个凸集. 即集合{︂
𝑥 =

𝑙∑︁
𝑖=1

𝛼𝑖𝑥𝑖
⃒⃒
𝑥𝑖 ∈ R𝑛, 𝛼𝑖 ≥ 0,

𝑙∑︁
𝑖=1

𝛼𝑖 = 1

}︂
是凸集.

例 4 𝑛 维欧氏空间中的超平面 𝐻 = {𝑥
⃒⃒
𝑐𝑇𝑥 = 𝛼} 是一个凸集, 其中 𝛼 ∈ R,

𝑐 ∈ R𝑛∖{0} 是超平面的法向量. 此外, 下面的四个半空间

(1)正的闭半空间 𝐻+ = {𝑥|𝑐𝑇𝑥 ≥ 𝛼}, (2)负的闭半空间 𝐻+ = {𝑥|𝑐𝑇𝑥 ≤ 𝛼},

(3)正的开半空间 𝐻+ = {𝑥|𝑐𝑇𝑥 > 𝛼}, (4)负的开半空间 𝐻+ = {𝑥|𝑐𝑇𝑥 < 𝛼}.

都是凸集

例 5 以 𝑥0 ∈ R𝑛 为起点, 𝑑 ∈ R𝑛∖{0} 为方向的射线

𝑟(𝑥0; 𝑑) := {𝑥 ∈ R𝑛 |𝑥 = 𝑥0 + 𝛼𝑑, 𝛼 ≥ 0}

是凸集.

· 7 ·
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定义 4 集合 𝐷 ⊂ R𝑛 的凸包 (convex hull) 是指所有包含 𝐷 的凸集的交集，

记为

conv(𝐷) :=
⋂︀

𝐶⊇𝐷

𝐶,

其中 𝐶 为凸集.

下面我们给出锥和凸锥的定义.

定义 5 设非空集合 𝐶 ⊂ R𝑛. 若对任意的 𝑥 ∈ 𝐶 和任意的实数 𝜆 > 0，

有 𝜆𝑥 ∈ 𝐶, 则称 𝐶 为一个锥 (cone). 若 𝐶 同时也是凸集, 则称 𝐶 为一个凸锥

(convex cone). 此外, 对于锥 𝐶, 若 0 ∈ 𝐶, 则称 𝐶 是一个尖锥 (pointed cone). 相

应地, 包含 0 的凸锥称为尖凸锥.

例 6 多面体 {𝑥 ∈ R𝑛|𝐴𝑥 ≥ 0}是一个尖凸锥,通常称之为多面锥 (polyhedral cone).

例 7 集合

R𝑛
+ := {𝑥 ∈ R𝑛|𝑥𝑖 ≥ 0, 𝑖 = 1, 2, · · · , 𝑛}

是一个尖凸锥, 通常称之为非负锥 (nonnegative orthant). 相应地, 凸锥

R𝑛
++ := {𝑥 ∈ R𝑛|𝑥𝑖 > 0, 𝑖 = 1, 2, · · · , 𝑛}

称为正锥 (positive orthant).

有了凸集的概念之后，就可以定义凸集上的所谓凸函数.

定义 6 设函数 𝑓 : 𝐷 ⊂ R𝑛 → R, 其中 𝐷 为凸集.

(1) 称 𝑓 是 𝐷 上的凸函数, 是指对任意的 𝑥, 𝑦 ∈ 𝐷 及任意的实数 𝜆 ∈ [0, 1],

都有

𝑓(𝜆𝑥+ (1− 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1− 𝜆)𝑓(𝑦).

(2) 称 𝑓 是 𝐷 上的严格凸函数, 是指对任意的 𝑥, 𝑦 ∈ 𝐷, 𝑥 ̸= 𝑦 及任意的实

数 𝜆 ∈ [0, 1], 都有

𝑓(𝜆𝑥+ (1− 𝜆)𝑦) < 𝜆𝑓(𝑥) + (1− 𝜆)𝑓(𝑦).

(3) 称 𝑓 是 𝐷 上的一致凸函数, 是指存在常数 𝛾 > 0, 使对任意的 𝑥, 𝑦 ∈ 𝐷

及任意的实数 𝜆 ∈ [0, 1], 都有

𝑓(𝜆𝑥+ (1− 𝜆)𝑦) +
1

2
𝜆(1− 𝜆)𝛾‖𝑥− 𝑦‖2 ≤ 𝜆𝑓(𝑥) + (1− 𝜆)𝑓(𝑦).

· 8 ·
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凸函数具有下列基本性质.

命题 1 设 𝑓, 𝑓1, 𝑓2 都是凸集 𝐷 上的凸函数, 𝑐1, 𝑐2 ∈ R+, 𝛼 ∈ R, 则有
(1) 𝑐𝑓1(𝑥) + 𝑐2𝑓2(𝑥) 也是 𝐷 上的凸函数.

(2) 水平集

ℒ(𝑓, 𝛼) = {𝑥|𝑥 ∈ 𝐷, 𝑓(𝑥) ≤ 𝛼}

是凸集.

凸集和凸函数在优化理论中起着举足轻重的作用, 但是利用凸函数的定义来

判断一个函数是否具有凸性并非一件容易的事情. 如果函数是一阶或二阶连续

可微的, 则可利用函数的梯度或 Hesse 阵来判别或验证函数的凸性要相对容易一

些. 下面给出几个判别定理.

定理 4 设 𝑓 在凸集 𝐷 ⊂ R𝑛 上一阶连续可微，则

(1) 𝑓 在 𝐷上为凸函数的充要条件是

𝑓(𝑥) ≥ 𝑓(𝑥*) +∇𝑓(𝑥*)𝑇 (𝑥− 𝑥*), ∀ 𝑥*, 𝑥 ∈ 𝐷. (1.14)

(2) 𝑓 在 𝐷上严格凸的充要条件是，当 𝑥 ̸= 𝑦时，成立

𝑓(𝑥) > 𝑓(𝑥*) +∇𝑓(𝑥*)𝑇 (𝑥− 𝑥*), ∀ 𝑥*, 𝑥 ∈ 𝐷. (1.15)

(3) 𝑓 在𝐷上一致凸的充要条件是，存在常数 𝑐 > 0，使对任意的 𝑥*, 𝑥 ∈ 𝐷，

成立

𝑓(𝑥) ≥ 𝑓(𝑥*) +∇𝑓(𝑥*)𝑇 (𝑥− 𝑥*) + 𝑐‖𝑥−* ‖2. (1.16)

我们知道，在一元函数中，若 𝑓(𝑥) 在区间 (𝑎, 𝑏) 上二阶可微且 𝑓 ′′(𝑥) ≥
0 (> 0)，则 𝑓(𝑥) 在 (𝑎, 𝑏) 内凸（严格凸） . 对于二阶连续可微的多元函数

𝑓 : 𝐷 ⊂ R𝑛 → R, 也可以由其二阶导数 (Hesse 阵) 给出凸性的一个近乎完整的表

述.

定义 7 设 𝑛元实函数 𝑓 在凸集𝐷 上是二阶连续可微的. 若对一切 ℎ ∈ 𝑅𝑛,

有 ℎ𝑇∇2𝑓(𝑥)ℎ ≥ 0，则称 ∇2𝑓 在点 𝑥处是半正定的. 若对一切 0 ̸= ℎ ∈ R𝑛, 有

ℎ𝑇∇2𝑓(𝑥)ℎ > 0，则称∇2𝑓 在点 𝑥处是正定的. 进一步，若存在常数 𝑐 > 0, 使得

对任意的 ℎ ∈ R𝑛, 𝑥 ∈ 𝐷, 有 ℎ𝑇∇2𝑓(𝑥)ℎ ≥ 𝑐‖ℎ‖2，则称 ∇2𝑓 在 𝐷上是一致正定

的.
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有了上述定义，我们可以把一元函数关于用二阶导数表述凸性的结果推广

到多元函数上.

定理 5 设 𝑛 元实函数 𝑓 在凸集 𝐷 ⊂ R𝑛 上二阶连续可微, 则

(1) 𝑓 在 𝐷 上是凸的充要条件是 ∇2𝑓(𝑥) 对一切 𝑥 ∈ 𝐷 为半正定；

(2) 𝑓 在 𝐷 上是严格凸的充分条件是∇2𝑓(𝑥) 对一切 𝑥 ∈ 𝐷 为正定；

(3) 𝑓 在 𝐷 上是一致凸的充要条件是∇2𝑓(𝑥) 对一切 𝑥 ∈ 𝐷 为一致正定.

注意，∇2𝑓 正定是 𝑓 严格凸的充分条件而非必要条件.

1.5 无约束问题的最优性条件

本节讨论无约束优化问题

min 𝑓(𝑥) (1.17)

的最优性条件, 它包含一阶条件和二阶条件. 首先给出极小点的定义, 它分为全

局极小点和局部极小点.

定义 8 若对于任意的 𝑥 ∈ R𝑛, 都有

𝑓(𝑥*) ≤ 𝑓(𝑥),

则称 𝑥* 为 𝑓 的一个全局极小点. 若上述不等式严格成立且 𝑥 ̸= 𝑥*, 则称 𝑥* 为 𝑓

的一个严格全局极小点.

定义 9 若对于任意的 𝑥 ∈ 𝑁(𝑥*, 𝛿) = {𝑥 ∈ R𝑛|‖𝑥− 𝑥*‖ < 𝛿}, 都有

𝑓(𝑥*) ≤ 𝑓(𝑥),

则称 𝑥* 为 𝑓 的一个局部极小点, 其中 𝛿 > 0 为某个常数. 若上述不等式严格成

立且 𝑥 ̸= 𝑥*, 则称 𝑥* 为 𝑓 的一个严格局部极小点.

由上述定义可知, 全局极小点一定是局部极小点, 反之不然. 一般来说, 求全

局极小点是相当困难的, 因此通常只求局部极小点 (在实际应用中, 有时求局部

极小点已满足了问题的要求). 故本书所讨论的求极小点的方法都是指局部极小

点.

为了讨论和叙述的方便, 通篇引入下列记号:

𝑔(𝑥) = ∇𝑓(𝑥), 𝑔𝑘 = ∇𝑓(𝑥𝑘), 𝐺(𝑥) = ∇2𝑓(𝑥), 𝐺𝑘 = ∇2𝑓(𝑥𝑘).

· 10 ·



第一章 最优化理论基础 回回回目目目录录录 S1.5 无约束问题的最优性条件

定理 6 (一阶必要条件) 设 𝑓(𝑥) 在开集 𝐷 上一阶连续可微. 若 𝑥* ∈ 𝐷 是

(1.17) 的一个局部极小点, 则必有 𝑔(𝑥*) = 0.

证 取 𝑥 = 𝑥* − 𝛼𝑔(𝑥*) ∈ 𝐷, 其中 𝛼 > 0 为某个常数. 则有

𝑓(𝑥) = 𝑓(𝑥*) + 𝑔(𝑥*)𝑇 (𝑥− 𝑥*) + 𝑜(‖𝑥− 𝑥*‖)

= 𝑓(𝑥*)− 𝛼𝑔(𝑥*)𝑇𝑔(𝑥*) + 𝑜(𝛼)

= 𝑓(𝑥*)− 𝛼‖𝑔(𝑥*)‖2 + 𝑜(𝛼).

注意到 𝑓(𝑥) ≥ 𝑓(𝑥*) 及 𝛼 > 0, 我们有

0 ≤ ‖𝑔(𝑥*)‖2 ≤ 𝑜(𝛼)

𝛼
.

上式两边令 𝛼 → 0 得 ‖𝑔(𝑥*)‖ = 0, 即 𝑔(𝑥*) = 0. �

定理 7 (二阶必要条件) 设 𝑓(𝑥) 在开集 𝐷 上二阶连续可微. 若 𝑥* ∈ 𝐷 是

(1.17) 的一个局部极小点, 则必有 𝑔(𝑥*) = 0 且 𝐺(𝑥*) 是半正定矩阵.

证 设 𝑥* 是一局部极小点, 那么由定理 6 可知 𝑔(𝑥*) = 0. 下面只需证明

𝐺(𝑥*) 的半正定性. 任取 𝑥 = 𝑥* + 𝛼𝑑 ∈ 𝐷, 其中 𝛼 > 0 且 𝑑 ∈ R𝑛. 由泰勒展开式

得

0 ≤ 𝑓(𝑥)− 𝑓(𝑥*) =
1

2
𝛼2𝑑𝑇𝐺(𝑥*)𝑑+ 𝑜(𝛼2),

即

𝑑𝑇𝐺(𝑥*)𝑑+
𝑜(2𝛼2)

𝛼2
≥ 0.

对上式令 𝛼 → 0, 即得 𝑑𝑇𝐺(𝑥*)𝑑 ≥ 0, 从而定理成立. �

定理 8 (二阶充分条件) 设 𝑓(𝑥) 在开集 𝐷 上二阶连续可微. 若 𝑥* ∈ 𝐷 满

足条件 𝑔(𝑥*) = 0 及 𝐺(𝑥*) 是正定矩阵, 则 𝑥* 是 (1.17) 的一个局部极小点.

证 任取 𝑥 = 𝑥* + 𝛼𝑑 ∈ 𝐷, 其中 𝛼 > 0 且 𝑑 ∈ R𝑛. 由泰勒公式得

𝑓(𝑥* + 𝛼𝑑) = 𝑓(𝑥*) + 𝑔(𝑥*)𝑇𝑑+
1

2
𝛼2𝑑𝑇𝐺(𝑥* + 𝜃𝛼𝑑)𝑑,

其中 𝜃 ∈ (0, 1). 注意到 𝑔(𝑥*) = 0, 𝐺(𝑥*) 正定和 𝑓 二阶连续可微, 故存在 𝛿 > 0,

使得 𝐺(𝑥* + 𝜃𝛼𝑑) 在‖𝜃𝛼𝑑‖ < 𝛿 范围内正定. 因此由上式即得

𝑓(𝑥* + 𝛼𝑑) > 𝑓(𝑥*),
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从而定理成立. �

一般来说, 目标函数的稳定点不一定是极小点. 但对于目标函数是凸函数的

无约束优化问题, 其稳定点、局部极小点和全局极小点三者是等价的.

定理 9 设 𝑓(𝑥) 在 R𝑛 上是凸函数并且是一阶连续可微的. 则 𝑥* ∈ R𝑛 是

(1.17) 的全局极小点的充要条件是 𝑔(𝑥*) = 0.

证 只需证明充分性, 必要性是显然的. 设 𝑔(𝑥*) = 0. 由凸函数的判别定理

4(1), 可得

𝑓(𝑥) ≥ 𝑓(𝑥*) + 𝑔(𝑥*)𝑇 (𝑥− 𝑥*) = 𝑓(𝑥*), ∀𝑥 ∈ R𝑛,

这表明 𝑥* 是全局极小点. �

1.6 无约束优化问题的算法框架

在数值优化中, 一般采用迭代法求解无约束优化问题

min 𝑓(𝑥) (1.18)

的极小点. 迭代法的基本思想是: 给定一个初始点 𝑥0, 按照某一迭代规则产生一

个迭代序列 {𝑥𝑘}. 使得若该序列是有限的, 则最后一个点就是问题 (1.18) 的极小

点; 否则, 若序列 {𝑥𝑘} 是无穷点列时, 它有极限点且这个极限点即为问题 (1.18)

的极小点.

设 𝑥𝑘 为第 𝑘 次迭代点, 𝑑𝑘 为第 𝑘 次搜索方向, 𝛼𝑘 为第 𝑘 次步长因子, 则第

𝑘 次迭代完成后可得到新一轮 (第 𝑘 + 1 次) 的迭代点

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘. (1.19)

因此, 我们可以写出求解无约束优化问题 (1.18) 的一般算法框架如下.

算法 1 (无约束问题的一般算法框架 )

步 0 给定初始化参数及初始迭代点 𝑥0. 置 𝑘 := 0.

步 1 若 𝑥𝑘 满足某种终止准则, 停止迭代, 以 𝑥𝑘 作为近似极小点.

步 2 通过求解 𝑥𝑘 处的某个子问题确定下降方向 𝑥𝑘.

步 3 通过某种搜索方式确定步长因子 𝛼𝑘, 使得 𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) < 𝑓(𝑥𝑘).

步 4 令 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 := 𝑘 + 1, 转步 1.
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为了方便, 通常称上述算法中的 𝑠𝑘 = 𝛼𝑘𝑑𝑘 为第 𝑘 次迭代的位移. 从算法 1

可以看出, 不同的位移 (不同的搜索方向及步长因子) 即产生了不同的迭代算法.

为了保证算法的收敛性, 一般要求搜索方向为所谓的下降方向:

定义 10 若存在 𝛼̄ > 0, 使得对任意的 𝛼 ∈ (0, 𝛼̄] 和 𝑑𝑘 ̸= 0, 有

𝑓(𝑥𝑘 + 𝛼𝑑𝑘) < 𝑓(𝑥𝑘).

则称 𝑑𝑘 为 𝑓(𝑥) 在 𝑥𝑘 处的一个下降方向.

若目标函数 𝑓 是一阶连续可微的, 则判别 𝑑𝑘 是否为下降方向将有更为方便

的判别条件.

引理 2 设函数 𝑓 : 𝐷 ⊂ R𝑛 → R 在开集 𝐷 上一阶连续可微, 则 𝑑𝑘 为 𝑓(𝑥)

在 𝑥𝑘 处一个下降方向的充要条件是

∇𝑓(𝑥𝑘)𝑇𝑑𝑘 < 0. (1.20)

证 由泰勒展开式得

𝑓(𝑥𝑘 + 𝛼𝑑𝑘) = 𝑓(𝑥𝑘) + 𝛼∇𝑓(𝑥𝑘)𝑇𝑑𝑘 + 𝑜(𝛼).

若 (1.20) 成立, 则对于充分小的 𝛼 > 0, 显然有 𝑓(𝑥𝑘 + 𝛼𝑑𝑘) < 𝑓(𝑥𝑘, 即 𝑑𝑘 为 𝑓(𝑥)

在 𝑥𝑘 处的一个下降方向. 反之, 则有

𝛼∇𝑓(𝑥𝑘)𝑇𝑑𝑘 + 𝑜(𝛼) < 0,

即

∇𝑓(𝑥𝑘)𝑇𝑑𝑘 +
𝑜(𝛼)

𝛼
< 0.

由于 lim
𝛼→0

𝑜(𝛼)

𝛼
= 0, 故可推得 (1.20) 成立. �

算法的收敛性是设计一个迭代算法的最起码要求. 关于收敛性, 有所谓的

“局部收敛性”和“全局收敛性”概念：

定义 11 若某算法只有当初始点 𝑥0 充分接近极小点 𝑥* 时, 由算法产生的

点列 {𝑥𝑘} 才收敛于 𝑥*, 则称该算法具有局部收敛性. 若对于任意的初始点 𝑥0,

由算法产生的点列 {𝑥𝑘} 都收敛于 𝑥*, 则称该算法具有全局收敛性.
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算法的局部收敛速度是衡量一个算法好坏的重要指标, 我们给出有关收敛速

度的概念如下.

定义 12 设算法产生的点列 {𝑥𝑘} 收敛于极小点 𝑥*, 且

lim
𝑘→∞

‖𝑥𝑘+1 − 𝑥*‖
‖𝑥𝑘 − 𝑥*‖𝑝

= 𝜃.

(1) 若 𝑝 = 1 且 0 < 𝜃 < 1, 则称该算法具有线性收敛速度 (或线性收敛的).

(2) 若 𝑝 = 1 且 𝜃 = 0, 则称该算法具有超线性收敛速度 (或超线性收敛的).

(3) 若 𝑝 = 2 且 0 < 𝜃 <∞, 则称该算法具有平方收敛速度 (或平方收敛的).

(4) 一般地, 若 𝑝 > 2 且 0 < 𝜃 <∞, 则称该算法具有 𝑝 阶收敛速度 (或 𝑝 阶

收敛的).

在计算机上实现一个迭代法, 通常需要一个迭代终止条件. 常用的基本终止

条件有下列三种:

(1) 位移的绝对误差或相对误差充分小, 即

‖𝑥𝑘+1 − 𝑥𝑘‖ < 𝜀, 或
‖𝑥𝑘+1 − 𝑥𝑘‖

‖𝑥𝑘‖
< 𝜀,

其中 𝜀 是充分小的正数.

(2) 目标函数的绝对误差或相对误差充分小, 即

|𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘)| < 𝜀, 或
|𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘)|

|𝑓(𝑥𝑘)|
< 𝜀,

其中 𝜀 是充分小的正数.

(3) 目标函数的梯度的范数充分小, 即

‖∇𝑓(𝑥𝑘)‖ < 𝜀,

其中 𝜀 是充分小的正数.

习 题 1

1. 验证下列各集合是凸集:

(1) 𝑆 = {(𝑥1, 𝑥2)|2𝑥1 + 𝑥2 ≥ 1, 𝑥1 − 2𝑥2 ≥ 1};
(2) 𝑆 = {(𝑥1, 𝑥2)|𝑥2

1 + 𝑦22 ≤ 1};
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(3) 𝑆 = {(𝑥1, 𝑥2)||𝑥2| < 𝑥1}.
2. 判断下列函数为凸 (凹) 函数或严格凸 (凹) 函数:

(1) 𝑓(𝑥) = 𝑥2
1 + 2𝑥2

2;

(2) 𝑓(𝑥) = 3𝑥2
1 − 6𝑥1𝑥2 + 𝑥2

2;

(3) 𝑓(𝑥) = 𝑥2
1 − 2𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 3𝑥2;

(4) 𝑓(𝑥) = 2𝑥2
1 + 𝑥2

2 + 2𝑥2
3 + 𝑥1𝑥2 − 3𝑥1𝑥3 + 𝑥1 − 𝑥3.

3. 证明: 𝑓(𝑥) =
1

2
𝑥𝑇𝐺𝑥+ 𝑏𝑇𝑥 为严格凸函数当且仅当 Hessian 矩阵 𝐺 正定.

4. 若对任意 𝑥 ∈ R𝑛 及实数 𝜃 > 0 都有 𝑓(𝜃𝑥) = 𝜃(𝑥), 证明: 𝑓(𝑥) 在 R𝑛 上为凸函数的

充要条件是 ∀𝑥, 𝑦 ∈ R𝑛, 𝑓(𝑥+ 𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦).

5. 设 𝑓 : R3 → R 定义为：𝑓(𝑥) = (𝑥1 + 3𝑥2)
2 + 2(𝑥1 − 𝑥3)

4 + (𝑥2 − 2𝑥3)
4. 证明:

𝑥* = (0, 0, 0)𝑇 是 𝑓(𝑥) 的稳定点, 且 𝑥* 是 𝑓(𝑥) 在 R3 上的严格全局极小点.

6. 设 𝑓 : R𝑛 → R 是凸函数, 𝑥(1), · · · , 𝑥(𝑚) ∈ R𝑛, 𝜆1, · · · , 𝜆𝑚 是非负实数且 𝜆1 + · · · +
𝜆𝑚 = 1. 证明: 𝑓(𝜆1𝑥

(1)) + · · ·+ 𝜆𝑚𝑥(𝑚) ≤ 𝜆1𝑓(𝑥
(1)) + · · ·+ 𝜆𝑚𝑓(𝑥(𝑚)).

7. 设 𝑓, 𝑔 都是 R𝑛 上的凸函数, 证明 𝑓 + 𝑔 及 max{|𝑓 |, |𝑔|} 也是凸函数.

8. 设 𝑓(𝑥) = 𝑥2
1 + 𝑥3

2 −
1

3
𝑥3
1, 证明 𝑓 有严格局部极小点 (0, 0)𝑇 和鞍点 (1, 0).

9. 设三个序列 𝑥𝑘 =
(︁1
2

)︁2𝑘
, 𝑦𝑘 = e−𝑘 ln 𝑘, 𝑧𝑘 =

1

𝑘2
, 当 𝑘 → ∞ 时, 它们均收敛于 0. 试

证 {𝑥𝑘} 二阶收敛, {𝑦𝑘}超线性收敛, {𝑧𝑘} 线性收敛.

10. 设 𝑓(𝑥1, 𝑥2) = 10− 2(𝑥2
1 − 𝑥2)

2.

𝑆 = {(𝑥1, 𝑥2)| − 11 ≤ 𝑥1 ≤ 1,−1 ≤ 𝑥2 ≤ 1}.

𝑓(𝑥1, 𝑥2) 是否为 𝑆 上的凸函数?
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从本章开始, 介绍无约束优化问题的一些常用数值方法. 我们考虑下面的无

约束优化模型

min
𝑥∈R𝑛

𝑓(𝑥).

众所周知, 研究上述无约束优化问题的数值方法, 不仅是出于实际问题的需要,同

时也是研究约束优化问题数值方法的基础. 本章主要讨论一维线搜索算法及其收

敛性分析.

我们在第 1 章论及无约束优化问题迭代算法的一般框架时, 其中有下面的一

个迭代步:

通过某种搜索方式确定步长因子 𝛼𝑘, 使得

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) < 𝑓(𝑥𝑘). (2.1)

这实际上是 (𝑛 个变量的) 目标函数 𝑓(𝑥) 在一个规定的方向上移动所形成的

单变量优化问题, 也就是所谓的“线搜索”或“一维搜索”技术. 令

𝜑(𝛼) = 𝑓(𝑥𝑘 + 𝛼𝑑𝑘), (2.2)

这样, 搜索式 (2.1) 等价于求步长 𝛼𝑘 使得

𝜑(𝛼𝑘) < 𝜑(0).

线搜索有精确线搜索和非精确线搜索之分. 所谓精确线搜索, 是指求 𝛼𝑘 使

目标函数 𝑓 沿方向 𝑑𝑘 达到极小, 即

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) = min
𝛼>0

𝑓(𝑥𝑘 + 𝛼𝑑𝑘),

或

𝜑(𝛼𝑘) = min
𝛼>0

𝜑(𝛼).
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若 𝑓(𝑥) 是连续可微的, 那么由精确线搜索得到的步长因子 𝛼𝑘 具有如下性质:

∇𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇𝑑𝑘 = 0 (亦即 𝑔𝑇𝑘+1𝑑𝑘 = 0 ). (2.3)

上述性质在后面的算法收敛性分析中将起着重要的作用.

所谓非精确线搜索, 是指选取 𝛼𝑘 使目标函数 𝑓 得到可接受的下降量, 即

Δ𝑓𝑘 = 𝑓(𝑥𝑘)− 𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) > 0 是可接受的.

精确线搜索的基本思想是: 首先确定包含问题最优解的搜索区间, 然后采用

某种插值或分割技术缩小这个区间, 进行搜索求解. 下面给出搜索区间的定义.

定义 13 设 𝜑 是定义在实数集上一元实函数, 𝛼* ∈ [0,+∞), 并且

𝜑(𝛼*) = min
𝛼≥0

𝜑(𝛼). (2.4)

若存在区间 [𝑎, 𝑏] ⊂ [0,+∞), 使 𝛼* ∈ (𝑎, 𝑏), 则称 [𝑎, 𝑏] 是极小化问题 (2.4) 的搜索

区间. 进一步, 若 𝛼* 使得 𝜑(𝛼) 在 [𝑎, 𝛼*] 上严格递减, 在 [𝛼*, 𝑏] 上严格递增, 则

称 [𝑎, 𝑏] 是 𝜑(𝛼) 的单峰区间, 𝜑(𝛼) 是 [𝑎, 𝑏] 上的单峰函数.

下面介绍一种确定搜索区间并保证具有近似单峰性质的数值算法—进退法,

其基本思想是从一点出发, 按一定步长, 试图确定函数值呈现“高-低-高”的三

点, 从而得到一个近似的单峰区间.

算法 2 (进退法)

步 1 选取 𝛼0 ≥ 0, ℎ0 > 0. 计算 𝜑0 := 𝜑(𝛼0). 置 𝑘 := 0.

步 2 令 𝛼𝑘+1 = 𝛼𝑘 + ℎ𝑘, 计算 𝜑𝑘+1 := 𝜑(𝛼𝑘+1). 若 𝜑𝑘+1 < 𝜑𝑘, 转步 3, 否则

转步 4.

步 3 加大步长. 令 ℎ𝑘+1 := 2ℎ𝑘, 𝛼 := 𝛼𝑘, 𝛼𝑘 := 𝛼𝑘+1, 𝜑𝑘 := 𝜑𝑘+1, 𝑘 := 𝑘+1,

转步 2.

步 4 反向搜索或输出. 若 𝑘 = 0, 令 ℎ1 := ℎ0, 𝛼 := 𝛼1, 𝛼1 := 𝛼0, 𝜑1 := 𝜑0,

𝑘 := 1, 转步 2; 否则停止迭代, 令

𝑎 = min{𝛼, 𝛼𝑘+1}, 𝑎 = max{𝛼, 𝛼𝑘+1}.

输出 [𝑎, 𝑏].
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2.1 精确线搜索及其Matlab 实现

精确线搜索分为两类. 一类是使用导数的搜索, 如插值法, 牛顿法及抛物线

法等; 另一类是不用导数的搜索, 如 0.618 法, 分数法及成功-失败法等. 本书仅介

绍 0.618 法和二次插值逼近法.

1. 黄金分割法

黄金分割法也称为 0.618 法, 其基本思想是通过试探点函数值得比较, 是包

含极小点的搜索区间不断缩小. 该方法仅需要计算函数值, 适用范围广, 使用方

便. 下面我们来推导 0.618 法的计算公式.

设

𝜑(𝑠) = 𝑓(𝑥𝑘 + 𝑠𝑑𝑘),

其中 𝜑(𝑠) 是搜索区间 [𝑎0, 𝑏0] 上的单峰函数. 在第 𝑖 次迭代时搜索区间为 [𝑎𝑖, 𝑏𝑖].

取两个试探点为 𝑝𝑖, 𝑞𝑖 ∈ [𝑎𝑖, 𝑏𝑖] 且 𝑝𝑖 < 𝑞𝑖. 计算 𝜑(𝑝𝑖 和 𝜑(𝑞𝑖). 根据单峰函数的性

质, 可能会出现如下两种情形之一:

(1) 若 𝜑(𝑝𝑖) ≤ 𝜑(𝑞𝑖), 则令 𝑎𝑖+1 := 𝑎𝑖, 𝑏𝑖+1 := 𝑞𝑖;

(2) 若 𝜑(𝑝𝑖) > 𝜑(𝑞𝑖), 则令 𝑎𝑖+1 := 𝑝𝑖, 𝑏𝑖+1 := 𝑏𝑖.

我们要求两个试探点 𝑝𝑖 和 𝑞𝑖 满足下述两个条件:

(a) [𝑎𝑖, 𝑞𝑖] 与 [𝑝𝑖, 𝑏𝑖] 的长度相同, 即 𝑏𝑖 − 𝑝𝑖 = 𝑞𝑖 − 𝑎𝑖;

(b) 区间长度的缩短率相同, 即 𝑏𝑖+1 − 𝑎𝑖+1 = 𝑡(𝑏𝑖 − 𝑎𝑖).

从而可得

𝑝𝑖 = 𝑎𝑖 + (1− 𝑡)(𝑏𝑖 − 𝑎𝑖), 𝑞𝑖 = 𝑎𝑖 + 𝑡(𝑏𝑖 − 𝑎𝑖). (2.5)

现在考虑情形 (1). 此时, 新的搜索区间为

[𝑎𝑖+𝑖, 𝑏𝑖+1] = [𝑎𝑖, 𝑞𝑖].

为了进一步缩短搜索区间, 需取新的试探点 𝑝𝑖+1, 𝑞𝑖+1. 由 (2.5) 得

𝑞𝑖+1 = 𝑎𝑖+1 + 𝑡(𝑏𝑖+1 − 𝑎𝑖+1)

= 𝑎𝑖 + 𝑡(𝑞𝑖 − 𝑎𝑖)

= 𝑎𝑖 + 𝑡2(𝑏𝑖 − 𝑎𝑖).

若令

𝑡2 = 1− 𝑡, 𝑡 > 0, (2.6)
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则

𝑞𝑖+1 = 𝑎𝑖 + (1− 𝑡)(𝑏𝑖 − 𝑎𝑖) = 𝑝𝑖.

这样, 新的试探点 𝑞𝑖+1 就不需要重新计算. 类似地, 对于情形 (2), 也有相同的结

论.

解方程 (2.6) 得区间长度缩短率为

𝑡 =

√
5− 1

2
≈ 0.618.

因此, 我们可以写出 0.618 法的计算步骤如下.

算法 3 (0.618法)

步 0 确定初始搜索区间 [𝑎0, 𝑏0] 和容许误差 𝜀 > 0. 计算初始试探点

𝑝0 = 𝑎0 + 0.382(𝑏0 − 𝑎0), 𝑞0 = 𝑎0 + 0.618(𝑏0 − 𝑎0)

及相应的函数值 𝜑(𝑝0), 𝜑(𝑞0). 置 𝑖 := 0.

步 1 若 𝜑(𝑝𝑖) ≤ 𝜑(𝑞𝑖), 转步 2; 否则, 转步 3.

步 2 计算左试探点. 若 |𝑞𝑖 − 𝑎𝑖| ≤ 𝜀, 停算, 输出 𝑝𝑖. 否则, 令

𝑎𝑖+1 := 𝑎𝑖, 𝑏𝑖+1 := 𝑞𝑖, 𝜑(𝑞𝑖+1) := 𝜑(𝑝𝑖),

𝑞𝑖+1 := 𝑝𝑖, 𝑝𝑖+1 := 𝑎𝑖+1 + 0.382(𝑏𝑖+1 − 𝑎𝑖+).

计算 𝜑(𝑝𝑖+1), 𝑖 := 𝑖+ 1, 转步 1.

步 3 计算右试探点. 若 |𝑏𝑖 − 𝑝𝑖| ≤ 𝜀, 停算, 输出 𝑞𝑖. 否则, 令

𝑎𝑖+1 := 𝑝𝑖, 𝑏𝑖+1 := 𝑏𝑖, 𝜑(𝑝𝑖+1) := 𝜑(𝑞𝑖),

𝑝𝑖+1 := 𝑞𝑖, 𝑞𝑖+1 := 𝑎𝑖+1 + 0.618(𝑏𝑖+1 − 𝑎𝑖+).

计算 𝜑(𝑞𝑖+1), 𝑖 := 𝑖+ 1, 转步 1.

值得说明的是, 由于每次迭代搜索区间的收缩率是 𝑡 = 0.618, 故 0.618 法只

是线性收敛的, 即这一方法的计算效率并不高. 但该方法每次迭代只需计算一次

函数值的优点足以弥补这一缺憾.

下面给出用 0.618 法求单变量函数 𝜑 在单峰区间上近似极小点的Matlab 程

序.
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程序 1 (0.618法程序) 用 0.618 法求单变量函数 𝜑 在单峰区间 [𝑎, 𝑏] 上的
近似极小点.

function [s,phis,k,G,E]=golds(phi,a,b,delta,epsilon)

%输入: phi是目标函数, a, b 是搜索区间的两个端点

% delta, epsilon分别是自变量和函数值的容许误差

%输出: s, phis分别是近似极小点和极小值, G是nx4矩阵,

% 其第k行分别是a,p,q,b的第k次迭代值[ak,pk,qk,bk],

% E=[ds,dphi], 分别是s和phis的误差限.

t=(sqrt(5)-1)/2; h=b-a;

phia=feval(phi,a); phib=feval(phi,b);

p=a+(1-t)*h; q=a+t*h;

phip=feval(phi,p); phiq=feval(phi,q);

k=1; G(k,:)=[a, p, q, b];

while(abs(phib-phia)¿epsilon)—(h¿delta)

if(phip¡phiq)

b=q; phib=phiq; q=p; phiq=phip;

h=b-a; p=a+(1-t)*h; phip=feval(phi,p);

else

a=p; phia=phip; p=q; phip=phiq;

h=b-a; q=a+t*h; phiq=feval(phi,q);

end

k=k+1; G(k,:)=[a, p, q, b];

end

ds=abs(b-a); dphi=abs(phib-phia);

if(phip¡=phiq)

s=p; phis=phip;

else

s=q; phis=phiq;

end

E=[ds,dphi];

例 8 用 0.618 法程序 1 求函数 𝜑(𝑥) = 𝑥2 − sin(𝑥) 在 [0, 1] 上的极小点. 取

容许误差 𝛿 = 10−4, 𝜀 = 10−5.

解 在命令窗口输入如下命令

[s,phis,k,G,E]=golds(inline(’s^2-sin(s)’),0,1,1e-4,1e-5)

回车后即得如下数值结果:
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表 3.1 用 0.618 法求单变量函数极小点的数值结果.

迭代次数 近似极小点 (𝑠) |𝑏𝑘 − 𝑎𝑘| 的值 |𝜑(𝑏𝑘)− 𝜑(𝑎𝑘)| 的值

21 0.450183 6.6107× 10−5 1.1075× 10−9

2. 抛物线法

抛物线法也叫二次插值法, 其基本思想是: 在搜索区间中不断地使用二次多

项式去近似目标函数, 并逐步用插值多项式的极小点去逼近先搜索问题

min
𝑠>0

𝜑(𝑠) = 𝑓(𝑥𝑘 + 𝑠𝑑𝑘)

的极小点. 下面我们详细介绍这一方法.

设已知三点

𝑠0, 𝑠1 = 𝑠0 + ℎ, 𝑠2 = 𝑠0 + 2ℎ, (ℎ > 0)

处的函数值 𝜑0, 𝜑1, 𝜑2 且满足

𝜑1 < 𝜑0, 𝜑1 < 𝜑2.

上述条件保证了函数 𝜑 在区间 [𝑠0, 𝑠2] 上是单峰函数. 则满足上述条件的二次

Lagrabge 插值多项式为

𝑞(𝑠) =
(𝑠− 𝑠1)(𝑠− 𝑠2)

2ℎ2
𝜑0 −

(𝑠− 𝑠0)(𝑠− 𝑠2)

ℎ2
𝜑1 +

(𝑠− 𝑠0)(𝑠− 𝑠1)

2ℎ2
𝜑2.

𝑞(𝑠) 的一阶导数为

𝑞′(𝑠) =
2𝑠− 𝑠1 − 𝑠2

2ℎ2
𝜑0 −

2𝑠− 𝑠0 − 𝑠2
ℎ2

𝜑1 +
2𝑠− 𝑠0 − 𝑠1

2ℎ2
𝜑2. (2.7)

令 𝑞′(𝑠) = 0 解得

𝑠 =
(𝑠1 + 𝑠2)𝜑0 − 2(𝑠0 + 𝑠2)𝜑1 + (𝑠0 + 𝑠1)𝜑2

2(𝜑0 − 2𝜑1 + 𝜑2)

=
(2𝑠0 + 3ℎ)𝜑0 − 2(2𝑠0 + 2ℎ)𝜑1 + (2𝑠0 + ℎ)𝜑2

2(𝜑0 − 2𝜑1 + 𝜑2)

= 𝑠0 +
(3𝜑0 − 4𝜑1 + 𝜑2)ℎ

2(𝜑0 − 2𝜑1 + 𝜑2)
:= 𝑠0 + ℎ̄, (2.8)
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这里

ℎ̄ =
(4𝜑1 − 3𝜑0 − 𝜑2)ℎ

2(2𝜑1 − 𝜑0 − 𝜑2)
. (2.9)

又 𝑞(𝑠) 的二阶导数分别为

𝑞′′(𝑠) =
𝜑0

ℎ2
− 2𝜑1

ℎ2
+
𝜑2

ℎ2
=
𝜑0 − 2𝜑1 + 𝜑2

ℎ2
> 0.

故 𝑞(𝑠) 为凸二次函数, 从而 𝑠min 是 𝑞(𝑠) 的全局极小点.

注意到, 𝑠 = 𝑠0 + ℎ̄ 比 𝑠0 更好地逼近 𝑠*. 故可用 𝑠, ℎ̄ 分别替换 𝑠0 和 ℎ 并重

复上述计算过程, 求出新的 𝑠 和新的 ℎ̄. 重复这一迭代过程, 直到得到所需的精度

为止. 值得说明的是, 这一算法中目标函数的导数在 (2.7) 中隐式地用来确定用来

确定二次插值多项式的极小点, 而算法的程序实现中并不需要使用导数值.

算法 4 (抛物线法)

步 0 由算法 2 确定三点 𝑠0 < 𝑠1 < 𝑠2, 对应的函数值 𝜑0, 𝜑1, 𝜑2 满足

𝜑1 < 𝜑0, 𝜑1 < 𝜑2.

设定容许误差 𝜀 > 0.

步 1 若 |𝑠2 − 𝑠0| < 𝜀, 停算, 输出 𝑠* ≈ 𝑠1.

步 2 计算插值点. 根据 (2.8) 计算 𝑠 和 𝜑 := 𝜑(𝑠). 若 𝜑1 ≤ 𝜑, 转步 4, 否则,

转步 3.

步 3 若 𝑠1 > 𝑠, 则 𝑠2 := 𝑠1, 𝑠1 := 𝑠, 𝜑2 := 𝜑1, 𝜑1 := 𝜑, 转步 1. 否则, 𝑠0 := 𝑠1,

𝑠1 := 𝑠, 𝜑0 := 𝜑1, 𝜑1 := 𝜑, 转步 1.

步 4 若 𝑠1 < 𝑠, 则 𝑠2 := 𝑠, 𝜑2 := 𝜑, 转步 1. 否则, 𝑠0 := 𝑠, 𝜑0 := 𝜑, 转步 1.

下面给出用抛物法求单变量函数 𝜑 在单峰区间上近似极小点的 Matlab 程

序.

程序 2 (抛物线法程序) 求函数 𝜑(𝑠) 在区间 [𝑎, 𝑏] 上的局部极小值, 从初始
点 𝑠0 开始, 然后在区间 [𝑎, 𝑠0] 和 [𝑠0, 𝑏] 上进行搜索.

function [s,phis,ds,dphi,S]=qmin(phi,a,b,delta,epsilon)

%输入: phi 是目标函数, a和b是搜索区间的端点

% delta,epsilon是容许误差

%输出: s是近似极小点, phis是对应的近似极小值; k是迭代次数

% ds是迭代终止时的步长, dphi是—phi(s1)-phi(s)—; S是迭代向量
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s0=a; maxj=20; maxk=30; big=1e6; err=1; k=1;

S(k)=s0; cond=0; h=1; ds=0.00001;

if (abs(s0)¿1e4), h=abs(s0)*(1e-4); end

while (k¡maxk & err¿epsilon &cond˜=5)

f1=(feval(phi,s0+ds)-feval(phi,s0-ds))/(2*ds);

if(f1¿0), h=-abs(h); end

s1=s0+h; s2=s0+2*h; bars=s0;

phi0=feval(phi,s0); phi1=feval(phi,s1);

phi2=feval(phi,s2); barphi=phi0; cond=0;

j=0; %确定h使得phi1¡phi0且phi1¡phi2

while(j¡maxj&abs(h)¿delta&cond==0)

if (phi0¡=phi1),

s2=s1; phi2=phi1; h=0.5*h;

s1=s0+h; phi1=feval(phi,s1);

else if (phi2¡phi1),

s1=s2; phi1=phi2; h=2*h;

s2=s0+2*h; phi2=feval(phi,s2);

else

cond=-1;

end

end

j=j+1;

if(abs(h)¿big—abs(s0)¿big), cond=5; end

end

if(cond==5)

bars=s1; barphi=feval(phi,s1);

else

%二次插值求phis

d=2*(2*phi1-phi0-phi2);

if(d¡0),

barh=h*(4*phi1-3*phi0-phi2)/d;

else

barh=h/3; cond=4;

end

bars=s0+barh; barphi=feval(phi,bars);

h=abs(h); h0=abs(barh);

h1=abs(barh-h); h2=abs(barh-2*h);
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%确定下一次迭代的h值

if(h0¡h), h=h0; end

if(h1¡h), h=h1; end

if(h2¡h), h=h2; end

if(h==0), h=barh; end

if(h¡delta), cond=1; end

if(abs(h)¿big—abs(bars)¿big), cond=5; end

err=abs(phi1-barphi);

s0=bars; k=k+1; S(k)=s0;

end

if(cond==2&h¡delta), cond=3; end

end

s=s0; phis=feval(phi,s);

ds=h; dphi=err;

例 9 用二次插值法程序 2 求函数 𝜑(𝑥) = 𝑥2 − sin(𝑥) 在 [0, 1] 上的极小点.

取容许误差 𝛿 = 10−4, 𝜀 = 10−6.

解 在命令窗口输入如下命令

[s,phis,k,ds,dphi,S]=qmin(inline(’s^2-sin(s)’),0,1,1e-4,1e-6)

回车后即得如下数值结果:

表 3.1 用二次插值法求单变量函数极小点的数值结果.

迭代次数 近似极小点 (𝑠) |𝑠− 𝑠1| 的值 |𝜑(𝑠)− 𝜑(𝑠1)| 的值

4 0.450184 1.5340× 10−5 1.6984× 10−9

2.2 非精确线搜索及其Matlab 实现

线搜索技术是求解许多优化问题下降算法的基本组成部分, 但精确线搜索往

往需要计算很多的函数值和梯度值, 从而耗费较多的计算资源. 特别是当迭代点

远离最优点时, 精确线搜索通常不是十分有效和合理的. 对于许多优化算法, 其

收敛速度并不依赖于精确搜索过程. 因此, 既能保证目标函数具有可接受的下降

量又能使最终形成的迭代序列收敛的非精确线搜索变得越来越流行. 本书着重介

绍非精确线搜索中的Wolfe 准则和 Armijo 准则.

1. Wolfe 准则
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Wolfe 准则是指: 给定 𝜌 ∈ (0, 0.5), 𝜎 ∈ (𝜌, 0.5), 求 𝛼𝑘 使得下面两个不等式同

时成立:

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝜌𝛼𝑘𝑔
𝑇
𝑘 𝑑𝑘, (2.10)

∇𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇𝑑𝑘 ≥ 𝜎𝑔𝑇𝑘 𝑑𝑘, (2.11)

其中 𝑔𝑘 = 𝑔(𝑥𝑘) = ∇𝑓(𝑥𝑘). 条件 (2.11) 有时也用另一个更强的条件

|∇𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇𝑑𝑘| ≤ −𝜎𝑔𝑇𝑘 𝑑𝑘 (2.12)

来代替. 这样, 当 𝜎 > 0 充分小时, 可保证 (2.12) 变成近似精确线搜索. (2.10) 和

(2.12) 也称为强Wolfe 准则.

强Wolfe 准则表明, 由该准则得到的新的迭代点 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 在 𝑥𝑘 的

某一邻域内且使目标函数值有一定的下降量.

由于 𝑔𝑇𝑘 𝑑𝑘 < 0, 可以证明Wolfe 准则的有限终止性, 即步长 𝛼𝑘 的存在性. 我

们有下面的定理.

定理 10 设 𝑓(𝑥) 有下界且 𝑔𝑇𝑘 𝑑𝑘 < 0, 令 𝜌 ∈ (0, 0.5), 𝜎 ∈ (𝜌, 1). 则存在一个

区间 [𝑎, 𝑏], 0 < 𝑎 < 𝑏, 使每个 𝛼 ∈ [𝑎, 𝑏] 均满足 (2.10) 和 (2.12).

2. Armijo 准则

Armijo 准则是指: 给定 𝛽 ∈ (0, 1), 𝜎 ∈ (0, 0.5). 令步长因子 𝛼𝑘 = 𝛽𝑚𝑘 , 其中

𝑚𝑘 是满足下列不等式的最小非负整数:

𝑓(𝑥𝑘 + 𝛽𝑚𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝜎𝛽𝑚𝑔𝑇𝑘 𝑑𝑘. (2.13)

可以证明, 若 𝑓(𝑥) 是连续可微的且满足 𝑔𝑇𝑘 𝑑𝑘 < 0, 则 Armijo 准则是有限终

止的, 即存在正数 𝜎, 使得对于充分大的正整数𝑚, (2.13) 式成立.

为了程序实现的方便, 我们将 Armijo 准则写成下列详细的算法步骤.

算法 5 (Armijo准则)

步 0 给定 𝛽 ∈ (0, 1), 𝜎 ∈ (0, 0.5). 令𝑚 := 0.

步 1 若不等式

𝑓(𝑥𝑘 + 𝛽𝑚𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝜎𝛽𝑚𝑔𝑇𝑘 𝑑𝑘

成立, 置𝑚𝑘 := 𝑚, 𝑥𝑘+1 := 𝑥𝑘 + 𝛽𝑚𝑘𝑑𝑘, 停算. 否则, 转步 2.

步 2 令𝑚 := 𝑚+ 1, 转步 1.
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下面给出 Armijo 准则的Matlab 程序.

程序 3 (Armijo准则程序) Armijo 搜索规则是许多非线性优化算法都必
须执行的步骤, 把它编制成可重复利用的程序模块是很有意义的.

function mk=armijo(xk,dk )

beta=0.5; sigma=0.2;

m=0; mmax=20;

while (m¡=mmax)

if(fun(xk+beta^m*dk)¡=fun(xk)+sigma*beta^m*gfun(xk)’*dk)

mk=m; break;

end

m=m+1;

end

alpha=beta^mk

newxk=xk+alpha*dk

fk=fun(xk)

newfk=fun(newxk)

说明 程序 3 中 fun 和 gfun 分别是指目标函数和它的梯度函数的子程序. 执

行上述过程时这两个子程序必须事先准备好.

我们用上述程序来求解下面的问题.

例 10 考虑无约束优化问题

min
𝑥∈R2

𝑓(𝑥) = 100(𝑥21 − 𝑥2)
2 + (𝑥1 − 1)2,

设当前迭代点 𝑥𝑘 = (−1, 1)𝑇 , 下降方向 𝑑𝑘 = (1,−2)𝑇 . 利用程序 3 求步长因子

𝛼𝑘.

解 首先编写好目标函数及其梯度两个 m 文件 fun.m 和 gfun.m:

% 目标函数

function f=fun(x)

f=100*(x(1)^2-x(2))^2+(x(1)-1)^2;

% 梯度

function gf=gfun(x)

gf=[400*x(1)*(x(1)^2-x(2))+2*(x(1)-1), -200*(x(1)^2-x(2))]’;
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然后在Matlab 命令窗口输入下列代码

xk=[-1,1]’; dk=[1,-2]’; mk=armijo(xk,dk)

可得

𝑚𝑘 = 2; 𝛼𝑘 = 0.25; 𝑥𝑘+1 = (−0.75, 0.5)𝑇 ; 𝑓(𝑥𝑘) = 4; 𝑓(𝑥𝑘+1) = 3.4531.

2.3 线搜索法的收敛性

下面我们给出线搜索法的收敛性结果. 所谓“线搜索法”是指用线搜索技术

求步长因子的无约束优化问题下降类算法的简称. 其一般的算法框架是:

算法 6 (线搜索法算法框架)

步 0 初始化. 选取有关参数及初始迭代点 𝑥0 ∈ R𝑛. 设定容许误差 𝜀 ≪ 1.

令 𝑘 := 0.

步 1 检验终止判别准则. 计算 𝑔𝑘 = ∇𝑓(𝑥𝑘). 若 ‖𝑔𝑘‖ ≤ 𝜀, 输出 𝑥* ≈ 𝑥𝑘, 停

算.

步 2 确定下降方向 𝑑𝑘, 使满足 𝑔𝑇𝑘 𝑑𝑘 < 0.

步 3 确定步长因子 𝛼𝑘. 可在下列“精确”与“非精确”两种线搜索技术中

选用其一:

(1) 用前面介绍的 0.618 法或二次插值法等精确线搜索技术求

𝛼𝑘 = argmin
𝛼>0

𝑓(𝑥𝑘 + 𝛼𝑑𝑘). (2.14)

(2) 用前面介绍的 Wolfe 准则或 Armijo 准则等非精确线搜索技术求

𝛼𝑘.

步 4 更新迭代点. 令 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 := 𝑘 + 1, 转步 1.

值得说明的是, 为了保证这类算法的收敛性, 除了在步 3 要选用适当的线搜

索技术外, 搜索方向 𝑑𝑘 也需满足一定的条件, 即对于所有的 𝑘, 𝑑𝑘 与 −𝑔𝑘 的夹角
𝜃𝑘 满足

0 ≤ 𝜃𝑘 ≤
𝜋

2
− 𝜇, 𝜇 ∈

(︁
0,
𝜋

2

)︁
. (2.15)

显然, 夹角 𝜃𝑘 的余弦为

cos 𝜃𝑘 =
−𝑔𝑇𝑘 𝑑𝑘

‖𝑔𝑘‖‖𝑑𝑘‖
. (2.16)

下面的定理描述了基于Wolfe 准则或 Armijo 准则的非精确线搜索法的收敛

性.
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定理 11 设 {𝑥𝑘} 是由算法 6 产生的序列, 𝑓(𝑥) 有下界且对任意的 𝑥0 ∈ R𝑛,

∇𝑓(𝑥) 在水平集
𝐿(𝑥0) = {𝑥 ∈ R𝑛| 𝑓(𝑥) ≤ 𝑓(𝑥0)}

上存在且一致连续. 若下降方向 𝑑𝑘 满足条件 (2.15), 则

(1) 采用Wolfe 准则求搜索步长 𝛼𝑘 时, 有 {‖𝑔𝑘‖} → 0, 𝑘 → ∞.

(2) 采用 Armijo 准则求搜索步长 𝛼𝑘 时, {𝑥𝑘} 的任何聚点 𝑥* 都满足

∇𝑓(𝑥*) = 0.

证 (1) 用反证法. 设存在子列 (仍记指标为 𝑘), 使得 ‖𝑔𝑘‖ ≥ 𝜀 > 0. 注意到

𝑑𝑘 是下降方向, 由Wolfe 准则的条件 (2.10) 知, {𝑓(𝑥𝑘)} 是单调下降的. 又 𝑓(𝑥𝑘)

有下界, 故 𝑓(𝑥𝑘) 得极限存在, 因此有 𝑓(𝑥𝑘) − 𝑓(𝑥𝑘+1) → 0. 令 𝑠𝑘 = 𝛼𝑘𝑑𝑘, 则由

(2.10) 和 (2.15) 可得 cos 𝜃𝑘 ≥ sin𝜇 及

0 ≤ −𝑔𝑇𝑘 (𝛼𝑘𝑑𝑘) = −𝑔𝑇𝑘 𝑠𝑘 ≤
1

𝜌

(︀
𝑓(𝑥𝑘)− 𝑓(𝑥𝑘+1)

)︀
→ 0. (2.17)

故

0 ≤ ‖𝑔𝑘‖‖𝑠𝑘‖ sin𝜇 ≤ ‖𝑔𝑘‖‖𝑠𝑘‖ cos 𝜃𝑘 = −𝑔𝑇𝑘 𝑠𝑘 → 0.

注意到 ‖𝑔𝑘‖ ≥ 𝜀 > 0, 故由上式必有 ‖𝑠𝑘‖ → 0. 又由于 ∇𝑓(𝑥) 在水平集 𝐿(𝑥0) 上

是一致连续的, 我们有

∇𝑓(𝑥𝑘+1)
𝑇 𝑠𝑘 = 𝑔𝑇𝑘 𝑠𝑘 + 𝑜(‖𝑠𝑘‖),

即

lim
𝑘→∞

∇𝑓(𝑥𝑘+1)
𝑇 𝑠𝑘

𝑔𝑇𝑘 𝑠𝑘
= 1,

这与 (2.11) 式及 𝜎 < 1 矛盾. 因而必有 ‖𝑔𝑘‖ → 0.

(2) 用反证法. 假设 𝑥* 是序列 {𝑥𝑘} 的聚点且 ∇𝑓(𝑥*) ̸= 0. 由定理的条件可

得 𝑓(𝑥𝑘) → 𝑓(𝑥*) 及 𝑓(𝑥𝑘)− 𝑓(𝑥𝑘+1) → 0. 又由 Armijo 准则的条件 (2.13), 我们

有

−𝜎𝑔𝑇𝑘 𝑠𝑘 → 0, 𝑔𝑇𝑘 𝑠𝑘 → 0,

此处 𝑠𝑘 = 𝛽𝑚𝑘𝑑𝑘. 若 𝑔(𝑥𝑘) → 0 不成立, 则由上式可得 ‖𝑠𝑘‖ → 0. 由于在

Armijo 准则的条件 (2.13) 中, 𝑚𝑘 是使不等式成立的最小非负整数, 因此对于

𝛽𝑚𝑘−1 = 𝛽𝑚𝑘/𝛽, 不等式变为

𝑓(𝑥𝑘 + 𝛽𝑚𝑘−1𝑑𝑘)− 𝑓(𝑥𝑘) > 𝜎𝛽𝑚𝑘−1𝑔𝑇𝑘 𝑑𝑘.
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注意到 𝛽𝑚𝑘−1𝑑𝑘 = 𝑠𝑘/𝛽, 故上式即

𝑓
(︁
𝑥𝑘 +

1

𝛽
𝑠𝑘

)︁
− 𝑓(𝑥𝑘) > 𝜎𝑔𝑇𝑘

(︁𝑠𝑘
𝛽

)︁
. (2.18)

若令 𝑝𝑘 =
𝑠𝑘

‖𝑠𝑘‖
, 则

𝑠𝑘
𝛽

=
‖𝑠𝑘‖
𝛽

𝑝𝑘. 由 ‖𝑠𝑘‖ → 0 可知, 𝛼′
𝑘 =

‖𝑠𝑘‖
𝛽

→ 0 且 (2.18) 式

可改写为
𝑓(𝑥𝑘 + 𝛼′

𝑘𝑝𝑘)− 𝑓(𝑥𝑘)

𝛼′
𝑘

> 𝜎𝑔𝑇𝑘 𝑝𝑘.

因 ‖𝑝𝑘‖ = 1, 故 {‖𝑝𝑘‖} 有界, 从而存在收敛的子列, 仍记为 {‖𝑝𝑘‖} → 𝑝*, ‖𝑝*‖ =

1. 对上式两边取极限得

∇𝑓(𝑥*)𝑇𝑝* ≥ 𝜎∇𝑓(𝑥*)𝑇𝑝*.

由此可得

∇𝑓(𝑥*)𝑇𝑝* ≥ 0. (2.19)

另一方面, 注意到

𝑝𝑘 =
𝑠𝑘
‖𝑠𝑘‖

=
𝑑𝑘

‖𝑑𝑘‖
,

故有

−𝑔𝑇𝑘 𝑝𝑘 = −𝑔𝑇𝑘
(︁ 𝑑𝑘
‖𝑑𝑘‖

)︁
= ‖𝑔𝑘‖ cos 𝜃𝑘 ≥ ‖𝑔𝑘‖ sin𝜇.

对上式取极限得

−∇𝑓(𝑥*)𝑇𝑝* ≥ ‖∇𝑓(𝑥*)‖ sin𝜇 > 0,

即

∇𝑓(𝑥*)𝑇𝑝* < 0,

这与 (2.19) 式矛盾. 故必有∇𝑓(𝑥*) = 0. �

下面的定理描述了基于精确线搜索技术的无约束优化问题下降类算法的收

敛性.

定理 12 设 {𝑥𝑘} 是由算法 6 产生的序列, 𝑓(𝑥) 有下界且对任意的 𝑥0 ∈ R𝑛,

∇𝑓(𝑥) 在水平集
𝐿(𝑥0) = {𝑥 ∈ R𝑛| 𝑓(𝑥) ≤ 𝑓(𝑥0)}

上存在且一致连续. 若下降方向 𝑑𝑘 满足条件 (2.15) 且搜索步长 𝛼𝑘 满足精确线

搜索条件 (2.14). 则若非 𝑔𝑘 = 0, 必有 𝑔𝑘 → 0 (𝑘 → ∞).
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证 只需证明 𝑔𝑘 ̸= 0 时必有 𝑔𝑘 → 0 (𝑘 → ∞) 成立. 用反证法. 若 𝑔𝑘 → 0 不

成立, 则存在常数 𝜀 > 0 和一个子列 (仍记为该序列本身) 使得 ‖𝑔𝑘‖ ≥ 𝜀.

首先, 由算法 6 的步 4 知, {𝑓(𝑥𝑘)} 是单调下降的, 再注意到 𝑓(𝑥𝑘) 有下界,

故序列 {𝑓(𝑥𝑘)} 的极限存在, 从而

𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘) → 0, 𝑘 → ∞. (2.20)

另一方面, 我们有
−𝑔𝑇𝑘 𝑑𝑘
‖𝑑𝑘‖

= ‖𝑔𝑘‖ cos 𝜃𝑘 ≥ 𝜀 sin𝜇 ≡ 𝜀0. (2.21)

由泰勒展开式得

𝑓(𝑥𝑘 + 𝛼𝑑𝑘) = 𝑓(𝑥𝑘) + 𝛼𝑔(𝜉𝑘)
𝑇𝑑𝑘

= 𝑓(𝑥𝑘) + 𝛼𝑔𝑇𝑘 𝑑𝑘 + 𝛼[𝑔(𝜉𝑘)− 𝑔𝑘]
𝑇𝑑𝑘

≤ 𝑓(𝑥𝑘) + 𝛼‖𝑑𝑘‖
[︂
𝑔𝑇𝑘 𝑑𝑘
‖𝑑𝑘‖

+ ‖𝑔(𝜉𝑘)− 𝑔𝑘‖
]︂
, (2.22)

其中 𝜉𝑘 是连接 𝑥𝑘 与 𝑥𝑘 + 𝛼𝑑𝑘 线段上的某一点. 由于 𝑔(𝑥) = ∇𝑓(𝑥) 在水平集
𝐿(𝑥0) 上一致连续, 故存在 𝛼̄ > 0, 使当 0 ≤ 𝛼‖𝑑𝑘‖ ≤ 𝛼̄ 时,

‖𝑔(𝜉𝑘)− 𝑔𝑘‖ ≤ 1

2
𝜀0, ∀ 𝑘 ≥ 0. (2.23)

在 (2.22) 中令 𝛼 = 𝛼̄/‖𝑑𝑘‖, 并利用 (2.21) 和 (2.23) 得

𝑓
(︁
𝑥𝑘 +

𝛼̄

‖𝑑𝑘‖
𝑑𝑘

)︁
≤ 𝑓(𝑥𝑘) + 𝛼̄

[︂
𝑔𝑇𝑘 𝑑𝑘
‖𝑑𝑘‖

+ ‖𝑔(𝜉𝑘)− 𝑔𝑘‖
]︂

≤ 𝑓(𝑥𝑘) + 𝛼̄
[︁
− 𝜀0 +

1

2
𝜀0

]︁
= 𝑓(𝑥𝑘)−

1

2
𝛼̄𝜀0.

由精确搜索条件得

𝑓(𝑥𝑘+1) ≤ 𝑓
(︁
𝑥𝑘 +

𝛼̄

‖𝑑𝑘‖
𝑑𝑘

)︁
≤ 𝑓(𝑥𝑘)−

1

2
𝛼̄𝜀0.

这与 (2.20) 式矛盾, 从而 𝑔𝑘 → 0. �
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习 题 2

1. 用 0.618 法求解

min 𝑓(𝑥) = 𝑥2 − 𝑥− 1.

初始区间为 [−1, 1], 区间精度为 𝛿 = 0.05.

2. 用 0.618 法求

min 𝑓(𝑥) = 𝑥3 − 2𝑥+ 1

的近似最优解, 初始搜索区间为 [0, 3]. 区间精度为 𝛿 = 0.15.

3. 用抛物线法求 𝑓(𝑥) = 𝑥2 − 6𝑥 + 2 的近似极小点, 给定初始点 𝑥0 = 1, 初始步长

ℎ0 = 0.1.

4. 用抛物线法法求

min
𝑥≥0

𝑓(𝑥) = 𝑥3 − 2𝑥+ 1

的近似最优解,初始搜索区间为 [0, 3],初始插值点 𝑥0 = 1,终止条件为 |𝑥𝑘+1−𝑥𝑘| < 𝛿 = 0.01.

5. 分别用教材所给的 0.618 法和抛物线法Matlab 程序计算下列问题的近似最优解:

(1) min 𝑓(𝑥) = 𝑒−𝑥 + 𝑥2; (2) min 𝑓(𝑥) = 3𝑥4 − 4𝑥3 − 12𝑥2;

(3) min 𝑓(𝑥) = 𝑥4 + 2𝑥+ 4; (4) min 𝑓(𝑥) = 𝑥3 − 3𝑥+ 1.

6. 利用教材所给的 Armijo 搜索Matlab 程序计算下面的问题:

min𝜙(𝑥) = 𝑓(𝑥𝑘 + 𝛼𝑑𝑘),

其中 𝑓(𝑥) = 100(𝑥2 − 𝑥2
1)

2 + (1− 𝑥1)
2, 𝑥𝑘 = (−1, 1)𝑇 , 𝑑𝑘 = (1, 1)𝑇 .
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本章讨论无约束优化问题

min
𝑥∈R𝑛

𝑓(𝑥) (3.1)

的最速下降法和牛顿法及其改进算法. 其中最速下降法是求解无约束优化问题最

简单和最古老的方法之一, 虽然时至今日它不再具有实用性, 但它却研究其它无

约束优化算法的基础, 许多有效算法都是以它基础通过改进或修正而得到的. 此

外, 牛顿法也是一种经典的无约束优化算法, 并且因其收敛速度快以及具有自适

应性等优点而至今仍受到科技工作者的青睐.

3.1 最速下降方法及其Matlab 实现

在第 2 章关于无约束优化问题下降类算法的一般框架时提及, 用不同的方式

确定搜索方向或搜索步长, 就会得到不同的算法. 最速下降法是用负梯度方向

𝑑𝑘 = −∇𝑓(𝑥𝑘) (3.2)

作为搜索方向的 (因此也称为梯度法). 设 𝑓(𝑥) 在 𝑥𝑘 附近连续可微, 𝑑𝑘 为搜索方

向向量, 𝑔𝑘 = ∇𝑓(𝑥𝑘). 由泰勒展开式得

𝑓(𝑥𝑘 + 𝛼𝑑𝑘) = 𝑓(𝑥𝑘) + 𝛼𝑔𝑇𝑘 𝑑𝑘 + 𝑜(𝛼), 𝛼 > 0.

那么目标函数 𝑓(𝑥) 在 𝑥𝑘 处沿方向 𝑑𝑘 下降的变化率为

lim
𝛼→0

𝑓(𝑥𝑘 + 𝛼𝑑𝑘)− 𝑓(𝑥𝑘)

𝛼
= lim

𝛼→0

𝛼𝑔𝑇𝑘 𝑑𝑘 + 𝑜(𝛼)

𝛼
= 𝑔𝑇𝑘 𝑑𝑘 = ‖𝑔𝑘‖‖𝑑𝑘‖ cos 𝜃𝑘,

其中 𝜃𝑘 是 𝑔𝑘 与 𝑑𝑘 的夹角. 显然, 对于不同的方向 𝑑𝑘, 函数变化率取决于它与 𝑔𝑘

夹角的余弦值. 要使变化率最小, 只有 cos 𝜃𝑘 = −1, 即 𝜃𝑘 = 𝜋 时才能达到, 亦即
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𝑑𝑘 应该取 (3.2) 中的负梯度方向, 这也是将负梯度方向叫作最速下降方向的由来.

下面给出最速下降法的具体计算步骤.

算法 7 (最速下降法)

步 0 选取初始点 𝑥0 ∈ R𝑛, 容许误差 0 ≤ 𝜀≪ 1. 令 𝑘 := 1.

步 1 计算 𝑔𝑘 = ∇𝑓(𝑥𝑘). 若 ‖𝑔𝑘‖ ≤ 𝜀, 停算, 输出 𝑥𝑘 作为近似最优解.

步 2 取方向 𝑑𝑘 = −𝑔𝑘.
步 3 由线搜索技术确定步长因子 𝛼𝑘.

步 4 令 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 := 𝑘 + 1, 转步 1.

说明 步 3 中步长因子 𝛼𝑘 的确定即可使用精确线搜索方法, 也可以使用非精

确线搜索方法, 在理论上都能保证其全局收敛性. 若采用精确线搜索方法, 即

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) = min
𝛼≥0

𝑓(𝑥𝑘 + 𝛼𝑑𝑘),

那么 𝛼𝑘 应满足

𝜑′(𝛼) =
d

d𝛼
𝑓(𝑥𝑘 + 𝛼𝑑𝑘)|𝛼=𝛼𝑘

= ∇𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇𝑑𝑘 = 0.

由 (3.2) 有

∇𝑓(𝑥𝑘+1)
𝑇∇𝑓(𝑥𝑘) = 0,

即新点 𝑥𝑘+1 处的梯度与旧点 𝑥𝑘 处的梯度是正交的, 也就是说迭代点列所走的路

线是锯齿型的, 故其收敛速度是很缓慢的 (至多线性收敛速度).

由 𝑑𝑘 = −𝑔𝑘 及 (2.16), 即

𝑐𝑜𝑠𝜃𝑘 =
−𝑔𝑇𝑘 𝑑𝑘

‖𝑔𝑘‖‖𝑑𝑘‖
=

−𝑔𝑇𝑘 (−𝑔𝑘)
‖𝑔𝑘‖‖ − 𝑔𝑘‖

= 1, ⇒ 𝜃𝑘 = 0,

故条件 (2.15) 必然满足 (0 ≤ 𝜃𝑘 ≤ 𝜋

2
− 𝜇, 𝜇 > 0). 从而直接应用定理 11 和定理

12 即得到最速下降法的全局收敛性定理:

定理 13 设目标函数 𝑓(𝑥) 连续可微且其梯度函数∇𝑓(𝑥) 是 Lipschitz 连续

的, {𝑥𝑘} 由最速下降法产生, 其中步长因子 𝛼𝑘 由精确线搜索, 或由Wolfe 准则,

或由 Armijo 准则产生. 则有

lim
𝑘→∞

‖∇𝑓(𝑥𝑘)‖ = 0.
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下面的定理给出了最速下降法求解严格凸二次函数极小值问题时的收敛速

度估计, 其证明可参阅有关文献, 此处省略不证.

定理 14 设矩阵 𝐻 ∈ R𝑛×𝑛 对称正定, 𝑐 ∈ R𝑛. 记 𝜆1 和 𝜆𝑛 分别是 𝐻 最大

和最小特征值, 𝜅 = 𝜆1/𝜆𝑛. 考虑如下极小化问题

min 𝑓(𝑥) = 𝑐𝑇𝑥+
1

2
𝑥𝑇𝐻𝑥.

设 {𝑥𝑘} 是用精确线搜索的最速下降法求解上述问题所产生的迭代序列, 则对于

所有的 𝑘, 下面的不等式成立

‖𝑥𝑘+1 − 𝑥*‖𝐻 ≤
(︁𝜅− 1

𝜅+ 1

)︁
‖𝑥𝑘 − 𝑥*‖𝐻 , (3.3)

其中, 𝑥* 是问题的唯一解, ‖𝑥‖𝐻 =
√
𝑥𝑇𝐻𝑥.

由上面的定理可以看出, 若条件数 𝜅 接近于 1 (即 𝐻 的最大特征值和最小特

征值接近时), 最速下降法是收敛很快的. 但当条件数 𝜅 较大时 (即 𝐻 近似于病

态时), 算法的收敛速度是很缓慢的.

下面我们给出基于 Armijo 非精确线搜索的最速下降法Matlab 程序.

程序 4 (最速下降法程序)

function [x,val,k]=grad(fun,gfun,x0)

%功能: 用最速下降法求解无约束问题: min f(x)

%输入: x0是初始点, fun, gfun分别是目标函数和梯度

%输出: x, val分别是近似最优点和最优值, k是迭代次数.

maxk=5000; %最大迭代次数

rho=0.5;sigma=0.4;

k=0; epsilon=1e-5;

while(k¡maxk)

g=feval(gfun,x0); %计算梯度

d=-g; %计算搜索方向

if(norm(d)¡epsilon), break; end

m=0; mk=0;

while(m¡20) %Armijo搜索

if(feval(fun,x0+rho^m*d)¡feval(fun,x0)+sigma*rho^m*g’*d)

mk=m; break;

end
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m=m+1;

end

x0=x0+rho^mk*d;

k=k+1;

end

x=x0;

val=feval(fun,x0);

例 11 利用程序 4 求解无约束优化问题

min
𝑥∈R2

𝑓(𝑥) = 100(𝑥21 − 𝑥2)
2 + (𝑥1 − 1)2.

该问题有精确解 𝑥* = (1, 1)𝑇 , 𝑓(𝑥*) = 0.

解 首先建立两个分别计算目标函数和梯度的 m 文件:

function f=fun(x)

f=100*(x(1)^2-x(2))^2+(x(1)-1)^2;

function g=gfun(x)

g=[400*x(1)*(x(1)^2-x(2))+2*(x(1)-1), -200*(x(1)^2-x(2))]’;

我们利用程序 4, 终止准则取为 ‖∇𝑓(𝑥𝑘)‖ ≤ 10−5. 取不同的初始点, 数值结

果如下表.

表 4.1 最速下降法的数值结果.

初始点 (𝑥0) 迭代次数 (𝑘) 目标函数值 (𝑓(𝑥𝑘))

(0.0, 0.0)𝑇 1159 1.1630× 10−10

(2.0, 1.0)𝑇 611 1.1416× 10−10

(1.0,−1.0)𝑇 1551 1.2251× 10−10

(−1.0,−1.0)𝑇 1499 9.2536× 10−11

(−1.2, 1)𝑇 1435 1.1985× 10−10

(10,−10)𝑇 1024 1.0156× 10−10

由上表可以看出, 最速下降法的收敛速度是比较缓慢的.

说明 上述程序的调用方式是:

x0=[-1.2 1]’;

[x,val,k]=grad(’fun’,’gfun’,x0)

其中 fun, gfun 分别是求目标函数值及其梯度的M 函数文件.
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3.2 牛顿法及其Matlab 实现

跟最速下降法一样, 牛顿法也是求解无约束优化问题最早使用的经典算法之

一. 其基本思想是用迭代点 𝑥𝑘 处的一阶导数 (梯度) 和二阶导数 (Hesse 阵) 对目

标函数进行二次函数近似, 然后把二次模型的极小点作为新的迭代点, 并不断重

复这一过程, 直至求得满足精度的近似极小点.

下面来推导牛顿法的迭代公式. 设 𝑓(𝑥) 的 Hesse 阵𝐺(𝑥) = ∇2𝑓(𝑥) 连续, 截

取其在 𝑥𝑘 处的泰勒展开式的前三项得

𝑞𝑘(𝑥) = 𝑓𝑘 + 𝑔𝑇𝑘 (𝑥− 𝑥𝑘) +
1

2
(𝑥− 𝑥𝑘)

𝑇𝐺𝑘(𝑥− 𝑥𝑘),

其中 𝑓𝑘 = 𝑓(𝑥𝑘), 𝑔𝑘 = ∇𝑓(𝑥𝑘), 𝐺𝑘 = ∇2𝑓(𝑥𝑘). 求二次函数 𝑞𝑘(𝑥) 的稳定点, 得

∇𝑞𝑘(𝑥) = 𝑔𝑘 +𝐺𝑘(𝑥− 𝑥𝑘) = 0.

若𝐺𝑘 非奇异, 那么解上面的线性方程组 (记其解为 𝑥𝑘+1) 即得牛顿法的迭代公式

𝑥𝑘+1 = 𝑥𝑘 −𝐺−1
𝑘 𝑔𝑘. (3.4)

在迭代公式 (3.4) 中每步迭代需要求 Hesse 阵的逆 𝐺−1
𝑘 , 在实际计算中可通过先

解 𝐺𝑘𝑑 = −𝑔𝑘 得 𝑑𝑘, 然后令 𝑥𝑘+1 = 𝑥𝑘 + 𝑑𝑘 来避免求逆. 这样, 可以写出基本牛

顿法的步骤如下:

算法 8 (基本牛顿法)

步 0 给定终止误差值 0 ≤ 𝜀≪ 1, 初始点 𝑥0 ∈ R𝑛. 令 𝑘 : 0.

步 1 计算 𝑔𝑘 = ∇𝑓(𝑥𝑘). 若 ‖𝑔𝑘‖ ≤ 𝜀, 停算, 输出 𝑥* ≈ 𝑥𝑘.

步 2 计算 𝐺𝑘 = ∇2𝑓(𝑥𝑘), 并求解线性方程组得解 𝑑𝑘:

𝐺𝑘𝑑 = −𝑔𝑘.

步 3 令 𝑥𝑘+1 = 𝑥𝑘 + 𝑑𝑘, 𝑘 := 𝑘 + 1, 转步 1.

牛顿法最突出的优点是收敛速度快，具有局部二阶收敛性. 下面的定理表明

了这一性质.

定理 15 设函数 𝑓(𝑥) 有二阶连续偏导数, 在局部极小点 𝑥* 处, 𝐺(𝑥*) =

∇2𝑓(𝑥*) 是正定的且 𝐺(𝑥) 在 𝑥* 的一个邻域内是 Lipschitz 连续的. 如果初始点

𝑥0 充分靠近 𝑥*, 那么对一切 𝑘, 牛顿迭代公式 (3.4) 是适定的, 并当 {𝑥𝑘} 为无穷
点列时, 其极限为 𝑥*, 且收敛阶至少是二阶的.
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证 由 𝐺(𝑥*) 的正定性及 𝑓 二次连续可微可知, 存在 𝑥* 的一个邻域 𝑈(𝑥*),

使得对任意的 𝑥 ∈ 𝑈(𝑥*), 都有 𝐺(𝑥) 是一致正定的. 特别地, ‖𝐺(𝑥)−1‖ 在 𝑈1(𝑥
*)

上有界, 即存在常数𝑀 ≥ 0, 使得 ‖𝐺(𝑥)−1‖ ≤ 𝑀 , ∀𝑥 ∈ 𝑈1(𝑥
*). 又由 𝐺(𝑥) 的连

续性可知, 存在邻域 𝑈(𝑥*), 使得

‖𝐺(𝑥)−𝐺(𝑥*)‖ ≤ 1

4𝑀
, ∀𝑥 ∈ 𝑈(𝑥*) ⊆ 𝑈1(𝑥

*).

因此, 当 𝑥0 ∈ 𝑈(𝑥*) 时, 有

‖𝑥1 − 𝑥*‖ = ‖𝑥0 − 𝑥* −𝐺−1
0 𝑔0‖

≤ ‖𝐺−1
0 ‖‖𝑔(𝑥0)− 𝑔(𝑥*)−𝐺0(𝑥0 − 𝑥*)‖

≤ ‖𝐺−1
0 ‖
⃦⃦⃦ ∫︁ 1

0

𝐺(𝑥* + 𝜏(𝑥− 𝑥*))(𝑥− 𝑥*)d𝜏 −𝐺0(𝑥0 − 𝑥*)
⃦⃦⃦

≤ 𝑀

∫︁ 1

0

‖𝐺(𝑥* + 𝜏(𝑥0 − 𝑥*))−𝐺(𝑥0)‖‖𝑥0 − 𝑥*‖d𝜏

≤ 𝑀

(︂∫︁ 1

0

‖𝐺(𝑥* + 𝜏(𝑥0 − 𝑥*))−𝐺(𝑥*)‖d𝜏

+

∫︁ 1

0

‖𝐺(𝑥0)−𝐺(𝑥*)‖d𝜏
)︂
‖𝑥0 − 𝑥*‖

≤ 1

2
‖𝑥0 − 𝑥*‖. (3.5)

上式特别说明, 𝑥1 ∈ 𝑈(𝑥*). 类似地, 利用归纳法原理, 可证明对于所有的 𝑘 ≥ 1

有

‖𝑥𝑘+1 − 𝑥*‖ ≤ 1

2
‖𝑥𝑘 − 𝑥*‖.

因此 {𝑥𝑘} ⊂ 𝑈(𝑥*), 且 𝑥𝑘 → 𝑥* (𝑘 → ∞). 进一步, 类似于 (3.5) 的推导, 可得

‖𝑥𝑘+1 − 𝑥*‖ ≤ 𝑀

∫︁ 1

0

‖𝐺(𝑥* + 𝜏(𝑥𝑘 − 𝑥*))−𝐺(𝑥𝑘)‖‖𝑥𝑘 − 𝑥*‖d𝜏

= 𝑜(‖𝑥𝑘 − 𝑥*‖),

即 {𝑥𝑘} 超线性收敛于 𝑥*. 若 𝐺(𝑥) 在 𝑥* 的一个邻域内 Lipschitz 连续, 则由上式
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得

‖𝑥𝑘+1 − 𝑥*‖ ≤ 𝑀
(︁∫︁ 1

0

‖𝐺(𝑥* + 𝜏(𝑥𝑘 − 𝑥*))−𝐺(𝑥*)‖d𝜏

+

∫︁ 1

0

‖𝐺(𝑥*)−𝐺(𝑥𝑘)‖d𝜏
)︁
‖𝑥𝑘 − 𝑥*‖

≤ 𝐿𝑀

(︂∫︁ 1

0

𝜏d𝜏 + 1

)︂
‖𝑥𝑘 − 𝑥*‖2

=
3

2
𝐿𝑀‖𝑥𝑘 − 𝑥*‖2,

即 {𝑥𝑘} 二次收敛于 𝑥*. 证毕. �

上述定理指出, 初始点需要足够“靠近”极小点, 否则有可能导致算法不收

敛. 由于实际问题的精确极小点一般是不知道的, 因此初始点的选取给算法的实

际操作带来了很大的困难. 为了克服这一困难, 可引入线搜索技术以得到大范围

收敛的算法, 即所谓的阻尼牛顿法. 我们给出一个基于 Armijo 搜索的阻尼牛顿

法如下:

算法 9 (阻尼牛顿法)

步 0 给定终止误差值 0 ≤ 𝜀 ≪ 1, 𝛿 ∈ (0, 1), 𝜎 ∈ (0, 0.5). 初始点 𝑥0 ∈ R𝑛.

令 𝑘 : 0.

步 1 计算 𝑔𝑘 = ∇𝑓(𝑥𝑘). 若 ‖𝑔𝑘‖ ≤ 𝜀, 停算, 输出 𝑥* ≈ 𝑥𝑘.

步 2 计算 𝐺𝑘 = ∇2𝑓(𝑥𝑘), 并求解线性方程组得解 𝑑𝑘:

𝐺𝑘𝑑 = −𝑔𝑘 (3.6)

步 3 记𝑚𝑘 是满足下列不等式的最小非负整数𝑚:

𝑓(𝑥𝑘 + 𝛿𝑚𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝜎𝛿𝑚𝑔𝑇𝑘 𝑑𝑘. (3.7)

步 4 令 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 := 𝑘 + 1, 转步 1.

我们给出算法 9 的全局收敛性定理如下:

定理 16 设函数 𝑓(𝑥) 二次连续可微且存在常数 𝛾 > 0, 使得

𝑑𝑇∇2𝑓(𝑥)𝑑 ≥ 𝛾‖𝑑‖2, ∀ 𝑑 ∈ R𝑛, 𝑥 ∈ 𝐿(𝑥0), (3.8)

其中 𝐿(𝑥0) = {𝑥|𝑓(𝑥) ≤ 𝑓(𝑥0)}. 设 {𝑥𝑘} 是由算法 9 产生的无穷点列, 则该点列

收敛于 𝑓 在水平集 𝐿(𝑥0) 中的唯一全局极小点.
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证 由条件 (3.8) 知, 𝑓 是水平集 𝐿(𝑥0) 上的一致凸函数, 因此一定存在唯一

的全局极小点 𝑥*, 且 𝑥* 是∇𝑓(𝑥) = 0 的唯一解.

由由由于 𝑓 是凸函数, 故水平集 𝐿(𝑥0) 是一个有界闭凸集. 注意到算法 9 的步 3,

序列 {𝑓(𝑥𝑘)} 是单调下降的. 故显然有 {𝑥𝑘} ⊂ 𝐿(𝑥0).

由 (3.6) 和 (3.8) 不难得到

‖𝑔𝑘‖ ≤ 𝛽‖𝑑𝑘‖,

其中 𝛽 > 0 是某个常数. 设 𝑥̄ 是 {𝑥𝑘} 的任意一个极限点, 则有 𝑓𝑘 → 𝑓(𝑥̄). 记 𝜃𝑘

是负梯度方向 −𝑔𝑘 与牛顿方向 𝑑𝑘 = −𝐺−1
𝑘 𝑔𝑘 的夹角. 由上式和 (3.6), (3.8) 可推

得

cos 𝜃𝑘 =
−𝑔𝑇𝑘 𝑑𝑘

‖𝑔𝑘‖‖𝑑𝑘‖
=

𝑑𝑇𝑘𝐺𝑘𝑑𝑘
‖𝑔𝑘‖‖𝑑𝑘‖

≥ 𝛾‖𝑑𝑘‖2

‖𝑔𝑘‖‖𝑑𝑘‖

=
𝛾‖𝑑𝑘‖
‖𝑔𝑘‖

≥ 𝛾

𝛽
> 0.

则由定理 11 可得

lim
𝑘→∞

𝑔𝑘 = 0,

即 {𝑥𝑘} 的极限点都是稳定点. 由 𝑓 的凸性知, 稳定点亦即 (全局) 极小点. 故由

极小点的唯一性知, {𝑥𝑘} 收敛于 𝑓 在水平集 𝐿(𝑥0) 上的全局极小点. 证毕. �

为了分析算法 9 的收敛速度, 需要用到下面的引理, 其详细的证明过程可参

见文献 [4].

引理 3 设函数 𝑓 : R𝑛 → R 二次连续可微, 点列 {𝑥𝑘} 由算法 9 产生. 设

{𝑥𝑘} → 𝑥* 且 𝑔(𝑥*) = 0, 𝐺(𝑥*) 正定. 那么, 若

lim
𝑘→∞

‖𝐺(𝑥𝑘)𝑑𝑘 + 𝑔𝑘‖
‖𝑑𝑘‖

= 0, (3.9)

则 (1) 当 𝑘 充分大时, 步长因子 𝛼𝑘 ≡ 1. (2) 点列 {𝑥𝑘} 超线性收敛于 𝑥*.

定理 17 设定理 16 的条件成立, 点列 {𝑥𝑘} 由算法 9 产生. 则 {𝑥𝑘} 超线性
收敛于 𝑓 的全局极小点 𝑥*. 此外, 若 Hesse 阵 𝐺(𝑥) 在 𝑥* 处 Lipschitz 连续, 则

收敛阶至少是二阶的.
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证 定理 16 已证明 {𝑥𝑘} → 𝑥* 且 𝑔(𝑥*) = ∇𝑓(𝑥*) = 0. 又由算法 9 的步 2 显

然有条件 (3.9) 成立. 故由引理 3(1) 可知对于充分大的 𝑘, 𝛼𝑘 = 1 满足算法中的

线搜索式. 因此, 由定理 15 立即得到 {𝑥𝑘} 至少二阶收敛于 𝑥*. 证毕. �.

下面我们给出基于 Armijo 非精确线搜索的阻尼牛顿法Matlab 程序.

程序 5 (阻尼牛顿法程序)

function [x,val,k]=dampnm(fun,gfun,Hess,x0)

%功能: 用阻尼牛顿法求解无约束问题: min f(x)

%输入: x0是初始点, fun, gfun, Hess 分别是求

% 目标函数值,梯度,Hesse 阵的函数

%输出: x, val分别是近似最优点和最优值, k是迭代次数.

maxk=100; %给出最大迭代次数

rho=0.55;sigma=0.4;

k=0; epsilon=1e-5;

while(k¡maxk)

gk=feval(gfun,x0); %计算梯度

Gk=feval(Hess,x0); %计算Hesse阵

dk=-Gk“gk; %解方程组Gk*dk=-gk, 计算搜索方向

if(norm(gk)¡epsilon), break; end %检验终止准则

m=0; mk=0;

while(m¡20) % 用Armijo搜索求步长

if(feval(fun,x0+rho^m*dk)¡feval(fun,x0)+sigma*rho^m*gk’*dk)

mk=m; break;

end

m=m+1;

end

x0=x0+rho^mk*dk;

k=k+1;

end

x=x0;

val=feval(fun,x);

例 12 利用程序 5 求解无约束优化问题

min
𝑥∈R2

𝑓(𝑥) = 100(𝑥21 − 𝑥2)
2 + (𝑥1 − 1)2.

该问题有精确解 𝑥* = (1, 1)𝑇 , 𝑓(𝑥*) = 0.
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解 除了例 11 中建立的两个计算目标函数和梯度的 m 文件之外, 还需建立

求 Hesse 阵的 m 文件:

function He=Hess(x)

n=length(x);

He=zeros(n,n);

He=[1200*x(1)^2-400*x(2)+2, -400*x(1);

-400*x(1), 200 ];

我们利用程序 5, 终止准则取为 ‖∇𝑓(𝑥𝑘)‖ ≤ 10−5. 取不同的初始点, 数值结

果如下表.

表 4.2 阻尼牛顿法的数值结果.

初始点 (𝑥0) 迭代次数 (𝑘) 目标函数值 (𝑓(𝑥𝑘))

(0, 0)𝑇 13 9.6238× 10−15

(0.5, 0.5)𝑇 11 3.5183× 10−19

(2, 2)𝑇 14 1.6322× 10−14

(−1,−1)𝑇 20 3.6221× 10−17

(1, 10)𝑇 1 4.9309× 10−28

(10, 10)𝑇 47 3.3426× 10−17

(20, 20)𝑇 73 3.0386× 10−17

由上表可以看出, 阻尼牛顿法的收敛速度是比较令人满意的.

说明 上述程序的调用方式是:

x0=[-1.2 1]’;

[x,val,k]=dampnm(’fun’,’gfun’,’Hess’,x0)

其中 fun, gfun, Hess 分别是求目标函数值和它的梯度及其 Hesse 阵的M 函数文

件.

3.3 修正牛顿法及其Matlab 实现

从上一节的分析可知, 牛顿法具有不低于二阶的收敛速度, 这是它的优点.

但该算法要求目标函数的Hesse阵𝐺(𝑥) = ∇2𝑓(𝑥)在每个迭代点 𝑥𝑘 处是正定的,

否则难以保证牛顿方向 𝑑𝑘 = −𝐺−1
𝑘 𝑔𝑘 是 𝑓 在 𝑥𝑘 处的下降方向. 为克服这一缺陷,
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可对牛顿法进行修正. 修正的途径之一是将牛顿法和最速下降法结合起来, 构造

所谓的“牛顿-最速下降混合算法”, 其基本思想是: 当 ∇2𝑓(𝑥𝑘) 正定时, 采用牛

顿方向作为搜索方向; 否则, 若 ∇2𝑓(𝑥𝑘) 奇异, 或者虽然非奇异但牛顿方向不是

下降方向, 则采用负梯度方向作为搜索方向. 我们写出详细的计算步骤如下:

算法 10 (牛顿-最速下降混合算法)

步 0 给定初始点 𝑥0 ∈ R𝑛, 终止误差 0 ≤ 𝜀≪ 1. 令 𝑘 := 1.

步 1 计算 𝑔𝑘 = ∇𝑓(𝑥𝑘). 若 ‖𝑔𝑘‖ ≤ 𝜀, 停算, 输出 𝑥𝑘 作为近似极小点.

步 2 计算 𝐺𝑘 = ∇2𝑓(𝑥𝑘). 解方程组

𝐺𝑘𝑑+ 𝑔𝑘 = 0. (3.10)

若 (4.10) 有解 𝑑𝑘 且满足 𝑔𝑇𝑘 𝑑𝑘 < 0, 转步 3; 否则, 令 𝑑𝑘 = −𝑔𝑘 转步 3.

步 3 由线搜索技术确定步长因子 𝛼𝑘.

步 4 令 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 := 𝑘 + 1, 转步 1.

对于算法 10,利用定理 11,定理 12以及引理 3不难证明下面的收敛性定理.

定理 18 设对任意的 𝑥0 ∈ R𝑛, 水平集 𝐿(𝑥0) = {𝑥 | 𝑓(𝑥) ≤ 𝑓(𝑥0)} 有界, 且

函数 𝑓 在包含 𝐿(𝑥0) 的一个有界闭凸集上二次连续可微. {𝑥𝑘} 由采用精确线搜
索, 或Wolfe 准则, 或 Armijo 准则确定步长因子的算法 10 产生的迭代序列, 且

存在 {𝑥𝑘} 的一个极限点 𝑥*, 使得 𝐺(𝑥*) 正定. 则有

lim
𝑘→∞

inf ‖𝑔𝑘‖ = 0,

以及 {𝑥𝑘} 超线性收敛于 𝑥*. 进一步, 若 𝐺(𝑥) 在 𝑥* 处是 Lipschitz 连续的, 则收

敛速度至少是二阶的.

上述的修正牛顿法克服了牛顿法要求 Hesse 阵 𝐺(𝑥𝑘) = ∇2𝑓(𝑥𝑘) 正定的缺

陷. 克服这一缺陷还有其它的方法和途径. 例如, 引进阻尼因子 𝜇𝑘 ≥ 0, 即在每一

迭代步适当地选取参数 𝜇𝑘 使得矩阵 𝐴𝑘 = 𝐺(𝑥𝑘) + 𝜇𝑘𝐼 正定. 我们写出算法步骤

如下:

算法 11 (修正牛顿法)

步 0 给定参数 𝛿 ∈ (0, 1), 𝜏 ∈ [0, 1], 𝜎 ∈ (0, 0.5), 终止误差 0 ≤ 𝜀 ≪ 1. 初始

点 𝑥0 ∈ R𝑛. 令 𝑘 := 0.
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步 1 计算 𝑔𝑘 = ∇𝑓(𝑥𝑘), 𝜇𝑘 = ‖𝑔𝑘‖1+𝜏 . 若 ‖𝑔𝑘‖ ≤ 𝜀, 停算, 输出 𝑥𝑘 作为近似

极小点.

步 2 计算 Hesee 阵 𝐺𝑘 = ∇2𝑓(𝑥𝑘). 解线性方程组

(𝐺𝑘 + 𝜇𝑘𝐼)𝑑 = −𝑔𝑘, (3.11)

得解 𝑑𝑘.

步 3 令𝑚𝑘 是满足下列不等式的最小非负整数𝑚:

𝑓(𝑥𝑘 + 𝛿𝑚𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝜎𝛿𝑚𝑔𝑇𝑘 𝑑𝑘. (3.12)

令 𝛼𝑘 = 𝛿𝑚𝑘 , 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘.

步 4 令 𝑘 := 𝑘 + 1, 转步 1.

下面的定理给出了算法 11 的全局收敛性, 其证明可参看文献 [4].

定理 19 设函数 𝑓 : R𝑛 → R 有下界且二次连续可微, 𝐺(𝑥) = ∇2𝑓(𝑥) 半正

定且 Lipschitz 连续. 则由算法 11 产生的迭代序列 {𝑥𝑘} 的任何极限点都是问题
(3.1) 的解.

已有研究证明, 当目标函数的 Hesse 阵 𝐺(𝑥) = ∇2𝑓(𝑥) 在极小点 𝑥* 处奇异

时, 牛顿法的收敛速度可能会降低为线性收敛速度. 下面我们给出奇异解的概念.

定义 14 若在问题 (3.1) 的极小点 𝑥* 处 Hesse 阵 𝐺(𝑥*) 奇异, 则称 𝑥* 是问

题 (3.1) 的奇异解.

当问题 (3.1) 有奇异解时, 其解可能不唯一, 此时我们用 𝑋 表示其解集, 即

𝑋 = {𝑥* | 𝑓(𝑥*) = min 𝑓(𝑥), 𝑥 ∈ R𝑛}.

定义 15 设 𝑥* ∈ 𝑋, 函数 𝜃 : R𝑛 → R+. 若存在 𝑥*的邻域 𝑈(𝑥*) 及常数

𝛾 > 0, 使得

𝜃(𝑥) ≥ 𝛾dist(𝑥,𝑋), 𝑥 ∈ 𝑈(𝑥*), (3.13)

其中 dist(𝑥,𝑋) 表示点 𝑥 到集合 𝑋 的距离, 则称函数 𝜃 在邻域 𝑈(𝑥*) 内对问题

(3.1) 解集合 𝑋 提供了一个局部误差界.

下面的定理给出了算法 11 的局部收敛速度的估计, 其证明可参看文献 [4].
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定理 20 设定理 19 的条件成立. 若由算法 11 产生的迭代序列 {𝑥𝑘} 有子
列 {𝑥𝑘 : 𝑘 ∈ 𝐾} 收敛于 𝑥* ∈ 𝑋, 且函数 ‖𝑔(𝑥)‖ 在 𝑥* 的某邻域内对问题 (3.1) 提

供了一个局部误差界, 则当 𝑘 ∈ 𝐾 充分大时, 𝛼𝑘 ≡ 1, 且子列 {𝑥𝑘 : 𝑘 ∈ 𝐾} 二阶
收敛于 𝑥*, 即存在常数 𝛽 > 0 使得

dist(𝑥𝑘+1, 𝑋) ≤ 𝛽dist(𝑥𝑘, 𝑋).

下面我们给出算法 11 (修正牛顿法) 的Matlab 程序.

程序 6 (修正牛顿法Matlab程序)

function [x,val,k]=revisenm(fun,gfun,Hess,x0)

% 功能: 用修正牛顿法求解无约束问题: min f(x)

%输入: x0是初始点, fun, gfun, Hess 分别是求

% 目标函数值,梯度,Hesse 阵的函数

%输出: x, val分别是近似最优点和最优值, k是迭代次数.

n=length(x0); maxk=150;

rho=0.55;sigma=0.4; tau=0.0;

k=0; epsilon=1e-5;

while(k¡maxk)

gk=feval(gfun,x0); % 计算梯度

muk=norm(gk)^(1+tau);

Gk=feval(Hess,x0); % 计算Hesse阵

Ak=Gk+muk*eye(n);

dk=-Ak“gk; %解方程组Gk*dk=-gk, 计算搜索方向

if(norm(gk)¡epsilon), break; end %检验终止准则

m=0; mk=0;

while(m¡20) %用Armijo搜索求步长

if(feval(fun,x0+rho^m*dk)¡feval(fun,x0)+sigma*rho^m*gk’*dk)

mk=m; break;

end

m=m+1;

end

x0=x0+rho^mk*dk;

k=k+1;

end

x=x0;

val=feval(fun,x);
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例 13 利用程序 6 求解无约束优化问题

min
𝑥∈R2

𝑓(𝑥) = 100(𝑥21 − 𝑥2)
2 + (𝑥1 − 1)2.

该问题有精确解 𝑥* = (1, 1)𝑇 , 𝑓(𝑥*) = 0.

解 前面例 11 和例 12 中已经建立的计算目标函数及其梯度和 Hesee 阵的m

文件, 可以重新利用. 取终止准则值为 ‖∇𝑓(𝑥𝑘)‖ ≤ 10−5, 利用程序 6, 取不同的

初始点, 数值结果如下表.

表 4.3 修正牛顿法的数值结果.

初始点 (𝑥0) 迭代次数 (𝑘) 目标函数值 (𝑓(𝑥𝑘))

(0, 0)𝑇 16 4.7808× 10−12

(0.5, 0.5)𝑇 10 2.4524× 10−15

(2, 2)𝑇 17 1.3250× 10−19

(−1,−1)𝑇 23 2.3697× 10−12

(1, 10)𝑇 1 4.9309× 10−28

(10, 10)𝑇 46 4.5469× 10−18

(20, 20)𝑇 76 9.1654× 10−13

由上表可以看出, 修正牛顿法的收敛速度不如阻尼牛顿法快, 因为矩阵 𝐴𝑘 =

𝐺𝑘 + 𝜇𝑘𝐼 只是 Hesee 阵 𝐺𝑘 的一个近似.

说明 上述程序的调用方式是:

x0=[-1.2 1]’;

[x,val,k]=revisenm(’fun’,’gfun’,’Hess’,x0)

其中 fun, gfun, Hess 分别是求目标函数值和它的梯度及其 Hesse 阵的M 函数文

件.

习 题 3

1. 用最速下降法求 𝑓(𝑥1, 𝑥2) = 3𝑥2
1 + 2𝑥2

2 − 4𝑥1 − 6𝑥2 的极小值.

2. 分别用牛顿法和阻尼牛顿法求函数 𝑓(𝑥1, 𝑥2) = 4𝑥2
1 + 𝑥2

2 − 8𝑥1 − 4𝑥2 的极小点.

3. 用最速下降法程序求函数 𝑓(𝑥1, 𝑥2) = (𝑥1 − 2)4 + (𝑥1 − 2𝑥2)
2 的极小值点, 取初始点

𝑥0 = (0, 3)𝑇 .
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4. 用牛顿法程序求 Rosenbrock 函数 𝑓(𝑥) = 100(𝑥2 − 𝑥2
1)

2 + (𝑥1 − 1)2 的极小点, 取初

始点 𝑥0 = (−1, 2, 1)𝑇 .

5. 设二次函数为 𝑓(𝑥) =
1

2
𝑥𝑇𝐻𝑥+ 𝑏𝑇𝑥, 其中 𝐻 是 𝑛 阶对称正定阵. 证明最速下降法

求 𝑓(𝑥) 的极小点时, 序列 {𝑥𝑘} 由 𝑥𝑘+1 = 𝑥𝑘 −
𝑔𝑇𝑘 𝑔𝑘
𝑔𝑇𝑘 𝐻𝑔𝑘

𝑔𝑘, 𝑘 = 0, 1, 2, · · · 确立, 其中 𝑥0 为给

定的初始点, 𝑔𝑘 = 𝐻𝑥𝑘 + 𝑏.

6. 设目标函数 𝑓(𝑥) = 4𝑥2
1 + 𝑥2

2 − 𝑥2
1𝑥2, 记 𝑥𝑎 = (1, 1)𝑇 , 𝑥𝑏 = (3, 4)𝑇 , 𝑥𝑐 = (2, 0)𝑇 .

(1) 分别取初始点 𝑥𝑎
0 = 𝑥𝑎

𝑎, 𝑥
𝑏
0 = 𝑥𝑏

𝑏,用标准牛顿法计算前三次迭代;

(2) 注意序列 {𝑥𝑎
𝑘} 和 {𝑥𝑏

𝑘} 分别收敛到 𝑥𝑎
* = (0, 0)𝑇 和 𝑥𝑏

* = (2
√
2, 4)𝑇 , 证明 𝑥𝑎

* 是 𝑓(𝑥)

的极小点, 即 𝑥𝑏
* 是 𝑓 的一个鞍点;

(3) 取 𝑥𝑐
0 = 𝑥𝑐

𝑐, 用牛顿法计算 𝑥𝑐
1, 这将给出牛顿法失败的一种情形.

7. 给定函数 𝑓(𝑥) = (6 + 𝑥1 + 𝑥2)
2 + (2− 3𝑥1 − 3𝑥2 − 𝑥1𝑥2)

2, 求在点 𝑥̄ = (−4, 6)𝑇 处

的最速下降方向和牛顿方向.

8. 考虑函数 𝑓(𝑥) = 𝑥2
1 + 4𝑥2

2 − 4𝑥1 − 8𝑥2.

(1) 证明: 若从 𝑥0 = (0, 0)𝑇 出发, 用最速下降法求极小点 𝑥̄, 则不能经有限步迭代达到

𝑥̄.

(2) 是否存在 𝑥0, 使得从 𝑥0 出发, 用最速下降法求 𝑓(𝑥) 的极小点, 经有限步迭代即收

敛?

9. 设函数 𝑓(𝑥) =
1

2
𝑥𝑇𝐻𝑥+𝑏𝑇𝑥,其中𝐻 对称正定. 又设 𝑥0(̸= 𝑥̄)可表示为 𝑥0 = 𝑥̄+𝜇𝑑,

其中 𝑥̄ 是 𝑓(𝑥) 的极小点, 𝑑 是 𝐻 的属于特征值 𝜆 的特征向量. 证明:

(1) ∇𝑓(𝑥0) = 𝜇𝜆𝑑;

(2) 如果从 𝑥0 出发, 沿最速下降作精确的一维搜索，则一步迭代达到极小点 𝑥̄.
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前面介绍的最速下降法和牛顿法都具有其自身的局限性. 本章将要介绍的共

轭梯度法是介于最速下降法与牛顿法之间的一种无约束优化算法, 它具有超线性

收敛速度, 而且算法结构简单, 容易编程实现. 此外, 跟最速下降法相类似, 共轭

梯度法只用到了目标函数及其梯度值, 避免了二阶导数 (Hesse 阵) 的计算, 从而

降低了计算量和存储量, 因此它是求解无约束优化问题的一种比较有效而实用的

算法.

4.1 共轭方向法

共轭方向法的基本思想是在求解 𝑛 维正定二次目标函数极小点时产生一组

共轭方向作为搜索方向, 在精确线搜索条件下算法至多迭代 𝑛 步即能求得极小

点. 经过适当的修正后共轭方向法可以推广到求解一般非二次目标函数情形. 下

面先介绍共轭方向的概念.

定义 16 设 𝐺 是 𝑛 阶对称正定矩阵, 若 𝑛 维向量组 𝑑1, 𝑑2, · · · , 𝑑𝑚 (𝑚 ≤ 𝑛)

满足

𝑑𝑇𝑖 𝐺𝑑𝑗 = 0, 𝑖 ̸= 𝑗,

则称 𝑑1, 𝑑2, · · · , 𝑑𝑚 是 𝐺共轭的.

显然, 向量组的共轭是正交的推广, 即当 𝐺 = 𝐼(单位阵) 时, 上述定义变成向

量组正交的定义. 此外, 不难证明, 对称正定矩阵 𝐺 的共轭向量组必然是线性无

关的.

下面我们考虑求解正定二次目标函数极小点的共轭方向法. 设

min 𝑓(𝑥) =
1

2
𝑥𝑇𝐺𝑥+ 𝑏𝑇𝑥+ 𝑐, (4.1)

其中 𝐺 是 𝑛 阶对称正定阵, 𝑏 为 𝑛 维常向量, 𝑐 为常数. 我们有下面的算法:
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算法 12 (共轭方向法)

步 0 给定迭代精度 0 ≤ 𝜀 ≪ 1 和初始点 𝑥0. 计算 𝑔0 = ∇𝑓(𝑥0). 选取初始方
向 𝑑0 使得 𝑑𝑇0 𝑔0 < 0. 令 𝑘 := 0.

步 1 若 ‖𝑔𝑘‖ ≤ 𝜀, 停算, 输出 𝑥* ≈ 𝑥𝑘.

步 2 利用精确线搜索方法确定搜索步长 𝛼𝑘.

步 3 令 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 并计算 𝑔𝑘+1 = ∇𝑓(𝑥𝑘+1).

步 4 选取 𝑑𝑘+1 满足下降性和共轭性条件:

𝑑𝑇𝑘+1𝑔𝑘+1 < 0, 𝑑𝑇𝑘+1𝐺𝑑𝑖 = 0, 𝑖 = 0, 1, · · · , 𝑘.

步 5 令 𝑘 := 𝑘 + 1, 转步 1.

下面给出算法 12 的收敛性定理.

定理 21 设目标函数 𝑓 由 (4.1) 定义. {𝑥𝑘} 是算法 12 产生的迭代序列. 则

每一步迭代点 𝑥𝑘+1 都是 𝑓(𝑥) 在 𝑥0 和方向 𝑑0, 𝑑1, · · · , 𝑑𝑘 所张成的线性流形

𝑆𝑘 =

{︂
𝑥
⃒⃒
𝑥 = 𝑥0 +

𝑘∑︁
𝑖=0

𝛼𝑖𝑑𝑖, ∀𝛼𝑖

}︂

中的极小点. 特别, 𝑥𝑛 = 𝑥* = −𝐺−1𝑏 是问题 (4.1) 的唯一极小点.

证 由算法 12 可知, 𝑑0, 𝑑1, · · · , 𝑑𝑛−1 是 𝐺共轭的, 因而是线性无关的, 故有

𝑆𝑛−1 = R𝑛. 于是我们只需证明 𝑥𝑘+1 是 𝑓 在线性流形 𝑆𝑘 中的极小点即可.

显然有

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 = · · · = 𝑥0 +
𝑘∑︁

𝑖=0

𝛼𝑖𝑑𝑖 ∈ 𝑆𝑘.

另一方面, 对任何 𝑥 ∈ 𝑆𝑘, 存在 𝛽𝑖 ∈ R, 𝑖 = 0, 1, · · · , 𝑘, 使得

𝑥 = 𝑥0 +
𝑘∑︁

𝑖=0

𝛽𝑖𝑑𝑖.

记

ℎ𝑘+1 = 𝑥− 𝑥𝑘+1 =
𝑘∑︁

𝑖=0

(𝛽𝑖 − 𝛼𝑖)𝑑𝑖.
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利用泰勒展开公式, 有

𝑓(𝑥) = 𝑓𝑘+1 + 𝑔𝑇𝑘+1ℎ𝑘+1 +
1

2
ℎ𝑇𝑘+1𝐺ℎ𝑘+1

≥ 𝑓𝑘+1 + 𝑔𝑇𝑘+1ℎ𝑘+1

= 𝑓𝑘+1 +
𝑘∑︁

𝑖=0

(𝛽𝑖 − 𝛼𝑖)𝑔
𝑇
𝑘+1𝑑𝑖.

下面只需证明

𝑔𝑇𝑘+1𝑑𝑖, ∀ 𝑖 = 0, 1, · · · , 𝑘 (4.2)

即可. 事实上, 因

𝑔𝑗+1 − 𝑔𝑗 = 𝐺(𝑥𝑗+1 − 𝑥𝑗) = 𝛼𝑗𝐺𝑑𝑗,

故当 𝑖 < 𝑘 时有

𝑔𝑇𝑘+1𝑑𝑖 = 𝑔𝑇𝑖+1𝑑𝑖 +
𝑘∑︁

𝑗=𝑖+1

(𝑔𝑗+1 − 𝑔𝑗)
𝑇𝑑𝑖

= 𝑔𝑇𝑖+1𝑑𝑖 +
𝑘∑︁

𝑗=𝑖+1

𝛼𝑗𝑑
𝑇
𝑗 𝐺𝑑𝑖 = 0,

其中上式的第一项与求和项为 0 分别由精确线搜索和共轭性得到. 当 𝑖 = 𝑘 直接

由精确线搜索可得 𝑔𝑇𝑘+1𝑑𝑘 = 0. 从而 (4.2) 式成立. 至此, 定理的结论已经得到证

明. �

注 从定理 21 可知, 在精确线搜索下, 用算法 12 求解正定二次目标函数极小

化问题 (4.1), 至多在 𝑛 步内即可求得其唯一的极小点. 这种能在有限步内求得二

次函数极小点的性质通常称为二次终止性.

4.2 共轭梯度法

共轭梯度法是在每一迭代步利用当前点处的最速下降方向来生成关于凸二

次函数 𝑓 的 Hesee 阵 𝐺 的共轭方向, 并建立求 𝑓 在 R𝑛 上的极小点的方法. 这一

方法最早是由 Hesteness 和 Stiefel 于 1952 年为求解对称正定线性方程组而提出

来的, 后经 Fletcher 等人研究并应用于无约束优化问题取得了丰富的成果, 共轭

梯度法也因此成为当前求解无约束优化问题的重要算法类.
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设函数 𝑓 由 (4.1) 所定义, 则 𝑓 的梯度和 Hesse 阵分别为

𝑔(𝑥) = ∇𝑓(𝑥) = 𝐺𝑥+ 𝑏, 𝐺(𝑥) = ∇2𝑓(𝑥) = 𝐺. (4.3)

下面我们来讨论算法 12 中共轭方向的构造. 我们取初始方向 𝑑0 为初始点 𝑥0 处

的负梯度方向, 即

𝑑0 = −∇𝑓(𝑥0) = −𝑔0. (4.4)

从 𝑥0 出发沿 𝑑0 方向进行精确线搜索得求步长 𝛼0, 令

𝑥1 = 𝑥0 + 𝛼0𝑑0,

其中 𝛼0 满足条件

∇𝑓(𝑥1)𝑇𝑑0 = 𝑔𝑇1 𝑑0 = 0. (4.5)

在 𝑥1 处, 用 𝑓 在 𝑥1 的负梯度方向 −𝑔1 与 𝑑0 的组合来生成 𝑑1, 即

𝑑1 = −𝑔1 + 𝛽0𝑑0, (4.6)

然后选取系数 𝛽0 使 𝑑1 与 𝑑0 关于 𝐺共轭, 即令

𝑑𝑇1𝐺𝑑0 = 0 (4.7)

来确定 𝛽0. 将 (4.6) 代入 (4.7) 得

𝛽0 =
𝑔𝑇1 𝐺𝑑0
𝑑𝑇0𝐺𝑑0

. (4.8)

由 (4.3) 得

𝑔1 − 𝑔0 = 𝐺(𝑥1 − 𝑥0) = 𝛼0𝐺𝑑0. (4.9)

另外, 由定理 21 可知 𝑔𝑇2 𝑑𝑖 = 0 (𝑖 = 0, 1). 故由 (4.4)∼(4.6) 可得

𝑔𝑇2 𝑔0 = 0, 𝑔𝑇2 𝑔1 = 0, 𝑑𝑇0 𝑔0 = −𝑔𝑇0 𝑔0, 𝑑𝑇1 𝑔1 = −𝑔𝑇1 𝑔1.

现假设已得到相互共轭的搜索方向 𝑑0, 𝑑1, · · · , 𝑑𝑘−1, 精确线搜索得到的步长

为 𝛼0, 𝛼1, · · · , 𝛼𝑘−1, 且满足⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑑𝑇𝑘−1𝐺𝑑𝑖 = 0, 𝑖 = 0, 1, · · · , 𝑘 − 2,

𝑑𝑇𝑖 𝑔𝑖 = −𝑔𝑇𝑖 𝑔𝑖, 𝑖 = 0, 1, · · · , 𝑘 − 1,

𝑔𝑇𝑘 𝑔𝑖 = 0, 𝑔𝑇𝑘 𝑑𝑖 = 0, 𝑖 = 0, 1, · · · , 𝑘 − 1.

(4.10)
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现令

𝑑𝑘 = −𝑔𝑘 + 𝛽𝑘−1𝑑𝑘−1 +
𝑘−2∑︁
𝑖=0

𝛽
(𝑖)
𝑘 𝑑𝑖, (4.11)

其中 𝛽𝑘−1, 𝛽
(𝑖)
𝑘 (𝑖 = 0, 1, · · · , 𝑘 − 2) 的选择要满足

𝑑𝑇𝑘𝐺𝑑𝑖 = 0, 𝑖 = 0, 1, · · · , 𝑘 − 1. (4.12)

用 𝑑𝑇𝑖 𝐺 (𝑖 = 0, 1, · · · , 𝑘 − 1) 左乘 (4.11) 得

𝛽𝑘−1 =
𝑔𝑇𝑘𝐺𝑑𝑘−1

𝑑𝑇𝑘−1𝐺𝑑𝑘−1

, 𝛽
(𝑖)
𝑘 =

𝑔𝑇𝑘𝐺𝑑𝑖
𝑑𝑇𝑖 𝐺𝑑𝑖

, 𝑖 = 0, 1, · · · , 𝑘 − 2. (4.13)

类似于 (4.9), 我们有

𝑔𝑖+1 − 𝑔𝑖 = 𝐺(𝑥𝑖+1 − 𝑥𝑖) = 𝛼𝑖𝐺𝑑𝑖, 𝑖 = 0, 1, · · · , 𝑘 − 1,

及

𝛼𝑖𝐺𝑑𝑖 = 𝑔𝑖+1 − 𝑔𝑖, 𝑖 = 0, 1, · · · , 𝑘 − 1. (4.14)

于是由归纳法假设 (4.10) 可得

𝛽
(𝑖)
𝑘 =

𝑔𝑇𝑘𝐺𝑑𝑖
𝑑𝑇𝑖 𝐺𝑑𝑖

=
𝑔𝑇𝑘 (𝑔𝑖+1 − 𝑔𝑖)

𝑑𝑇𝑖 (𝑔𝑖+1 − 𝑔𝑖)
= 0, 𝑖 = 0, 1, · · · , 𝑘 − 2.

于是, 第 𝑘 步的搜索方向为

𝑑𝑘 = −𝑔𝑘 + 𝛽𝑘−1𝑑𝑘−1, (4.15)

其中 𝛽𝑘−1 由 (4.13) 确定, 即

𝛽𝑘−1 =
𝑔𝑇𝑘𝐺𝑑𝑘−1

𝑑𝑇𝑘−1𝐺𝑑𝑘−1

. (4.16)

同时有 𝑑𝑇𝑘 𝑔𝑘 = −𝑔𝑇𝑘 𝑔𝑘. 这样 (4.4), (4.15) 和 (4.16) 确定了一组由负梯度方向形成

的共轭方向, 而把沿着这组方向进行迭代的方法称之为共轭梯度法.

上面得推导实际上已经证明了下述结论:

定理 22 对于正定二次函数的极小化问题 (4.1), 由 (4.4), (4.15) 和 (4.16)

确定搜索方向 𝑑𝑘 并采用精确线搜索确定步长因子 𝛼𝑘 的共轭方向法, 至多 𝑛 步

迭代即可求得问题 (4.1) 的极小点, 并且对所有的 𝑘 (1 ≤ 𝑘 ≤ 𝑛), 有

𝑑𝑇𝑘𝐺𝑑𝑖 = 0, 𝑖 = 0, 1, · · · , 𝑘 − 1,

𝑑𝑇𝑖 𝑔𝑖 = −𝑔𝑇𝑖 𝑔𝑖, 𝑖 = 0, 1, · · · , 𝑘,

𝑔𝑇𝑘+1𝑔𝑖 = 0, 𝑔𝑇𝑘+1𝑑𝑖 = 0, 𝑖 = 0, 1, · · · , 𝑘.
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为了使算法能够适应于求解非二次目标函数的极小点, 需要设法消去 (4.16)

中的矩阵 𝐺. 由定理 22 及 (4.14) 得

𝛼𝑘−1𝑔
𝑇
𝑘𝐺𝑑𝑘−1 = 𝑔𝑇𝑘 (𝑔𝑘 − 𝑔𝑘−1) = 𝑔𝑇𝑘 𝑔𝑘,

𝛼𝑘−1𝑑
𝑇
𝑘−1𝐺𝑑𝑘−1 = (−𝑔𝑘−1 + 𝛽𝑘−2𝑑𝑘−2)

𝑇 (𝑔𝑘 − 𝑔𝑘−1)

= 𝑔𝑇𝑘−1𝑔𝑘−1.

由此, (4.16) 可化为

𝛽𝑘−1 =
𝑔𝑇𝑘 𝑔𝑘

𝑔𝑇𝑘−1𝑔𝑘−1

. (4.17)

下面我们给出共轭梯度法求解无约束优化问题 (4.1) 极小点的算法步骤.

算法 13 (共轭梯度法)

步 0 给定迭代精度 0 ≤ 𝜀≪ 1 和初始点 𝑥0. 计算 𝑔0 = ∇𝑓(𝑥0). 令 𝑘 := 0.

步 1 若 ‖𝑔𝑘‖ ≤ 𝜀, 停算, 输出 𝑥* ≈ 𝑥𝑘.

步 2 计算搜索方向 𝑑𝑘 :

𝑑𝑘 =

⎧⎨⎩ −𝑔𝑘, 𝑘 = 0,

−𝑔𝑘 + 𝛽𝑘−1𝑑𝑘−1, 𝑘 ≥ 1,

其中当 𝑘 ≥ 1 时, 𝛽𝑘−1 由 (4.17) 确定.

步 3 利用精确线搜索方法确定搜索步长 𝛼𝑘.

步 4 令 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 并计算 𝑔𝑘+1 = ∇𝑓(𝑥𝑘+1).

步 5 令 𝑘 := 𝑘 + 1, 转步 1.

注 公式 (4.17)是由 Fletcher和 Reeves给出的,故称之为 Fletcher-Reeves公

式, 简称 FR 公式, 算法 13 也称之为 FR 共轭梯度法. 除 FR 公式外，尚有下列
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著名公式:

𝛽𝑘 =
𝑔𝑇𝑘+1𝑔𝑘+1

−𝑑𝑇𝑘 𝑔𝑘
, (Dixon公式),

𝛽𝑘 =
𝑔𝑇𝑘+1𝑔𝑘+1

𝑑𝑇𝑘 (𝑔𝑘+1 − 𝑔𝑘)
, (Dai-Yuan公式),

𝛽𝑘 =
𝑔𝑇𝑘+1(𝑔𝑘+1 − 𝑔𝑘)

𝑑𝑇𝑘 (𝑔𝑘+1 − 𝑔𝑘)
, (Crowder-Wolfe公式),

𝛽𝑘 =
𝑔𝑇𝑘+1(𝑔𝑘+1 − 𝑔𝑘)

𝑑𝑇𝑘 (𝑔𝑘+1 − 𝑔𝑘)
, (Hesteness-Stiefel, HS公式),

𝛽𝑘 =
𝑔𝑇𝑘+1(𝑔𝑘+1 − 𝑔𝑘)

𝑔𝑇𝑘 𝑔𝑘
, (Polak,Ribi𝑒re, Polyak, PRP公式).

下面我们来证明算法 13 的收敛性定理.

定理 23 设 {𝑥𝑘} 是由算法 13 产生的序列, 假定函数 𝑓(𝑥) 一阶连续可微且

水平集 ℒ(𝑥0) = {𝑥 | 𝑓(𝑥) ≤ 𝑓(𝑥0)} 是有界的. 那么算法 13 或者有限步终止, 或

者 lim
𝑘→∞

𝑔(𝑥𝑘) = 0.

证 不失一般性, 不妨假设 {𝑥𝑘} 是无穷序列. 此时有 𝑔(𝑥𝑘) ̸= 0. 因 𝑑𝑘 =

−𝑔𝑘 + 𝛽𝑘−1𝑑𝑘−1, 故有

𝑔𝑇𝑘 𝑑𝑘 = −‖𝑔𝑘‖2 + 𝛽𝑘−1𝑔
𝑇
𝑘 𝑑𝑘−1 = −‖𝑔𝑘‖2 < 0,

即 𝑑𝑘 是下降方向. 从而由精确线搜索规则可知, {𝑓(𝑥𝑘)} 是单调下降的, 故

{𝑥𝑘} ⊂ ℒ(𝑥0). 于是 {𝑥𝑘} 是有界的, 因而必有聚点 𝑥*, 即存在子列 {𝑥𝑘 : 𝑘 ∈ 𝐾1}
收敛到 𝑥*. 由 𝑓 的连续性, 有

𝑓 * = lim
𝑘(∈𝐾1)→∞

𝑓(𝑥𝑘) = 𝑓
(︁

lim
𝑘(∈𝐾1)→∞

𝑥𝑘

)︁
= 𝑓(𝑥*).

类似地, {𝑥𝑘+1 : 𝑘 ∈ 𝐾1} 也是有界序列, 故存在子列 {𝑥𝑘+1 : 𝑘 ∈ 𝐾2} 收敛到 𝑥̄*,

这里𝐾2 ⊂ 𝐾1 是无穷子序列. 于是可得

𝑓 * = lim
𝑘(∈𝐾2)→∞

𝑓(𝑥𝑘) = 𝑓
(︁

lim
𝑘(∈𝐾2)→∞

𝑥𝑘

)︁
= 𝑓(𝑥̄*).

故有

𝑓(𝑥̄*) = 𝑓(𝑥*) = 𝑓 *. (4.18)
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下面用反证法证明 𝑔(𝑥*) = 0. 如果不然, 即 𝑔(𝑥*) ̸= 0, 则对于充分小的

𝛼 > 0, 有

𝑓(𝑥* + 𝛼𝑑*) < 𝑓(𝑥*).

注意到, 对任意的 𝛼 > 0, 有

𝑓(𝑥𝑘+1) = 𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘 + 𝛼𝑑𝑘).

对于 𝑘 ∈ 𝐾2 ⊂ 𝐾1, 令 𝑘 → ∞ 对上式取极限得

𝑓(𝑥̄*) ≤ 𝑓(𝑥* + 𝛼𝑑*) < 𝑓(𝑥*),

这与 (4.18) 式矛盾, 从而证明了 𝑔(𝑥*) = 0. 证毕. �

若在算法 13 中采用非精确搜索确定步长因子 𝛼𝑘, 比如Wolfe 准则 (2.10) 和

(2.11), 则利用一般下降类算法的全局收敛性定理, 可以得到非精确搜索下的共轭

梯度法的收敛性定理.

定理 24 设 {𝑥𝑘} 是由算法 13 利用Wolfe 准则 (2.10)-(2.11) 产生的序列, 假

定函数 𝑓(𝑥) 一阶连续可微且有下界, 其梯度函数 𝑔(𝑥) 在 R𝑛 上 Lipschitz 连续,

即存在常数 𝐿 > 0, 使得

‖𝑔(𝑢)− 𝑔(𝑣)‖ ≤ 𝐿‖𝑢− 𝑣‖, ∀𝑢, 𝑣 ∈ R𝑛.

若选取的搜索方向 𝑑𝑘 与 −𝑔𝑘 的夹角 𝜃𝑘 满足条件

0 ≤ 𝜃𝑘 ≤
𝜋

2
− 𝜇, 𝜇 ∈

(︁
0,
𝜋

2

)︁
.

那么算法 13 或者有限步终止, 或者 lim
𝑘→∞

𝑔(𝑥𝑘) = 0.

证 不失一般性, 不妨假设 {𝑥𝑘} 是无穷序列. 由 Lipschitz及连续条件和

Wolfe 准则 (2.11) 式得

𝛼𝑘𝐿‖𝑑𝑘‖ ≥ 𝑑𝑇𝑘 [𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)− 𝑔𝑘] ≥ −(1− 𝜎)𝑑𝑇𝑘 𝑔𝑘

= (1− 𝜎)‖𝑑𝑘‖‖𝑔𝑘‖ cos 𝜃𝑘,

即

𝛼𝑘‖𝑑𝑘‖ ≥ (1− 𝜎)

𝐿
‖𝑔𝑘‖ cos 𝜃𝑘.
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于是利用上式及Wolfe 准则 (2.10) 式可得

𝑓(𝑥𝑘)− 𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘)

≥ −𝜌𝛼𝑘𝑑
𝑇
𝑘 𝑔𝑘 = 𝜌𝛼𝑘‖𝑑𝑘‖‖𝑔𝑘‖ cos 𝜃𝑘

≥ 𝜌
(1− 𝜎)

𝐿
‖𝑔𝑘‖2 cos2 𝜃𝑘

≥ 𝜌(1− 𝜎)

𝐿
‖𝑔𝑘‖2 sin2 𝜇.

注意到 𝑓(𝑥) 是有下界的, 由上式不难推得

∞∑︁
𝑘=0

‖𝑔‖2 < +∞,

这蕴含了当 𝑘 → ∞ 时, 有 ‖𝑔𝑘‖ → 0. 证毕. �

4.3 共轭梯度法的Matlab 程序

在共轭梯度法的实际使用中, 通常在迭代 𝑛 步或 𝑛 + 1 步之后, 重新取负梯

度方向作为搜索方向, 我们称之为再开始共轭梯度法. 这是因为对于一般非二次

函数而言, 𝑛 步迭代后共轭梯度法产生的搜索方向往往不再具有共轭性. 而对于

大规模问题, 常常每𝑚 (𝑚 < 𝑛 或𝑚 ≪ 𝑛) 步就进行再开始. 此外, 当搜索方向不

是下降方向时, 也插入负梯度方向作为搜索方向.

本节给出基于 Armijo 非精确线搜索的再开始 FR 共轭梯度法的Matlab 程

序.

程序 7 (FR共轭梯度法程序)

function [x,val,k]=frcg(fun,gfun,x0)

% 功能: 用FR共轭梯度法求解无约束问题: min f(x)

%输入: x0是初始点, fun, gfun分别是目标函数和梯度

%输出: x, val分别是近似最优点和最优值, k是迭代次数.

maxk=5000; %最大迭代次数

rho=0.6;sigma=0.4;

k=0; epsilon=1e-4;

n=length(x0);

while(k¡maxk)

g=feval(gfun,x0); %计算梯度
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itern=k-(n+1)*floor(k/(n+1));

itern=itern+1;

%计算搜索方向

if(itern==1)

d=-g;

else

beta=(g’*g)/(g0’*g0);

d=-g+beta*d0; gd=g’*d;

if(gd¿=0.0)

d=-g;

end

end

if(norm(g)¡epsilon), break; end %检验终止条件

m=0; mk=0;

while(m¡20) %Armijo搜索

if(feval(fun,x0+rho^m*d)¡feval(fun,x0)+sigma*rho^m*g’*d)

mk=m; break;

end

m=m+1;

end

x0=x0+rho^mk*d;

val=feval(fun,x0);

g0=g; d0=d;

k=k+1;

end

x=x0;

val=feval(fun,x);

例 14 利用程序 7 求解无约束优化问题

min
𝑥∈R2

𝑓(𝑥) = 100(𝑥21 − 𝑥2)
2 + (𝑥1 − 1)2.

该问题有精确解 𝑥* = (1, 1)𝑇 , 𝑓(𝑥*) = 0.

解 利用程序 7, 终止准则取为 ‖∇𝑓(𝑥𝑘)‖ ≤ 10−4. 取不同的初始点, 数值结

果如下表.

表 5.1 FR 共轭梯度法的数值结果.
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初始点 (𝑥0) 迭代次数 (𝑘) 目标函数值 (𝑓(𝑥𝑘))

(0, 0)𝑇 122 7.2372× 10−9

(0.5, 0.5)𝑇 44 3.5498× 10−10

(1.2,−1)𝑇 56 1.1698× 10−8

(−1.2, 1)𝑇 44 2.9396× 10−9

(−1.2,−1)𝑇 58 2.0235× 10−9

由上表可以看出, 阻尼牛顿法的收敛速度是比较令人满意的.

说明 上述程序的调用方式是:

x0=[-1.2 1]’;

[x,val,k]=frcg(’fun’,’gfun’,x0)

其中 fun, gfun 分别是求目标函数值及其梯度的M 函数文件.

习 题 4

1. 证明向量 𝛼1 = (1, 0)𝑇 和 𝛼2 = (3,−2)𝑇 关于矩阵

𝐴 =

⎛⎝ 2 3

3 5

⎞⎠
共轭.

2. 给定矩阵

𝐴 =

⎛⎝ 1 2

2 5

⎞⎠ , 𝐵 =

⎛⎜⎜⎜⎝
1 −1 0

−1 2 0

0 0 3

⎞⎟⎟⎟⎠ .

试关于矩阵 𝐴 和 𝐵 各求出一组共轭方向.

3. 设 𝑓(𝑥) =
1

2
𝑥𝑇𝐻𝑥+ 𝑏𝑇𝑥, 其中

𝐻 =

⎛⎝ 4 2

2 4

⎞⎠ , 𝑏 =

⎛⎝ 3

3

⎞⎠ .

(1) 证明: 𝑑0 = (1, 0)𝑇 与 𝑑1 = (−1, 2)𝑇 关于 𝐻 共轭;

(2) 以 𝑥0 = (0, 0)𝑇 为初始点, 𝑑0 和 𝑑1 为搜索方向, 用精确线搜索求 𝑓 的极小点.
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4. 设 𝐻 为 𝑛 阶正定阵. 𝑢1, · · · , 𝑢𝑛 ∈ R𝑛 线性无关, 𝑑𝑘 由下列方式产生:

𝑑1 = 𝑢1, 𝑑𝑘+1 = 𝑢𝑘+1 −
𝑘∑︁

𝑖=1

𝑢𝑇
𝑘+1𝐻𝑑𝑖

𝑑𝑇𝑖 𝐻𝑑𝑖
, 𝑘 = 1, · · · , 𝑛− 1.

试证明 𝑑1, · · · , 𝑑𝑛 关于 𝐻 共轭.

5. 设 𝐻 是 𝑛 阶具有不同特征值的对称正定矩阵, 证明 𝐻 的不同特征值对应的特征向

量关于 𝐻 是共轭的.

6. 用共轭梯度法求下列函数的极小点:

(1) 𝑓(𝑥) = 4𝑥2
1 + 4𝑥2

2 − 4𝑥1𝑥2 − 12𝑥2, 取初始点 𝑥0 = (−0.5, 1)𝑇 .

(2) 𝑓(𝑥) = 𝑥2
1 − 2𝑥1𝑥2 + 2𝑥2

2 + 𝑥2
3 − 𝑥2𝑥3 + 𝑥1 + 3𝑥2 − 𝑥3, 取初始点 𝑥0 = (0, 0, 0)𝑇 .

7. 设 𝐻 是 𝑛 阶对称正定阵, 非零向量 𝑑1, 𝑑2, · · · , 𝑑𝑛 ∈ R𝑛 关于矩阵 𝐻 共轭, 证明:

(1) 𝑥 =
𝑛∑︀

𝑖=1

𝑑𝑇𝑖 𝐻𝑑𝑖
𝑑𝑇𝑖 𝐻𝑑𝑖

𝑑𝑖, ∀𝑥 ∈ R𝑛; (2) 𝐻−1 =
𝑛∑︀

𝑖=1

𝑑𝑖𝑑
𝑇
𝑖

𝑑𝑇𝑖 𝐻𝑑𝑖
.

8. 设 𝑝1, 𝑝𝑛, · · · , 𝑝𝑛 ∈ R𝑛 为一组线性无关向量, 𝐻 是 𝑛 阶对称正定阵, 令向量 𝑑𝑘 为:

𝑑𝑘 =

⎧⎪⎨⎪⎩
𝑝𝑘, 𝑘 = 1

𝑝𝑘 −
𝑘−1∑︀
𝑖=1

𝑑𝑇𝑖 𝐻𝑝𝑖
𝑑𝑇𝑖 𝐻𝑑𝑖

𝑑𝑖, 𝑘 = 2, · · · , 𝑛

证明: 𝑑1, 𝑑2, · · · , 𝑑𝑛 关于 𝐻 共轭.
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前一章所介绍的牛顿法的优点是具有二阶收敛速度, 但当 Hesse 阵 𝐺(𝑥𝑘) =

∇2𝑓(𝑥𝑘) 不正定时, 不能保证所产生的方向是目标函数在 𝑥𝑘 处的下降方向. 特别

地, 当 𝐺(𝑥𝑘) 奇异时, 算法就无法继续进行下去. 尽管修正牛顿法可以克服这一

缺陷, 但其中的修正参数 𝜇𝑘 的选取很难把握, 过大或过小都会影响到收敛速度.

此外, 牛顿法的每一迭代步都需要目标函数的二阶导数, 即 Hesee 阵, 对于大规模

问题其计算量是惊人的.

本章即将介绍的拟牛顿法克服了这些缺点, 并且在一定条件下这类算法仍然

具有较快的收敛速度—超线性收敛速度.

5.1 拟牛顿法及其性质

拟牛顿法的基本思想是在基本牛顿法的步 2 中用 Hesee 阵 𝐺𝑘 = ∇2𝑓(𝑥𝑘) 的

某个近似矩阵 𝐵𝑘 取代 𝐺𝑘. 通常, 𝐵𝑘 应具有下面的三个特点:

(1) 在某种意义下有 𝐵𝑘 ≈ 𝐺𝑘, 使相应的算法产生的方向近似于牛顿方向,

以确保算法具有较快的收敛速度.

(2) 对所有的 𝑘, 𝐵𝑘 是对称正定的, 从而使得算法所产生的方向是函数 𝑓 在

𝑥𝑘 处下降方向.

(3) 矩阵 𝐵𝑘 更新规则相对比较简单, 即通常采用一个秩 1 或秩 2 矩阵进行

校正.

下面介绍满足这三个特点的矩阵 𝐵𝑘 的构造. 设 𝑓 : R𝑛 → R 在开集 𝐷 ⊂ R𝑛

上二次连续可微. 那么, 𝑓 在 𝑥𝑘+1 处的二次近似模型为

𝑓(𝑥) ≈ 𝑓(𝑥𝑘+1) + 𝑔𝑇𝑘+1(𝑥− 𝑥𝑘+1) +
1

2
(𝑥− 𝑥𝑘+1)

𝑇𝐺𝑘+1(𝑥− 𝑥𝑘+1).

对上式求导数得

𝑔(𝑥) ≈ 𝑔𝑘+1 +𝐺𝑘+1(𝑥− 𝑥𝑘+1).
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令 𝑥 = 𝑥𝑘, 位移 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘, 梯度差 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘, 则有

𝐺𝑘+1𝑠𝑘 ≈ 𝑦𝑘.

注意到, 对于二次函数 𝑓 , 上式是精确成立的. 现在, 我们要求在拟牛顿法中构造

出 Hesse 阵的近似矩阵 𝐵𝑘 满足这种关系式, 即

𝐵𝑘+1𝑠𝑘 = 𝑦𝑘. (5.1)

上式通常称作拟牛顿方程或拟牛顿条件. 令 𝐻𝑘+1 = 𝐵−1
𝑘+1, 则得到拟牛顿方程的

另一个形式:

𝐻𝑘+1𝑦𝑘 = 𝑠𝑘, (5.2)

其中 𝐻𝑘+1 是 Hesse 阵逆的近似. 搜索方向由 𝑑𝑘 = −𝐻𝑘𝑔𝑘 或 𝐵𝑘𝑑𝑘 = −𝑔𝑘 确定.

根据 𝐵𝑘(或 𝐻𝑘) 的第三个特点, 可令

𝐵𝑘+1 = 𝐵𝑘 + 𝐸𝑘, 𝐻𝑘+1 = 𝐻𝑘 +𝐷𝑘, (5.3)

其中 𝐸𝑘, 𝐷𝑘 是秩 1 或秩 2 矩阵. 通常将由拟牛顿方程 (5.1) (或 (5.2)) 和校正规

则 (5.3) 所确立的方法称为拟牛顿法.

下面我们介绍一个对称秩 1 校正公式. 在 (5.3) 中取 𝐸𝑘 = 𝛼𝑢𝑘𝑢
𝑇
𝑘 (秩 1 矩

阵), 其中 𝛼 ∈ R, 𝑢𝑘 ∈ R𝑛. 由拟牛顿方程 (5.1) 得

(𝐵𝑘 + 𝛼𝑢𝑘𝑢
𝑇
𝑘 )𝑠𝑘 = 𝑦𝑘,

即有

𝛼(𝑢𝑇𝑘 𝑠𝑘)𝑢𝑘 = 𝑦𝑘 −𝐵𝑘𝑠𝑘. (5.4)

上式表明向量 𝑢𝑘 平行于 (𝑦𝑘 − 𝐵𝑘𝑠𝑘), 即存在常数 𝛽 使得 𝑢𝑘 = 𝛽(𝑦𝑘 − 𝐵𝑘𝑠𝑘). 因

此有

𝐸𝑘 = 𝛼𝛽2(𝑦𝑘 −𝐵𝑘𝑠𝑘)(𝑦𝑘 −𝐵𝑘𝑠𝑘)
𝑇 .

于是, 由 (5.4) 得

𝛼𝛽2[(𝑦𝑘 −𝐵𝑘𝑠𝑘)
𝑇 𝑠𝑘](𝑦𝑘 −𝐵𝑘𝑠𝑘) = (𝑦𝑘 −𝐵𝑘𝑠𝑘).

由此, 若 (𝑦𝑘 −𝐵𝑘𝑠𝑘)
𝑇 𝑠𝑘 ̸= 0, 可取 𝛼𝛽2[(𝑦𝑘 −𝐵𝑘𝑠𝑘)

𝑇 𝑠𝑘] = 1, 即

𝛼𝛽2 =
1

(𝑦𝑘 −𝐵𝑘𝑠𝑘)𝑇 𝑠𝑘
, 𝐸𝑘 =

(𝑦𝑘 −𝐵𝑘𝑠𝑘)(𝑦𝑘 −𝐵𝑘𝑠𝑘)
𝑇

(𝑦𝑘 −𝐵𝑘𝑠𝑘)𝑇 𝑠𝑘
.
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故得对称秩 1 校正公式如下:

𝐵𝑘+1 = 𝐵𝑘 +
(𝑦𝑘 −𝐵𝑘𝑠𝑘)(𝑦𝑘 −𝐵𝑘𝑠𝑘)

𝑇

(𝑦𝑘 −𝐵𝑘𝑠𝑘)𝑇 𝑠𝑘
. (5.5)

类似地, 利用拟牛顿方程 (5.2), 对 𝐻𝑘 进行对称秩 1 修正可得

𝐻𝑘+1 = 𝐻𝑘 +
(𝑠𝑘 −𝐻𝑘𝑦𝑘)(𝑠𝑘 −𝐻𝑘𝑦𝑘)

𝑇

(𝑠𝑘 −𝐻𝑘𝑦𝑘)𝑇𝑦𝑘
. (5.6)

有了对称秩 1 校正公式后, 利用它可以构造求解无约束优化问题的一个拟牛

顿算法, 步骤如下:

算法 14 (对称秩 1 算法)

步 0 给定初始点 𝑥0 ∈ R𝑛, 终止误差 0 ≤ 𝜀 ≪ 1. 初始对称正定阵 𝐻0 (通常

取单位阵 𝐼𝑛). 令 𝑘 := 0.

步 1 若 ‖𝑔𝑘‖ ≤ 𝜀, 停算, 输出 𝑥𝑘 作为近似极小点.

步 2 计算搜索方向 𝑑𝑘 = −𝐻𝑘𝑔𝑘.

步 3 用线搜索技术求步长 𝛼𝑘.

步 4 令 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 由对称秩 1 校正公式 (5.6) 确定 𝐻𝑘+1.

步 5 令 𝑘 := 𝑘 + 1, 转步 1.

下面给出基于 Armijo 搜索的对称秩 1 算法的Matlab 程序.

程序 8 (对称秩 1 算法程序)

function [x,val,k]=sr1(fun,gfun, x0)

%功能: 用对称秩1算法求解无约束问题: min f(x)

%输入: x0是初始点, fun, gfun分别是目标函数及其梯度

%输出: x, val分别是近似最优点和最优值, k是迭代次数.

maxk=500; %给出最大迭代次数

rho=0.55;sigma=0.4; epsilon=1e-5;

k=0; n=length(x0); Hk=eye(n);

while(k¡maxk)

gk=feval(gfun,x0); %计算梯度

dk=-Hk*gk; %计算搜索方向

if(norm(gk)¡epsilon), break; end %检验终止准则

m=0; mk=0;

while(m¡20) % 用Armijo搜索求步长
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if(feval(fun,x0+rho^m*dk)¡feval(fun,x0)+sigma*rho^m*gk’*dk)

mk=m; break;

end

m=m+1;

end

x=x0+rho^mk*dk;

sk=x-x0; yk=feval(gfun,x)-gk;

Hk=Hk+(sk-Hk*yk)*(sk-Hk*yk)’/((sk-Hk*yk)’*yk); %秩1校正

k=k+1; x0=x;

end

val=feval(fun,x0);

例 15 利用程序 8 求解无约束优化问题

min 𝑓(𝑥) = 100(𝑥21 − 𝑥2)
2 + (𝑥1 − 1)2, 𝑥 = (𝑥1, 𝑥2)

𝑇 ∈ R2.

该问题有精确解 𝑥* = (1, 1)𝑇 , 𝑓(𝑥*) = 0.

解 取终止准则值为 ‖∇𝑓(𝑥𝑘)‖ ≤ 10−5, 利用程序 8, 取不同的初始点, 数值结

果如下表.

表 6.1 对称秩 1 校正算法的数值结果.

初始点 (𝑥0) 迭代次数 (𝑘) 目标函数值 (𝑓(𝑥𝑘))

(0, 0)𝑇 22 7.0304× 10−19

(0.5, 0.5)𝑇 19 3.8208× 10−16

(2, 2)𝑇 38 3.3992× 10−20

(−1,−1)𝑇 45 8.2927× 10−16

(1, 10)𝑇 98 1.9321× 10−16

(10, 10)𝑇 142 2.1578× 10−15

说明 上述程序的调用方式是:

x0=[-1.2 1]’;

[x,val,k]=sr1(’fun’,’gfun’,x0)

其中 fun, gfun 分别是求目标函数值及其梯度的M 函数文件.
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5.2 BFGS 算法及其Matlab 实现

BFGS 校正是目前最流行也是最有效的拟牛顿校正, 它是由 Broyden,

Fletcher, Goldfarb和 Shanno在 1970年各自独立提出的拟牛顿法, 故称为 BFGS

算法. 其基本思想是: 在 (5.3) 中取修正矩阵 𝐸𝑘 为秩 2 矩阵:

𝐸𝑘 = 𝛼𝑢𝑘𝑢
𝑇
𝑘 + 𝛽𝑣𝑘𝑣

𝑇
𝑘 ,

其中 𝑢𝑘, 𝑣𝑘 ∈ R𝑛 是待定向量, 𝛼, 𝛽 ∈ R 是待定实数. 于是由拟牛顿方程 (5.1) 可

得

(𝐵𝑘 + 𝛼𝑢𝑘𝑢
𝑇
𝑘 + 𝛽𝑣𝑘𝑣

𝑇
𝑘 )𝑠𝑘 = 𝑦𝑘,

或等价地

𝛼(𝑢𝑇𝑘 𝑠𝑘)𝑢𝑘 + 𝛽(𝑣𝑇𝑘 𝑠𝑘)𝑣𝑘 = 𝑦𝑘 −𝐵𝑘𝑠𝑘. (5.7)

不难发现, 满足上式的向量 𝑢𝑘 和 𝑣𝑘 不唯一, 可取 𝑢𝑘 和 𝑣𝑘 分别平行于 𝐵𝑘𝑠𝑘 和

𝑦𝑘, 即令 𝑢𝑘 = 𝛾𝐵𝑘𝑠𝑘, 𝑣𝑘 = 𝜃𝑦𝑘, 其中 𝛾, 𝜃 是待定的参数. 于是我们有

𝐸𝑘 = 𝛼𝛾2𝐵𝑘𝑠𝑘𝑠
𝑇
𝑘𝐵𝑘 + 𝛽𝜃2𝑦𝑘𝑦

𝑇
𝑘 .

将 𝑢𝑘, 𝑣𝑘 的表达式代入 (5.7) 得

𝛼[(𝛾𝐵𝑘𝑠𝑘)
𝑇 𝑠𝑘](𝛾𝐵𝑘𝑠𝑘) + 𝛽[(𝜃𝑦𝑘)

𝑇 𝑠𝑘)(𝜃𝑦𝑘) = 𝑦𝑘 −𝐵𝑘𝑠𝑘,

整理得

[𝛼𝛾2(𝑠𝑇𝑘𝐵𝑘𝑠𝑘) + 1]𝐵𝑘𝑠𝑘 + [𝛽𝜃2(𝑦𝑇𝑘 𝑠)− 1]𝑦𝑘 = 0.

故此, 可令 𝛼𝛾2(𝑠𝑇𝑘𝐵𝑘𝑠𝑘) + 1 = 0 及 𝛽𝜃2(𝑦𝑇𝑘 𝑠)− 1 = 0, 即

𝛼𝛾2 = − 1

𝑠𝑇𝑘𝐵𝑘𝑠𝑘
, 𝛽𝜃2 =

1

𝑦𝑇𝑘 𝑠𝑘
.

从而得到如下的 BFGS 秩 2 修正公式如下

𝐵𝑘+1 = 𝐵𝑘 −
𝐵𝑘𝑠𝑘𝑠

𝑇
𝑘𝐵𝑘

𝑠𝑇𝑘𝐵𝑘𝑠𝑘
+
𝑦𝑘𝑦

𝑇
𝑘

𝑦𝑇𝑘 𝑠𝑘
. (5.8)

显然,由 (5.8)可知,若𝐵𝑘 对称,校正后的𝐵𝑘+1 也对称,并且可以证明BFGS

校正公式的如下性质:
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引理 4 设 𝐵𝑘 对称正定, 𝐵𝑘+1 由 BFGS 校正公式 (5.8) 确定, 那么 𝐵𝑘+1 对

称正定的充要条件是 𝑦𝑇𝑘 𝑠𝑘 > 0.

证 必要性是显然的. 因 𝑦𝑇𝑘 𝑠𝑘 = 𝑠𝑇𝑘𝐵𝑘+1𝑠𝑘, 故若 𝐵𝑘+1 正定, 则显然有

𝑦𝑇𝑘 𝑠𝑘 > 0.

下面证明充分性. 设 𝑦𝑇𝑘 𝑠𝑘 > 0 且 𝐵𝑘 正定. 由校正公式 (5.8), 对任意的

0 ̸= 𝑑 ∈ R𝑛, 我们有

𝑑𝑇𝐵𝑘+1𝑑 = 𝑑𝑇𝐵𝑘𝑑−
(𝑑𝑇𝐵𝑘𝑠)

2

𝑠𝑇𝑘𝐵𝑘𝑠𝑘
+

(𝑑𝑇𝑦𝑘)
2

𝑦𝑇𝑘 𝑠𝑘
. (5.9)

因 𝐵𝑘 对称正定, 故存在对称正定阵 𝐵
1/2
𝑘 , 使得 𝐵𝑘 = 𝐵

1/2
𝑘 𝐵

1/2
𝑘 . 从而, 利用

Cauchy-Schwarz 不等式得

(𝑑𝑇𝐵𝑘𝑠𝑘)
2 = [(𝐵

1/2
𝑘 𝑑)𝑇 (𝐵

1/2
𝑘 𝑠𝑘)]

2 ≤ ‖𝐵1/2
𝑘 𝑑‖2‖𝐵1/2

𝑘 𝑠𝑘‖2

= (𝐵
1/2
𝑘 𝑑)𝑇 (𝐵

1/2
𝑘 𝑑) · (𝐵1/2

𝑘 𝑠𝑘)
𝑇 (𝐵

1/2
𝑘 𝑠𝑘)

= (𝑑𝑇𝐵𝑘𝑑)(𝑠
𝑇
𝑘𝐵𝑘𝑠𝑘). (5.10)

不难发现, 上式成立等式的充要条件是存在实数 𝜏𝑘 ̸= 0, 使得 𝐵
1/2
𝑘 𝑑 = 𝜏𝑘𝐵

1/2
𝑘 𝑠𝑘,

即 𝑑 = 𝜏𝑘𝑠𝑘.

故而, 若不等式 (5.10) 严格成立, 则由 (5.9) 得

𝑑𝑇𝐵𝑘+1𝑑 > 𝑑𝑇𝐵𝑘𝑑−
(𝑑𝑇𝐵𝑘𝑑)(𝑠

𝑇
𝑘𝐵𝑘𝑠𝑘)

𝑠𝑇𝑘𝐵𝑘𝑠𝑘
+

(𝑑𝑇𝑦𝑘)
2

𝑦𝑇𝑘 𝑠𝑘
> 0.

否则, 若 (5.10) 等式成立, 即存在 𝜏𝑘, 使得 𝑑 = 𝜏𝑘𝑠𝑘, 则由 (5.9), (5.10) 得

𝑑𝑇𝐵𝑘+1𝑑 =
(𝑑𝑇𝑦𝑘)

2

𝑦𝑇𝑘 𝑠𝑘
=
𝜏 2𝑘 (𝑠

𝑇
𝑘 𝑦𝑘)

2

𝑦𝑇𝑘 𝑠𝑘
= 𝜏 2𝑘𝑦

𝑇
𝑘 𝑠𝑘 > 0.

故对任意的 𝑑 ∈ R𝑛, 𝑑 ̸= 0, 总有 𝑑𝑇𝐵𝑘+1𝑑 > 0. 证毕. �

上面的引理表明, 若初始矩阵 𝐵0 对称正定且在迭代过程中保持 𝑦𝑇𝑘 𝑠𝑘 >

0, ∀ 𝑘 ≥ 0, 则由 BFGS 校正公式产生的矩阵序列 {𝐵𝑘} 是对称正定的. 从而方程

组 𝐵𝑘𝑑 = −𝑔𝑘 有唯一解 𝑑𝑘, 且 𝑑𝑘 是函数 𝑓 在 𝑥𝑘 处的下降方向.

引理 5 若在BFGS算法中采用精确线搜索或Wolfe搜索准则,则有 𝑦𝑇𝑘 𝑠𝑘 >

0.
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证 注意到对于精确线搜索有 𝑔𝑇𝑘+1𝑑𝑘 = 0. 故

𝑦𝑇𝑘 𝑠𝑘 = 𝛼𝑘(𝑔𝑘+1 − 𝑔𝑘)
𝑇𝑑𝑘 = −𝛼𝑘𝑔

𝑇
𝑘 𝑑𝑘 > 0.

对于 Wolfe 搜索准则, 利用该准则的第二个不等式 (即 ∇𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇𝑑𝑘 ≥

𝜎𝑔𝑇𝑘 𝑑𝑘), 得

𝑦𝑇𝑘 𝑠𝑘 = 𝛼𝑘(𝑔𝑘+1 − 𝑔𝑘)
𝑇𝑑𝑘 ≥ 𝛼𝑘(𝜎 − 1)𝑔𝑇𝑘 𝑑𝑘

= −𝛼𝑘(1− 𝜎)𝑔𝑇𝑘 𝑑𝑘 > 0.

证毕. �

已有证明表示, Armijo 搜索准则一般不能保证 𝑦𝑇𝑘 𝑠𝑘 > 0. 但 Armijo 准则因

其简单且易于程序实现而深得人们的喜爱, 因此, 为了保证采用 Armijo 准则时矩

阵序列 {𝐵𝑘} 的对称正定性, 可采用如下的校正方式

𝐵𝑘+1 =

⎧⎪⎪⎨⎪⎪⎩
𝐵𝑘, 若 𝑦𝑇𝑘 𝑠𝑘 ≤ 0,

𝐵𝑘 −
𝐵𝑘𝑠𝑘𝑠

𝑇
𝑘𝐵𝑘

𝑠𝑇𝑘𝐵𝑘𝑠𝑘
+
𝑦𝑘𝑦

𝑇
𝑘

𝑦𝑇𝑘 𝑠𝑘
, 若 𝑦𝑇𝑘 𝑠𝑘 > 0.

(5.11)

不难发现, 只要 𝐵0 对称正定, 上述校正公式可以保证矩阵序列 {𝐵𝑘} 的对称正定
性. 下面给出基于 Armijo 搜索准则的 BFGS 算法的详细步骤.

算法 15 (BFGS 算法)

步 0 给定参数 𝛿 ∈ (0, 1), 𝜎 ∈ (0, 0.5), 初始点 𝑥0 ∈ R𝑛, 终止误差 0 ≤ 𝜀≪ 1.

初始对称正定阵 𝐵0 (通常取为 𝐺(𝑥0) 或单位阵 𝐼𝑛). 令 𝑘 := 0.

步 1 计算 𝑔𝑘 = ∇𝑓(𝑥𝑘). 若 ‖𝑔𝑘‖ ≤ 𝜀, 停算, 输出 𝑥𝑘 作为近似极小点.

步 2 解线性方程组得解 𝑑𝑘:

𝐵𝑘𝑑 = −𝑔𝑘. (5.12)

步 3 设𝑚𝑘 是满足下列不等式的最小非负整数𝑚:

𝑓(𝑥𝑘 + 𝛿𝑚𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝜎𝛿𝑚𝑔𝑇𝑘 𝑑𝑘. (5.13)

令 𝛼𝑘 = 𝛿𝑚𝑘 , 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘.

步 4 由校正公式 (5.11) 确定 𝐵𝑘+1.

步 5 令 𝑘 := 𝑘 + 1, 转步 1.
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下面给出基于 Armijo 搜索的 BFGS 算法的Matlab 程序.

程序 9 (BFGS 算法程序)

function [x,val,k]=bfgs(fun,gfun,x0,varargin)

%功能: 用BFGS算法求解无约束问题: min f(x)

%输入: x0是初始点, fun, gfun分别是目标函数及其梯度;

% varargin是输入的可变参数变量, 简单调用bfgs时可以忽略它,

% 但若其它程序循环调用该程序时将发挥重要的作用

%输出: x, val分别是近似最优点和最优值, k是迭代次数.

maxk=500; %给出最大迭代次数

rho=0.55;sigma=0.4; epsilon=1e-5;

k=0; n=length(x0);

Bk=eye(n); %Bk=feval(’Hess’,x0);

while(k¡maxk)

gk=feval(gfun,x0,varargin–:˝); %计算梯度

if(norm(gk)¡epsilon), break; end %检验终止准则

dk=-Bk“gk; %解方程组, 计算搜索方向

m=0; mk=0;

while(m¡20) % 用Armijo搜索求步长

newf=feval(fun,x0+rho^m*dk,varargin–:˝);

oldf=feval(fun,x0,varargin–:˝);

if(newf¡oldf+sigma*rho^m*gk’*dk)

mk=m; break;

end

m=m+1;

end

%BFGS校正

x=x0+rho^mk*dk;

sk=x-x0; yk=feval(gfun,x,varargin–:˝)-gk;

if(yk’*sk¿0)

Bk=Bk-(Bk*sk*sk’*Bk)/(sk’*Bk*sk)+(yk*yk’)/(yk’*sk);

end

k=k+1; x0=x;

end

val=feval(fun,x0,varargin–:˝);

例 16 利用程序 9 求解无约束优化问题

min 𝑓(𝑥) = 100(𝑥21 − 𝑥2)
2 + (𝑥1 − 1)2, 𝑥 = (𝑥1, 𝑥2)

𝑇 ∈ R2.
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该问题有精确解 𝑥* = (1, 1)𝑇 , 𝑓(𝑥*) = 0.

解 取终止准则值为 ‖∇𝑓(𝑥𝑘)‖ ≤ 10−5, 利用程序 9, 取不同的初始点, 数值结

果如下表.

表 6.2 BFGS 校正算法的数值结果.

初始点 (𝑥0) 迭代次数 (𝑘) 目标函数值 (𝑓(𝑥𝑘))

(0, 0)𝑇 20 2.2005× 10−11

(0.5, 0.5)𝑇 15 1.946× 10−16

(2, 2)𝑇 24 2.1171× 10−15

(−1,−1)𝑇 31 1.3594× 10−12

(1, 10)𝑇 36 1.3757× 10−15

(10, 10)𝑇 66 6.3531× 10−15

(−1.2, 1)𝑇 32 6.7539× 10−16

从上表可以看出, BFGS 算法比对称秩 1 算法更为有效.

5.3 DFP 算法及其Matlab 实现

DFP校正是第一个拟牛顿校正,是 1959年由Davidon提出的,后经 Fletcher

和 Powell 解释和改进, 故名之为 DFP 算法, 它也是求解无约束优化问题最有效

的算法之一. 类似于 BFGS 校正公式的推导, 可得 DFP 校正公式如下:

𝐻𝑘+1 = 𝐻𝑘 −
𝐻𝑘𝑦𝑘𝑦

𝑇
𝑘𝐻𝑘

𝑦𝑇𝑘𝐻𝑘𝑦𝑘
+
𝑠𝑘𝑠

𝑇
𝑘

𝑠𝑇𝑘 𝑦𝑘
. (5.14)

同样, 不难发现, 由 (5.14), 若 𝐻𝑘 对称, 校正后的 𝐻𝑘+1 也对称, 并且类似于

引理 4 的证明, 可得 DFP 校正公式的如下性质:

引理 6 设𝐻𝑘 对称正定, 𝐻𝑘+1 由 DFP 校正公式 (5.14) 确定, 那么𝐻𝑘+1 对

称正定的充要条件是 𝑠𝑇𝑘 𝑦𝑘 > 0.

类似于引理 5, 可以证明, 当采用精确线搜索或Wolfe 搜索准则时, 矩阵序列

{𝐻𝑘} 的正定性条件 𝑠𝑇𝑘 𝑦𝑘 > 0 可以被满足. 但一般来说, Armijo 搜索准备不能满
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足这一条件, 需要作如下修正:

𝐻𝑘+1 =

⎧⎪⎪⎨⎪⎪⎩
𝐻𝑘, 若 𝑠𝑇𝑘 𝑦𝑘 ≤ 0,

𝐻𝑘 −
𝐻𝑘𝑦𝑘𝑦

𝑇
𝑘𝐻𝑘

𝑦𝑇𝑘𝐻𝑘𝑦𝑘
+
𝑠𝑘𝑠

𝑇
𝑘

𝑠𝑇𝑘 𝑦𝑘
, 若 𝑦𝑇𝑘 𝑠𝑘 > 0.

(5.15)

下面给出基于 Armijo 搜索准则的 DFP 算法的详细步骤.

算法 16 (DFP 算法)

步 0 给定参数 𝛿 ∈ (0, 1), 𝜎 ∈ (0, 0.5), 初始点 𝑥0 ∈ R𝑛, 终止误差 0 ≤ 𝜀≪ 1.

初始对称正定阵 𝐻0 (通常取为 𝐺(𝑥0)
−1 或单位阵 𝐼𝑛). 令 𝑘 := 0.

步 1 计算 𝑔𝑘 = ∇𝑓(𝑥𝑘). 若 ‖𝑔𝑘‖ ≤ 𝜀, 停算, 输出 𝑥𝑘 作为近似极小点.

步 2 计算搜索方向:

𝑑𝑘 = −𝐻𝑘𝑔𝑘. (5.16)

步 3 设𝑚𝑘 是满足下列不等式的最小非负整数𝑚:

𝑓(𝑥𝑘 + 𝛿𝑚𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝜎𝛿𝑚𝑔𝑇𝑘 𝑑𝑘. (5.17)

令 𝛼𝑘 = 𝛿𝑚𝑘 , 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘.

步 4 由校正公式 (5.15) 确定 𝐻𝑘+1.

步 5 令 𝑘 := 𝑘 + 1, 转步 1.

下面给出基于 Armijo 搜索的 DFP 算法的Matlab 程序.

程序 10 (DFP 算法程序)

function [x,val,k]=dfp(fun,gfun,x0)

%功能: 用DFP算法求解无约束问题: min f(x)

%输入: x0是初始点, fun, gfun分别是目标函数及其梯度

%输出: x, val分别是近似最优点和最优值, k是迭代次数.

maxk=1e5; %给出最大迭代次数

rho=0.55;sigma=0.4; epsilon=1e-5;

k=0; n=length(x0);

Hk=inv(feval(’Hess’,x0)); %Hk=eye(n);

while(k¡maxk)

gk=feval(gfun,x0); %计算梯度

if(norm(gk)¡epsilon), break; end %检验终止准则
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dk=-Hk*gk; %解方程组, 计算搜索方向

m=0; mk=0;

while(m¡20) % 用Armijo搜索求步长

if(feval(fun,x0+rho^m*dk)¡feval(fun,x0)+sigma*rho^m*gk’*dk)

mk=m; break;

end

m=m+1;

end

%DFP校正

x=x0+rho^mk*dk;

sk=x-x0; yk=feval(gfun,x)-gk;

if(sk’*yk¿0)

Hk=Hk-(Hk*yk*yk’*Hk)/(yk’*Hk*yk)+(sk*sk’)/(sk’*yk);

end

k=k+1; x0=x;

end

val=feval(fun,x0);

例 17 利用程序 10 求解无约束优化问题

min 𝑓(𝑥) = 100(𝑥21 − 𝑥2)
2 + (𝑥1 − 1)2, 𝑥 = (𝑥1, 𝑥2)

𝑇 ∈ R2.

该问题有精确解 𝑥* = (1, 1)𝑇 , 𝑓(𝑥*) = 0.

解 取终止准则值为 ‖∇𝑓(𝑥𝑘)‖ ≤ 10−5, 利用程序 10, 取不同的初始点, 数值

结果如下表.

表 6.3 DFP 校正算法的数值结果.

初始点 (𝑥0) 迭代次数 (𝑘) 目标函数值 (𝑓(𝑥𝑘))

(0, 0)𝑇 23 9.4910× 10−16

(0.5, 0.5)𝑇 19 1.5488× 10−15

(2, 2)𝑇 22 4.0247× 10−13

(−1,−1)𝑇 35 2.2338× 10−12

(1, 10)𝑇 1 0

(10, 10)𝑇 77 8.6152× 10−20

(−1.2, 1)𝑇 34 3.0415× 10−14

从上表可以看出, DFP 算法的计算效率似乎不如 BFGS 算法.
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5.4 Broyden 族算法及其Matlab 实现

前面我们讨论了 BFGS和 DFP校正, 它们都是由 𝑦𝑘 和 𝐵𝑘𝑠𝑘 (或 𝑠𝑘 和𝐻𝑘𝑦𝑘)

组成的秩 2 校正. 本节讨论由 BFGS 和 DFP 校正的凸组合产生的一类校正族

𝐵𝜃
𝑘+1 = 𝜃𝑘𝐵

DFP
𝑘+1 + (1− 𝜃𝑘)𝐵

BFGS
𝑘+1 (5.18)

= 𝐵𝑘 −
𝐵𝑘𝑠𝑘𝑠

𝑇
𝑘𝐵𝑘

𝑠𝑇𝑘𝐵𝑘𝑠𝑘
+
𝑦𝑘𝑦

𝑇
𝑘

𝑠𝑇𝑘 𝑦𝑘
+ 𝜃𝑘𝑢𝑘𝑢

𝑇
𝑘 , (5.19)

其中 𝜃𝑘 为实参数, 𝑢𝑘 由下式定义:

𝑢𝑘 =
√︁
𝑠𝑇𝑘𝐵𝑘𝑠𝑘

(︂
𝑦𝑘
𝑦𝑇𝑘 𝑠𝑘

− 𝐵𝑘𝑠𝑘
𝑠𝑇𝐵𝑘𝑠𝑘

)︂
. (5.20)

这类校正公式称为 Broyden 族. 不难发现, 在 (5.19) 中, 当 𝜃𝑘 = 0, 即得到 BFGS

公式; 当 𝜃𝑘 = 1, 即得到 DFP 公式.

对应地, 关于 𝐻𝑘 的 Broyden 族校正公式为

𝐻𝜑
𝑘+1 = 𝜑𝑘𝐻

BFGS
𝑘+1 + (1− 𝜑𝑘)𝐻

DFP
𝑘+1 (5.21)

= 𝐻𝑘 −
𝐻𝑘𝑦𝑘𝑦

𝑇
𝑘𝐻𝑘

𝑦𝑇𝑘𝐻𝑘𝑦𝑘
+
𝑠𝑘𝑠

𝑇
𝑘

𝑠𝑇𝑘 𝑦𝑘
+ 𝜑𝑘𝑣𝑘𝑣

𝑇
𝑘 , (5.22)

其中 𝜑𝑘 为实参数, 𝑣𝑘 由下式定义:

𝑣𝑘 =
√︁
𝑦𝑇𝑘𝐻𝑘𝑦𝑘

(︂
𝑠𝑘
𝑦𝑇𝑘 𝑠𝑘

− 𝐻𝑘𝑦𝑘
𝑦𝑇𝑘𝐻𝑘𝑦𝑘

)︂
. (5.23)

可以证明参数 𝜃𝑘 与 𝜑𝑘 之间的关系为

𝜃𝑘 =
1− 𝜑𝑘

1− 𝜑𝑘(1− 𝜇𝑘)
, (5.24)

其中

𝜇𝑘 =
(𝑠𝑇𝑘𝐵𝑘𝑠𝑘)(𝑦

𝑇
𝑘𝐻𝑘𝑦𝑘)

(𝑠𝑇𝑘 𝑦𝑘)
2

.

不难发现 𝑢𝑇𝑘 𝑠𝑘 = 0 和 𝑣𝑇𝑘 𝑦𝑘 = 0, 因此 Broyden 族 (5.19) 和 (5.22) 给出的校

正公式于任何参数 𝜃𝑘 和 𝜑𝑘 都满足拟牛顿方程 (5.1) 和 (5.2).

下面我们给出 Broyden 族校正公式的两个性质.
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定理 25 用 Broyden 族算法求解极小化二次目标函数问题

min 𝑓(𝑥) =
1

2
𝑥𝑇𝐺𝑥+ 𝑏𝑇𝑥+ 𝑐. (5.25)

若果初始矩阵 𝐻0 是正定的, 算法所产生的迭代点列是互异的. 则

(1) 当 𝑦𝑇𝑘 𝑠𝑘 > 0 且 𝜑𝑘 ≥ 0 或 𝜃𝑘 ≥ 0 时, Broyden 族校正公式保持正定性.

(2) 算法所产生的搜索方向 𝑑0, 𝑑1, · · · , 𝑑𝑘(𝑘 ≤ 𝑛− 1) 满足

(a) 𝑑𝑇𝑖 𝐺𝑑𝑗 = 0, 0 ≤ 𝑖 < 𝑗 ≤ 𝑘; (b) 𝐻𝜑
𝑘 𝑦𝑖 = 𝑠𝑖, 0 ≤ 𝑖 ≤ 𝑘 − 1.

证 对 𝑘用归纳法. 注意到 𝑠𝑖 = 𝑥𝑖+1−𝑥𝑖 = 𝛼𝑖𝑑𝑖, 𝑦𝑖 = 𝑔𝑖+1−𝑔𝑖 = 𝐺(𝑥𝑖+1−𝑥𝑖) =
𝐺𝑠𝑖. 那么, 当 𝑘 = 1 时, 由拟牛顿方程 (5.2) 可知

𝐻𝜑
1 𝑦0 = 𝑠0

成立, 且有

𝑑𝑇0𝐺𝑑1 = (𝐺𝑑0)
𝑇𝑑1 = − 1

𝛼0

(𝐺𝑠0)
𝑇𝐻𝜑

1 𝑔1

= − 1

𝛼0

𝑦𝑇0𝐻
𝜑
1 𝑔1 = − 1

𝛼0

𝑠𝑇0 𝑔1

= −𝑑𝑇0 𝑔1 = 0,

即 𝑘 = 1 时结论成立.

设 𝑘 = 𝑙 时结论成立, 要证 𝑘 = 𝑙 + 1 时结论也成立. 由归纳法假设有

𝑑𝑇𝑖 𝐺𝑑𝑗 = 0, 0 ≤ 𝑖 < 𝑗 ≤ 𝑙; 𝐻𝜑
𝑙 𝑦𝑖 = 𝑠𝑖, 0 ≤ 𝑖 ≤ 𝑙 − 1. (5.26)

当 𝑘 = 𝑙 + 1 时, 对于 0 ≤ 𝑖 ≤ 𝑙 − 1, 我们有

𝐻𝜑
𝑙+1𝑦𝑖 =

(︂
𝐻𝜑

𝑙 − 𝐻𝜑
𝑙 𝑦𝑙𝑦

𝑇
𝑙 𝐻

𝜑
𝑙

𝑦𝑇𝑙 𝐻
𝜑
𝑙 𝑦𝑙

+
𝑠𝑙𝑠

𝑇
𝑙

𝑠𝑇𝑙 𝑦𝑙
+ 𝜑𝑣𝑙𝑣

𝑇
𝑙

)︂
𝑦𝑖

= 𝐻𝜑
𝑙 𝑦𝑖 −

𝐻𝜑
𝑙 𝑦𝑙𝑦

𝑇
𝑙 𝐻

𝜑
𝑙 𝑦𝑖

𝑦𝑇𝑙 𝐻
𝜑
𝑙 𝑦𝑙

+
𝑠𝑙𝑠

𝑇
𝑙 𝑦𝑖

𝑠𝑇𝑙 𝑦𝑙
+ 𝜑𝑣𝑙𝑣

𝑇
𝑙 𝑦𝑖

= 𝑠𝑖 −
𝐻𝜑

𝑙 𝑦𝑙(𝑦
𝑇
𝑙 𝑠𝑖)

𝑦𝑇𝑙 𝐻
𝜑
𝑙 𝑦𝑙

+
𝑠𝑙𝑠

𝑇
𝑙 𝑦𝑖

𝑠𝑇𝑙 𝑦𝑙
+ 𝜑𝑣𝑙𝑣

𝑇
𝑙 𝑦𝑖

= 𝑠𝑖 −
𝐻𝜑

𝑙 𝑦𝑙(𝑠
𝑇
𝑙 𝐺𝑠𝑖)

𝑦𝑇𝑙 𝐻
𝜑
𝑙 𝑦𝑙

+
𝑠𝑙𝑠

𝑇
𝑙 𝐺𝑠𝑖
𝑠𝑇𝑙 𝑦𝑙

+ 𝜑𝑣𝑙𝑣
𝑇
𝑙 𝑦𝑖
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由 𝑠𝑖 = 𝛼𝑖𝑑𝑖 和 (5.26) 的第一式可知, 上式等式右边的第二、三两项为 0. 下面考

虑第三项. 注意到

𝜑

(𝑦𝑇𝑙 𝐻
𝜑
𝑙 𝑦𝑙)

𝑣𝑙𝑣
𝑇
𝑙 𝑦𝑖 =

(︂
𝑠𝑙
𝑦𝑇𝑙 𝑠𝑙

− 𝐻𝜑
𝑙 𝑦𝑙

𝑦𝑇𝑙 𝐻
𝜑
𝑙 𝑦𝑙

)︂(︂
𝑠𝑙
𝑦𝑇𝑙 𝑠𝑙

− 𝐻𝜑
𝑙 𝑦𝑙

𝑦𝑇𝑙 𝐻
𝜑
𝑙 𝑦𝑙

)︂𝑇

𝑦𝑖

=
𝑠𝑙𝑠

𝑇
𝑙 𝑦𝑖

(𝑦𝑇𝑙 𝑠𝑙)
2
+
𝐻𝜑

𝑙 𝑦𝑙𝑦
𝑇
𝑙 𝐻

𝜑
𝑙 𝑦𝑖

(𝑦𝑇𝑙 𝐻
𝜑
𝑙 𝑦𝑙)

2
− 𝑠𝑙𝑦

𝑇
𝑙 𝐻

𝜑
𝑙 𝑦𝑖

(𝑦𝑇𝑙 𝑠𝑙)(𝑦
𝑇
𝑙 𝐻

𝜑
𝑙 𝑦𝑙)

− 𝐻𝜑
𝑙 𝑦𝑙𝑠

𝑇
𝑙 𝑦𝑖

(𝑦𝑇𝑙 𝑠𝑙)(𝑦
𝑇
𝑙 𝐻

𝜑
𝑙 𝑦𝑙)

=
𝑠𝑙(𝑠

𝑇
𝑙 𝐺𝑠𝑖)

(𝑦𝑇𝑙 𝑠𝑙)
2

+
𝐻𝜑

𝑙 𝑦𝑙𝑦
𝑇
𝑙 𝑠𝑖

(𝑦𝑇𝑙 𝐻
𝜑
𝑙 𝑦𝑙)

2
− 𝑠𝑙𝑦

𝑇
𝑙 𝑠𝑖

(𝑦𝑇𝑙 𝑠𝑙)(𝑦
𝑇
𝑙 𝐻

𝜑
𝑙 𝑦𝑙)

− 𝐻𝜑
𝑙 𝑦𝑙(𝑠

𝑇
𝑙 𝐺𝑠𝑖)

(𝑦𝑇𝑙 𝑠𝑙)(𝑦
𝑇
𝑙 𝐻

𝜑
𝑙 𝑦𝑙)

= 0 +
𝐻𝜑

𝑙 𝑦𝑙(𝑠
𝑇
𝑙 𝐺𝑠𝑖)

(𝑦𝑇𝑙 𝐻
𝜑
𝑙 𝑦𝑙)

2
− 𝑠𝑙(𝑠

𝑇
𝑙 𝐺𝑠𝑖)

(𝑦𝑇𝑙 𝑠𝑙)(𝑦
𝑇
𝑙 𝐻

𝜑
𝑙 𝑦𝑙)

− 0 = 0.

故有

𝐻𝜑
𝑙+1𝑦𝑖 = 𝑠𝑖, 0 ≤ 𝑖 ≤ 𝑙 − 1. (5.27)

又因为拟牛顿方程 𝐻𝜑
𝑙+1𝑦𝑙 = 𝑠𝑙 满足, 所以 (5.27) 对于 0 ≤ 𝑖 ≤ 𝑙 成立.

下面证明

𝑑𝑇𝑖 𝐺𝑑𝑗 = 0, 0 ≤ 𝑖 < 𝑗 ≤ 𝑙 + 1. (5.28)

由归纳法假设 (5.26), 只需证明对于 0 ≤ 𝑖 ≤ 𝑙 成立

𝑑𝑖𝐺𝑑𝑙+1 = 0.

事实上,

𝑑𝑖𝐺𝑑𝑙+1 = (𝐺𝑑𝑖)
𝑇𝑑𝑙+1 =

1

𝛼𝑖

𝑦𝑇𝑖
(︀
−𝐻𝜑

𝑙+1𝑔𝑙+1

)︀
= − 1

𝛼𝑖

𝑠𝑇𝑖 𝑔𝑙+1 = −𝑑𝑇𝑖 𝑔𝑙+1

= −𝑑𝑇𝑖
(︁
𝑔𝑖+1 +

𝑙∑︀
𝑗=𝑖+1

(𝑔𝑗+1 − 𝑔𝑗)
)︁

= −𝑔𝑇𝑖+1𝑑𝑖 +
𝑙∑︀

𝑗=𝑖+1

𝑦𝑇𝑗 𝑑𝑖

= −𝑔𝑇𝑖+1𝑑𝑖 +
𝑙∑︀

𝑗=𝑖+1

𝑠𝑇𝑗 𝐺𝑑𝑖 = 0.

因此, 对于 𝑘 = 𝑙 + 1, 结论成立. �
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推论 2 在定理 25 的条件下, 有如下结论:

(1) Broyden 族校正公式至多迭代 𝑛 次就可以达到极小点 𝑥*, 即存在

𝑘 (0 ≤ 𝑘 ≤ 𝑛), 使得 𝑥𝑘 = 𝑥*.

(2) 若 𝑥𝑘 ̸= 𝑥*, 0 ≤ 𝑘 ≤ 𝑛− 1, 则 𝐻𝑛 = 𝐺−1.

证 由定理 25 可知, Broyden 族校正算法是一种共轭方向法, 故结论 (1) 成

立.

若 𝑥𝑘 ̸= 𝑥*, 0 ≤ 𝑘 ≤ 𝑛 − 1, 则 Broyden 族校正公式产生 𝑛 个共轭方向

𝑑0, 𝑑1, · · · , 𝑑𝑛−1, 因而它们是线性无关的, 从而 𝑠0, 𝑠1, · · · , 𝑠𝑛−1 也是线性无关的.

又由定理 25 得

𝐻𝑛𝐺𝑠𝑖 = 𝐻𝑛𝑦𝑖 = 𝑠𝑖, 𝑖 = 0, 1, · · · , 𝑛− 1,

即

𝐻𝑛𝐺[𝑠0, 𝑠1, · · · , 𝑠𝑛−1] = [𝑠0, 𝑠1, · · · , 𝑠𝑛−1].

因矩阵 [𝑠0, 𝑠1, · · · , 𝑠𝑛−1] 非奇异, 故有 𝐻𝑛𝐺 = 𝐼, 即 𝐻𝑛 = 𝐺−1. 证毕. �

下面给出基于 Armijo 搜索准则的 Broyden 族算法的详细步骤.

算法 17 (Broyden 族算法)

步 0 给定参数 𝛿 ∈ (0, 1), 𝜎 ∈ (0, 0.5),𝜑 ∈ [0, 1]. 初始点 𝑥0 ∈ R𝑛, 终止误差

0 ≤ 𝜀≪ 1. 初始对称正定阵 𝐻0 (通常取为 𝐺(𝑥0)
−1 或单位阵 𝐼𝑛). 令 𝑘 := 0.

步 1 计算 𝑔𝑘 = ∇𝑓(𝑥𝑘). 若 ‖𝑔𝑘‖ ≤ 𝜀, 停算, 输出 𝑥𝑘 作为近似极小点.

步 2 计算搜索方向:

𝑑𝑘 = −𝐻𝑘𝑔𝑘. (5.29)

步 3 设𝑚𝑘 是满足下列不等式的最小非负整数𝑚:

𝑓(𝑥𝑘 + 𝛿𝑚𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝜎𝛿𝑚𝑔𝑇𝑘 𝑑𝑘. (5.30)

令 𝛼𝑘 = 𝛿𝑚𝑘 , 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘.

步 4 由下面的校正公式确定 𝐻𝑘+1 :

𝐻𝑘+1 =

⎧⎪⎪⎨⎪⎪⎩
𝐻𝑘, 若 𝑠𝑇𝑘 𝑦𝑘 ≤ 0,

𝐻𝑘 −
𝐻𝑘𝑦𝑘𝑦

𝑇
𝑘𝐻𝑘

𝑦𝑇𝑘𝐻𝑘𝑦𝑘
+
𝑠𝑘𝑠

𝑇
𝑘

𝑠𝑇𝑘 𝑦𝑘
+ 𝜑𝑣𝑘𝑣

𝑇
𝑘 , 若 𝑦𝑇𝑘 𝑠𝑘 > 0.

(5.31)
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其中, 𝑣𝑘 由下式定义:

𝑣𝑘 =
√︁
𝑦𝑇𝑘𝐻𝑘𝑦𝑘

(︂
𝑠𝑘
𝑦𝑇𝑘 𝑠𝑘

− 𝐻𝑘𝑦𝑘
𝑦𝑇𝑘𝐻𝑘𝑦𝑘

)︂
.

步 5 令 𝑘 := 𝑘 + 1, 转步 1.

下面给出基于 Armijo 搜索的 Broyden 族算法的Matlab 程序.

程序 11 (Broyden 族算法程序)

function [x,val,k]=broyden(fun,gfun,x0)

%功能: 用Broyden族算法求解无约束问题: min f(x)

%输入: x0是初始点, fun, gfun分别是目标函数及其梯度

%输出: x,val分别是近似最优点和最优值, k是迭代次数.

maxk=1e5; %给出最大迭代次数

rho=0.55;sigma=0.4; epsilon=1e-5;

phi=0.5; k=0; n=length(x0);

Hk=inv(feval(’Hess’,x0)); %Hk=eye(n);

while(k¡maxk)

gk=feval(gfun,x0); %计算梯度

if(norm(gk)¡epsilon), break; end %检验终止准则

dk=-Hk*gk; %解方程组, 计算搜索方向

m=0; mk=0;

while(m¡20) % 用Armijo搜索求步长

if(feval(fun,x0+rho^m*dk)¡feval(fun,x0)+sigma*rho^m*gk’*dk)

mk=m; break;

end

m=m+1;

end

%Broyden族校正

x=x0+rho^mk*dk;

sk=x-x0; yk=feval(gfun,x)-gk;

Hy=Hk*yk; sy=sk’*yk; yHy=yk’*Hk*yk;

if(sy¡0.2*yHy)

theta=0.8*yHy/(yHy-sy);

sk=theta*sk+(1-theta)*Hy;

sy=0.2*yHy;

end
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vk=sqrt(yHy)*(sk/sy - Hy/yHy);

Hk=Hk-(Hy*Hy’)/yHy+(sk*sk’)/sy+phi*vk*vk’;

k=k+1; x0=x;

end

val=feval(fun,x0);

例 18 利用程序 11 求解无约束优化问题

min 𝑓(𝑥) = 100(𝑥21 − 𝑥2)
2 + (𝑥1 − 1)2, 𝑥 = (𝑥1, 𝑥2)

𝑇 ∈ R2.

该问题有精确解 𝑥* = (1, 1)𝑇 , 𝑓(𝑥*) = 0.

解 取终止准则值为 ‖∇𝑓(𝑥𝑘)‖ ≤ 10−5, 利用程序 11, 取不同的初始点, 数值

结果如下表.

表 6.4 Broyden 族校正算法的数值结果.

初始点 (𝑥0) 迭代次数 (𝑘) 目标函数值 (𝑓(𝑥𝑘))

(0, 0)𝑇 23 9.4910× 10−16

(0.5, 0.5)𝑇 19 1.5488× 10−15

(2, 2)𝑇 22 4.0247× 10−13

(−1,−1)𝑇 35 2.2338× 10−12

(1, 10)𝑇 1 0

(10, 10)𝑇 77 8.6152× 10−20

(−1.2, 1)𝑇 34 3.0415× 10−14

5.5 拟牛顿法的收敛性

本节讨论拟牛顿法的收敛性, 主要给出基于非精确线搜索的 BFGS算法的全

局收敛性和局部超线性收敛性定理. 为了方便, 我们将 BFGS 算法的迭代公式复

述如下:

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘𝐵
−1
𝑘 𝑔𝑘, (5.32)

𝐵𝑘+1 = 𝐵𝑘 −
𝐵𝑘𝑠𝑘𝑠

𝑇
𝑘𝐵𝑘

𝑠𝑇𝑘𝐵𝑘𝑠𝑘
+
𝑦𝑘𝑦

𝑇
𝑘

𝑦𝑇𝑘 𝑠𝑘
, (5.33)

其中, 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘, 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘, 𝛼𝑘 由非精确线搜索方法得到. 在讨论收敛

性之前, 我们先给出如下假设条件.
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假设 1 (1) 函数 𝑓(𝑥) 在 R𝑛 上二阶连续可微.

(2) 水平集

ℒ(𝑥0) = {𝑥 ∈ R𝑛 | 𝑓(𝑥) ≤ 𝑓(𝑥0)}

是凸集, 且函数 𝑓 在 ℒ(𝑥0) 上一致凸, 即存在常数 0 < 𝑚 ≤𝑀 , 使得

𝑚‖𝑑‖2 ≤ 𝑑𝑇𝐺(𝑥)𝑑 ≤𝑀‖𝑑‖2. (5.34)

(3) 存在 𝑥* 的一个邻域𝑁(𝑥*, 𝛿), 使得𝐺(𝑥) = ∇2𝑓(𝑥) 在该邻域内 Lipschitz

连续, 即存在常数 𝐿 > 0, 使得

‖𝐺(𝑥)−𝐺(𝑥*)‖ ≤ 𝐿‖𝑥− 𝑥*‖, ∀𝑥 ∈ 𝑁(𝑥*, 𝛿).

在后面的分析中我们需要用到一个求秩 2 校正矩阵行列式的公式, 先把它来

写在下面以方便使用:

det
(︀
𝐼 + 𝑤1𝑤

𝑇
2 + 𝑤3𝑤

𝑇
4

)︀
= (1 + 𝑤𝑇

1 𝑤2)(1 + 𝑤𝑇
3 𝑤4)− (𝑤𝑇

1 𝑤4)(𝑤
𝑇
2 𝑤3), (5.35)

这里 𝑤𝑖 (𝑖 = 1, · · · , 4) 是任意的 𝑛 维向量.

我们有下面的全局收敛性定理.

定理 26 设 {𝐵𝑘} 是由 BFGS 校正公式 (5.33) 产生的非奇异矩阵序列, 𝛼𝑘

为满足 Armijo 准则 (2.13) 的步长. 若 𝑓(𝑥) 满足假设 1 (1) 和 (2). 那么由迭代公

式 (5.32) 产生的序列 {𝑥𝑘} 全局收敛到 𝑓(𝑥) 的极小点 𝑥*.

证 根据 Armijo 准则下的线搜索法的收敛定理 11, 我们只需验证搜索方向

𝑑𝑘 与负梯度方向 −𝑔𝑘 的夹角 𝜃𝑘 满足条件 (2.15), 即 0 < 𝜃𝑘 ≤
𝜋

2
− 𝜇, 𝜇 ∈

(︁
0,
𝜋

2

)︁
.

注意到

cos 𝜃𝑘 =
−𝑑𝑇𝑘 𝑔𝑘

‖𝑑𝑘‖‖𝑔𝑘‖
=

𝑠𝑇𝑘 (𝐵𝑘𝑠𝑘)

‖𝑠𝑘‖‖𝐵𝑘𝑠𝑘‖
.

以下只需证明由上式定义的 𝜃𝑘 满足 cos 𝜃𝑘 ≥ 𝛿 > 0 即可.

由 𝑦𝑘 的定义，可得

𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘 =

∫︁ 1

0

𝐺(𝑥𝑘 + 𝜏𝑠𝑘)𝑠𝑘d𝜏, (5.36)

故有

𝑦𝑇𝑘 𝑠𝑘 =

∫︁ 1

0

𝑠𝑇𝑘𝐺(𝑥𝑘 + 𝜏𝑠𝑘)𝑠𝑘d𝜏.
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利用假设 1 (2) 可得

𝑦𝑇𝑘 𝑠𝑘 ≥ 𝑚‖𝑠𝑘‖2, 即 𝑎𝑘 ,
𝑦𝑇𝑘 𝑠𝑘
‖𝑠𝑘‖2

≥ 𝑚. (5.37)

由 (5.36) 得

‖𝑦𝑘‖ ≤
∫︁ 1

0

‖𝐺(𝑥𝑘 + 𝜏𝑠𝑘)𝑠𝑘‖d𝜏 ≤ ‖𝑠𝑘‖
∫︁ 1

0

‖𝐺(𝑥𝑘 + 𝜏𝑠𝑘)‖d𝜏. (5.38)

不难发现, 由假设 1 (2) 有

max
𝑥∈ℒ(𝑥0)

‖𝐺(𝑥)‖ = max
𝑥∈ℒ(𝑥0)

sup
𝑑̸=0

|𝑑𝑇𝐺(𝑥)𝑑|
‖𝑑‖2

≤𝑀.

因此由 (5.38) 可推得 ‖𝑦𝑘‖ ≤𝑀‖𝑠𝑘‖. 结合 (5.37), 我们有

𝑏𝑘 ,
‖𝑦𝑘‖2

𝑦𝑇𝑘 𝑠𝑘
≤ ‖𝑦𝑘‖2

𝑚‖𝑠𝑘‖2
≤ 𝑀2

𝑚
, 𝑏̄.

对 BFGS 公式

𝐵𝑘+1 = 𝐵𝑘 −
𝐵𝑘𝑠𝑘𝑠

𝑇
𝑘𝐵𝑘

𝑠𝑇𝑘𝐵𝑘𝑠𝑘
+
𝑦𝑘𝑦

𝑇
𝑘

𝑦𝑇𝑘 𝑠𝑘

两边求迹得

tr(𝐵𝑘+1) = tr(𝐵𝑘)−
‖𝐵𝑘𝑠𝑘‖2

𝑠𝑇𝑘𝐵𝑘𝑠𝑘
+

‖𝑦𝑘‖2

𝑦𝑇𝑘 𝑠𝑘
. (5.39)

为了便于应用公式 (5.35), 我们将 BFGS 校正公式写成如下形式:

𝐵𝑘+1 = 𝐵𝑘

(︁
𝐼 +

[︁
− 1

𝑠𝑇𝑘𝐵𝑘𝑠𝑘
𝑠𝑘

]︁
(𝑠𝑇𝑘𝐵𝑘) +

[︁ 1

𝑠𝑇𝑘 𝑦𝑘
𝐵−1

𝑘 𝑦𝑘

]︁
𝑦𝑇𝑘

)︁
, 𝐵𝑘

(︀
𝐼 + 𝑤1𝑤

𝑇
2 + 𝑤3𝑤

𝑇
4

)︀
.

利用公式 (5.35) 得

det
(︀
𝐵𝑘+1

)︀
= −det

(︀
𝐵𝑘

)︀(︀
𝑤𝑇

1 𝑤4

)︀
= det

(︀
𝐵𝑘

)︀ 𝑠𝑇𝑘 𝑦𝑘
𝑠𝑇𝑘𝐵𝑘𝑠𝑘

. (5.40)

记

𝑐𝑘 ,
𝑠𝑇𝑘𝐵𝑘𝑠𝑘
‖𝑠𝑘‖2

,

则
‖𝐵𝑘𝑠𝑘‖2

𝑠𝑇𝑘𝐵𝑘𝑠𝑘
=

(︂
‖𝑠𝑘‖‖𝐵𝑘𝑠𝑘‖
𝑠𝑇𝑘𝐵𝑘𝑠𝑘

)︂2
𝑠𝑇𝑘𝐵𝑘𝑠𝑘
‖𝑠𝑘‖2

=
𝑐𝑘

cos2 𝜃𝑘
. (5.41)
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于是由 (5.40) 有

det
(︀
𝐵𝑘+1

)︀
= det

(︀
𝐵𝑘

)︀ 𝑠𝑇𝑘 𝑦𝑘
‖𝑠𝑘‖2

‖𝑠𝑘‖2

𝑠𝑇𝑘𝐵𝑘𝑠𝑘
= det

(︀
𝐵𝑘

)︀𝑎𝑘
𝑐𝑘
. (5.42)

关于对称正定矩阵 𝐵, 定义函数

𝜑(𝐵) = tr(𝐵)− ln(det(𝐵)),

则有 𝜑(𝐵) > 0. 事实上, 设 0 < 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑛 为 𝐵 的特征值, 则

𝜑(𝐵) = tr(𝐵)− ln(det(𝐵))

=
𝑛∑︁

𝑖=1

𝜆𝑖 − ln(𝜆1𝜆2 · · ·𝜆𝑛)

=
𝑛∑︁

𝑖=1

(𝜆𝑖 − ln𝜆𝑖) > 0.

由 (5.39), (5.41) 和 (5.42) 得

𝜑(𝐵𝑘+1) = tr(𝐵𝑘+1)− ln(det(𝐵𝑘+1))

= tr(𝐵𝑘)−
‖𝐵𝑘𝑠𝑘‖2

𝑠𝑇𝑘𝐵𝑘𝑠𝑘
+

‖𝑦𝑘‖2

𝑦𝑇𝑘 𝑠𝑘
− ln

(︁
det
(︀
𝐵𝑘

)︀𝑎𝑘
𝑐𝑘

)︁
= 𝜑(𝐵𝑘)−

𝑐𝑘
cos2 𝜃𝑘

+ 𝑏𝑘 − ln 𝑎𝑘 + ln 𝑐𝑘

= 𝜑(𝐵𝑘) + (𝑏𝑘 − ln 𝑎𝑘 − 1)

+
(︁
1− 𝑐𝑘

cos2 𝜃𝑘
+ ln

𝑐𝑘
cos2 𝜃𝑘

)︁
+ ln cos2 𝜃𝑘

≤ 𝜑(𝐵𝑘) + 𝜎 + ln cos2 𝜃𝑘,

上式的最后一个不等式利用了函数 𝜓(𝑡) = 1− 𝑡+ ln 𝑡 在区间 (0,∞) 上的非正性

及 𝑎𝑘 ≥ 𝑚 和 𝑏𝑘 ≤ 𝑏̄, 且正常数 𝜎 ≥ 𝑏̄− ln𝑚− 1 ≥ 𝑏𝑘 − ln 𝑎𝑘 − 1. 于是有

0 < 𝜑(𝐵𝑘+1) ≤ 𝜑(𝐵0) + 𝜎(𝑘 + 1) +
𝑘∑︁

𝑖=0

ln cos2 𝜃𝑖. (5.43)

下面证明数列 {cos 𝜃𝑘} ̸→ 0 (𝑘 → ∞). 用反证法. 若结论不成立, 则对上述的

常数 𝑙 > 0, 存在 𝑘0 > 0 使得对所有的 𝑘 ≥ 𝑘0, 有

ln cos2 𝜃𝑘 < −2𝜎.
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由 (5.43) 得

0 < 𝜑(𝐵𝑘+1)

≤ 𝜑(𝐵0) + 𝜎(𝑘 + 1) +

𝑘0−1∑︁
𝑖=0

ln cos2 𝜃𝑖 +
𝑘∑︁

𝑖=𝑘0

ln cos2 𝜃𝑖

≤ 𝜑(𝐵0) + 𝜎(𝑘 + 1) +

𝑘0−1∑︁
𝑖=0

ln cos2 𝜃𝑖 +
𝑘∑︁

𝑖=𝑘0

(−2𝜎)

= 𝜑(𝐵0) +

𝑘0−1∑︁
𝑖=0

ln cos2 𝜃𝑖 + 𝜎(𝑘 + 1)− 2𝜎(𝑘 − 𝑘0 + 1)

= 𝜑(𝐵0) +

𝑘0−1∑︁
𝑖=0

ln cos2 𝜃𝑖 + 2𝜎𝑘0 − 𝜎(𝑘 + 1) → −∞, (𝑘 → ∞),

矛盾. 这样便存在 {𝑥𝑘} 的无穷子列 {𝑥𝑘}𝑘∈𝐾 和数 𝛿 > 0, 使得对所有的 𝑘 ∈ 𝐾,

有 cos 𝜃𝑘 ≥ 𝛿. 于是类似于定理 11 的证明过程, 可以推出 {‖𝑔𝑘‖}𝑘∈𝐾 → 0. 因 𝑓(𝑥)

在水平集上是严格凸的, 其稳定点与全局极小点是一致的也是唯一的, 这样便可

推得整个序列 {𝑥𝑘} 收敛到 𝑓(𝑥) 的全局极小点 𝑥*. 证毕. �

下面我们给出拟牛顿法超线性收敛的一个充分必要条件.

定理 27 设 𝑓(𝑥) 满足假设 1, {𝐵𝑘} 是非奇异的矩阵序列. 若迭代公式

𝑥𝑘+1 = 𝑥𝑘 −𝐵−1
𝑘 𝑔𝑘, 𝑥0 ∈ R𝑛 (5.44)

产生的无穷序列 {𝑥𝑘} 收敛于 𝑓(𝑥) 的稳定点 𝑥*, 则 {𝑥𝑘} 超线性收敛到 𝑥* 的充

分必要条件是

lim
𝑘→∞

‖[𝐵𝑘 −𝐺(𝑥*)]𝑑𝑘‖
‖𝑑𝑘‖

= 0, (5.45)

其中 𝑑𝑘 = 𝑥𝑘+1 − 𝑥𝑘, 𝐺(𝑥
*) = ∇2𝑓(𝑥*).

证 设牛顿步为 𝑑𝑁𝑘 = −𝐺−1
𝑘 𝑔𝑘. 首先证明 (5.45) 等价于

‖𝑑𝑘 − 𝑑𝑁𝑘 ‖ = 𝑜(‖𝑑𝑘‖). (5.46)

事实上, 若 (5.45) 式成立, 则

‖𝑑𝑘 − 𝑑𝑁𝑘 ‖ = ‖𝐺−1
𝑘 [𝐺𝑘𝑑𝑘 + 𝑔𝑘]‖

= ‖𝐺−1
𝑘 [𝐺𝑘 −𝐵𝑘]𝑑𝑘‖ ≤ ‖𝐺−1

𝑘 ‖ · ‖[𝐺𝑘 −𝐵𝑘]𝑑𝑘‖

≤ 𝐶
(︀
‖[𝐺𝑘 −𝐺(𝑥*)]𝑑𝑘‖+ ‖[𝐺(𝑥*)−𝐵𝑘]𝑑𝑘‖

)︀
= 𝑜(‖𝑑𝑘‖).
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反之, 若 (5.46) 式成立, 注意到 ‖𝐺𝑘‖ 是有界的, 故有

‖𝐺𝑘(𝑑𝑘 − 𝑑𝑁𝑘 )‖ = 𝑜(‖𝑑𝑘‖).

由 𝐺𝑘𝑑
𝑁
𝑘 = −𝑔𝑘 = 𝐵𝑘𝑑𝑘, 我们有

‖(𝐺𝑘 −𝐵𝑘)𝑑𝑘‖ = 𝑜(‖𝑑𝑘‖).

由上式及 𝐺(𝑥) 的连续性即可推得 (5.45) 式成立.

注意到牛顿法的二阶收敛性结果

‖𝑥𝑘 + 𝑑𝑁𝑘 − 𝑥*‖ ≤ 𝐶‖𝑥𝑘 − 𝑥*‖2,

我们有

‖𝑑𝑘‖ − ‖𝑥𝑘 − 𝑥*‖ ≤ ‖𝑥𝑘 + 𝑑𝑘 − 𝑥*‖

≤ ‖𝑥𝑘 + 𝑑𝑁𝑘 − 𝑥*‖+ ‖𝑑𝑘 − 𝑑𝑁𝑘 ‖

≤ 𝐶‖𝑥𝑘 − 𝑥*‖2 + 𝑜(‖𝑑𝑘‖).

由此可得 ‖𝑑𝑘‖ = 𝑂(‖𝑥𝑘 − 𝑥*‖), 再代入上式即得

‖𝑥𝑘 + 𝑑𝑘 − 𝑥*‖ = 𝑜(‖𝑥𝑘 − 𝑥*‖).

至此已经完成了定理的证明. �

最后, 我们不加证明地列出 BFGS 算法的局部超线性收敛定理, 其详细的证

明过程可参阅文献 [15].

定理 28 设 𝑓(𝑥) 满足假设 1, 𝑥0 和 𝐵0 为任意给定的初始点和初始正定对

称矩阵. {𝑥𝑘} 是由 BFGS 算法产生的迭代序列且收敛于假设 1 (3) 中的 𝑥*. 那

么, 若
∞∑︁
𝑘=1

‖𝑥𝑘 − 𝑥*‖ <∞,

则 {𝑥𝑘} 局部超线性收敛于 𝑥*.
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习 题 5

1. 设用 DFP 算法求解问题的过程中, 有

𝐻𝑘 =

⎛⎝ 3 1

1 1

⎞⎠ , 𝑠𝑘 =

⎛⎝ 1

2

⎞⎠ , 𝑦𝑘 =

⎛⎝ 1

1

⎞⎠ .

计算 𝐻𝑘+1.

2. 用 DFP 算法求解 min 𝑓(𝑥) = 𝑥2
1 + 3𝑥2

2, 取初始点和初始矩阵为

𝑥0 =

⎛⎝ 1

−1

⎞⎠ , 𝐻0 =

⎛⎝ 2 1

1 1

⎞⎠ .

3. 用 BFGS 算法求 𝑓(𝑥) = 𝑥2
1 + 𝑥1𝑥2 + 𝑥2

2 的极小点, 取初始点 𝑥0 = (3, 2)𝑇 .

4. 分别利用 BFGS 算法和 DFP 算法的Matlab 程序求解下列优化问题:

(1) min 𝑓(𝑥) = 𝑥2
1 + 𝑥2

2 − 3𝑥1 − 𝑥1𝑥2 + 3, 取 𝑥0 = (0, 0)𝑇 ;

(2) min 𝑓(𝑥) = 4(1− 𝑥1)
2 + 5(𝑥2 − 𝑥2

1)
2, 取 𝑥0 = (2, 0)𝑇 .

5. 用 DFP算法求解问题

min 𝑓(𝑥) = 𝑥2
1 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 − 4𝑥2,

初始点取为 𝑥0 = (2, 2)𝑇 , 初始矩阵取为 𝐻0 = 𝐼 (单位阵). 验证算法所生成的两个方向是关

于

𝐻 =

⎛⎝ 2 −1

−1 2

⎞⎠
共轭的.

6. 分别利用 BFGS 算法和 DFP 算法的Matlab 程序求 Powell 奇异函数的极小值:

min 𝑓(𝑥) = (𝑥1 + 10𝑥2)
2 + 5(𝑥3 − 10𝑥4)

2 + (𝑥2 − 2𝑥3)
2 + 10(𝑥1 − 𝑥4)

2.

初始点取为 𝑥0 = (3,−1, 0, 1)𝑇 .

7. 设 𝐴 为 𝑛 阶非奇异矩阵，𝑢, 𝑣 ∈ R𝑛, 证明：𝐴 + 𝑢𝑣𝑇可逆当且仅当𝐼 + 𝑣𝑇𝐴−1𝑢 可

逆，且

(𝐴+ 𝑢𝑣𝑇 )−1 = 𝐴−1 −𝐴−1𝑢(𝐼 + 𝑣𝑇𝐴−1𝑢)−1𝑣𝑇𝐴−1.

8. 设 BFGS 的 Hessen 矩阵校正公式为:

𝐵𝑘+1 = 𝐵𝑘 +
𝑦𝑘𝑦

𝑇
𝑘

𝑦𝑇𝑘 𝑠𝑘
− 𝐵𝑘𝑠𝑘𝑠

𝑇
𝑘𝐵𝑘

𝑠𝑇𝑘𝐵𝑘𝑠𝑘
.

𝐻𝑘 = 𝐵−1
𝑘 , 𝐻𝑘+1 = 𝐵−1

𝑘+1 且 𝑦𝑇𝑘 𝑠𝑘 > 0, 试用习题 7 的求逆公式求 𝐻𝑘+1 的表达式.
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9. 在 DFP 校正公式

𝐻𝑘+1 = 𝐻𝑘 +
𝑠𝑘𝑠

𝑇
𝑘

𝑦𝑇𝑘 𝑠𝑘
− 𝐻𝑘𝑦𝑘𝑦

𝑇
𝑘 𝐻𝑘

𝑦𝑇𝑘 𝐻𝑘𝑦𝑘

中, 记

𝐴𝑘 =
𝑠𝑘𝑠

𝑇
𝑘

𝑦𝑇𝑘 𝑠𝑘
, 𝐵𝑘 = −𝐻𝑘𝑦𝑘𝑦

𝑇
𝑘 𝐻𝑘

𝑦𝑇𝑘 𝐻𝑘𝑦𝑘
.

假设𝐻1 对称正定, ∇𝑓(𝑥𝑘) ̸= 0(𝑘 = 1, 2, · · · , 𝑛), 证明当 DFP 算法极小二次函数 𝑓(𝑥) =
1

2
𝑥𝑇𝐺𝑥+ 𝑏𝑇𝑥 时, 有

𝑛∑︁
𝑘=1

𝐴𝑘 = 𝐺−1,
𝑛∑︁

𝑘=1

𝐵𝑘 = −𝐻1,

其中 𝐺 对称正定.
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第六章 信赖域方法

信赖域方法与线搜索技术一样, 也是优化算法中的一种保证全局收敛的重要

技术. 它们的功能都是在优化算法中求出每次迭代的位移, 从而确定新的迭代点.

所不同的是: 线搜索技术是先产生位移方向 (亦称为搜索方向), 然后确定位移的

长度 (亦称为搜索步长); 而信赖域技术则是直接确定位移, 产生新的迭代点.

信赖域方法的基本思想是: 首先给定一个所谓的“信赖域半径”作为位移长

度的上界, 并以当前迭代点为中心以此“上界”为半径“画地为牢”确定一个称

之为“信赖域”的闭球区域. 然后, 通过求解这个区域内的“信赖域子问题”(目

标函数的二次近似模型) 的最优点来确定“候选位移”. 若候选位移能使目标函

数值有充分的下降量, 则接受该候选位移作为新的位移, 并保持或扩大信赖域半

径, 继续新的迭代; 否则, 说明二次模型与目标函数的近似度不够理想, 需要缩小

信赖域半径, 再通过求解新的信赖域内的子问题得到新的候选位移. 如此重复下

去, 直到满足迭代终止条件.

6.1 信赖域方法的基本结构

现在我们来讨论用信赖域方法求解无约束优化问题

min
𝑥∈R𝑛

𝑓(𝑥) (6.1)

的基本算法结构. 设 𝑥𝑘 是第 𝑘 次迭代点. 记 𝑓𝑘 = 𝑓(𝑥𝑘), 𝑔𝑘 = ∇𝑓(𝑥𝑘), 𝐵𝑘 是

Hesse阵∇2𝑓(𝑥𝑘)的第 𝑘 次近似, 则第 𝑘 次迭代步的信赖域子问题具有如下形式:

min 𝑞𝑘(𝑑) = 𝑔𝑇𝑘 𝑑+
1

2
𝑑𝑇𝐵𝑘𝑑,

s.t. ‖𝑑‖ ≤ Δ𝑘,

(6.2)
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其中 Δ𝑘 是信赖域半径, ‖ · ‖ 是任一种向量范数, 通常取 2-范数或∞-范数. 设子

问题 (6.2) 的最优解为 𝑑𝑘, 定义 Δ𝑓𝑘 为 𝑓 在第 𝑘 步的实际下降量:

Δ𝑓𝑘 = 𝑓𝑘 − 𝑓(𝑥𝑘 + 𝑑𝑘),

Δ𝑞𝑘 为对应的预测下降量:

Δ𝑞𝑘 = 𝑞𝑘(0)− 𝑞𝑘(𝑑𝑘).

再定义它们的比值为

𝑟𝑘 =
Δ𝑓𝑘
Δ𝑞𝑘

. (6.3)

一般地, 我们有 Δ𝑞𝑘 > 0. 因此, 若 𝑟𝑘 < 0, 则 Δ𝑓𝑘 < 0, 𝑥𝑘 + 𝑑𝑘 不能作为下

一个迭代点, 需要缩小信赖域半径重新求解子问题. 若 𝑟𝑘 比较接近 1, 说明二次

模型与目标函数在信赖域范围内有很好的近似, 此时 𝑥𝑘+1 := 𝑥𝑘 + 𝑑𝑘 可以作为新

的迭代点, 同时下一次迭代时可以增大信赖域半径. 对于其他情况, 信赖域半径

可以保持不变. 下面给出求解无约束优化问题信赖域方法的一般框架.

算法 18 (信赖域方法)

步 0 选取初始参数 0 ≤ 𝜂1 < 𝜂2 < 1, 0 < 𝜏1 < 1 < 𝜏2, 0 ≤ 𝜀 ≪ 1. 𝑥0 ∈ R𝑛.

取定 Δ̃ > 0 为信赖域半径的上限, 初始信赖域半径 Δ0 ∈ (0, Δ̃]. 令 𝑘 := 0.

步 1 计算 𝑔𝑘 = ∇𝑓(𝑥𝑘). 若 ‖𝑔𝑘‖ ≤ 𝜀, 停止迭代.

步 2 求解子问题 (6.2) 的解 𝑑𝑘.

步 3 按 (6.3) 式计算 𝑟𝑘 的值.

步 4 校正信赖域半径.

Δ𝑘+1 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜏1Δ𝑘, 若 𝑟𝑘 ≤ 𝜂1,

Δ𝑘, 若 𝜂1 < 𝑟𝑘 < 𝜂2,

min{𝜏2Δ𝑘, Δ̃}, 若 𝑟𝑘 ≥ 𝜂2, ‖𝑑𝑘‖ = Δ𝑘.

(6.4)

步 5 若 𝑟𝑘 > 𝜂1, 则令 𝑥𝑘+1 := 𝑥𝑘 + 𝑑𝑘, 更新矩阵 𝐵𝑘 到 𝐵𝑘+1, 令 𝑘 := 𝑘 + 1,

转步 1. 否则 𝑥𝑘+1 := 𝑥𝑘, 令 𝑘 := 𝑘 + 1, 转步 2.

注 在算法 18 中一组推荐的参数值为

𝜂1 = 0.05, 𝜂2 = 0.75, 𝜏1 = 0.5, 𝜏2 = 2.0, Δ0 = 1或Δ0 =
1

10
‖𝑔(𝑥0)‖.
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在实际计算中可以上述参数进行调整, 以达到最佳计算效果.

由于子问题 (6.2) 的可行域是有界闭集, 因此算法 18 中步 2 的 𝑑𝑘 存在, 即子

问题 (6.2) 是可解的. 下面的定理说明 𝑥𝑘 不是问题 (6.1) 的稳定点, 则预估下降

量 Δ𝑞𝑘 > 0. 因此算法是适定的.

定理 29 设 𝑑𝑘 是子问题 (6.2) 的解. 若 𝑔𝑘 = ∇𝑓(𝑥𝑘) ̸= 0, 则

Δ𝑞𝑘 = 𝑞𝑘(0)− 𝑞𝑘(𝑑𝑘) > 0.

证 易知 0是子问题 (6.2)的可行点,因此 𝑞𝑘(𝑑𝑘) ≤ 𝑞𝑘(0),即Δ𝑞𝑘 ≥ 0. 下面只

需证明 Δ𝑞𝑘 ̸= 0. 如若不然, Δ𝑞𝑘 = 𝑞𝑘(0)− 𝑞𝑘(𝑑𝑘) = 0, 则 𝑞𝑘(𝑑𝑘) = 𝑞𝑘(0). 故 0 是

子问题 (6.2) 的最优解. 但 0 是可行域的内点, 故有 ∇𝑞𝑘(0) = 0, 即 ∇𝑓(𝑥𝑘) = 0,

这与定理的假设矛盾. 证毕. �

利用上述定理可以证明由算法 18 产生的序列 {𝑓(𝑥𝑘)} 是单调非增的. 我们

有

推论 3 设 {𝑥𝑘} 是由算法 18 产生的迭代序列, 则序列 {𝑓(𝑥𝑘)} 是单调非增
的.

证 由算法结构可知, 对任意 𝑘 ≥ 0, 若 𝑟𝑘 ≤ 𝜂1, 则 𝑥𝑘+1 := 𝑥𝑘, 此时有

𝑓(𝑥𝑘+1) = 𝑓(𝑥𝑘). 若 𝑟𝑘 > 𝜂1, 由定理 29 以及 𝑟𝑘 的定义可知

𝑓(𝑥𝑘)− 𝑓(𝑥𝑘+1) = 𝑓(𝑥𝑘)− 𝑓(𝑥𝑘 + 𝑑𝑘) = 𝑟𝑘Δ𝑞𝑘 > 0,

即 𝑓(𝑥𝑘+1) < 𝑓(𝑥𝑘). 证毕. �

6.2 信赖域方法的收敛性

为了分析信赖域方法的收敛性, 我们首先在迭代点 𝑥𝑘 处, 引入所谓的“柯西

点”(Cauchy point) 𝑑𝑐𝑘 的定义:

𝑑𝑐𝑘 = −𝜏𝑘
Δ𝑘

‖𝑔𝑘‖
𝑔𝑘, (6.5)

其中

𝜏𝑘 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝑔𝑇𝑘𝐵𝑘𝑔𝑘 ≤ 0,

min

{︂
‖𝑔𝑘‖3

Δ𝑘𝑔𝑇𝑘𝐵𝑘𝑔𝑘
, 1

}︂
, 𝑔𝑇𝑘𝐵𝑘𝑔𝑘 > 0.

(6.6)
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容易证明

‖𝑑𝑐𝑘‖ = 𝜏𝑘Δ𝑘 ≤ Δ𝑘,

即柯西点是可行点, 且平行于 𝑓(𝑥) 在 𝑥𝑘 处的负梯度方向 (最速下降方向). 下面

的引理说明柯西点 𝑑𝑐𝑘 可以带来二次模型一定量的下降.

引理 7 由 (6.5) 定义的柯西点 𝑑𝑐𝑘 满足

𝑞𝑘(0)− 𝑞𝑘(𝑑
𝑐
𝑘) ≥

1

2
‖𝑔𝑘‖min

{︂
Δ𝑘,

‖𝑔𝑘‖
‖𝐵𝑘‖

}︂
. (6.7)

证 (1) 若 𝑔𝑇𝑘𝐵𝑘𝑔𝑘 ≤ 0, 则由 (6.5)-(6.6) 有 𝑑𝑐𝑘 = − Δ𝑘

‖𝑔𝑘‖
𝑔𝑘. 此时有

𝑞𝑘(0)− 𝑞𝑘(𝑑
𝑐
𝑘) = 0− 𝑞𝑘

(︁
− Δ𝑘

‖𝑔𝑘‖
𝑔𝑘

)︁
= −𝑔𝑇𝑘

(︁
− Δ𝑘

‖𝑔𝑘‖
𝑔𝑘

)︁
− 1

2

(︁
− Δ𝑘

‖𝑔𝑘‖
𝑔𝑘

)︁𝑇
𝐵𝑘

(︁
− Δ𝑘

‖𝑔𝑘‖
𝑔𝑘

)︁
=

Δ𝑘

‖𝑔𝑘‖
‖𝑔𝑘‖2 −

1

2

Δ2
𝑘

‖𝑔𝑘‖2
𝑔𝑇𝑘𝐵𝑘𝑔𝑘

≥ Δ𝑘

‖𝑔𝑘‖
‖𝑔𝑘‖2 = Δ𝑘‖𝑔𝑘‖ (注意到 − 𝑔𝑇𝑘𝐵𝑘𝑔𝑘 ≥ 0)

≥ 1

2
‖𝑔𝑘‖min

{︂
Δ𝑘,

‖𝑔𝑘‖
‖𝐵𝑘‖

}︂
.

(2) 若 𝑔𝑇𝑘𝐵𝑘𝑔𝑘 > 0 且
‖𝑔𝑘‖3

Δ𝑘𝑔𝑇𝑘𝐵𝑘𝑔𝑘
≤ 1, 则 𝑑𝑐𝑘 = − ‖𝑔𝑘‖2

𝑔𝑇𝑘𝐵𝑘𝑔𝑘
𝑔𝑘, 从而有

𝑞𝑘(0)− 𝑞𝑘(𝑑
𝑐
𝑘) = 0− 𝑞𝑘

(︁
− ‖𝑔𝑘‖2

𝑔𝑇𝑘𝐵𝑘𝑔𝑘
𝑔𝑘

)︁
= −𝑔𝑇𝑘

(︁
− ‖𝑔𝑘‖2

𝑔𝑇𝑘𝐵𝑘𝑔𝑘
𝑔𝑘

)︁
− 1

2

(︁
− ‖𝑔𝑘‖2

𝑔𝑇𝑘𝐵𝑘𝑔𝑘
𝑔𝑘

)︁𝑇
𝐵𝑘

(︁
− ‖𝑔𝑘‖2

𝑔𝑇𝑘𝐵𝑘𝑔𝑘
𝑔𝑘

)︁
=

1

2

‖𝑔𝑘‖4

𝑔𝑇𝑘𝐵𝑘𝑔𝑘
≥ 1

2

‖𝑔𝑘‖2

‖𝐵𝑘‖
≥ 1

2
‖𝑔𝑘‖min

{︂
Δ𝑘,

‖𝑔𝑘‖
‖𝐵𝑘‖

}︂
.
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若 𝑔𝑇𝑘𝐵𝑘𝑔𝑘 > 0 且
‖𝑔𝑘‖3

Δ𝑘𝑔𝑇𝑘𝐵𝑘𝑔𝑘
> 1, 则 𝑑𝑐𝑘 = − Δ𝑘

‖𝑔𝑘‖
𝑔𝑘 及 ‖𝑔𝑘‖3 > Δ𝑘𝑔

𝑇
𝑘𝐵𝑘𝑔𝑘,

且有

𝑞𝑘(0)− 𝑞𝑘(𝑑
𝑐
𝑘) = 0− 𝑞𝑘

(︁
− Δ𝑘

‖𝑔𝑘‖
𝑔𝑘

)︁
= −𝑔𝑇𝑘

(︁
− Δ𝑘

‖𝑔𝑘‖
𝑔𝑘

)︁
− 1

2

(︁
− Δ𝑘

‖𝑔𝑘‖
𝑔𝑘

)︁𝑇
𝐵𝑘

(︁
− Δ𝑘

‖𝑔𝑘‖
𝑔𝑘

)︁
=

Δ𝑘

‖𝑔𝑘‖
‖𝑔𝑘‖2 −

1

2

Δ2
𝑘

‖𝑔𝑘‖2
𝑔𝑇𝑘𝐵𝑘𝑔𝑘

≥ 1

2
Δ𝑘‖𝑔𝑘‖ ≥ 1

2
‖𝑔𝑘‖min

{︂
Δ𝑘,

‖𝑔𝑘‖
‖𝐵𝑘‖

}︂
.

这表明在各种情况下, (6.7) 都成立. 证毕. �

推论 4 设 𝑑𝑘 是信赖域子问题 (6.2) 的解, 则有

𝑞𝑘(0)− 𝑞𝑘(𝑑𝑘) ≥
1

2
‖𝑔𝑘‖min

{︂
Δ𝑘,

‖𝑔𝑘‖
‖𝐵𝑘‖

}︂
. (6.8)

证 由于 𝑞𝑘(𝑑𝑘) ≤ 𝑞𝑘(𝑑
𝑐
𝑘), 由引理 7 立即可得结论. 证毕. �

下面给出算法 18 的全局收敛性定理.

定理 30 假设在算法 18中取 𝜀 = 0, 函数 𝑓(𝑥)有下界, 且对任意的 𝑥0 ∈ R𝑛,

𝑓 在水平集 𝐿(𝑥0) = {𝑥 ∈ R𝑛| 𝑓(𝑥) ≤ 𝑓(𝑥0)} 上连续可微. 又设 𝑑𝑘 是子问题 (6.2)

的解, 且矩阵序列 {𝐵𝑘} 一致有界, 即存在常数 𝑀 > 0 使对任意的 𝑘 满足

‖𝐵𝑘‖ ≤𝑀 . 那么若 𝑔𝑘 ̸= 0, 则必有

lim
𝑘→∞

inf ‖𝑔𝑘‖ = 0.

证 不失一般性, 设 𝑔𝑘 ̸= 0. 则由 𝑟𝑘 的定义有

|𝑟𝑘 − 1| =

⃒⃒⃒⃒
[𝑓𝑘 − 𝑓(𝑥𝑘 + 𝑑𝑘)]− [𝑞𝑘(0)− 𝑞𝑘(𝑑𝑘)]

𝑞𝑘(0)− 𝑞𝑘(𝑑𝑘)

⃒⃒⃒⃒

=

⃒⃒⃒⃒
𝑓(𝑥𝑘 + 𝑑𝑘)− 𝑓𝑘 − 𝑞𝑘(𝑑𝑘)

𝑞𝑘(0)− 𝑞𝑘(𝑑𝑘)

⃒⃒⃒⃒
. (6.9)

注意到由泰勒公式有

𝑓(𝑥𝑘 + 𝑑𝑘) = 𝑓𝑘 + 𝑔𝑇𝑘 𝑑𝑘 +

∫︁ 1

0

𝑑𝑇𝑘 [𝑔(𝑥𝑘 + 𝜏𝑑𝑘)− 𝑔𝑘]d𝜏.
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因此当Δ𝑘 > 0 充分小时, 可得

|𝑓(𝑥𝑘 + 𝑑𝑘)− 𝑓𝑘 − 𝑞𝑘(𝑑𝑘)| =

⃒⃒⃒⃒
1

2
𝑑𝑇𝑘𝐵𝑘𝑑𝑘 −

∫︁ 1

0

𝑑𝑇𝑘 [𝑔(𝑥𝑘 + 𝜏𝑑𝑘)− 𝑔𝑘]d𝜏

⃒⃒⃒⃒
≤ 1

2
𝑀‖𝑑𝑘‖2 + 𝑜(‖𝑑𝑘‖). (6.10)

以下用反证法证明定理的结论. 设存在 𝜀0 > 0 使得 ‖𝑔𝑘‖ ≥ 𝜀0. 于是由

(6.8)-(6.10) 得

|𝑟𝑘 − 1| ≤

1

2
𝑀‖𝑑𝑘‖2 + 𝑜(‖𝑑𝑘‖)

1

2
‖𝑔𝑘‖min

{︁
Δ𝑘,

‖𝑔𝑘‖
‖𝐵𝑘‖

}︁ ≤ 𝑀Δ2
𝑘 + 𝑜(Δ𝑘)

𝜀0 min
{︁
Δ𝑘,

𝜀0
𝑀

}︁ = 𝑂(Δ𝑘).

上式表明存在充分小的 Δ̄ > 0, 使得对任意满足Δ𝑘 ≤ Δ̄ 的 𝑘, 都有

|𝑟𝑘 − 1| ≤ 1− 𝜂2,

即 𝑟𝑘 ≥ 𝜂2. 根据算法 18 有 Δ𝑘+1 ≥ Δ𝑘. 故存在正整数 𝑘0 和常数 𝛾 > 0, 对任意

满足Δ𝑘 ≤ Δ̄ 的 𝑘 ≥ 𝑘0 有

Δ𝑘 ≥ 𝛾Δ̄. (6.11)

另一方面, 假定存在无穷多个 𝑘 满足 𝑟𝑘 ≥ 𝜂1. 则由 𝑟𝑘 的定义和 (6.8), 对任

意的 𝑘 ≥ 𝑘0 有

𝑓𝑘 − 𝑓𝑘+1 ≥ 𝜂1[𝑞𝑘(0)− 𝑞𝑘(𝑑𝑘)] ≥
𝜂1
2
𝜀0 min

{︁
Δ𝑘,

𝜀0
𝑀

}︁
.

因 𝑓(𝑥) 有下界, 上式意味着 Δ𝑘 → 0 (𝑘 → ∞), 这与 (6.11) 矛盾.

再假定对于充分大的 𝑘, 都有 𝑟𝑘 < 𝜂1 成立. 此时 Δ𝑘 将以 𝜏1(< 1) 的比例收

缩, 同样有 Δ𝑘 → 0 (𝑘 → ∞), 也与 (6.11) 矛盾. 因此前面的假设 ‖𝑔𝑘‖ ≥ 𝜀0 不成

立, 从而定理的结论成立. 证毕. �

6.3 信赖域子问题的求解

信赖域方法中子问题的求解是算法实现的关键. 信赖域子问题 (6.2) 是一个

目标函数为二次函数的约束优化问题. 已经建立了求解该子问题的如果数值方

法, 如折线法, 截断共轭梯度法以及特征值分解法等. 本书介绍一种新的求解方

法.

首先我们引述下面的定理.
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定理 31 𝑑 是子问题⎧⎪⎨⎪⎩
min 𝑞𝑘(𝑑) = 𝑔𝑇𝑘 𝑑+

1

2
𝑑𝑇𝐵𝑘𝑑,

s.t. ‖𝑑‖2 ≤ Δ𝑘

(6.12)

的解当且仅当 ⎧⎨⎩ (𝐵𝑘 + 𝜆𝐼)𝑑− 𝑔𝑘 = 0,

𝜆 ≥ 0, Δ2
𝑘 − ‖𝑑‖22 ≥ 0, 𝜆(Δ2

𝑘 − ‖𝑑‖22) = 0,
(6.13)

而且 𝐵𝑘 + 𝜆𝐼 是半定矩阵.

定义一个函数 R+ × R2 → R:

𝜑(𝜇, 𝑎, 𝑏) = 𝑎+ 𝑏−
√︀

(𝑎− 𝑏)2 + 4𝜇2.

则不难推出该函数具有如下性质

𝜑(0, 𝑎, 𝑏) = 0 ⇔ 𝑎 ≥ 0, 𝑏 ≥ 0, 𝑎𝑏 = 0.

令 𝑧 = (𝜇, 𝜆, 𝑑) ∈ R+ × R+ × R𝑛. 于是, 问题 (6.13) 等价于

𝐻(𝑧) := 𝐻(𝜇, 𝜆, 𝑑) =

⎛⎜⎜⎜⎜⎝
𝜇

𝜑
(︀
𝜇, 𝜆,Δ2

𝑘 − ‖𝑑‖22
)︀

(𝐵𝑘 + 𝜆𝐼)𝑑− 𝑔𝑘

⎞⎟⎟⎟⎟⎠ = 0, (6.14)

其中

𝜑(𝜇, 𝜆,Δ2
𝑘 − ‖𝑑‖22) = 𝜆− ‖𝑑‖22 +Δ2

𝑘 −
√︁
(𝜆+ ‖𝑑‖22 −Δ2

𝑘)
2 + 4𝜇2. (6.15)

不难证明, 当 𝜇 > 0 时, 由 (6.15) 定义的函数 𝜑 是连续可微的, 且有

𝜑′
𝜇(𝜇, 𝜆,Δ

2
𝑘 − ‖𝑑‖22) = − 4𝜇√︀

(𝜆+ ‖𝑑‖22 −Δ2
𝑘)

2 + 4𝜇2
,

𝜑′
𝜆(𝜇, 𝜆,Δ

2
𝑘 − ‖𝑑‖22) = 1− 𝜆+ ‖𝑑‖22 −Δ2

𝑘√︀
(𝜆+ ‖𝑑‖22 −Δ2

𝑘)
2 + 4𝜇2

:= 1− 𝜃𝑘,

𝜑′
𝑑(𝜇, 𝜆,Δ

2
𝑘 − ‖𝑑‖22) = −2𝑑𝑇

(︁
1 +

𝜆+ ‖𝑑‖22 −Δ2
𝑘√︀

(𝜆+ ‖𝑑‖22 −Δ2
𝑘)

2 + 4𝜇2

)︁
:= −2(1 + 𝜃𝑘)𝑑

𝑇 .
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故当 𝜇 > 0 时, 𝐻(·) 是连续可微的, 且其 Jacobi 矩阵为

𝐻 ′(𝑧) =

⎛⎜⎜⎜⎝
1 0 0

𝜑′
𝜇 𝜑′

𝜆 −2(1 + 𝜃𝑘)𝑑
𝑇

0 𝑑 𝐵𝑘 + 𝜆𝐼

⎞⎟⎟⎟⎠ . (6.16)

不难证明, 若 𝐵𝑘 对称正定, 则对任意的 𝑧 = (𝜇, 𝜆, 𝑑) ∈ R++ ×R+ ×R𝑛, Jacobi 矩

阵 𝐻 ′(𝑧) 是非奇异的.

给定参数 𝛾 ∈ (0, 1), 定义非负函数

𝛽(𝑧) = 𝛾‖𝐻(𝑧)‖min{1, ‖𝐻(𝑧)‖}. (6.17)

算法 19 (求解子问题的光滑牛顿法)

步 0 选取 𝛿, 𝜎 ∈ (0, 1), 𝜇0 > 0, 𝜆0 ≥ 0. 𝑑0 ∈ 𝑅𝑛, 置 𝑧0 = (𝜇0, 𝜆0, 𝑑0),

𝑧 = (𝜇0, 0, 0). 选取 𝛾 ∈ (0, 1) 使 𝛾𝜇0 < 1 及 𝛾‖𝐻(𝑧0)‖ < 1. 令 𝑗 := 0.

步 1 如果 ‖𝐻(𝑧𝑗)‖ = 0, 算法终止；否则, 计算 𝛽𝑗 = 𝛽(𝑧𝑗).

步 2 求解下列方程组得解 Δ𝑧𝑗 = (Δ𝜇𝑗,Δ𝜆𝑗,Δ𝑑𝑗),

𝐻(𝑧𝑗) +𝐻 ′(𝑧𝑗)Δ𝑧𝑗 = 𝛽𝑗𝑧. (6.18)

步 3 设𝑚𝑗 为满足下式的最小非负整数:

‖𝐻(𝑧𝑗 + 𝛿𝑚𝑗Δ𝑧𝑗)‖ ≤ [1− 𝜎(1− 𝛽𝜇0)𝛿
𝑚𝑗 ]‖𝐻(𝑧𝑗)‖. (6.19)

令 𝛼𝑗 := 𝛿𝑚𝑗 , 𝑧𝑗+1 = 𝑧𝑗 + 𝛼𝑗Δ𝑧𝑗 .

步 4 令 𝑗 := 𝑗 + 1, 转步 1.

算法 19 的适定性及收敛性定理的证明类似于文献 [1], 此处省略不证.

下面我们给出算法 19 的Matlab 程序.

程序 12 利用光滑牛顿法求解信赖域子问题, 一般适用于 (近似)Hesse 阵
正定的情形.

function [d,val,lam,k]=trustq(gk,Bk,dta)

% 功能: 求解信赖域子问题: min qk(d)=gk’*d+0.5*d’*Bk*d, s.t. ——d——¡=delta

%输入: gk是xk处的梯度, Bk是第k次近似Hesse阵, dta是当前信赖域半径

%输出: d, val分别是子问题的最优点和最优值, lam是乘子值, k是迭代次数.

n=length(gk); gamma=0.05;
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epsilon=1.0e-6; rho=0.6; sigma=0.2;

mu0=0.05; lam0=0.05;

d0=ones(n,1); u0=[mu0,zeros(1,n+1)]’;

z0=[mu0,lam0,d0’]’;

k=0; %k为迭代次数

z=z0; mu=mu0; lam=lam0; d=d0;

while (k¡=150)

dh=dah(mu,lam,d,gk,Bk,dta);

if(norm(dh)¡epsilon)

break;

end

A=JacobiH(mu,lam,d,Bk,dta);

b=beta(mu,lam,d,gk,Bk,dta,gamma)*u0-dh;

B=inv(A); dz=B*b;

dmu=dz(1); dlam=dz(2); dd=dz(3:n+2);

m=0; mk=0;

while (m¡20)

dhnew=dah(mu+rho^m*dmu,lam+rho^m*dlam,d+rho^m*dd,gk,Bk,dta);

if(norm(dhnew)¡=(1-sigma*(1-gamma*mu0)*rho^m)*dh)

mk=m;

break;

end

m=m+1;

end

alpha=rho^mk;

mu=mu+alpha*dmu;

lam=lam+alpha*dlam;

d=d+alpha*dd;

k=k+1;

end

val=gk’*d+0.5*d’*Bk*d;

%%%%%%%%%%%%%%%%%%%%%%%%%%

function p=phi(mu,a,b)

p=a+b-sqrt((a-b)^2+4*mu);

%%%%%%%%%%%%%%%%%%%%%%%%%%

function dh=dah(mu,lam,d,gk,Bk,dta)

n=length(d);
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dh(1)=mu; dh(2)=phi(mu,lam, dta^2-norm(d)^2);

mh=(Bk+lam*eye(n))*d+gk;

for(i=1:n)

dh(2+i)=mh(i);

end

dh=dh(:);

%%%%%%%%%%%%%%%%%%%%%%%%%%

function bet=beta(mu,lam,d,gk,Bk,dta,gamma)

dh=dah(mu,lam,d,gk,Bk,dta);

bet=gamma*norm(dh)*min(1,norm(dh));

%%%%%%%%%%%%%%%%%%%%%%%%%%

function A=JacobiH(mu,lam,d,Bk,dta)

n=length(d);

A=zeros(n+2,n+2);

pmu=-4*mu/sqrt((lam+norm(d)^2-dta^2)^2+4*mu^2);

thetak=(lam+norm(d)^2-dta^2)/sqrt((lam+norm(d)^2-dta^2)^2+4*mu^2);

A=[1, 0, zeros(1,n);

pmu, 1-thetak, -2*(1+thetak)*d’;

zeros(n,1), d, Bk+lam*eye(n)];

我们利用上面的程序求解一个信赖域子问题.

例 19 求下面信赖域子问题的最优解

min
‖𝑑‖2≤Δ

𝑞𝑘(𝑑) = 𝑔𝑇𝑘 𝑑+
1

2
𝑑𝑇𝐵𝑘𝑑,

其中

𝑔𝑘 =

⎛⎝ 400

−200

⎞⎠ , 𝐵𝑘 =

⎛⎝ 1202 −400

−400 200

⎞⎠ , Δ = 5.

解 在Matlab 命令窗口依次输入下列命令

gk=[400 -200]’;

Bk=[1202 -400; -400 200];

dta=5;

[d,val,lam,k]=trustq(gk,Bk,dta)

得到
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d =

0.0000

1.0000

val =

-100.0000

lam =

4.1000e-007

k =

5

即子问题的最优解为 𝑑 = (0, 1)𝑇 , 最优值为 𝑞𝑘(𝑑) = −100, 迭代 5 次.

6.4 信赖域方法的Matlab 程序

本节给出一个牛顿型信赖域方法的Matlab 程序, 在某种意义上该程序是通

用的.

程序 13 (求解例 20 的信赖域方法Matlab 程序)

function [xk,val,k]=trustm(x0)

%功能: 牛顿型信赖域方法求解无约束优化问题 min f(x)

%输入: x0是初始迭代点

%输出: xk是近似极小点, val是近似极小值, k是迭代次数

n=length(x0); x=x0; dta=1;

eta1=0.1; eta2=0.75; dtabar=2.0;

tau1=0.5; tau2=2.0; epsilon=1e-6;

k=0; Bk=Hess(x);

while(k¡50)

gk=gfun(x);

if(norm(gk)¡epsilon)

break;

end

% 调用子程序trustq

[d,val,lam,ik]=trustq(gk,Bk,dta);

deltaq=-qk(x,d);

deltaf=fun(x)-fun(x+d);

rk=deltaf/deltaq;

if(rk¡=eta1)
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dta=tau1*dta;

else if (rk¿=eta2&norm(d)==dta)

dta=min(tau2*dta,dtabar);

else

dta=dta;

end

end

if(rk¿eta1)

x=x+d;

Bk=Hess(x);

end

k=k+1;

end

xk=x;

val=fun(xk);

例 20 利用信赖域方法的程序 13 求解无约束优化问题

min
𝑥∈R𝑛

𝑓(𝑥) = 100(𝑥21 − 𝑥2)
2 + (𝑥1 − 1)2. (6.20)

该问题有精确解 𝑥* = (1, 1)𝑇 , 𝑓(𝑥*) = 0. 所谓牛顿型信赖域方法, 是指信赖域子

问题中的矩阵 𝐵𝑘 取为目标函数的 Hesse 阵 𝐺𝑘 = ∇2𝑓(𝑥).

解 我们需要先编制目标函数和它的梯度及 Hesse 阵的三个M 文件:

目标函数文件 fun.m

function f=fun(x)

f=100*(x(1)^2-x(2))^2+(x(1)-1)^2;

目标函数的梯度文件 gfun.m

function gf=gfun(x)

gf=[400*x(1)*(x(1)^2-x(2))+2*(x(1)-1), -200*(x(1)^2-x(2))]’;

目标函数的 Hesse 阵文件 Hess.m

function He=Hess(x)

He=[1200*x(1)^2-400*x(2)+2, -400*x(1); -400*x(1), 200];

信赖域子问题目标函数文件 qk.m
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function qd=qk(x,d)

gk=gfun(x); Bk=Hess(x);

qd=gk’*d+0.5*d’*Bk*d;

我们利用程序 13, 终止准则取为 ‖∇𝑓(𝑥𝑘)‖ ≤ 10−6. 取不同的初始点, 数值结

果如下表.

表 3.2 信赖域方法的数值结果.

初始点 (𝑥0) 迭代次数 (𝑘) 目标函数值 (𝑓(𝑥𝑘))

(0.0, 0.0)𝑇 19 9.9111× 10−22

(0.5, 0.5)𝑇 17 5.7509× 10−23

(1.0, 2.0)𝑇 35 1.1261× 10−23

(2.0, 1.0)𝑇 30 1.0828× 10−17

(1.0,−1.0)𝑇 18 1.5543× 10−21

(−1.0, 1.0)𝑇 36 1.3927× 10−16

说明 对于其他不同目标函数的无约束最优化问题的求解, 只需根据具体函

数表达式修改目标函数、梯度和Hesse阵三个子函数程序 (fun, gfun, Hess)即可.

习 题 6

1. 设矩阵𝐵𝑘 ∈ R𝑛×𝑛 对称正定. 𝑑𝑘 是子问题min 𝑞𝑘(𝑑) =
1

2
𝑑𝑇𝐵𝑘𝑑+∇𝑓(𝑥𝑘)

𝑇𝑑+𝑓(𝑥𝑘)

的解, 证明: 𝑑𝑘 是函数 𝑓 在 𝑥𝑘 处的下降方向.

2. 设函数 𝑞𝑘(𝑑) =
1

2
𝑑𝑇𝐵𝑘𝑑+∇𝑓(𝑥𝑘)

𝑇𝑑+ 𝑓(𝑥𝑘), 证明:

𝜏𝑘 =

⎧⎪⎪⎨⎪⎪⎩
1, 如果∇𝑓(𝑥𝑘)

𝑇𝐵𝑘∇𝑓(𝑥𝑘) ≤ 0,

min
{︁
1,

‖∇𝑓(𝑥𝑘)‖3

Δ𝑘∇𝑓(𝑥𝑘)𝑇𝐵𝑘∇𝑓(𝑥𝑘)

}︁
, 其它

是沿搜索方向
Δ𝑘

‖∇𝑓(𝑥𝑘)‖
∇𝑓(𝑥𝑘)

的 𝑞𝑘(𝑑) 的极小点.

3. 用信赖域方法的Matlab 程序求最优化问题 min 𝑓(𝑥) = 10(𝑥2 − 𝑥1)
2 + (1− 𝑥1)

2 的

最优解, 取初始点 𝑥0 = (0, 0)𝑇 , 终止准则值 𝜀 = 10−6.
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4. 若对称矩阵 𝐵 ∈ R𝑛×𝑛 可分解为 𝐵 = 𝑄Λ𝑄𝑇 , 其中 𝑄 = (𝑞1, 𝑞2, · · · , 𝑞𝑛) 为正交阵,

Λ = diag(𝜆1, 𝜆2, · · · , 𝜆𝑛). 证明: 由⎧⎨⎩ (𝐵 + 𝜆𝐼)𝑑 = −𝑔,

‖𝑑‖ = Δ

所确定的解可表示为:

𝑑(𝜆) = −
𝑛∑︁

𝑖=1

𝑞𝑇𝑖 𝑔

𝜆𝑖 + 𝜆
𝑞𝑖.

进一步, 证明:

𝑑

𝑑𝜆
(‖𝑑(𝜆)‖2) = −2

𝑛∑︁
𝑖=1

(𝑞𝑇𝑖 𝑔)
2

(𝜆𝑖 + 𝜆)3
.

5. 设 𝐵 是一个 𝑛 阶对称矩阵, 证明存在 𝜆 ≥ 0, 使得 𝐵 + 𝜆𝐼 是正定矩阵.

6. 设 𝜏 ∈ [0, 1] 满足 ‖(1 − 𝜏)𝑠𝑢𝑘 + 𝜏𝑠𝑁𝑘 ‖ = Δ𝑘, 证明: 𝑚𝑘(𝑠𝑘) ≤ 𝑚𝑘(𝑠
𝑐
𝑘), 其中 𝑚𝑘(𝑠) =

𝑓(𝑥𝑘) + 𝑔𝑇𝑘 𝑠+
1

2
𝑠𝑇𝐵𝑘𝑠, 𝑔𝑘 = ∇𝑓(𝑥𝑘),

𝑠𝑐𝑘 =

⎧⎪⎪⎨⎪⎪⎩
− Δ𝑘

‖𝑔𝑘‖
𝑔𝑘, 如果 𝑔𝑇𝑘 𝐵𝑘𝑔𝑘 ≤ 0,

−min
{︁ Δ𝑘

‖𝑔𝑘‖
,

‖𝑔𝑘‖2

𝑔𝑇𝑘 𝐵𝑘𝑔𝑘

}︁
𝑔𝑘, 否则,

𝑠𝑘 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− Δ𝑘

‖𝑔𝑘‖
𝑔𝑘, 若 ‖𝑠𝑢𝑘‖ ≥ Δ𝑘,

−𝐵−1
𝑘 𝑔𝑘, 若 ‖𝑠𝑢𝑘‖ < Δ𝑘 且 ‖𝑠𝑁𝑘 ‖ ≤ Δ𝑘,

𝑠𝑢𝑘 + 𝜏(𝑠𝑁𝑘 − 𝑠𝑢𝑘), 其它.

7. 设 𝑠𝑘 = argmin{𝑚𝑘(𝑠) : ‖𝑠‖ ≤ Δ𝑘, 𝑠 ∈ span[𝑔𝑘, 𝐵
−1
𝑘 𝑔𝑘]}, 其中

𝑚𝑘(𝑠) = 𝑓(𝑥𝑘) + 𝑔𝑇𝑘 𝑠+
1

2
𝑠𝑇𝐵𝑘𝑠.

若 𝐵𝑘 是正定的, 试确定 𝑠𝑘 的具体表达式.

8. 利用光滑牛顿法的Matlab 程序求解下列信赖域子问题, 分别取 Δ = 1, 2, 5.

(1)

⎧⎨⎩ min 𝑞(𝑥) = 2𝑥2
1 − 4𝑥1𝑥2 + 4𝑥2

2 − 6𝑥1 − 3𝑥2,

s.t. ‖𝑥‖ ≤ Δ
.

(2)

⎧⎨⎩ min 𝑞(𝑥) =
1

2
𝑥𝑇𝐴𝑥+ 𝑏𝑇𝑥,

s.t. ‖𝑥‖ ≤ Δ,
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其中

𝐴 =

⎛⎜⎜⎜⎝
3 −1 2

−1 2 0

2 0 4

⎞⎟⎟⎟⎠ , 𝑏 =

⎛⎜⎜⎜⎝
1

−3

−2

⎞⎟⎟⎟⎠ , 𝑥 =

⎛⎜⎜⎜⎝
𝑥1

𝑥2

𝑥3

⎞⎟⎟⎟⎠ .
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第七章 非线性最小二乘问题

非线性最小二乘问题是科学与工程计算中十分常见的一类问题, 并在经济学

等领域有广泛的应用背景. 不但如此, 约束优化问题还可以通过 KKT 条件与非

线性方程组建立起重要的关系. 本章, 我们主要讨论非线性最小二乘问题的一些

求解算法及其收敛性质.

7.1 Gauss-Newton 法

非线性最小二乘问题是求向量任 𝑥 ∈ 𝑅𝑛 使 ‖𝐹 (𝑥)‖2 最小, 其中, 映射

𝐹 : 𝑅𝑛 → 𝑅𝑚 是连续可微函数. 非线性最小二乘问题在工程设计、财政金融等

方面的实际问题中有着广泛的应用.

记 𝐹 (𝑥) = (𝐹1(𝑥), 𝐹2(𝑥), · · · , 𝐹𝑚(𝑥))
𝑇 . 则非线性最小乘问题可以表示为

min
𝑥∈𝑅𝑛

𝑓(𝑥) =
1

2
‖𝐹 (𝑥)‖2 = 1

2

𝑚∑︁
𝑖=1

𝐹 2
𝑖 (𝑥). (7.1)

显然, 该问题本身就是一个无约束优化问题, 因此可以套用无约束优化问题的数

值方法如牛顿法、拟牛顿法等方法求解. 基于问题 (7.1) 的特殊性, 我们在这些

优化算法的基础上, 建立更适合本类问题的求解算法.

对于问题 (7.1), 目标函数 𝑓 的梯度和 Hesse 阵分别为:

𝑔(𝑥) , ∇𝑓(𝑥) = ∇
(︁1
2
‖𝐹 (𝑥)‖2

)︁
= 𝐽(𝑥)𝑇𝐹 (𝑥) =

𝑚∑︁
𝑖=1

𝐹𝑖(𝑥)∇𝐹𝑖(𝑥),
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𝐺(𝑥) , ∇2𝑓(𝑥) =
𝑚∑︁
𝑖=1

∇𝐹𝑖(𝑥)(∇𝐹𝑖(𝑥))
𝑇 +

𝑚∑︁
𝑖=1

𝐹𝑖(𝑥)∇2𝐹𝑖(𝑥)

= 𝐽(𝑥)𝑇𝐽(𝑥) +
𝑚∑︁
𝑖=1

𝐹𝑖(𝑥)∇2𝐹𝑖(𝑥)

, 𝐽(𝑥)𝑇𝐽(𝑥) + 𝑆(𝑥),

其中

𝐽(𝑥) = 𝐹 ′(𝑥) = (∇𝐹1(𝑥), · · · ,∇𝐹𝑚(𝑥))
𝑇 , 𝑆(𝑥) =

𝑚∑︁
𝑖=1

𝐹𝑖(𝑥)∇2𝐹𝑖(𝑥).

利用牛顿型迭代算法, 我们便得到求解非线性最小二乘问题的迭代算法:

𝑥𝑘+1 = 𝑥𝑘 −
(︀
𝐽𝑇
𝑘 𝐽𝑘 + 𝑆𝑘

)︀−1
𝐽𝑇
𝑘 𝐹 (𝑥𝑘).

在标准假设下, 容易得到该算法的收敛性质. 缺点是 𝑆(𝑥) 中 ∇2𝐹𝑖(𝑥) 的计算量

较大. 如果忽略这一项, 便得到求解非线性最小二乘问题的 Gauss-Newton 迭代

算法:

𝑥𝑘+1 = 𝑥𝑘 + 𝑑𝐺𝑁
𝑘 ,

其中

𝑑𝐺𝑁
𝑘 = −

[︀
𝐽𝑇
𝑘 𝐽𝑘

]︀−1
𝐽𝑇
𝑘 𝐹 (𝑥𝑘)

称为 Gauss-Newton 方向. 容易验证 𝑑𝐺𝑁
𝑘 是优化问题

min
𝑑∈𝑅𝑛

1

2
‖𝐹 (𝑥𝑘) + 𝐽𝑘𝑑‖2

的最优解. 若向量函数 𝐹 (𝑥) 的 Jacobian 矩阵是列满秩的, 则可以保证 Gauss-

Newton 方向是下降方向. 如同牛顿法一样, 若采取单位步长, 算法的收敛性难以

保证. 但如果在算法中引入线搜索步长规则, 则可以得到如下的收敛性定理.

定理 32 设水平集 ℒ(𝑥0) 有界, 𝐽(𝑥) = 𝐹 ′(𝑥) 在 ℒ(𝑥0) 上 Lipschitz 连续且

满足一致性条件

‖𝐽(𝑥)𝑦‖ ≥ 𝛼‖𝑦‖, ∀ 𝑦 ∈ 𝑅𝑛, (7.2)

其中, 𝛼 > 0 为一常数. 则在Wolfe 步长规则下⎧⎨⎩ 𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓𝑘 + 𝜎1𝛼𝑘𝑔
𝑇
𝑘 𝑑𝑘,

𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇𝑑𝑘 ≥ 𝜎2𝑔

𝑇
𝑘 𝑑𝑘,

(7.3)
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其中 0 < 𝜎1 < 𝜎2 < 1. Gauss-Newton 算法产生的迭代点列 {𝑥𝑘} 收敛到 (7.1) 的

一个稳定点. 即

lim
𝑘→∞

𝐽(𝑥𝑘)
𝑇𝐹 (𝑥𝑘) = 0.

证明 由 𝐽(𝑥)在ℒ(𝑥0)上 Lipschitz连续可知 𝐽(𝑥)连续.由于水平集ℒ(𝑥0)有
界,故存在 𝛽 > 0使得对任意 𝑥 ∈ ℒ(𝑥0), ‖𝐽(𝑥)‖ ≤ 𝛽成立. 记 𝜃𝑘为Gauss-Newton

方向 𝑑𝐺𝑁
𝑘 与负梯度方向 −𝑔𝑘 的夹角. 利用一致性条件 (7.2), 我们有

cos 𝜃𝑘 = − 𝑔𝑇𝑘 𝑑
𝐺𝑁
𝑘

‖𝑔𝑘‖‖𝑑𝐺𝑁
𝑘 ‖

= − 𝐹 𝑇
𝑘 𝐽𝑘𝑑

𝐺𝑁
𝑘

‖𝑑𝐺𝑁
𝑘 ‖‖𝐽𝑇

𝑘 𝐹𝑘‖

=
‖𝐽𝑘𝑑𝐺𝑁

𝑘 ‖2

‖𝑑𝐺𝑁
𝑘 ‖‖𝐽𝑇

𝑘 𝐽𝑘𝑑
𝐺𝑁
𝑘 ‖

≥ 𝛼2‖𝑑𝐺𝑁
𝑘 ‖2

𝛽2‖𝑑𝐺𝑁
𝑘 ‖2

=
𝛼2

𝛽2
> 0.

由于 𝑔(𝑥) 在 ℒ(𝑥0) 上 Lipschitz 连续, 则由 (7.3) 的第二式得

(𝜎2 − 1)𝑔𝑇𝑘 𝑑𝑘 ≤ [𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)− 𝑔𝑘]
𝑇𝑑𝑘 ≤ 𝛼𝑘𝐿‖𝑑𝑘‖2.

故

𝛼𝑘 ≥
𝜎2 − 1

𝐿

𝑔𝑇𝑘 𝑑𝑘
‖𝑑𝑘‖2

.

将其代入 (7.3) 的第一式得

𝑓𝑘 − 𝑓𝑘+1 ≥ −𝜎1𝛼𝑘𝑔
𝑇
𝑘 𝑑𝑘 ≥ 𝜎1

1− 𝜎2
𝐿

(𝑔𝑇𝑘 𝑑𝑘)
2

‖𝑑𝑘‖2

= 𝜎1
1− 𝜎2
𝐿

‖𝑔𝑘‖2 cos2 𝜃𝑘.

两边对 𝑘 求级数, 利用 {𝑓𝑘} 单调不增有下界, 得到

∞∑︁
𝑘=1

‖𝑔𝑘‖2 cos2 𝜃𝑘 <∞.

由此可得

lim
𝑘→∞

𝑔𝑘 = lim
𝑘→∞

𝐽(𝑥𝑘)
𝑇𝐹 (𝑥𝑘) = 0.

证毕. �

定理 33 设单位步长的 Gauss-Newton 算法产生的迭代点列 {𝑥𝑘} 收敛
到 (7.1) 的局部极小点 𝑥*, 而且 𝐽(𝑥*)𝑇𝐽(𝑥*) 正定. 则当 𝐽(𝑥)𝑇𝐽(𝑥), 𝑆(𝑥),

[𝐽(𝑥)𝑇𝐽(𝑥)]−1 在 𝑥* 的邻域内 Lipschitz 连续时, 对充分大的 𝑘 , 有

‖𝑥𝑘+1 − 𝑥𝑘‖ ≤ ‖[𝐽(𝑥*)𝑇𝐽(𝑥*)]−1‖‖𝑆(𝑥*)‖‖𝑥𝑘 − 𝑥*‖+𝑂(‖𝑥𝑘 − 𝑥*‖2).
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证明 由于 𝐽(𝑥)𝑇𝐽(𝑥), 𝑆(𝑥), [𝐽(𝑥)𝑇𝐽(𝑥)]−1 在 𝑥* 的邻域内 Lipschitz 连续,

故存在 𝛿 > 0 及正数 𝛼, 𝛽, 𝛾 使得对任意 𝑥, 𝑦 ∈ 𝑁(𝑥*, 𝛿) 有,⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖𝑆(𝑥)− 𝑆(𝑦)‖ ≤ 𝛼‖𝑥− 𝑦‖

‖𝐽(𝑥)𝑇𝐽(𝑥)− 𝐽(𝑦)𝑇𝐽(𝑦)‖ ≤ 𝛽‖𝑥− 𝑦‖,

‖[𝐽(𝑥)𝑇𝐽(𝑥)]−1 − [𝐽(𝑦)𝑇𝐽(𝑦)]−1‖ ≤ 𝛾‖𝑥− 𝑦‖.

(7.4)

由于 𝑓(𝑥) 二阶连续可微, 𝐺(𝑥) = 𝐽(𝑥)𝑇𝐽(𝑥) + 𝑆(𝑥) 在 𝑁(𝑥*, 𝛿) 上 Lipschitz 连

续, 故对充分大的 𝑘 和模充分小的 ℎ ∈ 𝑅𝑛, 有 𝑥𝑘 + ℎ ∈ 𝑁(𝑥*, 𝛿), 且

𝑔(𝑥𝑘 + ℎ) = 𝑔(𝑥𝑘) +𝐺(𝑥𝑘)ℎ+𝑂(‖ℎ‖2). (7.5)

由于 𝑥𝑘 → 𝑥*, 对充分大的 𝑘 , 有 𝑥𝑘, 𝑥𝑘+1 ∈ 𝑁(𝑥*, 𝛿). 令 𝑒𝑘 = 𝑥𝑘 − 𝑥*, ℎ𝑘 =

𝑥𝑘+1 − 𝑥𝑘, 则

𝑔(𝑥*) = 𝑔(𝑥𝑘 − 𝑒𝑘) = 0.

利用 (7.5),

𝑔(𝑥𝑘)−𝐺(𝑥𝑘)𝑒𝑘 +𝑂(‖𝑒𝑘‖2) = 0.

即

𝐽𝑇
𝑘 𝐹𝑘 − (𝐽𝑇

𝑘 𝐽𝑘 + 𝑆𝑘)𝑒𝑘 +𝑂(‖𝑒𝑘‖2) = 0.

注意到 𝐽𝑇
𝑘 𝐹𝑘 = −(𝐽𝑇

𝑘 𝐽𝑘)(𝑥𝑘+1 − 𝑥𝑘) = −𝐽𝑇
𝑘 𝐽𝑘ℎ𝑘. 两边同乘 (𝐽𝑇

𝑘 𝐽𝑘)
−1,

−ℎ𝑘 − 𝑒𝑘 − (𝐽𝑇
𝑘 𝐽𝑘)

−1𝑆𝑘𝑒𝑘 + (𝐽𝑇
𝑘 𝐽𝑘)

−1𝑂(‖𝑒𝑘‖2) = 0.

所以

𝑥𝑘+1 − 𝑥* = ℎ𝑘 + 𝑒𝑘 = −(𝐽𝑇
𝑘 𝐽𝑘)

−1𝑆𝑘𝑒𝑘 + (𝐽𝑇
𝑘 𝐽𝑘)

−1𝑂(‖𝑒𝑘‖2).

两边取 2 范数,

‖𝑥𝑘+1 − 𝑥*‖ ≤ ‖(𝐽𝑇
𝑘 𝐽𝑘)

−1𝑆𝑘‖‖𝑒𝑘‖+ ‖(𝐽𝑇
𝑘 𝐽𝑘)

−1‖ ·𝑂(‖𝑒𝑘‖2).

由于 [𝐽(𝑥)𝑇𝐽(𝑥)]−1 在 𝑥* 处连续, 故在 𝑘 充分大时,

‖(𝐽𝑇
𝑘 𝐽𝑘)

−1‖ ≤ 2‖[𝐽(𝑥*)𝑇𝐽(𝑥*)]−1‖. (7.6)

从而

‖𝑥𝑘+1 − 𝑥*‖ ≤ ‖(𝐽𝑇
𝑘 𝐽𝑘)

−1𝑆𝑘‖‖𝑥𝑘 − 𝑥*‖+𝑂(‖𝑥𝑘 − 𝑥*‖2). (7.7)
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由 (7.4), (7.6) 得

‖(𝐽𝑇
𝑘 𝐽𝑘)

−1𝑆𝑘 − [𝐽(𝑥*)𝑇𝐽(𝑥*)]−1𝑆(𝑥*)‖

≤ ‖(𝐽𝑇
𝑘 𝐽𝑘)

−1‖‖𝑆𝑘 − 𝑆(𝑥*)‖

+ ‖(𝐽𝑇
𝑘 𝐽𝑘)

−1 − [𝐽(𝑥*)𝑇𝐽(𝑥*)]−1‖‖𝑆(𝑥*)‖

≤ 2𝛼‖[𝐽(𝑥*)𝑇𝐽(𝑥*)]−1‖‖𝑥𝑘 − 𝑥*‖+ 𝛾‖𝑆(𝑥*)‖‖𝑥𝑘 − 𝑥*‖

= 𝑂(‖𝑥𝑘 − 𝑥*)‖.

即

‖(𝐽𝑇
𝑘 𝐽𝑘)

−1𝑆𝑘‖ ≤ ‖[𝐽(𝑥*)𝑇𝐽(𝑥*)]−1𝑆(𝑥*)‖

+ ‖(𝐽𝑇
𝑘 𝐽𝑘)

−1𝑆𝑘 − [𝐽(𝑥*)𝑇𝐽(𝑥*)]−1𝑆(𝑥*)‖

= ‖[𝐽(𝑥*)𝑇𝐽(𝑥*)]−1𝑆(𝑥*)‖+𝑂(‖𝑥𝑘 − 𝑥*)‖. (7.8)

将 (7.8) 代入 (7.7) 即得本定立的结论. 证毕. �

注 1 若问题 (7.1) 满足定理 33 的条件且最优解 𝑥* 使得目标函数值取零,

则 𝑆(𝑥*) = 0, 上面的结论表明迭代点列二阶收敛到 𝑥*. 但当 𝐹 (𝑥) 在最优解

点的函数值不为 0 时, 由于 ∇2𝑓(𝑥) 略去了不容忽视的项 𝑆(𝑥), 因而难于期待

Gauss-Newton 算法会有好的数值效果.

7.2 Levenberg-Marquardt 方法

Gauss-Newton 算法在迭代过程中要求矩阵 𝐽(𝑥𝑘) 列满秩, 而这一条件限制

了它的应用. 为克服这个困难, Levenberg-Marquardt 方法通过求解下述优化模

型来获取搜索方向

𝑑𝑘 = arg min
𝑑∈𝑅𝑛

‖𝐽𝑘𝑑+ 𝐹𝑘‖2 + 𝜇𝑘‖𝑑‖2,

其中 𝜇𝑘 > 0. 由最优性条件知 𝑑𝑘 满足

∇(‖𝐽𝑘𝑑+ 𝐹𝑘‖2 + 𝜇𝑘‖𝑑‖2) = 2[(𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝑘𝐼)𝑑+ 𝐽𝑇

𝑘 𝐹𝑘] = 0.

求得

𝑑𝑘 = −(𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝑘𝐼)

−1𝐽𝑇
𝑘 𝐹𝑘. (7.9)
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若 𝑔𝑘 = 𝐽𝑇
𝑘 𝐹𝑘 ̸= 0, 则对任意 𝜇𝑘 > 0,

𝑔𝑇𝑘 𝑑𝑘 = −(𝐽𝑇
𝑘 𝐹𝑘)

𝑇 (𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝑘𝐼)

−1(𝐽𝑇
𝑘 𝐹𝑘) < 0.

所以 𝑑𝑘 是 𝑓(𝑥) 在 𝑥𝑘 点的下降方向. 这样, 我们便得到求解非线性最小乘问题的

L-M 方法:

算法 20 (全局收敛的 L-M 方法)

步 1 取 𝜌, 𝜎 ∈ (0, 1)和 𝜇0 > 0, 置 𝑘 := 1.

步 2 若 𝑔(𝑥𝑘) = 0, 停算.

步 3 求解下面的方程组

(𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝑘𝐼)𝑑 = −𝐽𝑇

𝑘 𝐹𝑘, (7.10)

得 𝑑𝑘.

步 4 由 Armijio 搜索求步长. 令𝑚𝑘 是满足下面不等式的最小非负整数𝑚 :

𝑓(𝑥𝑘 + 𝜌𝑚𝑑𝑘) ≤ 𝑓𝑘 + 𝜎𝜌𝑚𝑔𝑇𝑘 𝑑𝑘. (7.11)

令 𝛼𝑘 = 𝜌𝑚𝑘 .

步 5 置 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 := 𝑘 + 1, 按某种方式更新 𝜇𝑘 的值, 转步 2.

下面我们来讨论 L-M 算法的收敛性. 注意到算法 20 中搜索方向 𝑑𝑘 的取值

其实是与 𝜇𝑘 有关的, 严格意义上讲, 𝑑𝑘 应记为 𝑑𝑘(𝜇𝑘). 因此 L-M 方法的关键是

在迭代过程中如何调整参数 𝜇𝑘. 为此我们先给出如下结论.

引理 8 ‖𝑑𝑘(𝜇)‖ 关于 𝜇 > 0 单调不增, 且当 𝜇→ ∞ 时, ‖𝑑𝑘(𝜇)‖ → 0.

证明 注意到
𝜕‖𝑑𝑘(𝜇)‖2

𝜕𝜇
= 2𝑑𝑘(𝜇)

𝑇 𝜕𝑑𝑘(𝜇)

𝜕𝜇
.

由 (7.10) 知

(𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)𝑑𝑘(𝜇) = −𝐽𝑇

𝑘 𝐹𝑘.

对上式两边关于 𝜇 求导,

𝑑𝑘(𝜇) + (𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)

𝜕𝑑𝑘(𝜇)

𝜕𝜇
= 0.
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故
𝜕𝑑𝑘(𝜇)

𝜕𝜇
= −(𝐽𝑇

𝑘 𝐽𝑘 + 𝜇𝐼)−1𝑑𝑘(𝜇). (7.12)

于是,
𝜕‖𝑑𝑘(𝜇)‖2

𝜕𝜇
= −2𝑑𝑘(𝜇)

𝑇 (𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)−1𝑑𝑘(𝜇) ≤ 0. (7.13)

从而 ‖𝑑𝑘(𝜇)‖2 关于 𝜇 单调不增. 由 (7.9) 式可以得到命题的第二个结论. 证毕. �

从从从几何直观来看, 当矩阵 𝐽𝑇
𝑘 𝐽𝑘 接近奇异时, 由 Gauss-Newton 算法得到的搜

索方向的模 ‖𝑑𝐺𝑁
𝑘 ‖ 相当地大. 而在 L-M 方法中, 通过引入正参数 𝜇 就避免了这

种情形出现. 下面讨论参数 𝜇 对搜索方向角度的影响.

引理 9 𝑑𝑘(𝜇) 与 −𝑔𝑘 的夹角 𝜃 关于 𝜇 > 0 单调不增.

证明 由

cos 𝜃 =
−𝑔𝑇𝑘 𝑑𝑘(𝜇)

‖𝑔𝑘‖‖𝑑𝑘(𝜇)‖
知

𝜕 cos 𝜃

𝜕𝜇
=

𝜕

𝜕𝜇

(︂
−𝑔𝑇𝑘 𝑑𝑘(𝜇)

‖𝑔𝑘‖‖𝑑𝑘(𝜇)‖

)︂

=

−𝑔𝑇𝑘
𝜕𝑑𝑘(𝜇)

𝜕𝜇
‖𝑔𝑘‖‖𝑑𝑘(𝜇)‖+ 𝑔𝑇𝑘 𝑑𝑘(𝜇)‖𝑔𝑘‖

𝜕‖𝑑𝑘(𝜇)‖
𝜕𝜇

‖𝑔𝑘‖2‖𝑑𝑘(𝜇)‖2
. (7.14)

利用 (7.12)-(7.13), 将上式中的分子展开

−𝑔𝑇𝑘
𝜕𝑑𝑘(𝜇)

𝜕𝜇
‖𝑔𝑘‖‖𝑑𝑘(𝜇)‖+ 𝑔𝑇𝑘 𝑑𝑘(𝜇)‖𝑔𝑘‖

𝜕‖𝑑𝑘(𝜇)‖
𝜕𝜇

= ‖𝑑𝑘(𝜇)‖‖𝑔𝑘‖𝑔𝑇𝑘 (𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)−1𝑑𝑘(𝜇)

−𝑔𝑇𝑘 𝑑𝑘(𝜇)‖𝑔𝑘‖𝑑𝑘(𝜇)𝑇 (𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)−1𝑑𝑘(𝜇)/‖𝑑𝑘(𝜇)‖

= ‖𝑔𝑘‖𝑔𝑇𝑘
[︀
‖𝑑𝑘(𝜇)‖(𝐽𝑇

𝑘 𝐽𝑘 + 𝜇𝐼)−1𝑑𝑘(𝜇)

−𝑑𝑘(𝜇)𝑑𝑘(𝜇)𝑇 (𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)−1𝑑𝑘(𝜇)/‖𝑑𝑘(𝜇)‖

]︀
=

‖𝑔𝑘‖
‖𝑑𝑘(𝜇)‖

𝑔𝑇𝑘
[︀
‖𝑑𝑘(𝜇)‖2𝐼 − 𝑑𝑘(𝜇)𝑑𝑘(𝜇)

𝑇
]︀
(𝐽𝑇

𝑘 𝐽𝑘 + 𝜇𝐼)−1𝑑𝑘(𝜇)

= − ‖𝑔𝑘‖
‖𝑑𝑘(𝜇)‖

𝑔𝑇𝑘
[︀
‖𝑑𝑘(𝜇)‖2𝐼 − 𝑑𝑘(𝜇)𝑑𝑘(𝜇)

𝑇
]︀
(𝐽𝑇

𝑘 𝐽𝑘 + 𝜇𝐼)−2𝑔𝑘
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= −‖𝑔𝑘‖‖𝑑𝑘(𝜇)‖𝑔𝑇𝑘 (𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)−2𝑔𝑘

+‖𝑔𝑘‖𝑔𝑇𝑘 (𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)−1𝑔𝑘𝑔

𝑇
𝑘 (𝐽

𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)−3𝑔𝑘/‖𝑑𝑘(𝜇)‖

=
‖𝑔𝑘‖

‖𝑑𝑘(𝜇)‖

{︁[︀
− 𝑔𝑇𝑘 (𝐽

𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)−2𝑔𝑘𝑔

𝑇
𝑘 (𝐽

𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)−2𝑔𝑘

]︀
+𝑔𝑇𝑘 (𝐽

𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)−1𝑔𝑘𝑔

𝑇
𝑘 (𝐽

𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)−3𝑔𝑘

}︁
.

因为 𝐽𝑇
𝑘 𝐽𝑘 半正定, 故存在正交阵 𝑄 使得

𝑄𝑇𝐽𝑇
𝑘 𝐽𝑘𝑄 = diag{𝜆1, · · · , 𝜆𝑛}.

记 𝑣𝑖 := (𝑄𝑇𝑔𝑘)𝑖, 则有

𝑄𝑇 (𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)−1𝑄 = diag

{︁ 1

𝜆1 + 𝜇
, · · · , 1

𝜆𝑛 + 𝜇

}︁
,

𝑔𝑇𝑘 (𝐽
𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)−1𝑔𝑘 = (𝑄𝑇𝑔𝑘)

𝑇diag
{︁ 1

𝜆1 + 𝜇
, · · · , 1

𝜆𝑛 + 𝜇

}︁
(𝑄𝑇𝑔𝑘)

=
𝑛∑︁

𝑖=1

1

𝜆𝑖 + 𝜇
𝑣2𝑖 .

所以

𝑔𝑇𝑘 (𝐽
𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)−2𝑔𝑘 =

𝑛∑︁
𝑖=1

1

(𝜆𝑖 + 𝜇)2
𝑣2𝑖 ,

𝑔𝑇𝑘 (𝐽
𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)−3𝑔𝑘 =

𝑛∑︁
𝑖=1

1

(𝜆𝑖 + 𝜇)3
𝑣2𝑖 .

这样 (7.14) 式的分子等于

‖𝑔𝑘‖
‖𝑑𝑘(𝜇)‖

[︁
−
(︁ 𝑛∑︁

𝑖=1

𝑣2𝑖
(𝜆𝑖 + 𝜇)2

)︁2
+
(︁ 𝑛∑︁

𝑖=1

𝑣2𝑖
𝜆𝑖 + 𝜇

)︁(︁ 𝑛∑︁
𝑖=1

𝑣2𝑖
(𝜆𝑖 + 𝜇)3

)︁]︁
=

‖𝑔𝑘‖
‖𝑑𝑘(𝜇)‖

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

[︁ −𝑣2𝑖 𝑣2𝑗
(𝜆𝑖 + 𝜇)2(𝜆𝑗 + 𝜇)2

+
𝑣2𝑖 𝑣

2
𝑗

(𝜆𝑖 + 𝜇)(𝜆𝑗 + 𝜇)3

]︁

=
‖𝑔𝑘‖

‖𝑑𝑘(𝜇)‖
1

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑣2𝑖 𝑣
2
𝑗

(𝜆𝑖 + 𝜇)3(𝜆𝑗 + 𝜇)3
[︀
− 2(𝜆𝑖 + 𝜇)(𝜆𝑗 + 𝜇)

+(𝜆𝑖 + 𝜇)2 + (𝜆𝑗 + 𝜇)2
]︀
≥ 0.
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从而 𝑑𝑘 与 −𝑔𝑘 的夹角 𝜃 关于 𝜇 > 0 单调不增. 证毕. �

可以设想, 当参数 𝜇 > 0 充分大时, 𝑑𝑘(𝜇)的方向与目标函数的负梯度方向一

致.

引理 10 (𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝐼) 的条件数关于 𝜇 > 0 单调不增.

证明 由 𝐽𝑇
𝑘 𝐽𝑘 为对称半正定矩阵可知, 存在正交阵 𝑄, 使

𝑄𝑇𝐽𝑇
𝑘 𝐽𝑘𝑄 = diag{𝜆1, · · · , 𝜆𝑛}, 其中 𝜆1 ≥ · · · ≥ 𝜆𝑛 ≥ 0.

所以 (𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝐼) 的条件数为

‖(𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝐼)‖‖(𝐽𝑇

𝑘 𝐽𝑘 + 𝜇𝐼)−1‖ =
𝜆1 + 𝜇

𝜆𝑛 + 𝜇
.

而
𝜕

𝜕𝜇

(︁𝜆1 + 𝜇

𝜆𝑛 + 𝜇

)︁
=

𝜆𝑛 − 𝜆1
(𝜆𝑛 + 𝜇)2

≤ 0,

从而 (𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝐼) 的条件数关于 𝜇 > 0 单调不增. 证毕. �

在具体的 L-M 算法中, 我们用类似于调整信赖域半径的策略来调整参数 𝜇.

首先, 在当前迭代点定义一个二次函数

𝑞(𝑑) = 𝑓(𝑥𝑘) + (𝐽𝑇
𝑘 𝐹𝑘)

𝑇𝑑+
1

2
𝑑𝑇 (𝐽𝑇

𝑘 𝐽𝑘)𝑑.

基于当前给出的 𝜇, 根据 (7.9) 计算 𝑑𝑘, 然后考虑 𝑞(𝑑) 和目标函数的增量

Δ𝑞(𝑑𝑘) = 𝑞(𝑑𝑘)− 𝑞(0) = (𝐽𝑇
𝑘 𝐹𝑘)

𝑇𝑑𝑘 +
1

2
𝑑𝑇𝑘 (𝐽

𝑇
𝑘 𝐽𝑘)𝑑𝑘,

Δ𝑓(𝑑𝑘) = 𝑓(𝑥𝑘 + 𝑑𝑘)− 𝑓(𝑥𝑘) = 𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘).

用 𝜂𝑘 表示两增量之比

𝜂𝑘 =
Δ𝑓(𝑑𝑘)

Δ𝑞(𝑑𝑘)
=

𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘)

(𝐽𝑇
𝑘 𝐹𝑘)𝑇𝑑𝑘 +

1

2
𝑑𝑇𝑘 (𝐽

𝑇
𝑘 𝐽𝑘)𝑑𝑘

.

在 L-M 算法的每一步, 先给 𝜇𝑘 一个初始值, 如取为上一次迭代步的值, 计算 𝑑𝑘.

然后根据 𝜂𝑘 的值调整 𝜇𝑘, 最后根据调整后的 𝜇𝑘 计算 𝑑𝑘, 并进行线搜索, 进而完

成 L-M 算法的一个迭代步. 显然, 当 𝜂𝑘 接近 1 时, 二次函数 𝑞(𝑑) 在 𝑥𝑘 点拟合目

标函数比较好, 用 L-M 方法求解非线性最小乘问题时, 参数 𝜇 应取得小一些. 换
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言之, 此时用 Gauss-Newton 法求解更为有效. 反过来, 当 𝜂𝑘 接近 0 时, 二次函数

𝑞(𝑑) 在 𝑥𝑘 点拟合目标函数比较差, 需要减小 𝑑𝑘 的模长. 根据引理 8, 应增大参数

𝜇 的取值来限制 𝑑𝑘 的模长. 而当比值 𝜂𝑘 既不接近于 0 也不接近于 1, 则认为参

数 𝜇𝑘 选取得当, 不做调整. 通常 𝜂 的临界值为 0.25 和 0.75. 据此, 得到算法 20

中参数 𝜇𝑘 的一个更新规则如下

𝜇𝑘+1 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.1𝜇𝑘, 当 𝜂𝑘 > 0.75,

𝜇𝑘, 当 0.25 ≤ 𝜂𝑘 ≤ 0.75,

10𝜇𝑘, 当 𝜂𝑘 < 0.25.

(7.15)

下面是 Levenerg-Marquardt 方法的收敛性定理.

定理 34 设 {𝑥𝑘} 是由算法 20 产生无穷迭代序列, 若 {𝑥𝑘, 𝜇𝑘} 的某一聚点
(𝑥*, 𝜇*) 满足 𝐽(𝑥*)𝑇𝐽(𝑥*) + 𝜇*𝐼 正定, 则∇𝑓(𝑥*) = 𝐽(𝑥*)𝑇𝐹 (𝑥*) = 0.

证明 由于 𝜇𝑘 > 0, 𝑑𝑘 为下降方向, 存在收敛于 𝑥* 的子列 𝑥𝑘𝑗 , 满足

𝐽𝑇
𝑘𝑗
𝐽𝑘𝑗 → 𝐽(𝑥)*)𝑇𝐽(𝑥*), 𝜇𝑘𝑗 → 𝜇*.

由于 𝐽(𝑥*)𝑇𝐽(𝑥*) + 𝜇*𝐼 是正定矩阵, 若∇𝑓(𝑥*) ̸= 0, 则

𝑑𝑘𝑗 → 𝑑* = −[𝐽(𝑥*)𝑇𝐽(𝑥*) + 𝜇*𝐼]−1𝐽(𝑥*)𝑇𝐹 (𝑥*),

而且 𝑑* 是 𝑥* 点的下降方向. 所以对 𝜌 ∈ (0, 1), 存在非负整数𝑚* 使得

𝑓(𝑥* + 𝜌𝑚
*
𝑑*) < 𝑓(𝑥*) + 𝜎𝜌𝑚

*∇𝑓(𝑥*)𝑇𝑑*.

注意到 𝑥𝑘𝑗 → 𝑥*, 当 𝑗 充分大时, 由连续性知

𝑓(𝑥𝑘𝑗 + 𝜌𝑚
*
𝑑𝑘𝑗) < 𝑓(𝑥𝑘𝑗) + 𝜎𝜌𝑚

*∇𝑓(𝑥𝑘𝑗)𝑇𝑑𝑘𝑗 .

由 Armijo 步长规则知𝑚* ≥ 𝑚𝑘𝑗 , 所以

𝑓(𝑥𝑘𝑗+1) = 𝑓(𝑥𝑘𝑗 + 𝜌𝑚𝑘𝑗 𝑑𝑘𝑗)

≤ 𝑓(𝑥𝑘𝑗) + 𝜎𝜌𝑚𝑘𝑗∇𝑓(𝑥𝑘𝑗)𝑇𝑑𝑘𝑗
≤ 𝑓(𝑥𝑘𝑗) + 𝜎𝜌𝑚

*∇𝑓(𝑥𝑘𝑗)𝑇𝑑𝑘𝑗 ,

即对充分大的 𝑗,

𝑓(𝑥𝑘𝑗+1) ≤ 𝑓(𝑥𝑘𝑗) + 𝜎𝜌𝑚
*∇𝑓(𝑥𝑘𝑗)𝑇𝑑𝑘𝑗 . (7.16)
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又

lim
𝑗→∞

𝑓(𝑥𝑘𝑗+1) = lim
𝑗→∞

𝑓(𝑥𝑘𝑗) = 𝑓(𝑥*).

从而对 (7.16) 两边求极限得

𝑓(𝑥*) ≤ 𝑓(𝑥*) + 𝜎𝜌𝑚
*∇𝑓(𝑥*)𝑇𝑑*.

这与∇𝑓(𝑥*)𝑇𝑑* < 0 矛盾. 所以∇𝑓(𝑥*) = 0. 证毕. �

下面分析算法 20 的收敛速度.

定理 35 设由算法 20 产生的迭代序列 {𝑥𝑘} 收敛到 (7.1) 的一个局部最优

解 𝑥*. 若 𝐽(𝑥*)𝑇𝐽(𝑥*) 非奇异,
(︁1
2
− 𝜎

)︁
𝐽(𝑥*)𝑇𝐽(𝑥*) − 1

2
𝑆(𝑥*) 正定, 且 𝐺(𝑥) =

𝐽(𝑥)𝑇𝐽(𝑥) + 𝑆(𝑥) 在 𝑥* 附近一致连续, 𝜇𝑘 → 0. 则当 𝑘 充分大时, 𝛼𝑘 = 1, 且

lim sup
𝑘→∞

‖𝑥𝑘+1 − 𝑥*‖
‖𝑥𝑘 − 𝑥*‖

≤ ‖[𝐽(𝑥*)𝑇𝐽(𝑥*)]−1‖‖𝑆(𝑥*)‖. (7.17)

证明 要证 𝛼𝑘 = 1, 只需证对充分大的 𝑘,

𝑓(𝑥𝑘 + 𝑑𝑘)− 𝑓(𝑥𝑘) ≤ 𝜎𝑔𝑇𝑘 𝑑𝑘.

对任意 𝑘 > 0, 由中值定理知存在 𝜁𝑘 ∈ (0, 1), 使得

𝑓(𝑥𝑘 + 𝑑𝑘)− 𝑓(𝑥𝑘) = 𝑔𝑇𝑘 𝑑𝑘 +
1

2
𝑑𝑇𝑘𝐺(𝑥𝑘 + 𝜁𝑘𝑑𝑘)𝑑𝑘.

由 (7.9) 式,

−(1− 𝜎)𝑔𝑇𝑘 𝑑𝑘 −
1

2
𝑑𝑇𝑘𝐺(𝑥𝑘 + 𝜁𝑘𝑑𝑘)𝑑𝑘

= (1− 𝜎)𝑑𝑇𝑘 (𝐽
𝑇
𝑘 𝐽𝑘 + 𝜇𝑘𝐼)𝑑𝑘 −

1

2
𝑑𝑇𝑘𝐺(𝑥𝑘 + 𝜁𝑘𝑑𝑘)𝑑𝑘

= (1− 𝜎)𝑑𝑇𝑘 𝐽
𝑇
𝑘 𝐽𝑘𝑑𝑘 + (1− 𝜎)𝜇𝑘‖𝑑𝑘‖2 −

1

2
𝑑𝑇𝑘 (𝐽

𝑇
𝑘 𝐽𝑘 + 𝑆𝑘)𝑑𝑘

+
1

2
𝑑𝑇𝑘 [𝐺(𝑥𝑘)−𝐺(𝑥𝑘 + 𝜁𝑘𝑑𝑘)]𝑑𝑘

=
(︁1
2
− 𝜎

)︁
𝑑𝑇𝑘 𝐽

𝑇
𝑘 𝐽𝑘𝑑𝑘 + (1− 𝜎)𝜇𝑘‖𝑑𝑘‖2 −

1

2
𝑑𝑇𝑘 𝑆𝑘𝑑𝑘

+
1

2
𝑑𝑇𝑘 [𝐺(𝑥𝑘)−𝐺(𝑥𝑘 + 𝜁𝑘𝑑𝑘)]𝑑𝑘.

由 𝑥𝑘 → 𝑥* 知 𝑔𝑘 → 0, 从而 𝑑𝑘 → 0. 又 𝜇𝑘 → 0, 所以利用 𝐺(𝑥) 的一致连续性知

𝑉𝑘 := (1− 𝜎)𝜇𝑘𝐼 +
1

2
[𝐺(𝑥𝑘)−𝐺(𝑥𝑘 + 𝜁𝑘𝑑𝑘)] → 0.
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由题设, 𝑘 充分大时,

−(1− 𝜎)𝑔𝑇𝑘 𝑑𝑘 −
1

2
𝑑𝑇𝑘𝐺(𝑥𝑘 + 𝜁𝑘𝑑𝑘)𝑑𝑘

= 𝑑𝑇𝑘

[︁(︁1
2
− 𝜎

)︁
𝐽𝑇
𝑘 𝐽𝑘 −

1

2
𝑆𝑘

]︁
𝑑𝑘 + 𝑑𝑇𝑘 𝑉𝑘𝑑𝑘 > 0.

从而 𝛼𝑘 = 1 成立. 这样,

𝑥𝑘+1 − 𝑥* = 𝑥𝑘 − 𝑥* − (𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝑘𝐼)

−1𝑔𝑘

= −(𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝑘𝐼)

−1
{︀
[𝑔𝑘 −𝐺𝑘(𝑥𝑘 − 𝑥*)]

−[(𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝑘𝐼)(𝑥𝑘 − 𝑥*)−𝐺𝑘(𝑥𝑘 − 𝑥*)]

}︀
= −(𝐽𝑇

𝑘 𝐽𝑘 + 𝜇𝑘𝐼)
−1[𝑔𝑘 − 𝑔(𝑥*)−𝐺𝑘(𝑥𝑘 − 𝑥*)]

+(𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝑘𝐼)

−1(𝜇𝑘𝐼 − 𝑆𝑘)(𝑥𝑘 − 𝑥*)

= −(𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝑘𝐼)

−1

∫︁ 1

0

[︀
𝐺(𝑥* + 𝑡(𝑥𝑘 − 𝑥*)−𝐺(𝑥𝑘)

]︀
(𝑥𝑘 − 𝑥*)d𝑡

+(𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝑘𝐼)

−1(𝜇𝑘𝐼 − 𝑆𝑘)(𝑥𝑘 − 𝑥*).

故

‖𝑥𝑘+1 − 𝑥*‖ ≤ ‖(𝐽𝑇
𝑘 𝐽𝑘 + 𝜇𝑘𝐼)

−1‖
[︁ ∫︁ 1

0

⃦⃦
𝐺(𝑥* + 𝑡(𝑥𝑘 − 𝑥*))−𝐺(𝑥𝑘)

⃦⃦
d𝑡

+‖𝜇𝑘𝐼 − 𝑆𝑘‖
]︁
‖𝑥𝑘 − 𝑥*‖..

由 𝜇𝑘 → 0, 𝑥𝑘 → 𝑥* 和 𝐺(𝑥) 的一致连续性,

lim sup
𝑘→∞

‖𝑥𝑘+1 − 𝑥*‖
‖𝑥𝑘 − 𝑥*‖

≤ ‖[𝐽(𝑥*)𝑇𝐽(𝑥*)]−1‖‖𝑆(𝑥*)‖.

证毕. �

注 2 若 (7.1) 的目标函数的最优值为 0 时, 若取

𝜇𝑘 = ‖𝐹 (𝑥𝑘)‖1+𝜎, 𝜎 ∈ [0, 1],

或

𝜇𝑘 = 𝜃‖𝐹𝑘‖+ (1− 𝜃)‖𝐽𝑇
𝑘 𝐹𝑘‖, 𝜃 ∈ [0, 1],

则可以建立 Levenberg-Marquardt 算法的二阶收敛性质.
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7.3 L-M 算法的Matlab 程序

本节我们给出 L-M算法 20的Matlab程序,在某种意义上该程序是通用的.

程序 14 利用 LM 方法求解非线性方程组 𝐹 (𝑥) = 0, 可适用于未知数的个
数与方程的个数不相等的情形.

function [x,val,k]=lmm(Fk,JFk,x0)

%功能: 用L-M方法求解非线性方程组: F(x)=0

%输入: x0是初始点, Fk, JFk 分别是求F(xk)及F’(xk)的函数.

%输出: x, val分别是近似解及——F(xk)——的值, k是迭代次数.

maxk=100; %给出最大迭代次数

rho=0.55;sigma=0.4; muk=norm(feval(Fk,x0));

k=0; epsilon=1e-6; n=length(x0);

while(k¡maxk)

fk=feval(Fk,x0); %计算函数值

jfk=feval(JFk,x0); %计算Jacobi阵

gk=jfk’*fk;

dk=-(jfk’*jfk+muk*eye(n))“gk; %解方程组Gk*dk=-gk, 计算搜索方向

if(norm(gk)¡epsilon), break; end %检验终止准则

m=0; mk=0;

while(m¡20) % 用Armijo搜索求步长

newf=0.5*norm(feval(Fk,x0+rho^m*dk))^2;

oldf=0.5*norm(feval(Fk,x0))^2;

if(newf¡oldf+sigma*rho^m*gk’*dk)

mk=m; break;

end

m=m+1;

end

x0=x0+rho^mk*dk;

muk=norm(feval(Fk,x0));

k=k+1;

end

x=x0;

val=0.5*muk^2;

我们利用上面的程序来求解一个信非线性方程组.
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例 21 用 LM 方法求解非线性方程组求解下列方程组⎧⎨⎩ 𝑥1 − 0.7 sin𝑥1 − 0.2 cos𝑥2 = 0,

𝑥2 − 0.7 cos𝑥1 + 0.2 sin𝑥2 = 0.

解 先编制两个函数程序, 并将它们作为 m 文件与程序 14 一起存放于当前

工作目录下.

%Fk.m

function y=Fk(x)

y(1)=x(1)-0.7*sin(x(1))-0.2*cos(x(2));

y(2)=x(2)-0.7*cos(x(1))+0.2*sin(x(2));

y=y(:);

%JFk.m

function JF=JFk(x)

JF=[1-0.7*cos(x(1)), 0.2*sin(x(2));

0.7*sin(x(1)), 1+0.2*cos(x(2))];

该问题有解 𝑥* ≈ (0.52652, 0.50792)𝑇 . 我们利用程序 14, 终止准则取为

‖∇𝑓(𝑥𝑘)‖ ≤ 10−6. 取不同的初始点, 数值结果如下表.

表 8.1 L-M方法的数值结果.

初始点 (𝑥0) 迭代次数 (𝑘) 目标函数值 ‖𝐹 (𝑥𝑘)‖2/2

(0.0, 0.0)𝑇 7 9.4380× 10−16

(1.0, 1.0)𝑇 6 7.4433× 10−19

(1.0,−1.0)𝑇 9 4.6783× 10−19

(−1.0, 1.0)𝑇 10 7.6358× 10−22

(5.0, 5.0)𝑇 14 3.2383× 10−20

(−5.0,−5.0)𝑇 20 2.1319× 10−19

习 题 7

1. 设有非线性方程组

𝑓1(𝑥) = 𝑥3
1 − 2𝑥2

2 − 1 = 0,

𝑓2(𝑥) = 2𝑥1 + 𝑥2 − 2.
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(1) 列出求解这个方程组的非线性最小二乘问题的数学模型.

(2) 写出求解该问题的高斯-牛顿法迭代公式的具体形式.

(3) 初始点取为 𝑥0 = (2, 2)𝑇 , 迭代三次.

2. 已知某物理量 𝑦 与另外两个物理量 𝑡1, 𝑡2 的关系为

𝑦 =
𝑥1𝑥3𝑡1

1 + 𝑥1𝑡1 + 𝑥2𝑡2
,

其中 𝑥1, 𝑥2, 𝑥3 是待定参数. 为确定这三个参数，测得 𝑡1, 𝑡2 和 𝑦 的一组数据.

𝑡1 1.0 2.0 1.0 2.0 0.1

𝑡2 1.0 1.0 2.0 2.0 0.0

𝑦 0.13 0.22 0.08 0.13 0.19

(1) 用最小二乘法建立关于确定 𝑥1, 𝑥2, 𝑥3 的数学模型.

(2) 对列出的非线性最小二乘问题写出高斯-牛顿法迭代公式的具体形式.

3. 设 𝑟1(𝑥) = 𝑥2 − 𝑥2
1, 𝑟2(𝑥) = 1− 𝑥2, 𝑟(𝑥) = (𝑟1(𝑥), 𝑟2(𝑥))

𝑇 ,

𝑓(𝑥) =
1

2
[𝑟1(𝑥)

2 + 𝑟2(𝑥)
2] =

1

2
𝑟(𝑥)𝑇 𝑟(𝑥),

已知该问题 min 𝑓(𝑥) 的极小点为 𝑥* = (1, 1)𝑇 .

(1) 对于任何初始点 𝑥0, 写出按如下牛顿迭代公式求极小点的计算步骤:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘

𝑑𝑘 = −[∇2𝑓(𝑥𝑘)]
−1∇𝑓(𝑥𝑘), 𝑘 = 0, 1, · · ·

𝛼𝑘 : 𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) = min 𝑓(𝑥𝑘 + 𝛼𝑑𝑘)

(2) 试证明: 当 𝑥 → 𝑥* 时, ∇2𝑓(𝑥) → ∇𝑟(𝑥)∇𝑟(𝑥)𝑇 .

4. 考虑非线性方程组： ⎧⎨⎩ 𝑟1(𝑥) = 𝑥3
1 − 𝑥2 − 1 = 0,

𝑟2(𝑥) = 𝑥2
1 − 𝑥2 = 0

及平方和函数

𝑓(𝑥) =
1

2
[𝑟1(𝑥)

2 + 𝑟2(𝑥)
2].

证明: 𝑥 = (1.46557, 2.14790)𝑇 是 𝑓(𝑥) 的全局极小点, 并且是非线性方程组的解; 𝑥 =

(0,−0.5)𝑇 是 𝑓(𝑥) 的局部极小点; 𝑥 = (2/3,−7/54)𝑇 是 𝑓(𝑥) 的鞍点.

5. 设 𝑥1, 𝑥2 分别是方程组 (𝐴𝑇𝐴 + 𝜇𝑖𝐼)𝑥 = −𝐴𝑇 𝑟, 𝑖 = 1, 2, 对应于 𝜇1, 𝜇2 的解, 其中

𝜇1 > 𝜇2 > 0, 𝐴 ∈ 𝑅𝑚×𝑛, 𝑟 ∈ 𝑅𝑚. 试证明 ‖𝐴𝑥2 + 𝑟‖22 < ‖𝐴𝑥1 + 𝑟‖22.
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6. 利用 L-M 方法的Matlab 程序求解

min 𝑓(𝑥) =
1

2

5∑︁
𝑖=1

𝑟𝑖(𝑥)
2,

其中

𝑟1(𝑥) = 𝑥2
1 + 𝑥2

2 + 𝑥2
3 − 1, 𝑟2(𝑥) = 𝑥1 + 𝑥2 + 𝑥3 − 1,

𝑟3(𝑥) = 𝑥2
1 + 𝑥2

2 + (𝑥3 − 2)2 − 1, 𝑟4(𝑥) = 𝑥1 + 𝑥2 − 𝑥3 + 1,

𝑟5(𝑥) = 𝑥3
1 + 3𝑥2

2 + (5𝑥3 − 𝑥1 + 1)2 − 36𝑡,

𝑡 是参数, 可取 𝑡 = 0.5, 1, 5 等. 注意 𝑡 = 1时, 𝑥* = (0, 0, 1)𝑇 是全局极小点, 这时问题为零

残量, 比较不同参数的计算效果.
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8.1 等式约束问题的最优性条件

本节讨论的最优性条件适合于下面的等式约束问题

min 𝑓(𝑥),

s.t. ℎ𝑖(𝑥) = 0, 𝑖 = 1, 2, · · · , 𝑙.
(8.1)

为了研究问题的方便, 我们作问题 (8.1) 的所谓拉格朗日函数

𝐿(𝑥, 𝜆) = 𝑓(𝑥)−
𝑙∑︁

𝑖=1

𝜆𝑖ℎ𝑖(𝑥), (8.2)

其中 𝜆 = (𝜆1, 𝜆2, · · · , 𝜆𝑙)𝑇 称为乘子向量.

下面的拉格朗日定理描述了问题 (8.1) 取极小值的一阶必要条件, 也就是所

谓的 KT 条件 (Kuhn-Tucker 条件).

定理 36 (拉格朗日定理 ) 假设 𝑥* 是问题 (8.1) 的局部极小点, 𝑓(𝑥)

和 ℎ𝑖(𝑥) (𝑖 = 1, 2, · · · , 𝑙) 在 𝑥* 的某邻域内连续可微. 若向量组 ∇ℎ𝑖(𝑥*) (𝑖 =

1, 2, · · · , 𝑙) 线性无关, 则存在乘子向量 𝜆* = (𝜆*1, 𝜆
*
2, · · · , 𝜆*𝑙 )𝑇 使得

∇𝑥𝐿(𝑥
*, 𝜆*) = 0,

即

∇𝑓(𝑥*)−
𝑙∑︁

𝑖=1

𝜆*𝑖∇ℎ𝑖(𝑥*) = 0.

证 记

𝐻 =
(︀
∇ℎ1(𝑥*),∇ℎ2(𝑥*), · · · ,∇ℎ𝑙(𝑥*)

)︀
.
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由定理的假设知 𝐻 列满秩. 因此, 若 𝑙 = 𝑛, 则 𝐻 是可逆方阵, 从而矩阵 𝐻 的列

构成 R𝑛 中的一组基, 故存在 𝜆* ∈ R𝑙 (𝑙 = 𝑛) 使得

∇𝑓(𝑥*) =
𝑙∑︁

𝑖=1

𝜆*𝑖∇ℎ𝑖(𝑥*),

此时结论得证.

下面设 𝑙 < 𝑛. 不失一般性, 可设𝐻 的前 𝑙 行构成的 𝑙 阶子矩阵𝐻1 是非奇异

的. 据此, 将 𝐻 分块为

𝐻 =

⎛⎝ 𝐻1

𝐻2

⎞⎠ .

令 𝑦 = (𝑥1, · · · , 𝑥𝑙)𝑇 , 𝑧 = (𝑥𝑙+1, · · · , 𝑥𝑛)𝑇 , 并记 ℎ(𝑥) = (ℎ1(𝑥), · · · , ℎ𝑙(𝑥))𝑇 . 则有
ℎ(𝑦*, 𝑧*) = 0, 且 ℎ(𝑦, 𝑧) 在点 (𝑦*, 𝑧*) 关于 𝑦 的 Jacobi 矩阵 𝐻𝑇

1 = ∇𝑦ℎ(𝑦
*, 𝑧*) 可

逆. 故由隐函数定理可知, 在 𝑧* 附近存在关于 𝑧 的连续可微函数 𝑦 = 𝑢(𝑧) 使得

ℎ(𝑢(𝑧), 𝑧) = 0.

对上式两边关于 𝑧 求导得

∇𝑦ℎ(𝑢(𝑧), 𝑧)∇𝑢(𝑧) +∇𝑧ℎ(𝑢(𝑧), 𝑧) = 0,

故

∇𝑢(𝑧*) = −𝐻−𝑇
1 𝐻𝑇

2 . (8.3)

在 𝑧* 附近, 由ℎ(𝑢(𝑧), 𝑧) = 0 知 𝑧* 是无约束优化问题

min
𝑧∈𝑅𝑛−𝑙

𝑓(𝑢(𝑧), 𝑧)

的局部极小点, 故有

∇𝑧𝑓(𝑢(𝑧
*), 𝑧*) = 0,

即

∇𝑢(𝑧*)𝑇∇𝑦𝑓(𝑦
*, 𝑧*) +∇𝑧𝑓(𝑦

*, 𝑧*) = 0.

注意到 𝑥* = (𝑦*, 𝑧*), 将 (8.3) 代入上式得

−𝐻2𝐻
−1
1 ∇𝑦𝑓(𝑥

*) +∇𝑧𝑓(𝑥
*) = 0.
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令 𝜆* = 𝐻−1
1 ∇𝑦𝑓(𝑥

*), 则有

∇𝑦𝑓(𝑥
*) = 𝐻1𝜆

*, ∇𝑧𝑓(𝑥
*) = 𝐻2𝜆

*.

两式合起来即

∇𝑓(𝑥*) =

⎛⎝∇𝑦𝑓(𝑥
*)

∇𝑧𝑓(𝑥
*)

⎞⎠ =

⎛⎝𝐻1

𝐻2

⎞⎠𝜆* =
𝑙∑︁

𝑖=1

𝜆𝑖∇ℎ𝑖(𝑥*).

至此已经证明了定理的结论. �

为了讨论等式约束问题的二阶必要条件, 需要用到 (8.2) 定义的拉格朗日函

数 𝐿(𝑥, 𝜆) 的梯度和关于 𝑥 的 Hesse 阵. 下面, 我们计算出它们的表达式如下:

∇𝐿(𝑥, 𝜆) =

⎛⎝∇𝑥𝐿(𝑥, 𝜆)

∇𝜆𝐿(𝑥, 𝜆)

⎞⎠ =

⎛⎜⎝∇𝑓(𝑥)−
𝑙∑︀

𝑖=1

𝜆𝑖∇ℎ𝑖(𝑥)

−ℎ(𝑥)

⎞⎟⎠ ,

∇2
𝑥𝑥𝐿(𝑥, 𝜆) = ∇2𝑓(𝑥)−

𝑙∑︁
𝑖=1

𝜆𝑖∇2ℎ𝑖(𝑥).

如果目标函数和约束函数都是二阶连续可微的, 则可考虑二阶充分性条件.

定理 37 对于等式约束问题 (8.1), 假设 𝑓(𝑥) 和 ℎ𝑖(𝑥) (𝑖 = 1, 2, · · · , 𝑙) 都是
二阶连续可微的, 并且存在 (𝑥*, 𝜆*) ∈ R𝑛 × R𝑙 使得 ∇𝐿(𝑥*, 𝜆*) = 0. 若对任意的

0 ̸= 𝑑 ∈ R𝑛, ∇ℎ𝑖(𝑥*)𝑇𝑑 = 0 (𝑖 = 1, 2, · · · , 𝑙), 均有 𝑑𝑇∇2
𝑥𝑥𝐿(𝑥

*, 𝜆*)𝑑 > 0, 则 𝑥* 是

问题 (8.1) 的一个严格局部极小点.

证 用反证法. 若 𝑥* 不是严格局部极小点, 则必存在邻域 𝑁(𝑥*, 𝛿) 及收敛于

𝑥* 的序列 {𝑥𝑘}, 使得 𝑥𝑘 ∈ 𝑁(𝑥*, 𝛿), 𝑥𝑘 ̸= 𝑥*, 且有

𝑓(𝑥*) ≥ 𝑓(𝑥𝑘), ℎ𝑖(𝑥𝑘) = 0, 𝑖 = 1, 2, · · · , 𝑙, 𝑘 = 1, 2, · · ·

令 𝑥𝑘 = 𝑥* + 𝛼𝑘𝑧𝑘, 其中 𝛼𝑘 > 0, ‖𝑧𝑘‖ = 1, 序列 {(𝛼𝑘, 𝑧𝑘)} 有子列收敛于 (0, 𝑧*)

且 ‖𝑧*‖ = 1.

由泰勒中值公式得

0 = ℎ𝑖(𝑥𝑘)− ℎ𝑖(𝑥
*) = 𝛼𝑘𝑧

𝑇
𝑘 ∇ℎ𝑖(𝑥* + 𝜃𝑖𝑘𝛼𝑘𝑧𝑘),
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其中 𝜃𝑖𝑘 ∈ (0, 1). 上式两边同除以 𝛼𝑘, 并令 𝑘 → ∞ 得

∇ℎ𝑖(𝑥*)𝑇 𝑧* = 0, 𝑖 = 1, 2, · · · , 𝑙. (8.4)

再由泰勒展开式得

𝐿(𝑥𝑘, 𝜆
*) = 𝐿(𝑥*, 𝜆*) + 𝛼𝑘∇𝑥𝐿(𝑥

*, 𝜆*)𝑇 𝑧𝑘 +
1

2
𝛼2
𝑘𝑧

𝑇
𝑘 ∇2

𝑥𝑥𝐿(𝑥
*, 𝜆*)𝑧𝑘 + 𝑜(𝛼2

𝑘).

由于 𝑥𝑘 都满足等式约束, 故有

0 ≥ 𝑓(𝑥𝑘)− 𝑓(𝑥*) = 𝐿(𝑥𝑘, 𝜆
*)− 𝐿(𝑥*, 𝜆*)

=
1

2
𝛼2
𝑘𝑧

𝑇
𝑘 ∇2

𝑥𝑥𝐿(𝑥
*, 𝜆*)𝑧𝑘 + 𝑜(𝛼2

𝑘).

上式两边同除以 𝛼𝑘/2, 可得

𝑧𝑇𝑘 ∇2
𝑥𝑥𝐿(𝑥

*, 𝜆*)𝑧𝑘 +
𝑜(2𝛼2

𝑘)

𝛼2
𝑘

≤ 0.

对上式取极限 (𝑘 → ∞) 即得

(𝑧*)𝑇∇2
𝑥𝑥𝐿(𝑥

*, 𝜆*)𝑧* ≤ 0.

由于 𝑧* 满足 (8.4), 故得出矛盾. 因此 𝑥* 一定严格局部极小点. �

8.2 不等式约束问题的最优性条件

本小节我们考虑不等式约束优化问题的最优性条件:

min 𝑓(𝑥),

s.t. 𝑔𝑖(𝑥) ≥ 0, 𝑖 = 1, 2, · · · ,𝑚.
(8.5)

记可行域为 𝒟 = {𝑥 ∈ R𝑛| 𝑔𝑖(𝑥) ≥ 0, 𝑖 = 1, 2, · · · , 𝑛}, 指标集 𝐼 = {1, · · · ,𝑚}.
不等式约束问题的最优性条件需要用到所谓的有效约束和非有效约束的概

念. 对于一个可行点 𝑥̄, 即 𝑥̄ ∈ 𝒟. 此时可能会出现两种情形. 即有些约束函数满

足 𝑔𝑖(𝑥̄) = 0, 而另一些约束函数则满足 𝑔𝑖(𝑥̄) > 0. 对于后一种情形, 在 𝑥̄ 的某个

邻域内仍然保持 𝑔𝑖(𝑥̄) > 0 成立, 而前者则不具备这种性质. 因此有必要把这两种

情形区分开来.
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定义 17 若问题 (8.5) 的一个可行点 𝑥̄ ∈ 𝒟 使得 𝑔𝑖(𝑥̄) = 0, 则称不等式约束

𝑔𝑖(𝑥) ≥ 0 为 𝑥̄ 的有效约束. 反之, 若有 𝑔𝑖(𝑥̄) > 0, 则称不等式约束 𝑔𝑖(𝑥) ≥ 0 为

𝑥̄ 的非有效约束. 称集合

𝐼(𝑥̄) = {𝑖 : 𝑔𝑖(𝑥̄) = 0} (8.6)

为 𝑥̄ 处的有效约束指标集, 简称 𝑥 处的有效集 (或积极集).

下面的两个引理是研究不等式约束问题最优性条件的基础.

引理 11 (Farkas 引理 ) 设 𝑎, 𝑏𝑖 ∈ R𝑛 (𝑖 = 1, · · · , 𝑟). 则线性不等式组

𝑏𝑇𝑖 𝑑 ≥ 0, 𝑖 = 1, · · · , 𝑟, 𝑑 ∈ R𝑛

与不等式

𝑎𝑇𝑑 ≥ 0

相容的充要条件是存在非负实数 𝛼1, · · · , 𝛼𝑟, 使得 𝑎 =
𝑟∑︀

𝑖=1

𝛼𝑖𝑏𝑖.

证 充分性. 即存在非负实数 𝛼1, · · · , 𝛼𝑟, 使得 𝑎 =
𝑟∑︀

𝑖=1

𝛼𝑖𝑏𝑖. 设 𝑑 ∈ R𝑛 满足

𝑏𝑇𝑖 𝑑 ≥ 0 (𝑖 = 1, · · · , 𝑟). 那么有

𝑎𝑇𝑑 =
𝑟∑︁

𝑖=1

𝛼𝑖𝑏
𝑇
𝑖 𝑑 ≥ 0.

必要性. 设所有满足 𝑏𝑇𝑖 𝑑 ≥ 0 (𝑖 = 1, · · · , 𝑟) 的向量 𝑑 同时也满足 𝑎𝑇𝑑 ≥ 0.

用反证法. 设结论不成立, 即

𝑎 ̸∈ 𝐶 =
{︀
𝑥 ∈ R𝑛

⃒⃒
𝑥 =

𝑟∑︁
𝑖=1

𝛼𝑖𝑏𝑖, 𝛼𝑖 ≥ 0, 𝑖 = 1, · · · , 𝑟
}︀
.

设 𝑎0 ∈ 𝐶 是向量 𝑎 在凸锥 𝐶 上的投影, 即

‖𝑎0 − 𝑎‖2 = min
𝑥∈𝐶

‖𝑥− 𝑎‖2,

则有 𝑎𝑇0 (𝑎0 − 𝑎) = 0.

(1) 先证明对于任意的 𝑝 ∈ 𝐶 必有 𝑢𝑇 (𝑎0 − 𝑎) ≥ 0. 事实上, 若不然, 则存在

一个 𝑢 ∈ 𝐶, 使 𝑢𝑇 (𝑎0 − 𝑎) < 0. 令 𝑢̄ =
𝑢

‖𝑢‖
, 则 𝑢̄𝑇 (𝑎0 − 𝑎) = −𝜏 , 𝜏 > 0. 注意到

𝐶 是凸锥且 𝑎0, 𝑢̄ ∈ 𝐶, 故 𝑎0 + 𝜏 𝑢̄ ∈ 𝐶. 此时有

‖𝑎0 + 𝜏 𝑢̄− 𝑎‖2 − ‖𝑎0 − 𝑎‖2 = −𝜏 2 < 0,
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这与 𝑎0 是投影的假设矛盾, 故必有 𝑢𝑇 (𝑎0 − 𝑎) ≥ 0, ∀𝑢 ∈ 𝐶.

(2) 现取 𝑑 = 𝑎0 − 𝑎. 由于 𝑏𝑖 ∈ 𝐶, 那么由 (1) 的结论可得 𝑏𝑇𝑖 𝑑 ≥ 0. 故由必要

性的假设应有 𝑎𝑇𝑑 ≥ 0. 但另一方面, 有

𝑎𝑇𝑑 = 𝑎𝑇 (𝑎0 − 𝑎) = 𝑎𝑇 (𝑎0 − 𝑎)− 𝑎𝑇0 (𝑎0 − 𝑎)

= −(𝑎0 − 𝑎)𝑇 (𝑎0 − 𝑎) = −‖𝑎0 − 𝑎‖2 < 0,

这与假设矛盾, 必要性得证. �

下面的 Gordan 引理可以认为是 Farkas 引理的一个推论.

引理 12 (Gordan 引理 ) 设 𝑏𝑖 ∈ R𝑛 (𝑖 = 1, · · · , 𝑟). 线性不等式组

𝑏𝑇𝑖 𝑑 < 0, 𝑖 = 1, 2, · · · , 𝑟, 𝑑 ∈ R𝑛 (8.7)

无解的充要条件是 𝑏𝑖 (𝑖 = 1, · · · , 𝑟) 线性相关, 即存在不全为 0 的非负实数

𝛼𝑖 (𝑖 = 1, · · · , 𝑟), 使得
𝑟∑︁

𝑖=1

𝛼𝑖𝑏𝑖 = 0. (8.8)

证 充分性. 用反证法. 设 (8.7) 有解, 即存在某个 𝑑0, 使得 𝑏𝑇𝑖 𝑑0 < 0, 𝑖 =

1, · · · , 𝑟. 于是对于任意不全为 0 的非负实数 𝛼𝑖 (𝑖 = 1, · · · , 𝑟), 有
𝑟∑︀

𝑖=1

𝛼𝑖𝑏𝑖 < 0. 另

一方面, 由充分性条件 (8.8) 有
𝑟∑︀

𝑖=1

𝛼𝑖𝑏𝑖 = 0, 矛盾, 故充分性得证.

必要性. 设不等式组 (8.7) 无解. 故对于任意的 𝑑 ∈ R𝑛, 至少存在一个指标 𝑖

满足 𝑏𝑇𝑖 𝑑 ≥ 0. 记 𝛽0 = max
1≤𝑖≤𝑟

{𝑏𝑇𝑖 𝑑}, 则必有 𝛽0 ≥ 0 且

𝛽0 − 𝑏𝑇𝑖 𝑑 ≥ 0, 𝑖 = 1, · · · , 𝑟.

下面我们构造 𝑟 + 2 个 𝑛+ 1 维向量:

𝑑 =

⎛⎝ 𝛽

𝑑

⎞⎠ , 𝑎̄ =

⎛⎝ 1

0

⎞⎠ , 𝑏̄𝑖 =

⎛⎝ 1

−𝑏𝑖

⎞⎠ , 𝑖 = 1, · · · , 𝑟, (8.9)

其中 𝛽 ≥ 𝛽0. 那么不难验证上述向量满足 Farkas 引理的条件, 即

𝑏̄𝑇𝑖 𝑑 = 𝛽 − 𝑏𝑇𝑖 𝑑 ≥ 𝛽0 − 𝑏𝑇𝑖 𝑑 ≥ 0, 𝑖 = 1, · · · , 𝑟,
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且 𝑎̄𝑇𝑑 = 𝛽 ≥ 0. 故由 Farkas 引理, 存在非负实数 𝛼1, · · · , 𝛼𝑟, 使得

𝑎̄ =
𝑟∑︁

𝑖=1

𝛼𝑖𝑏̄𝑖.

将 (8.9) 代入上式即得
𝑟∑︁

𝑖=1

𝛼𝑖𝑏𝑖 = 0,
𝑟∑︁

𝑖=1

𝛼𝑖 = 1.

必要性得证. �

下面的引理可认为是一个几何最优性条件.

引理 13 设 𝑥* 是不等式约束问题 (8.5) 的一个局部极小点, 𝐼(𝑥*) =

{𝑖| 𝑔𝑖(𝑥*) = 0, 𝑖 = 1, · · · ,𝑚}. 假设 𝑓(𝑥) 和 𝑔𝑖(𝑥) (𝑖 ∈ 𝐼(𝑥*)) 在 𝑥* 处可微,

且 𝑔𝑖(𝑥) (𝑖 ∈ 𝐼∖𝐼(𝑥*)) 在 𝑥* 处连续. 则问题 (8.5) 的可行方向集 ℱ 与下降方向集
𝒮 的交集是空集, 即 ℱ ∩ 𝒮 = ∅, 其中

ℱ = {𝑑 ∈ R𝑛| ∇𝑔𝑖(𝑥*)𝑇𝑑 > 0, 𝑖 ∈ 𝐼(𝑥*)}, 𝒮 = {𝑑 ∈ R𝑛| ∇𝑓(𝑥*)𝑇𝑑 < 0}. (8.10)

证 用反证法. 设 ℱ ∩ 𝒮 ≠ ∅, 则存在 𝑑 ∈ ℱ ∩ 𝒮 = ∅. 显然 𝑑 ̸= 0. 由 ℱ , 𝒮 的
定义及函数的连续性知, 存在充分小的正数 𝜀, 使得对任意的 0 < 𝜀≪ 𝜀, 有

𝑓(𝑥* + 𝜀𝑑) < 𝑓(𝑥*), 𝑔𝑖(𝑥
* + 𝜀𝑑) ≥ 0, 𝑖 = 1, · · · ,𝑚.

这与假设矛盾. �

下面我们给出不等式约束问题 (8.5) 的一阶必要条件, 即著名的 KT 条件.

定理 38 (KT 条件 ) 设 𝑥* 是不等式约束问题 (8.5) 的局部极小点, 有效约

束集 𝐼(𝑥*) = {𝑖| 𝑔𝑖(𝑥*) = 0, 𝑖 = 1, · · · ,𝑚}. 并设 𝑓(𝑥)和 𝑔𝑖(𝑥) (𝑖 = 1, · · · ,𝑚)在 𝑥*

处可微. 若向量组 ∇𝑔𝑖(𝑥*) (𝑖 ∈ 𝐼(𝑥*)) 线性无关, 则存在向量 𝜆* = (𝜆*1, · · · , 𝜆*𝑚)𝑇

使得 ⎧⎪⎪⎨⎪⎪⎩
∇𝑓(𝑥*)−

𝑚∑︁
𝑖=1

𝜆*𝑖∇𝑔𝑖(𝑥*) = 0,

𝑔𝑖(𝑥
*) ≥ 0, 𝜆*𝑖 ≥ 0, 𝜆*𝑖 𝑔𝑖(𝑥

*) = 0, 𝑖 = 1, · · · ,𝑚.

证 因 𝑥* 是问题 (8.5) 的局部极小点, 故由引理 13 知, 不存在 𝑑 ∈ R𝑛 使得

∇𝑓(𝑥*)𝑇𝑑 < 0, ∇𝑔𝑖(𝑥*)𝑇𝑑 > 0, 𝑖 ∈ 𝐼(𝑥*),
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即线性不等式组

∇𝑓(𝑥*)𝑇𝑑 < 0, −∇𝑔𝑖(𝑥*)𝑇𝑑 < 0, 𝑖 ∈ 𝐼(𝑥*)

无解. 于是由 Gordan 引理知, 存在不全为 0 的非负实数 𝜇0 ≥ 0 及 𝜇𝑖 ≥ 0 (𝑖 ∈
𝐼(𝑥*)), 使得

𝜇0∇𝑓(𝑥*)−
∑︁

𝑖∈𝐼(𝑥*)

𝜇𝑖∇𝑔𝑖(𝑥*) = 0.

不难证明 𝜇0 ̸= 0. 事实上, 若 𝜇0 = 0, 则有
∑︀

𝑖∈𝐼(𝑥*)

𝜇𝑖∇𝑔𝑖(𝑥*) = 0, 由此可知

∇𝑔𝑖(𝑥*) (𝑖 ∈ 𝐼(𝑥*)) 线性相关, 这与假设矛盾. 因此必有 𝜇0 > 0. 于是可令

𝜆*𝑖 =
𝜇𝑖

𝜇0

, 𝑖 ∈ 𝐼(𝑥*); 𝜆*𝑖 = 0, 𝑖 ∈ 𝐼∖𝐼(𝑥*),

则得

∇𝑓(𝑥*)−
𝑚∑︁
𝑖=1

𝜆*𝑖∇𝑔𝑖(𝑥*) = 0,

及

𝑔𝑖(𝑥
*) ≥ 0, 𝜆*𝑖 ≥ 0, 𝜆*𝑖 𝑔𝑖(𝑥

*) = 0, 𝑖 = 1, · · · ,𝑚.

定理得证. �

8.3 一般约束问题的最优性条件

我们现在考虑一般约束优化问题的最优性条件:

min 𝑓(𝑥),

s.t. ℎ𝑖(𝑥) = 0, 𝑖 = 1, 2, · · · , 𝑙,

𝑔𝑖(𝑥) ≥ 0, 𝑖 = 1, 2, · · · ,𝑚.

(8.11)

记指标集 𝐸 = {1, · · · , 𝑙}, 𝐼 = {1, · · · ,𝑚}. 可行域为 𝒟 = {𝑥 ∈ R𝑛|ℎ𝑖(𝑥) = 0, 𝑖 ∈
𝐸, 𝑔𝑖(𝑥) ≥ 0, 𝑖 ∈ 𝐼}.

把定理 36 和定理 38 结合起来即得到一般约束问题 (8.11) 的 KT 一阶必要

条件.

· 121 ·



第八章 最优性条件 回回回目目目录录录 S8.3 一般约束问题的最优性条件

定理 39 (KT 一阶必要条件 ) 设 𝑥* 是一般约束问题 (8.11) 的局部极小点,

在 𝑥* 处的有效约束集为

𝑆(𝑥*) = 𝐸 ∪ 𝐼(𝑥*) = 𝐸 ∪ {𝑖 | 𝑔𝑖(𝑥*) = 0, 𝑖 ∈ 𝐼}. (8.12)

并设 𝑓(𝑥), ℎ𝑖(𝑥) (𝑖 ∈ 𝐸) 和 𝑔𝑖(𝑥) (𝑖 ∈ 𝐼) 在 𝑥* 处可微. 若向量组 ∇ℎ𝑖(𝑥*) (𝑖 ∈
𝐸), ∇𝑔𝑖(𝑥*) (𝑖 ∈ 𝐼(𝑥*)) 线性无关, 则存在向量 (𝜇*, 𝜆*) ∈ R𝑙 × R𝑚, 其中 𝜇* =

(𝜇*
1, · · · , 𝜇*

𝑙 )
𝑇 , 𝜆* = (𝜆*1, · · · , 𝜆*𝑚)𝑇 , 使得⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∇𝑓(𝑥*)−
𝑙∑︁

𝑖=1

𝜇*
𝑖∇ℎ𝑖(𝑥*)−

𝑚∑︁
𝑖=1

𝜆*𝑖∇𝑔𝑖(𝑥*) = 0,

ℎ𝑖(𝑥
*) = 0, 𝑖 ∈ 𝐸,

𝑔𝑖(𝑥
*) ≥ 0, 𝜆*𝑖 ≥ 0, 𝜆*𝑖 𝑔𝑖(𝑥

*) = 0, 𝑖 ∈ 𝐼.

(8.13)

注 3 (1) 称 (8.13) 为 KT 条件, 满足这一条件的点 𝑥* 称为 KT 点. 而把

(𝑥*, (𝜇*, 𝜆*)) 称为 KT 对, 其中 (𝜇*, 𝜆*) 称为问题的拉格朗日乘子. 通常 KT 点、

KT 对和 KT 条件可以不加区别的使用.

(2) 称 𝜆*𝑖 𝑔𝑖(𝑥
*) = 0 (𝑖 ∈ 𝐼(𝑥*)) 为互补性松弛条件. 这意味着 𝜆*𝑖 和 𝑔𝑖(𝑥

*) 中

至少有一个必为 0. 若二者中的一个为 0, 而另一个严格大于 0, 则称之为满足严

格互补性松弛条件.

与等式约束问题相仿, 可以定义问题 (8.11) 的拉格朗日函数

𝐿(𝑥, 𝜆, 𝜇) = 𝑓(𝑥)−
𝑙∑︁

𝑖=1

𝜇𝑖ℎ𝑖(𝑥)−
𝑚∑︁
𝑖=1

𝜆𝑖𝑔𝑖(𝑥). (8.14)

不难求出它关于变量 𝑥 的梯度和 Hesse 阵分别为

∇𝑥𝐿(𝑥, 𝜆, 𝜇) = ∇𝑓(𝑥)−
𝑙∑︁

𝑖=1

𝜇𝑖∇ℎ𝑖(𝑥)−
𝑚∑︁
𝑖=1

𝜆𝑖∇𝑔𝑖(𝑥),

∇2
𝑥𝑥𝐿(𝑥, 𝜆, 𝜇) = ∇2𝑓(𝑥)−

𝑙∑︁
𝑖=1

𝜇𝑖∇2ℎ𝑖(𝑥)−
𝑚∑︁
𝑖=1

𝜆𝑖∇2𝑔𝑖(𝑥).

与定理 37 的证明相类似, 证明问题 (8.13) 的二阶充分条件:
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定理 40 对于约束优化问题 (8.11), 假设 𝑓(𝑥), 𝑔𝑖(𝑥) (𝑖 ∈ 𝐼) 和 ℎ𝑖(𝑥) (𝑖 ∈ 𝐸)

都是二阶连续可微的, 有效约束集 𝐼(𝑥*) 由 (8.12) 所定义. 且 (𝑥*, (𝜇*, 𝜆*)) 是

问题 (8.11) 的 KT 点. 若对任意的 0 ̸= 𝑑 ∈ R𝑛, ∇𝑔𝑖(𝑥*)𝑇𝑑 = 0 (𝑖 ∈ 𝐼(𝑥*),

∇ℎ𝑖(𝑥*)𝑇𝑑 = 0 (𝑖 ∈ 𝐸), 均有 𝑑𝑇∇2
𝑥𝑥𝐿(𝑥

*, 𝜆*)𝑑 > 0, 则 𝑥* 是问题 (8.11) 的一个严

格局部极小点.

例 22 考虑优化问题

min 𝑓(𝑥) = −2𝑥21 − 𝑥22,

s.t. 𝑥21 + 𝑥22 − 2 = 0,

−𝑥1 + 𝑥2 ≥ 0,

𝑥1 ≥ 0, 𝑥2 ≥ 0.

试验证 𝑥* = (1, 1)𝑇 为 KT 点, 并求出问题的 KT 对.

解 计算

∇𝑓(𝑥*) =

⎛⎝−4𝑥1

−2𝑥2

⎞⎠ ⃒⃒⃒⃒
𝑥=𝑥*

=

⎛⎝−4

−2

⎞⎠ , ∇ℎ(𝑥*) =

⎛⎝2

2

⎞⎠ , ∇𝑔1(𝑥*) =

⎛⎝−1

1

⎞⎠ .

令

∇𝑓(𝑥*)− 𝜇*∇ℎ(𝑥*)− 𝜆*1∇𝑔1(𝑥*) = 0,

解得 𝜇* = −1.5, 𝜆*1 = 1. 再令 𝜆*2 = 𝜆*3 = 0, 得⎧⎪⎨⎪⎩ ∇𝑓(𝑥*)− 𝜇*∇ℎ(𝑥*)−
3∑︀

𝑖=1

𝜆*𝑖∇𝑔𝑖(𝑥*) = 0,

𝜆*𝑖 𝑔𝑖(𝑥
*) = 0, 𝜆𝑖 ≥ 0, 𝑖 = 1, 2, 3.

这表明 𝑥* 是 KT 点, (𝑥*, (𝜇*, 𝜆*)) 是 KT 对, 其中 𝜇* = −1.5, 𝜆* = (1, 0, 0)𝑇 .

一般而言, 问题 (8.11) 的 KT 点不一定是局部极小点. 但如果问题是下面的

所谓凸优化问题, 则 KT 点、局部极小点、全局极小点三者是等价的.

下面首先给出约束凸优化问题的定义.

定义 18 对于约束最优化问题

min 𝑓(𝑥), 𝑥 ∈ R𝑛

s.t.

⎧⎨⎩ ℎ𝑖(𝑥) = 0, 𝑖 = 1, 2, · · · , 𝑙,

𝑔𝑖(𝑥) ≥ 0, 𝑖 = 1, 2, · · · ,𝑚,

(8.15)
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若 𝑓(𝑥) 是凸函数, ℎ𝑖(𝑥) (𝑖 = 1, · · · , 𝑙) 是线性函数, 𝑔𝑖(𝑥) (𝑖 = 1, · · · ,𝑚) 是凹函数

(即 −𝑔𝑖(𝑥) 是凸函数), 那么上述约束优化问题称为凸优化问题.

定理 41 设 (𝑥*, 𝜇*, 𝜆*) 是凸优化问题 (8.15) 的 KT 点, 则 𝑥* 必为该问题的

全局极小点.

证 因对于凸优化问题, 其拉格朗日函数

𝐿(𝑥, 𝜇*, 𝜆*) = 𝑓(𝑥)−
𝑙∑︁

𝑖=1

𝜇*
𝑖ℎ𝑖(𝑥)−

𝑚∑︁
𝑖=1

𝜆*𝑖 𝑔𝑖(𝑥)

关于 𝑥 是凸函数. 故对于每一个可行点 𝑥, 我们有

𝑓(𝑥) ≥ 𝑓(𝑥)−
𝑙∑︁

𝑖=1

𝜇*
𝑖ℎ𝑖(𝑥)−

𝑚∑︁
𝑖=1

𝜆*𝑖 𝑔𝑖(𝑥)

= 𝐿(𝑥, 𝜇*, 𝜆*)

≥ 𝐿(𝑥*, 𝜇*, 𝜆*) +∇𝑥𝐿(𝑥
*, 𝜇*, 𝜆*)𝑇 (𝑥− 𝑥*)

= 𝐿(𝑥*, 𝜇*, 𝜆*) = 𝑓(𝑥*).

故 𝑥* 为问题的全局极小点. �

8.4 鞍点和对偶问题

本节介绍约束优化问题的鞍点和对偶等有关概念. 首先给出鞍点的定义.

定义 19 对约束优化问题 (8.11), 若存在 𝑥* 和 (𝜇*, 𝜆*), 其中 𝜆* ≥ 0, 满足

𝐿(𝑥*, 𝜇, 𝜆) ≤ 𝐿(𝑥*, 𝜇*, 𝜆*) ≤ 𝐿(𝑥, 𝜇*, 𝜆*), ∀ (𝑥, 𝜇, 𝜆) ∈ R𝑛 × R𝑙 × R𝑚
+ , (8.16)

则称 (𝑥*, 𝜇*, 𝜆*) 为约束优化问题 (8.11) 的拉格朗日函数的鞍点, 通常简称 𝑥* 为

问题 (8.11) 的鞍点.

下面的定理表明, 鞍点 𝑥* 不仅是 KT 点, 而且是全局极小点.

定理 42 设 (𝑥*, 𝜇*, 𝜆*) 是约束优化问题 (8.11) 的鞍点. 则 (𝑥*, 𝜇*, 𝜆*) 不仅

是问题 (8.11) KT 点, 而且是它的全局极小点.
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证 由鞍点的定义 19 可知 𝑥* 是

min
𝑥∈R𝑛

𝐿(𝑥, 𝜇*, 𝜆*)

的全局极小点. 由无约束优化问题的最优性条件可得 ∇𝑥𝐿(𝑥
*, 𝜇*, 𝜆*) = 0, 这就

证明了约束优化问题 (8.11) KT 条件的第一个式子.

另一方面, 再由鞍点的定义可知 (𝜇*, 𝜆*) 是

max
𝜆𝑖≥0 (𝑖∈𝐼),𝜇∈R𝑙

𝐿(𝑥*, 𝜇, 𝜆)

的全局极大点, 等价地, (𝜇*, 𝜆*) 是

min
𝜆𝑖≥0 (𝑖∈𝐼),𝜇∈R𝑙

−𝐿(𝑥*, 𝜇, 𝜆)

的全局极小点. 那么由定理 39 可知, 存在乘子向量 𝜔* = (𝜔*
1, · · · , 𝜔*

𝑚)
𝑇 (𝜔*

𝑖 ≥
0, 𝑖 = 1, · · · ,𝑚) 使得⎧⎨⎩ ℎ𝑖(𝑥

*) = 0, 𝑖 ∈ 𝐸

𝑔𝑖(𝑥
*) = 𝜔*

𝑖 ≥ 0, 𝜆*𝑖 ≥ 0, 𝜔*
𝑖 𝜆

*
𝑖 = 0, 𝑖 ∈ 𝐼.

从而 𝑥* 是问题 (8.11) 的可行点, 且 𝜆*𝑖 𝑔𝑖(𝑥
*) = 0, 𝑖 ∈ 𝐼, 故 (𝑥*, 𝜇*, 𝜆*) 满足 (8.11)

的 KT 条件, 即为 KT 点.

进一步, 由鞍点的定义, 对于问题 (8.11) 的任意可行点 𝑥, 我们有

𝐿(𝑥*, 𝜇*, 𝜆*) ≤ 𝐿(𝑥, 𝜇*, 𝜆*),

即

𝑓(𝑥*) ≤ 𝑓(𝑥)−
𝑙∑︁

𝑖=1

𝜇*
𝑖ℎ𝑖(𝑥)−

𝑚∑︁
𝑖=1

𝜆*𝑖 𝑔𝑖(𝑥) ≤ 𝑓(𝑥),

从而 𝑥* 是问题 (8.11) 的全局极小点. �

上述定理说明, 鞍点一定是 KT 点, 但反之不一定成立. 然而, 对于凸优化问

题, KT 点、鞍点和全局极小点三者是等价的. 我们有

定理 43 设 (𝑥*, 𝜇*, 𝜆*) 是凸优化问题的 KT 点, 则 (𝑥*, 𝜇*, 𝜆*) 为对应的拉

格朗日函数的鞍点, 同时 𝑥* 也是该凸优化问题的全局极小点.
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证 注意到对于凸优化问题, 拉格朗日函数

𝐿(𝑥, 𝜇*, 𝜆*) = 𝑓(𝑥)−
𝑙∑︁

𝑖=1

𝜇*
𝑖ℎ𝑖(𝑥)−

𝑚∑︁
𝑖=1

𝜆*𝑖 𝑔𝑖(𝑥)

关于 𝑥 是凸函数, 故由凸函数的性质 (定理 4), 有

𝐿(𝑥, 𝜇*, 𝜆*) ≥ 𝐿(𝑥*, 𝜇*, 𝜆*) +∇𝑥𝐿(𝑥
*, 𝜇*, 𝜆*)𝑇 (𝑥− 𝑥*)

= 𝐿(𝑥*, 𝜇*, 𝜆*),

即 𝐿(𝑥*, 𝜇*, 𝜆*) ≤ 𝐿(𝑥, 𝜇*, 𝜆*). 另一方面, 对于任意的 (𝜆, 𝜇) ∈ R𝑚
+ × R𝑙, 有

𝐿(𝑥*, 𝜇, 𝜆)− 𝐿(𝑥*, 𝜇*, 𝜆*) = −
𝑙∑︁

𝑖=1

(𝜇𝑖 − 𝜇*
𝑖 )ℎ𝑖(𝑥

*)−
𝑚∑︁
𝑖=1

(𝜆𝑖 − 𝜆*𝑖 )𝑔𝑖(𝑥
*)

= −
𝑚∑︁
𝑖=1

𝜆𝑖𝑔𝑖(𝑥
*) ≤ 0,

即 𝐿(𝑥*, 𝜇, 𝜆) ≤ 𝐿(𝑥*, 𝜇*, 𝜆*), 故 (𝑥*, 𝜇*, 𝜆*) 为鞍点, 同时 𝑥* 也是凸优化问题的

全局极小点. �

下面讨论约束优化问题的对偶问题. 对于约束优化问题 (8.11), 我们引入如

下记号:

𝐺(𝑥) = (𝑔1(𝑥), · · · , 𝑔𝑚(𝑥))𝑇 , 𝐻(𝑥) = (ℎ1(𝑥), · · · , ℎ𝑙(𝑥))𝑇 .

令 𝑦 ∈ R𝑚, 𝑧 ∈ R𝑙, 定义函数

𝐿(𝑥, 𝑦, 𝑧) = 𝑓(𝑥)−𝐺(𝑥)𝑇𝑦 −𝐻(𝑥)𝑇 𝑧

及

𝜃(𝑦, 𝑧) = inf
𝑥∈R𝑛

𝐿(𝑥, 𝑦, 𝑧).

易知 𝜃(𝑦, 𝑧) 关于 (𝑦, 𝑧) 是凹函数.

约束问题 (8.11) 的拉格朗日对偶定义为:⎧⎨⎩ max 𝜃(𝑦, 𝑧),

s.t. 𝑦 ∈ R𝑚
+ , 𝑧 ∈ R𝑙.

(8.17)

· 126 ·



第八章 最优性条件 回回回目目目录录录 S8.4 鞍点和对偶问题

约束问题 (8.11) 的Wolfe 对偶定义为:⎧⎪⎪⎪⎨⎪⎪⎪⎩
max 𝐿(𝑥, 𝑦, 𝑧),

s.t. ∇𝑥𝐿(𝑥, 𝑦, 𝑧) = 0,

𝑦 ∈ R𝑚
+ , 𝑧 ∈ R𝑙.

(8.18)

注 4 上面的两种对偶在某种意义上是一致的. 事实上, 对于拉格朗日对

偶, 由于目标函数 𝜃(𝑦, 𝑧) 本身就是拉格朗日函数关于 𝑥 的极小值, 所以显然有

∇𝑥𝐿(𝑥, 𝑦, 𝑧) = 0 成立. 将其合并到拉格朗日对偶的约束当中, 就得到了所谓的

Wolfe 对偶.

对于线性规划问题和凸二次规划问题, 拉格朗日对偶 (8.17) 将会有更为明晰

的形式. 我们看下面例子.

例 23 设有线性规划问题 ⎧⎪⎪⎪⎨⎪⎪⎪⎩
min 𝑐𝑇𝑥,

s.t. 𝐴𝑥 = 𝑏,

𝑥 ≥ 0.

(8.19)

试写出它的拉格朗日对偶.

解 其拉格朗日函数为

𝐿(𝑥, 𝑦, 𝑧) = 𝑐𝑇𝑥− 𝑦𝑇𝑥− 𝑧𝑇 (𝐴𝑥− 𝑏).

对上述函数关于 𝑥 求极小. 令

∇𝑥𝐿(𝑥, 𝑦, 𝑧) = 𝑐− 𝑦 − 𝐴𝑇 𝑧 = 0.

将其代入拉格朗日函数得

𝜃(𝑦, 𝑧) = inf
𝑥∈R𝑛

𝐿(𝑥, 𝑦, 𝑧)

= inf
𝑥∈R𝑛

{(𝑐− 𝑦 − 𝐴𝑇 𝑧)𝑇𝑥+ 𝑧𝑇 𝑏}

= 𝑧𝑇 𝑏 = 𝑏𝑇 𝑧.
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注意到 𝑦 = 𝑐− 𝐴𝑇 𝑧 ≥ 0, 于是有⎧⎨⎩ max 𝑏𝑇 𝑧,

s.t. 𝐴𝑇 𝑧 ≤ 𝑐.
(8.20)

这就是线性规划问题 (8.19) 的对偶规划.

例 24 设二次规划问题⎧⎪⎨⎪⎩
min

1

2
𝑥𝑇𝐵𝑥+ 𝑐𝑇𝑥,

s.t. 𝐴𝑥 ≤ 𝑏,
(8.21)

其中 𝐵 ∈ R𝑛×𝑛 对称正定, 𝐴 ∈ R𝑚×𝑛. 试写出二次规划问题 (8.21) 的对偶规划.

解 首先写出该问题的拉格朗日函数为

𝐿(𝑥, 𝑦) =
1

2
𝑥𝑇𝐵𝑥+ 𝑐𝑇𝑥− 𝑦𝑇 (𝑏− 𝐴𝑥).

对上述函数关于 𝑥 求极小. 由于 𝐵 对称正定, 故函数 𝐿(𝑥, 𝑦) 关于 𝑥 为凸函数.

令

∇𝑥𝐿(𝑥, 𝑦, 𝑧) = 𝐵𝑥+ 𝑐+ 𝐴𝑇𝑦 = 0,

解得 𝑥 = −𝐵−1(𝑐+ 𝐴𝑇𝑦). 将其代入拉格朗日函数得

𝜃(𝑦) = inf
𝑥∈R𝑛

𝐿(𝑥, 𝑦)

= inf
𝑥∈R𝑛

{︀
(𝐵𝑥+ 𝑐+ 𝐴𝑇𝑦)𝑇𝑥− 𝑦𝑇 𝑏− 1

2
𝑥𝑇𝐵𝑥

}︀
= −𝑏𝑇𝑦 − 1

2
[−𝐵−1(𝑐+ 𝐴𝑇𝑦)]𝑇𝐵[−𝐵−1(𝑐+ 𝐴𝑇𝑦)]

= −𝑏𝑇𝑦 − 1

2
(𝑐𝑇 + 𝑦𝑇𝐴)𝐵−1(𝑐+ 𝐴𝑇𝑦)

= (−𝑏− 𝐴𝐵−1𝑐)𝑇𝑦 − 1

2
𝑦𝑇 (𝐴𝐵−1𝐴𝑇 )𝑦 − 1

2
𝑐𝑇𝐵−1𝑐.

令

𝑑 = −𝑏− 𝐴𝐵−1𝑐, 𝐷 = −𝐴𝐵−1𝐴𝑇 ,

则有

𝜃(𝑦) =
1

2
𝑦𝑇𝐷𝑦 + 𝑑𝑇𝑦 − 1

2
𝑐𝑇𝐵−1𝑐.

· 128 ·



第八章 最优性条件 回回回目目目录录录 S8.4 鞍点和对偶问题

注意到乘子向量 𝑦 ≥ 0, 因此二次规划问题 (8.21) 的拉格朗日对偶是⎧⎪⎨⎪⎩
max

1

2
𝑦𝑇𝐷𝑦 + 𝑑𝑇𝑦 − 1

2
𝑐𝑇𝐵−1𝑐,

s.t. 𝑦 ≤ 0.

最后, 我们讨论一下原问题与对偶问题的目标函数值之间的关系.

定理 44 (弱对偶定理 ) 设 𝑥̄ 和 (𝑦, 𝑧) 分别是原问题 (8.11) 和对偶问题

(8.17) 的可行解. 则有 𝜃(𝑦, 𝑧) ≤ 𝑓(𝑥̄).

证 因 𝑥̄ 和 (𝑦, 𝑧) 分别是原问题 (8.11) 和对偶问题 (8.17) 的可行解, 故

𝜃(𝑦, 𝑧) = inf
𝑥∈R𝑛

{︀
𝑓(𝑥)− 𝑦𝑇𝐺(𝑥)− 𝑧𝑇𝐻(𝑥)

}︀
≤ 𝑓(𝑥̄)− 𝑦𝑇𝐺(𝑥̄)− 𝑧𝑇𝐻(𝑥̄) = 𝑓(𝑥̄).

定理得证. �

习 题 8

1. 验证 𝑥̄ = (2, 1)𝑇 是否为下列最优化问题的 K-T 点：

min 𝑓(𝑥) = (𝑥1 − 3)2 + (𝑥2 − 2)2,

s.t. 𝑥2
1 + 𝑥2

2 ≤ 5,

𝑥1 + 2𝑥2 = 4,

𝑥1, 𝑥2 ≥ 0.

2. 对于最优化问题：

min 𝑓(𝑥) = 4𝑥1 − 3𝑥2,

s.t. −(𝑥1 − 3)2 + 𝑥2 + 1 ≥ 0,

4− 𝑥1 − 𝑥2 ≥ 0,

𝑥2 + 7 ≥ 0.

求满足 K-T 条件的点.

3. 写出下列优化问题的 KT 条件, 其中 𝑥 ∈ R𝑛, 𝐴 ∈ R𝑚×𝑛, 𝐻 ∈ R𝑛×𝑛.
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(1) min 𝑐𝑇𝑥

s.t. 𝐴𝑥 = 𝑏,

𝑥 ≥ 0,

(2) min
1

2
𝑥𝑇𝐻𝑥+ 𝑑𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏,

(3) min 𝑓(𝑥)

s.t. ℎ𝑗(𝑥) = 0, 𝑗 = 1, · · · , 𝑙

𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, · · · ,𝑚1

𝑔𝑖(𝑥) ≥ 0, 𝑖 = 𝑚1 + 1, · · · ,𝑚

.

4. 考虑无约束优化问题 min 𝑓(𝑥), 设 𝑥𝑘 为当前迭代点, ∇𝑓(𝑥𝑘) ̸= 0 为确定 𝑓(𝑥)

在𝑥𝑘处的一个下降方向, 分别按以下两种方法构造子问题:

(1) min ∇𝑓(𝑥𝑘)
𝑇𝑑

s.t. 𝑑𝑇𝑑 = 1,

(2) min ∇𝑓(𝑥𝑘)
𝑇𝑑,

s.t. 𝑑𝑇𝐻𝑘𝑑 = 1,

其中 𝐻𝑘 对称正定, 试用 KT 法求解 (1), (2). 所谓 KT 法是指: 先求问题的 KT 点, 然后用

最优性条件、凸分析或其它方法判别这些点是否为局部或全局最优点.

5. 利用 KT 条件推出线性规划

min 𝑧 = 𝑐𝑇𝑥,

s.t. 𝐴𝑥 ≤ 𝑏,

𝑥 ≥ 0

的最优性条件.

6. 设二次规划

min 𝑓(𝑥) = 1
2
𝑥𝑇𝐻𝑥+ 𝑐𝑇𝑥,

s.t. 𝐴𝑥 = 𝑏,

其中 𝐻 是 𝑛 阶对称正定阵, 矩阵 𝐴 行满秩, 求其最优解并说明解的唯一性.

7. 设 𝑥* 是问题

min 𝑧 = 𝑐𝑇𝑥

s.t. ℎ(𝑥) = 0, 𝑥 ≥ 0

的可行点, 且存在 𝑢*, 使得

𝑐+∇ℎ(𝑥*)𝑢* ≥ 0, (𝑥*)𝑇 (𝑐+∇ℎ(𝑥*)𝑢*) = 0,
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其中 ℎ(𝑥) = (ℎ1(𝑥), · · · , ℎ𝑙(𝑥))
𝑇 . 证明 𝑥* 是问题的 KT 点.

8. 考虑Wolfe 问题

min 𝑓(𝑥) =
4

3
(𝑥2

1 − 𝑥1𝑥2 + 𝑥2
2)

3
4 − 𝑥3,

s.t. 𝑥1, 𝑥2, 𝑥3 ≥ 0, 𝑥3 ≤ 2.

(1) 证明目标函数 𝑓(𝑥) 是可行集 𝑆 上的凸函数, 其中

𝑆 = {(𝑥1, 𝑥2, 𝑥3)
𝑇 𝑡|𝑥1, 𝑥2, 𝑥3 ≥ 0, 𝑥3 ≤ 2}.

(2) 试用 KT 条件求此问题的全局极小点.

9. 给定线性约束优化问题

min
𝑛∑︀

𝑖=1

𝑐𝑖
𝑥𝑖

,

s.t.
𝑛∑︀

𝑖=1

𝑎𝑖𝑥𝑖 = 𝑏,

其中 𝑎𝑖, 𝑐𝑖(𝑖 = 1, · · · , 𝑛), 𝑏 是正常数. 证明目标函数的全局极小值为:

𝑓(𝑥*) =
1

𝑏

[︂ 𝑛∑︁
𝑖=1

√
𝑎𝑖𝑐𝑖

]︂2
.
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从本章开始, 我们讨论约束优化问题的求解方法. 首先介绍求解约束优化问

题的经典算法—罚函数法. 其基本思想是: 根据约束条件的特点将其转化为某种

惩罚函数加到目标函数中去, 从而将约束优化问题转化为一系列的无约束优化问

题来求解. 本章主要介绍外罚函数法、内点法和乘子法.

9.1 外罚函数法

我们首先通过一个简单的例子来说明罚函数的构造.

例 25 求解约束优化问题:

min 𝑓(𝑥) = (𝑥1 − 1)2 + (𝑥2 − 1)2,

s.t. 𝑥1 + 𝑥2 = 1.

解 由等式约束得 𝑥2 = 1− 𝑥1, 代入目标函数得到一个无约束的单变量极小

化问题

min 𝜑(𝑥1) = (𝑥1 − 1)2 + 𝑥21,

其全局极小点为 𝑥*1 = 0.5, 从而得到原问题的全局极小点为 𝑥* = (0.5, 0.5)𝑇 . 现

在要使构造的罚函数 𝑃 (𝑥) 满足

𝑃 (𝑥)

⎧⎨⎩ = 0, 𝑥1 + 𝑥2 − 1 = 0,

> 0, 𝑥1 + 𝑥2 − 1 ̸= 0,

只要令 𝑃 (𝑥) = (𝑥1 + 𝑥2 − 1)2 即可. 现在考察目标函数和上述罚函数的组合

𝑃 (𝑥, 𝜎) = 𝑓(𝑥) + 𝜎𝑃 (𝑥)

= (𝑥1 − 1)2 + (𝑥2 − 1)2 + 𝜎(𝑥1 + 𝑥2 − 1)2,
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其中 𝜎 > 0 是充分大的正数, 称为罚参数或罚因子. 求这个组合函数的极小点.

由
𝜕𝑃 (𝑥, 𝜎)

𝜕𝑥1
=
𝜕𝑃 (𝑥, 𝜎)

𝜕𝑥2
= 0,

得 ⎧⎨⎩ (1 + 𝜎)𝑥1 + 𝜎𝑥2 = 1 + 𝜎,

𝜎𝑥1 + (1 + 𝜎)𝑥2 = 1 + 𝜎.

求解上述方程组得

𝑥1(𝜎) = 𝑥2(𝜎) =
𝜎 + 1

2𝜎 + 1
.

令 𝜎 → +∞, 有 (︀
𝑥1(𝜎), 𝑥2(𝜎)

)︀𝑇 →
(︁1
2
,
1

2

)︁𝑇
= 𝑥*.

这样, 我们就从无约束优化问题极小点的极限得到了原问题的极小点. 下面我们

将这种思想方法推广到一般约束的优化问题. 考虑⎧⎪⎪⎪⎨⎪⎪⎪⎩
min 𝑓(𝑥), 𝑥 ∈ R𝑛,

s.t. ℎ𝑖(𝑥) = 0, 𝑖 ∈ 𝐸 = {1, · · · , 𝑙},

𝑔𝑖(𝑥) ≥ 0, 𝑖 ∈ 𝐼 = {1, · · · ,𝑚}.

(9.1)

记可行域为 𝒟 = {𝑥 ∈ R𝑛 |ℎ𝑖(𝑥) = 0 (𝑖 ∈ 𝐸), 𝑔𝑖(𝑥) ≥ 0 (𝑖 ∈ 𝐼)}. 构造罚函数

𝑃 (𝑥) =
𝑙∑︁

𝑖=1

ℎ2𝑖 (𝑥) +
𝑚∑︁
𝑖=1

[min{0, 𝑔𝑖(𝑥)}]2 (9.2)

和增广目标函数

𝑃 (𝑥, 𝜎) = 𝑓(𝑥) + 𝜎𝑃 (𝑥), (9.3)

其中 𝜎 > 0 是罚参数或罚因子. 不难发现, 当 𝑥 ∈ 𝒟 时, 即 𝑥 为可行点时,

𝑃 (𝑥, 𝜎) = 𝑓(𝑥), 此时目标函数没有受到额外惩罚; 而当 𝑥 ̸∈ 𝒟 时, 即 𝑥 为不可行

点时, 𝑃 (𝑥, 𝜎) > 𝑓(𝑥), 时目标函数受到了额外的惩罚. 𝜎 > 0 越大, 受到的惩罚越

重. 当 𝜎 > 0充分大时, 要使 𝑃 (𝑥, 𝜎)达到极小, 罚函数 𝑃 (𝑥)应充分小才可以. 从

而 𝑃 (𝑥, 𝜎) 的极小点充分逼近可行域 𝒟, 而其极小值自然充分逼近 𝑓(𝑥) 在 𝒟 上
的极小值. 这样求解一般约束优化问题 (9.1) 就可以化为求解一系列无约束的优

化问题

min 𝑃 (𝑥, 𝜎𝑘),
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其中 {𝜎𝑘} 是正数序列, 且 𝜎𝑘 → +∞.

从例 25 可以看出, 当 𝜎 → ∞ 时, 𝑃 (𝑥, 𝜎) 的极小点 𝑥(𝜎) → 𝑥*, 但

𝑥1(𝜎) + 𝑥2(𝜎)− 1 =
2𝜎 + 2

2𝜎 + 1
− 1 =

1

2𝜎 + 1
̸= 0,

即 𝑥(𝜎) ̸∈ 𝒟, 也就是说 𝑥(𝜎) 是从可行域的外部趋于 𝑥* 的. 因此上述的罚函数法

也称为外罚函数法 (或外点法).

下面给出外罚函数法的详细算法步骤.

算法 21 (外罚函数法)

步 0 给定初始点 𝑥0 ∈ R𝑛, 终止误差 0 ≤ 𝜀≪ 1. 𝜎1 > 0, 𝛾 > 1. 令 𝑘 := 1.

步 1 以 𝑥𝑘−1 为初始点求解子问题

min
𝑥∈R𝑛

𝑃 (𝑥, 𝜎𝑘) = 𝑓(𝑥) + 𝜎𝑘𝑃 (𝑥). (9.4)

令其极小点为 𝑥𝑘.

步 2 若 𝜎𝑘𝑃 (𝑥𝑘) ≤ 𝜀, 停算, 输出 𝑥* ≈ 𝑥𝑘 作为近似极小点.

步 3 令 𝜎𝑘+1 := 𝛾𝜎𝑘, 𝑘 := 𝑘 + 1, 转步 1.

注 由上述算法可知, 外罚函数法结构简单, 可以直接调用无约束优化算法的

通用程序, 因而容易编程实现. 缺点是: (1) 𝑥𝑘 往往不是可行点, 这对于某些实际

问题是难以接受的; (2) 罚参数 𝜎𝑘 的选取比较困难, 取的过小, 可能起不到“惩

罚”的作用, 而取得过大则可能造成 𝑃 (𝑥, 𝜎𝑘) 的 Hesse 阵的条件数很大, 从而带

来数值技术上的困难; (3) 注意到 𝑃 (𝑥) 一般是不可微的, 因而难以直接使用利用

导数的优化算法, 从而收敛速度缓慢.

下面讨论算法 21 的收敛性. 我们首先证明下面的引理.

引理 14 设 {𝑥𝑘} 是由算法 21 产生的迭代序列. 若 𝑥𝑘 是子问题 (9.4) 的全

局极小点, 则有下述结论成立:

𝑃 (𝑥𝑘+1, 𝜎𝑘+1) ≥ 𝑃 (𝑥𝑘, 𝜎𝑘), (9.5)

𝑃 (𝑥𝑘+1) ≤ 𝑃 (𝑥𝑘), (9.6)

𝑓(𝑥𝑘+1) ≥ 𝑓(𝑥𝑘). (9.7)
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证 (1) 注意到 𝜎𝑘+1 ≥ 𝜎𝑘 > 0, 因此有

𝑃 (𝑥𝑘+1, 𝜎𝑘+1) = 𝑓(𝑥𝑘+1) + 𝜎𝑘+1𝑃 (𝑥𝑘+1),

≥ 𝑓(𝑥𝑘+1) + 𝜎𝑘𝑃 (𝑥𝑘+1),

= 𝑃 (𝑥𝑘+1, 𝜎𝑘) ≥ 𝑃 (𝑥𝑘, 𝜎𝑘),

即 (9.5)成立. 由题设 𝑥𝑘, 𝑥𝑘+1 分别是 𝑃 (𝑥, 𝜎𝑘)和 𝑃 (𝑥, 𝜎𝑘+1)的全局极小点, 故有

𝑓(𝑥𝑘+1) + 𝜎𝑘𝑃 (𝑥𝑘+1) ≥ 𝑓(𝑥𝑘) + 𝜎𝑘𝑃 (𝑥𝑘), (9.8)

𝑓(𝑥𝑘) + 𝜎𝑘+1𝑃 (𝑥𝑘) ≥ 𝑓(𝑥𝑘+1) + 𝜎𝑘+1𝑃 (𝑥𝑘+1). (9.9)

上面两式相加并整理可得

(𝜎𝑘+1 − 𝜎𝑘)𝑃 (𝑥𝑘) ≥ (𝜎𝑘+1 − 𝜎𝑘)𝑃 (𝑥𝑘+1),

即

(𝜎𝑘+1 − 𝜎𝑘)[𝑃 (𝑥𝑘)− 𝑃 (𝑥𝑘+1)] ≥ 0,

从而必有 𝑃 (𝑥𝑘)− 𝑃 (𝑥𝑘+1) ≥ 0, 即 (9.6) 成立. 最后, 由 (9.8) 立即可得

𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘) ≥ 𝜎𝑘[𝑃 (𝑥𝑘)− 𝑃 (𝑥𝑘+1) ≥ 0.

证毕. �

下面我们给出算法 21 的收敛性定理.

定理 45 设 {𝑥𝑘}和 {𝜎𝑘}是由算法 21产生的序列, 𝑥* 是约束优化问题 (9.1)

的全局极小点. 若 𝑥𝑘 为无约束子问题 (9.4) 的全局极小点, 且罚参数 𝜎𝑘 → +∞,

则 {𝑥𝑘} 的任一聚点 𝑥̄ 都是 (9.1) 的全局极小点.

证 设 𝑥∞ 是序列 {𝑥𝑘} 的一个聚点, 不失一般性, 设 𝑥𝑘 → 𝑥∞, 𝑘 → +∞. 由

题设 𝑥* 是原问题的全局极小点, 因而必为可行点, 故有 𝑃 (𝑥*) = 0. 下面分两步

证明本定理的结论.

(1) 先证 𝑥∞ 是原问题的可行点, 亦即 𝑃 (𝑥∞) = 0. 事实上, 由引理 14 知

{𝑃 (𝑥𝑘, 𝜎𝑘)} 是单调递增有上界的序列, 因此极限存在, 设为 𝑃∞. 此外, 注意到

{𝑓(𝑥𝑘)}) 也是单调递增的, 且

𝑓(𝑥𝑘) ≤ 𝑃 (𝑥𝑘, 𝜎𝑘) ≤ 𝑓(𝑥*),
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即序列 {𝑓(𝑥𝑘)} 也收敛, 记其极限为 𝑓∞. 于是有

lim
𝑘→∞

𝜎𝑘𝑃 (𝑥𝑘) = lim
𝑘→∞

[︀
𝑃 (𝑥𝑘, 𝜎𝑘)− 𝑓(𝑥𝑘)

]︀
= 𝑃∞ − 𝑓∞.

因 𝜎𝑘 → +∞, 故必有 lim
𝑘→∞

𝑃 (𝑥𝑘) = 0. 由 𝑃 的连续性知 𝑃 (𝑥∞) = 0, 即 𝑥∞ 是可

行点.

(2) 再证 𝑥∞ 是全局极小点, 亦即 𝑓(𝑥∞) = 𝑓(𝑥*). 由 𝑓(𝑥) 的连续性及

𝑥𝑘 → 𝑥∞ 可知

𝑓(𝑥∞) = lim
𝑘→∞

𝑓(𝑥𝑘) ≤ 𝑓(𝑥*).

注意到 𝑥* 是问题的全局极小点, 故显然有 𝑓(𝑥*) ≤ 𝑓(𝑥∞). 从而 𝑓(𝑥∞) = 𝑓(𝑥*),

从而 𝑥∞ 为原问题的全局极小点. 证毕. �

注 上述定理要求算法的每一迭代步求解子问题得到的 𝑥𝑘 必须是无约束问

题 min𝑃 (𝑥, 𝜎𝑘) 的全局极小点. 这一点在实际计算中是很难操作的, 因为求无约

束优化问题全局极小点至今仍然是一个很困难的问题. 故算法 21 (外罚函数法)

经常遇到迭代失败的情形是很正常的. 此外, 算法 21 之所以选用 𝜎𝑘𝑃 (𝑥𝑘) ≤ 𝜀 作

为终止条件, 是因为

lim
∞
𝜎𝑘𝑃 (𝑥𝑘) = lim

𝑘→∞
[𝑃 (𝑥𝑘, 𝜎𝑘)− 𝑓(𝑥𝑘)]𝑃

∞ = −𝑓∞ = 0

的缘故.

9.2 内点法

1. 不等式约束问题的内点法

内点法一般只适用于不等式约束的优化问题:⎧⎨⎩ min 𝑓(𝑥), 𝑥 ∈ R𝑛,

s.t. 𝑔𝑖(𝑥) ≥ 0, 𝑖 = 1, · · · ,𝑚.
(9.10)

记可行域 𝒟 = {𝑥 ∈ R𝑛 : 𝑔𝑖(𝑥) ≥ 0, 𝑖 = 1, · · · ,𝑚}. 内点法也属于罚方法的范畴,

其基本思想是保持每一个迭代点 𝑥𝑘 是可行域 𝒟 的内点, 可行域的边界被筑起一

道很高的“围墙”作为障碍, 当迭代点靠近边界时, 增广目标函数值骤然增大, 以
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示“惩罚”, 并阻止迭代点穿越边界. 因此, 内点法也称为内罚函数法或障碍函

数法, 它只是用于可行域的内点集非空的情形, 即

𝒟0 = {𝑥 ∈ R𝑛 : 𝑔𝑖(𝑥) > 0, 𝑖 = 1, · · · ,𝑚} ≠ ∅.

类似于外罚函数法, 我们需要构造如下的增广目标函数

𝐻(𝑥, 𝜏) = 𝑓(𝑥) + 𝜏𝐻̄(𝑥),

其中 𝐻̄(𝑥) 是障碍函数, 它需要满足如下性质: 当 𝑥 在 𝒟0 趋向于边界时, 至少有

一个 𝑔𝑖(𝑥) 趋向于 0, 而 𝐻̄(𝑥) 要趋向于无穷大. 因此可以取约束函数的倒数之和

为障碍函数可满足要求, 即

𝐻̄(𝑥) =
𝑚∑︁
𝑖=1

1

𝑔𝑖(𝑥)
, (9.11)

或者取对数障碍函数

𝐻̄(𝑥) = −
𝑚∑︁
𝑖=1

ln[𝑔𝑖(𝑥)]. (9.12)

参数 𝜏 > 0 称为罚因子或罚参数. 这样, 当 𝑥 在 𝒟0 中时, 𝐻̄(𝑥) > 0 是有限的; 当

𝑥 接近边界时, 𝐻̄(𝑥) → +∞, 从而增广目标函数的值也趋向于无穷大, 因此得到

了严重的“惩罚”.

由于约束优化问题的极小点一般在可行域的边界上达到, 因此与外罚函数法

中的罚因子 𝜎𝑘 → +∞ 相反, 内点法中的罚因子则要求 𝜏𝑘 → 0. 于是, 求解问题

(9.10) 就可以转化为求解序列无约束优化子问题:

min 𝐻(𝑥, 𝜏𝑘) = 𝑓(𝑥) + 𝜏𝑘𝐻̄(𝑥). (9.13)

现在我们来看一个简单的例子.

例 26 用内点法求解下面的优化问题:⎧⎨⎩ min 2𝑥1 + 3𝑥2,

s.t. 1− 2𝑥21 − 𝑥22 ≥ 0.

解 给出增广目标函数为

𝐻(𝑥, 𝜏) = 2𝑥1 + 3𝑥2 − 𝜏 ln(1− 2𝑥21 − 𝑥22).
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令

𝜕𝐻

𝜕𝑥1
= 2 +

4𝜏𝑥1
1− 2𝑥21 − 𝑥22

= 0, (9.14)

𝜕𝐻

𝜕𝑥2
= 3 +

2𝜏𝑥2
1− 2𝑥21 − 𝑥22

= 0. (9.15)

由 (9.14)-(9.15) 可得 𝑥2 = 3𝑥1. 代入 (9.14) 得

0 = 1 +
2𝜏𝑥1

1− 2𝑥21 − (3𝑥1)2
= 1 +

2𝜏𝑥1
1− 11𝑥21

,

即

11𝑥21 − 2𝜏𝑥1 − 1 = 0.

解得

𝑥1(𝜏) =
𝜏 ±

√
𝜏 2 + 11

11
→ ± 1√

11
, (𝜏 → 0).

自然有

𝑥2(𝜏) = 3𝑥1(𝜏) → ± 3√
11
, (𝜏 → 0).

注意到目标函数的表达式, 可得所求问题的全局极小点和全局极小值分别为

𝑥* =
(︁
− 1√

11
, − 3√

11

)︁𝑇
, 𝑓(𝑥*) = 2𝑥*1 + 3𝑥*2 = −

√
11.

上面的问题比较简单, 可以将子问题 min𝐻(𝑥, 𝜏) 最优解的解析表达式求出

来, 然后对罚参数 𝜏 → 0 取极限而得到原问题的极小点. 一般来说, 对于较复杂

的问题, 只能用数值方法来求子问题的近似全局极小点.

下面给出内点法的详细算法步骤.

算法 22 (内点法)

步 0 给定初始点 𝑥0 ∈ 𝒟0, 终止误差 0 ≤ 𝜀≪ 1. 𝜏1 > 0, 𝜚 ∈ (0, 1). 令 𝑘 := 1.

步 1 以 𝑥𝑘−1 为初始点求解无约束子问题 (9.13), 得极小点 𝑥𝑘.

步 2 若 𝜏𝑘𝐻̄(𝑥𝑘) ≤ 𝜀, 停算, 输出 𝑥* ≈ 𝑥𝑘 作为近似极小点.

步 3 令 𝜏𝑘+1 := 𝜚𝜏𝑘, 𝑘 := 𝑘 + 1, 转步 1.

注 由上述算法可以看出, 内点法的优点是结构简单, 适应性强. 但是随着迭

代过程的进行, 罚参数 𝜏𝑘 将变得越来越小, 趋向于零, 使得增广目标函数的病态
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性越来越严重, 这给无约束子问题的求解带来了数值实现上的困难, 以致导致迭

代的失败. 此外, 内点法的初始点 𝑥0 要求是一个严格的可行点, 一般来说这也是

比较麻烦甚至困难的.

下面我们来考虑内点法的收敛性. 先看下面的引理.

引理 15 设序列 {𝑥𝑘} 由算法 22 产生, 且每个 𝑥𝑘 都是无约束子问题 (9.13)

的全局极小点. 那么增广目标函数序列 {𝐻(𝑥𝑘, 𝜏𝑘)} 是单调下降的, 即

𝐻(𝑥𝑘+1, 𝜏𝑘+1) ≤ 𝐻(𝑥𝑘, 𝜏𝑘).

证 注意到 𝑥𝑘+1 是 𝐻(𝑥, 𝜏𝑘+1) 的全局极小点, 且由算法有 𝜏𝑘+1 ≤ 𝜏𝑘, 故

𝐻(𝑥𝑘+1, 𝜏𝑘+1) = 𝑓(𝑥𝑘+1) + 𝜏𝑘+1𝐻̄(𝑥𝑘+1)

≤ 𝑓(𝑥𝑘) + 𝜏𝑘+1𝐻̄(𝑥𝑘)

≤ 𝑓(𝑥𝑘) + 𝜏𝑘𝐻̄(𝑥𝑘)

= 𝐻(𝑥𝑘, 𝜏𝑘).

证毕. �

下面的定理给出了算法 22 的收敛性.

定理 46 设 𝑓(𝑥) 在 𝒟 上存在全局极小点 𝑥* 且内点集 𝒟0 ̸= ∅. {(𝑥𝑘, 𝜏𝑘)}
是由算法 22 产生的序列. 若 𝑥𝑘 是 𝐻(𝑥, 𝜏𝑘) 的全局极小点且 {𝜏𝑘} ↓ 0, 那么 {𝑥𝑘}
的任一聚点 𝑥̄ 都是问题 (9.10) 的全局极小点.

证 由定理的条件, 有 𝑥𝑘 ∈ 𝒟0 ⊂ 𝒟 且 𝑥* 是 𝑓(𝑥) 在 𝒟 上的全局极小点.

故有 𝑓(𝑥*) ≤ 𝑓(𝑥𝑘) ≤ 𝐻(𝑥𝑘, 𝜏𝑘), 即序列 {𝐻(𝑥𝑘, 𝜏𝑘)} 有下界, 于是由引理 15 知

lim
𝑘→∞

𝐻(𝑥𝑘, 𝜏𝑘) 存在, 不妨记为 𝐻*.

下面证明 𝐻* = 𝑓(𝑥*). 事实上, 显然有 𝐻* ≥ 𝑓(𝑥*). 以下只需证明 𝐻* ≤
𝑓(𝑥*). 由 𝑓(𝑥)的连续性可知,对于任意的 𝜀 > 0,存在 𝛿 > 0,使得满足 ‖𝑥̄−𝑥*‖ ≤
𝛿 的 𝑥̄ ∈ 𝒟0, 有

𝑓(𝑥̄)− 𝑓(𝑥*) < 𝜀.

又因 {𝜏𝑘} ↓ 0, 故对于上述的 𝜀 和 𝑥̄, 存在正数 𝑘0, 使得当 𝑘 ≥ 𝑘0 时, 有

𝜏𝑘𝐻̄(𝑥𝑘) ≤ 𝜀.
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注意到 𝑥𝑘 是 𝐻(𝑥, 𝜏𝑘) 的全局极小点, 即有

𝐻(𝑥𝑘, 𝜏𝑘) ≤ 𝐻(𝑥̄, 𝜏𝑘).

这样, 我们有

𝐻(𝑥𝑘, 𝜏𝑘)− 𝑓(𝑥*) ≤ 𝐻(𝑥̄, 𝜏𝑘)− 𝑓(𝑥*)

= [𝑓(𝑥̄)− 𝑓(𝑥*)] + 𝜏𝑘𝐻̄(𝑥̄)

< 𝜀 + 𝜀 = 2𝜀.

令 𝜀→ 0+, 并对上式取极限, 即得𝐻* ≤ 𝑓(𝑥*), 从而𝐻* = 𝑓(𝑥*). 最后, 对不等式

𝑓(𝑥*) ≤ 𝑓(𝑥𝑘) ≤ 𝐻(𝑥𝑘, 𝜏𝑘)

取极限得 lim
𝑘→∞

𝑓(𝑥𝑘) = 𝑓(𝑥*). �

2. 一般约束问题的内点法

现在, 我们考虑一般约束优化问题⎧⎪⎪⎪⎨⎪⎪⎪⎩
min 𝑓(𝑥), 𝑥 ∈ R𝑛,

s.t. ℎ𝑖(𝑥) = 0, 𝑖 = 1, · · · , 𝑙,

𝑔𝑖(𝑥) ≥ 0, 𝑖 = 1, · · · ,𝑚

(9.16)

内点法特征的罚函数方法. 途径之一是对于等式约束利用“外罚函数”的思想,

而对于不等式约束则利用“障碍函数”的思想, 构造出所谓混合增广目标函数

𝐻(𝑥, 𝜇) = 𝑓(𝑥) +
1

2𝜇

𝑙∑︁
𝑖=1

ℎ2𝑖 (𝑥) + 𝜇
𝑚∑︁
𝑖=1

1

𝑔𝑖(𝑥)
, (9.17)

或

𝐻(𝑥, 𝜇) = 𝑓(𝑥) +
1

2𝜇

𝑙∑︁
𝑖=1

ℎ2𝑖 (𝑥)− 𝜇
𝑚∑︁
𝑖=1

ln[𝑔𝑖(𝑥)]. (9.18)

于是可以类似于内点法或外罚函数法的算法框架建立起相应的算法. 但由此建立

的算法的初始点的选取仍然是个困难的问题.
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另一种途径是, 引入松弛变量 𝑦𝑖, 𝑖 = 1, · · · ,𝑚, 将问题等价地转化为⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min 𝑓(𝑥), 𝑥 ∈ R𝑛,

s.t. ℎ𝑖(𝑥) = 0, 𝑖 = 1, · · · , 𝑙,

𝑔𝑖(𝑥)− 𝑦𝑖 = 0, 𝑖 = 1, · · · ,𝑚,

𝑦𝑖 ≥ 0, 𝑖 = 1, · · · ,𝑚.

(9.19)

然后构造等价问题 (9.19) 的混合增广目标函数:

𝜓(𝑥, 𝑦, 𝜇) = 𝑓(𝑥) +
1

2𝜇

𝑙∑︁
𝑖=1

ℎ2𝑖 (𝑥) +
1

2𝜇

𝑙∑︁
𝑖=𝑚

[︀
𝑔𝑖(𝑥)− 𝑦𝑖

]︀2
+ 𝜇

𝑚∑︁
𝑖=1

1

𝑦𝑖
, (9.20)

或

𝜓(𝑥, 𝑦, 𝜇) = 𝑓(𝑥) +
1

2𝜇

𝑙∑︁
𝑖=1

ℎ2𝑖 (𝑥) +
1

2𝜇

𝑚∑︁
𝑖=1

[︀
𝑔𝑖(𝑥)− 𝑦𝑖

]︀2 − 𝜇
𝑚∑︁
𝑖=1

ln 𝑦𝑖. (9.21)

在此基础上, 类似于前面的外罚函数法与内点法的算法框架, 可以建立起相应的

求解算法. 值得说明的是, 此时, 任意的 (𝑥, 𝑦), 𝑦 > 0 均可作为一个合适的初始点

来启动相应的迭代算法.

9.3 乘子法

乘子法是 Powell 和 Hestenes 于 1969 年针对等式约束优化问题同时独立提

出的一种优化算法, 后于 1973 年经 Rockfellar 推广到求解不等式约束优化问

题. 其基本思想是从原问题的拉格朗日函数出发, 再加上适当的罚函数, 从而

将原问题转化为求解一系列的无约束优化子问题. 由于外罚函数法中的罚参数

𝜎𝑘 → +∞, 因此增广目标函数变得“越来越病态”. 增广目标函数的这种病态性

质是外罚函数法的主要缺点, 而这种缺陷在乘子法中由于引入拉格朗日函数及加

上适当的罚函数而得以有效的克服.

1. 等式约束问题的乘子法

考虑等式约束优化问题 ⎧⎨⎩ min 𝑓(𝑥),

s.t. ℎ(𝑥) = 0,
(9.22)
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其中 ℎ(𝑥) = (ℎ1(𝑥), · · · , ℎ𝑙(𝑥))𝑇 . 记可行域 𝒟 = {𝑥 ∈ R𝑛 |ℎ(𝑥) = 0}, 则上述问题
的拉格朗日函数为

𝐿(𝑥, 𝜆) = 𝑓(𝑥)− 𝜆𝑇ℎ(𝑥),

其中 𝜆 = (𝜆1, · · · , 𝜆𝑙)𝑇 为乘子向量. 设 (𝑥*, 𝜆*) 是问题 (9.22) 的 KT 点, 则由最

优性条件有

∇𝑥𝐿(𝑥
*, 𝜆*) = 0, ∇𝜆𝐿(𝑥

*, 𝜆*) = −ℎ(𝑥*) = 0.

此外, 不难发现, 对于任意的 𝑥 ∈ 𝒟, 有

𝐿(𝑥*, 𝜆*) = 𝑓(𝑥*) ≤ 𝑓(𝑥) = 𝑓(𝑥)− (𝜆*)𝑇ℎ(𝑥) = 𝐿(𝑥, 𝜆*).

上式表明, 若已知乘子向量 𝜆*, 则问题 (9.22) 可等价地转化为⎧⎨⎩ min 𝐿(𝑥, 𝜆*),

s.t. ℎ(𝑥) = 0.
(9.23)

可以考虑用外罚函数法求解问题 (9.23), 其增广目标函数为

𝜓(𝑥, 𝜆*, 𝜎) = 𝐿(𝑥, 𝜆*) +
𝜎

2
‖ℎ(𝑥)‖2.

可以证明, 当 𝜎 > 0 适当大时, 𝑥* 是 𝜓(𝑥, 𝜆*, 𝜎) 的极小点. 由于乘子 𝜆* 事先并不

知道, 故可考虑下面的增广目标函数

𝜓(𝑥, 𝜆, 𝜎) = 𝐿(𝑥, 𝜆) +
𝜎

2
‖ℎ(𝑥)‖2

= 𝑓(𝑥)− 𝜆𝑇ℎ(𝑥) +
𝜎

2
‖ℎ(𝑥)‖2. (9.24)

可以这样操作: 首先固定一个 𝜆 = 𝜆̄, 求 𝜓(𝑥, 𝜆̄, 𝜎) 的极小点 𝑥̄; 然后再适当改变 𝜆

的值, 再求新的 𝑥̄, 直到求得满足要求的 𝑥* 和 𝜆* 为止. 具体地说, 我们在第 𝑘 次

迭代求无约束子问题min 𝜓(𝑥, 𝜆𝑘, 𝜎) 的极小点 𝑥𝑘. 则由取极值的必要条件, 有

∇𝑥𝜓(𝑥𝑘, 𝜆𝑘, 𝜎) = ∇𝑓(𝑥𝑘)−∇ℎ(𝑥𝑘)[𝜆𝑘 − 𝜎ℎ(𝑥𝑘)] = 0.

而在原问题的 KT 点 (𝑥*, 𝜆*) 处有

∇𝑓(𝑥*)−∇ℎ(𝑥*)𝜆* = 0, ℎ(𝑥*) = 0.
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我们的目的自然希望 {𝑥𝑘} → 𝑥*, 且 {𝜆𝑘} → 𝜆*. 于是将上面两式相比较后, 可取

乘子序列 {𝜆𝑘} 的更新公式为

𝜆𝑘+1 = 𝜆𝑘 − 𝜎ℎ(𝑥𝑘). (9.25)

由上式可以看出 {𝜆𝑘} 收敛的充要条件是 {ℎ(𝑥𝑘)} → 0. 下面我们证明 ℎ(𝑥𝑘) = 0

也是判别 (𝑥𝑘, 𝜆𝑘) 是 KT 对的充要条件.

定理 47 设无约束优化问题

min𝜓(𝑥, 𝜆𝑘, 𝜎) = 𝐿(𝑥, 𝜆𝑘) +
𝜎

2
‖ℎ(𝑥)‖2 (9.26)

的极小点为 𝑥𝑘. 则 (𝑥𝑘, 𝜆𝑘) 是 (9.22) 的 KT 对的充要条件是 ℎ(𝑥𝑘) = 0.

证 必要性显然. 我们证明充分性. 因为 𝑥𝑘 是 (9.26) 的极小点, 且 ℎ(𝑥𝑘) = 0.

则对任意的可行点 𝑥 ∈ 𝒟 = {𝑥 ∈ R𝑛 |ℎ(𝑥) = 0}, 有

𝑓(𝑥) = 𝜓(𝑥, 𝜆𝑘, 𝜎) ≥ 𝜓(𝑥𝑘, 𝜆𝑘, 𝜎) = 𝑓(𝑥𝑘),

即 𝑥𝑘 是 (9.22) 的极小点. 另一方面, 注意到 𝑥𝑘 也是 (9.26) 的稳定点, 故有

∇𝑥𝜓(𝑥𝑘, 𝜆𝑘, 𝜎) = ∇𝑓(𝑥𝑘)−∇ℎ(𝑥𝑘)𝜆𝑘 = 0.

上式表明 𝜆𝑘 是相应于 𝑥𝑘 的拉格朗日乘子向量, 即 (𝑥𝑘, 𝜆𝑘) 是问题 (9.22) 的 KT

对. 证毕. �

基于上述讨论, 我们给出求解等式约束问题 (9.22) 的乘子法的详细步骤如

下 (由于该算法是由 Powell 和 Hestenes 首先独立提出来的, 因此也称之为 PH 算

法):

算法 23 PH算法

步 0 选取初始值. 给定 𝑥0 ∈ R𝑛, 𝜆1 ∈ R𝑙, 𝜎1 > 0, 0 ≤ 𝜀 ≪ 1, 𝜗 ∈ (0, 1),

𝜂 > 1. 令 𝑘 := 1.

步 1 求解子问题. 以 𝑥𝑘−1 为初始点求解无约束子问题的极小点 𝑥𝑘 :

min𝜓(𝑥, 𝜆𝑘, 𝜎𝑘) = 𝑓(𝑥)− 𝜆𝑇𝑘 ℎ(𝑥) +
𝜎𝑘
2
‖ℎ(𝑥)‖2. (9.27)

步 2 检验终止条件. 若 ‖ℎ(𝑥𝑘)‖ ≤ 𝜀, 停算, 输出 𝑥𝑘 作为原问题的近似极小

点; 否则, 转步 3.
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步 3 更新罚参数. 若 ‖ℎ(𝑥𝑘)‖ ≥ 𝜗‖ℎ(𝑥𝑘−1)‖, 令 𝜎𝑘+1 := 𝜂𝜎𝑘; 否则, 𝜎𝑘+1 :=

𝜎𝑘.

步 4 更新乘子向量. 令 𝜆𝑘+1 = 𝜆𝑘 − 𝜎𝑘ℎ(𝑥𝑘).

步 5 令 𝑘 := 𝑘 + 1, 转步 1.

下面我们来看一个简单的例子.

例 27 用乘子法求解约束优化问题⎧⎨⎩ min 𝑓(𝑥) = 𝑥21 − 𝑥22,

s.t. 𝑥2 = −1.

解 首先写出所求问题相应于乘子法的增广目标函数:

𝜓(𝑥, 𝜆, 𝜎) = 𝑥21 − 𝑥22 − 𝜆(𝑥2 + 1) +
𝜎

2
(𝑥2 + 1)2

= 𝑥21 +
(︁𝜎
2
− 1
)︁
𝑥22 + (𝜎 − 𝜆)𝑥2 − 𝜆− 𝜎

2
.

令
𝜕𝜓

𝜕𝑥1
= 2𝑥1 = 0,

𝜕𝜓

𝜕𝑥2
= (𝜎 − 2)𝑥2 − (𝜆− 𝜎) = 0.

对于 𝜎 > 2, 解上述关于 𝑥1 和 𝑥2 的二元一次方程组得稳定点

𝑥̄ =

⎛⎝ 𝑥̄1

𝑥̄2

⎞⎠ =

⎛⎜⎝ 0

𝜆− 𝜎

𝜎 − 2

⎞⎟⎠ .

注意到约束条件 𝑥2 = −1, 可得 𝜆 = 2. 从而 𝑥̄ = (0,−1)𝑇 = 𝑥*.

从上面的例子可以发现, 乘子法并不要求罚参数 𝜎 趋于无穷大, 只要求它大

于某个正数即可. 下面我们从理论上来证明这一事实.

引理 16 已知矩阵 𝑈 ∈ R𝑛×𝑛, 𝑆 ∈ R𝑛×𝑚. 则对任意满足 𝑆𝑇𝑥 = 0 的非零向

量 𝑥 都有 𝑥𝑇𝑈𝑥 > 0 的充要条件是存在常数 𝜎* > 0, 使得对任意的 𝜎 ≥ 𝜎* 有,

𝑥𝑇 (𝑈 + 𝜎𝑆𝑆𝑇 )𝑥 > 0, ∀ 0 ̸= 𝑥 ∈ R𝑛.
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证 充分性是显然的. 注意到 𝑆𝑇𝑥 = 0, 立即有

𝑥𝑇𝑈𝑥 = 𝑥𝑇𝑈𝑥+ 𝜎𝑥𝑇𝑆𝑆𝑇𝑥 = 𝑥𝑇 (𝑈 + 𝜎𝑆𝑆𝑇 )𝑥 > 0.

必要性. 注意到, 若存在常数 𝜎* > 0, 使得

𝑥𝑇 (𝑈 + 𝜎*𝑆𝑆𝑇 )𝑥 > 0, ∀ 0 ̸= 𝑥 ∈ R𝑛,

则任取 𝜎 ≥ 𝜎*, 恒有

𝑥𝑇 (𝑈 + 𝜎𝑆𝑆𝑇 )𝑥 ≥ 𝑥𝑇 (𝑈 + 𝜎*𝑆𝑆𝑇 )𝑥 > 0, ∀ 0 ̸= 𝑥 ∈ R𝑛.

以下只需证明上述 𝜎* 的存在性. 事实上, 若这样的 𝜎* 不存在, 则对任意的正整

数 𝑘, 必存在向量 𝑥𝑘 且 ‖𝑥𝑘‖ = 1, 使得

𝑥𝑇𝑘 (𝑈 + 𝑘𝑆𝑆𝑇 )𝑥𝑘 ≤ 0.

因 {𝑥𝑘} 是有界序列, 故必有收敛的子序列 (仍记为它本身), 其极限为 𝑥̂, 切

‖𝑥̂‖ = 1. 那么, 对上式取极限, 𝑘 → ∞, 得

𝑥̂𝑇𝑈𝑥̂+ lim
𝑘→∞

𝑘‖𝑆𝑇𝑥𝑘‖2 ≤ 0.

由此, 必有 ‖𝑆𝑇𝑥𝑘‖ → ‖𝑆𝑇 𝑥̂‖ = 0 (否则, 𝑘‖𝑆𝑇𝑥𝑘‖2 → ∞), 同时 𝑥̂𝑇𝑈𝑥̂ ≤ 0, 这与

必要性的条件矛盾. 证毕. �

定理 48 设等式约束优化问题 (9.22) 的 KT 点 (𝑥*, 𝜆*) 满足二阶充分性条

件 (参见定理 37), 则存在一个 𝜎* > 0, 对所有的 𝜎 ≥ 𝜎*, 𝑥* 是增广目标函数

𝜓(𝑥, 𝜆*, 𝜎) (由 (9.24) 所定义) 的严格局部极小点. 进一步, 若 ℎ(𝑥̄) = 0, 且 𝑥̄ 对

某个 𝜆̄ 是 𝜓(𝑥, 𝜆̄, 𝜎) 的局部极小点, 则 𝑥̄ 也是问题 (9.22) 的局部极小点.

证 注意到 𝜓(𝑥, 𝜆*, 𝜎) = 𝐿(𝑥, 𝜆*) +
𝜎

2
‖ℎ(𝑥)‖2, 求其梯度和二阶导数得

∇𝑥𝜓(𝑥, 𝜆
*, 𝜎) = ∇𝑥𝐿(𝑥, 𝜆

*) + 𝜎∇ℎ(𝑥)ℎ(𝑥),

∇2
𝑥𝜓(𝑥

*, 𝜆*, 𝜎) = ∇2
𝑥𝐿(𝑥

*, 𝜆*) + 𝜎∇ℎ(𝑥*)∇ℎ(𝑥*)𝑇 .

由二阶充分性条件知, 对每个满足 𝑑𝑇∇ℎ(𝑥*) = 0 的向量 𝑑 ̸= 0, 有

𝑑𝑇∇2
𝑥𝐿(𝑥

*, 𝜆*)𝑑 > 0.
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于是由引理 16 知, 存在 𝜎* > 0 使得当 𝜎 ≥ 𝜎* 且 𝑑 ̸= 0 时, 有

𝑑𝑇∇2
𝑥𝜓(𝑥

*, 𝜆*)𝑑 = 𝑑𝑇 [∇2
𝑥𝐿(𝑥

*, 𝜆*) + 𝜎∇ℎ(𝑥*)∇ℎ(𝑥*)𝑇 ]𝑑 > 0.

再由二阶充分性条件知, ∇𝑥𝐿(𝑥
*, 𝜆*) = 0, ℎ(𝑥*) = 0. 故而有

∇𝑥𝜓(𝑥
*, 𝜆*, 𝜎) = ∇𝑥𝐿(𝑥

*, 𝜆*, 𝜎) = 0,

这表明增广目标函数 𝜓(𝑥, 𝜆*, 𝜎) (𝜎 ≥ 𝜎*) 在 𝑥* 处满足二阶充分性条件, 故由定

理 ?? 可知, 𝑥* 是 𝜓(𝑥, 𝜆*, 𝜎) 的严格局部极小点. 这就证明了定理的第一个结论.

下下下面我们来证明第二个结论. 若 ℎ(𝑥̄) = 0, 且 𝑥̄ 对某个 𝜆̄ 是 𝜓(𝑥, 𝜆̄, 𝜎) 的局

部极小点. 则对任意与 𝑥̄ 充分靠近的 𝑥̂ (即 ℎ(𝑥̂) = 0), 有

𝜓(𝑥̄, 𝜆̄, 𝜎) ≤ 𝜓(𝑥̂, 𝜆̄, 𝜎).

因 ℎ(𝑥̄) = ℎ(𝑥̂) = 0, 故有

𝜓(𝑥̄, 𝜆̄, 𝜎) = 𝑓(𝑥̄), 𝜓(𝑥̂, 𝜆̄, 𝜎) = 𝑓(𝑥̂).

上式表明, 对于 𝑥̄ 的某个邻域中的任意可行点 𝑥̂, 均有 𝑓(𝑥̄) ≤ 𝑓(𝑥̂), 即 𝑥̄ 是问题

(9.22) 的局部极小点. 证毕. �

2. 一般约束问题的乘子法

下面我们考虑同时带有等式和不等式约束的优化问题的乘子法:⎧⎪⎪⎪⎨⎪⎪⎪⎩
min 𝑓(𝑥),

s.t. ℎ𝑖(𝑥) = 0, 𝑖 = 1, · · · , 𝑙,

𝑔𝑖(𝑥) ≥ 0, 𝑖 = 1, · · · ,𝑚.

(9.28)

其基本思想是把解等式约束优化问题的乘子法推广到不等式约束优化问题, 即先

引进辅助变量把不等式约束化为等式约束, 然后再利用最优性条件消去辅助变

量. 为叙述的方便计, 我们先考虑如下只带有不等式约束的最优化问题⎧⎨⎩ min 𝑓(𝑥),

s.t. 𝑔𝑖(𝑥) ≥ 0, 𝑖 = 1, · · · ,𝑚.
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引进辅助变量 𝑦𝑖 (𝑖 = 1, · · · ,𝑚), 可以将上面的优化问题化为等价的等式约束优

化问题: ⎧⎨⎩ min 𝑓(𝑥),

s.t. 𝑔𝑖(𝑥)− 𝑦2𝑖 = 0, 𝑖 = 1, · · · ,𝑚.

利用算法 21 求解, 此时增广拉格朗日函数为

𝜓(𝑥, 𝑦, 𝜆, 𝜎) = 𝑓(𝑥)−
𝑚∑︁
𝑖=1

𝜆𝑖[𝑔𝑖(𝑥)− 𝑦2𝑖 ] +
𝜎

2

𝑚∑︁
𝑖=1

[𝑔𝑖(𝑥)− 𝑦2𝑖 ]
2.

为了消去辅助变量 𝑦, 可考虑 𝜓 关于变量 𝑦 的极小化. 由一阶必要条件, 令

∇𝑦𝜓(𝑥, 𝑦, 𝜆, 𝜎) = 0 可得

2𝑦𝑖𝜆𝑖 − 2𝜎𝑦𝑖[𝑔𝑖(𝑥)− 𝑦2𝑖 ] = 0, 𝑖 = 1, · · · ,𝑚,

即

𝑦𝑖[𝜎𝑦
2
𝑖 − (𝜎𝑔𝑖(𝑥)− 𝜆𝑖)] = 0, 𝑖 = 1, · · · ,𝑚.

故当 𝜎𝑔𝑖(𝑥)− 𝜆𝑖 > 0 时, 有

𝑦2𝑖 =
1

𝜎

[︀
𝜎𝑔𝑖(𝑥)− 𝜆𝑖

]︀
= 𝑔𝑖(𝑥)−

1

𝜎
𝜆𝑖.

否则, 由 𝜎𝑦2𝑖 + [𝜆𝑖 − 𝜎𝑔𝑖(𝑥)] ≥ 0 可推得 𝑦𝑖 = 0. 综合起来, 有

𝑦2𝑖 =

⎧⎪⎨⎪⎩
1

𝜎

[︀
𝜎𝑔𝑖(𝑥)− 𝜆𝑖

]︀
, 𝜎𝑔𝑖(𝑥)− 𝜆𝑖 > 0,

0, 𝜎𝑔𝑖(𝑥)− 𝜆𝑖 ≤ 0,
𝑖 = 1, · · · ,𝑚.

即有

𝑔𝑖(𝑥)− 𝑦2𝑖 =

⎧⎪⎨⎪⎩
𝜆𝑖
𝜎
, 𝜎𝑔𝑖(𝑥)− 𝜆𝑖 > 0,

𝑔𝑖(𝑥), 𝜎𝑔𝑖(𝑥)− 𝜆𝑖 ≤ 0,
𝑖 = 1, · · · ,𝑚. (9.29)

因此, 当 𝜎𝑔𝑖(𝑥)− 𝜆𝑖 ≤ 0 时, 我们有

−𝜆𝑖[𝑔𝑖(𝑥)− 𝑦2𝑖 ] +
𝜎

2
[𝑔𝑖(𝑥)− 𝑦2𝑖 ]

2

= −𝜆𝑖𝑔𝑖(𝑥) +
𝜎

2
[𝑔𝑖(𝑥)]

2

=
1

2𝜎

[︀
(𝜎𝑔𝑖(𝑥)− 𝜆𝑖)

2 − 𝜆2𝑖
]︀
.
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而当 𝜎𝑔𝑖(𝑥)− 𝜆𝑖 > 0 时, 有

−𝜆𝑖[𝑔𝑖(𝑥)− 𝑦2𝑖 ] +
𝜎

2
[𝑔𝑖(𝑥)− 𝑦2𝑖 ]

2

= − 1

𝜎
𝜆2𝑖 +

1

2𝜎
𝜆2𝑖 = − 1

2𝜎
𝜆2𝑖 .

综合上述两种情形, 有

−𝜆𝑖[𝑔𝑖(𝑥)− 𝑦2𝑖 ] +
𝜎

2
[𝑔𝑖(𝑥)− 𝑦2𝑖 ]

2 =
1

2𝜎

(︁
[min{0, 𝜎𝑔𝑖(𝑥)− 𝜆𝑖}]2 − 𝜆2𝑖

)︁
.

将其代回到 𝜓(𝑥, 𝑦, 𝜆, 𝜎) 中去得

𝜑(𝑥, 𝜆, 𝜎) = min
𝑦
𝜓(𝑥, 𝑦, 𝜆, 𝜎)

= 𝑓(𝑥) +
1

2𝜎

𝑚∑︁
𝑖=1

(︁
[min{0, 𝜎𝑔𝑖(𝑥)− 𝜆𝑖}]2 − 𝜆2𝑖

)︁
.

(9.30)

于是, 将 (9.29) 代入乘子迭代公式 (𝜆𝑘+1)𝑖 = (𝜆𝑘)𝑖 − 𝜎[𝑔𝑖(𝑥𝑘)− (𝑦𝑘)
2
𝑖 ] 得

(𝜆𝑘+1)𝑖 =

⎧⎪⎨⎪⎩
0, 𝜎𝑔𝑖(𝑥𝑘)− (𝜆𝑘)𝑖 > 0,

(𝜆𝑘)𝑖 − 𝑔𝑖(𝑥𝑘), 𝜎𝑔𝑖(𝑥𝑘)− (𝜆𝑘)𝑖 ≤ 0,

即

(𝜆𝑘+1)𝑖 = max{0, (𝜆𝑘)𝑖 − 𝑔𝑖(𝑥𝑘)} ≥ 0, 𝑖 = 1, · · · ,𝑚. (9.31)

同样, 在终止准则 (︁ 𝑚∑︁
𝑖=1

[𝑔𝑖(𝑥𝑘)− (𝑦𝑘)
2
𝑖 ]
)︁1/2

≤ 𝜀

中代入 (9.29) 得 (︂ 𝑚∑︁
𝑖=1

[︁
min

{︁
𝑔𝑖(𝑥𝑘),

(𝜆𝑘)𝑖
𝜎

}︁]︁)︂1/2

≤ 𝜀. (9.32)

现在我们回到一般约束优化问题 (9.28), 我们来构造求解 (9.28) 的乘子法.

此时, 增广拉格朗日函数为

𝜓(𝑥, 𝜇, 𝜆, 𝜎) = 𝑓(𝑥)−
𝑙∑︁

𝑖=1

𝜇𝑖ℎ𝑖(𝑥) +
𝜎

2

𝑙∑︁
𝑖=1

ℎ2𝑖 (𝑥)

+
1

2𝜎

𝑚∑︁
𝑖=1

(︀
[min{0, 𝜎𝑔𝑖(𝑥)− 𝜆𝑖}]2 − 𝜆2𝑖

)︀
.

(9.33)
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乘子迭代的公式为

(𝜇𝑘+1)𝑖 = (𝜇𝑘)𝑖 − 𝜎ℎ𝑖(𝑥𝑘), 𝑖 = 1, · · · , 𝑙,

(𝜆𝑘+1)𝑖 = max{0, (𝜆𝑘)𝑖 − 𝑔𝑖(𝑥𝑘)}, 𝑖 = 1, · · · ,𝑚.

令

𝛽𝑘 =

(︂ 𝑙∑︁
𝑖=1

ℎ2𝑖 (𝑥𝑘) +
𝑚∑︁
𝑖=1

[︁
min

{︁
𝑔𝑖(𝑥𝑘),

(𝜆𝑘)𝑖
𝜎

}︁]︁2)︂1/2

, (9.34)

则终止准则为

𝛽𝑘 ≤ 𝜀.

下面给出求解一般约束优化问题 (9.28) 乘子法的详细步骤. 由于这一算法

是由 Rockfellar 在 PH 算法的基础上提出的, 因此简称为 PHR 算法.

算法 24 PHR算法

步 0 选取初始值. 给定 𝑥0 ∈ R𝑛, 𝜇1 ∈ R𝑙, 𝜆1 ∈ R𝑚, 𝜎1 > 0, 0 ≤ 𝜀 ≪ 1,

𝜗 ∈ (0, 1), 𝜂 > 1. 令 𝑘 := 1.

步 1 求解子问题. 以 𝑥𝑘−1 为初始点求解无约束子问题

min𝜓(𝑥, 𝜇𝑘, 𝜆𝑘, 𝜎𝑘),

得极小点 𝑥𝑘, 其中 𝜓(𝑥, 𝜇𝑘, 𝜆𝑘, 𝜎𝑘) 由 (9.33) 定义.

步 2 检验终止条件. 若 𝛽𝑘 ≤ 𝜀, 其中 𝛽𝑘 由 (9.34) 定义, 则停止迭代, 输出 𝑥𝑘

作为原问题的近似极小点; 否则, 转步 3.

步 3 更新罚参数. 若 𝛽𝑘 ≥ 𝜗𝛽𝑘−1, 令 𝜎𝑘+1 := 𝜂𝜎𝑘; 否则, 𝜎𝑘+1 := 𝜎𝑘.

步 4 更新乘子向量. 计算

(𝜇𝑘+1)𝑖 = (𝜇𝑘)𝑖 − 𝜎ℎ𝑖(𝑥𝑘), 𝑖 = 1, · · · , 𝑙,

(𝜆𝑘+1)𝑖 = max{0, (𝜆𝑘)𝑖 − 𝑔𝑖(𝑥𝑘)}, 𝑖 = 1, · · · ,𝑚.

步 5 令 𝑘 := 𝑘 + 1, 转步 1.

9.4 乘子法的Matlab 实现

本小节我们给出算法 24 (PHR 乘子法) 的Matlab 通用程序, 然后利用该程

序求解一个简单的约束优化问题.
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程序 15 (PHR 算法程序)

function [x,mu,lambda,output]=multphr(fun,hf,gf,dfun,dhf,dgf,x0)

%功能: 用乘子法解一般约束问题: min f(x), s.t. h(x)=0, g(x)¿=0

%输入: x0是初始点, fun, dfun分别是目标函数及其梯度；

% hf, dhf分别是等式约束（向量）函数及其Jacobi矩阵的转置；

% gf, dgf分别是不等式约束（向量）函数及其Jacobi矩阵的转置；

%输出: x是近似最优点，mu, lambda分别是相应于等式约束和不

% 等式约束的乘子向量; output是结构变量, 输出近似极小值f, 迭

% 代次数, 内迭代次数等

maxk=500; %最大迭代次数

sigma=2.0; %罚因子

eta=2.0; theta=0.8; %PHR算法中的实参数

k=0; ink=0; %k, ink分别是外迭代和内迭代次数

epsilon=1e-5; %终止误差值

x=x0; he=feval(hf,x); gi=feval(gf,x);

n=length(x); l=length(he); m=length(gi);

%选取乘子向量的初始值

mu=0.1*ones(l,1); lambda=0.1*ones(m,1);

btak=10; btaold=10; %用来检验终止条件的两个值

while(btak¿epsilon & k¡maxk)

%调用BFGS算法程序求解无约束子问题

[x,ival,ik]=bfgs(’mpsi’,’dmpsi’,x0,fun,hf,gf,dfun,dhf,dgf,mu,lambda,sigma);

ink=ink+ik;

he=feval(hf,x); gi=feval(gf,x);

btak=0.0;

for(i=1:l), btak=btak+he(i)^2; end

for(i=1:m)

temp=min(gi(i),lambda(i)/sigma);

btak=btak+temp^2;

end

btak=sqrt(btak);

if btak¿epsilon

if(k¿=2 & btak ¿ theta*btaold)

sigma=eta*sigma;

end

%更新乘子向量

for(i=1:l), mu(i)=mu(i)-sigma*he(i); end
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for(i=1:m)

lambda(i)=max(0.0,lambda(i)-sigma*gi(i));

end

end

k=k+1;

btaold=btak;

x0=x;

end

f=feval(fun,x);

output.fval=f;

output.iter=k;

output.inner˙iter=ink;

output.bta=btak;

%%%%%%%%%%%%%%%%%% 增广拉格朗日函数 %%%%%%%%%%%%%%%%%%%%%

function psi=mpsi(x,fun,hf,gf,dfun,dhf,dgf,mu,lambda,sigma)

f=feval(fun,x); he=feval(hf,x); gi=feval(gf,x);

l=length(he); m=length(gi);

psi=f; s1=0.0;

for(i=1:l)

psi=psi-he(i)*mu(i);

s1=s1+he(i)^2;

end

psi=psi+0.5*sigma*s1;

s2=0.0;

for(i=1:m)

s3=max(0.0, lambda(i) - sigma*gi(i));

s2=s2+s3^2-lambda(i)^2;

end

psi=psi+s2/(2.0*sigma);

%%%%%%%%%%%%%%%%%% 增广拉格朗日函数的梯度%%%%%%%%%%%%%%%%%%%%

function dpsi=dmpsi(x,fun,hf,gf,dfun,dhf,dgf,mu,lambda,sigma)

dpsi=feval(dfun,x);

he=feval(hf,x); gi=feval(gf,x);

dhe=feval(dhf,x); dgi=feval(dgf,x);

l=length(he); m=length(gi);

for(i=1:l)

dpsi=dpsi+(sigma*he(i)-mu(i))*dhe(:,i);
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end

for(i=1:m)

dpsi=dpsi+(sigma*gi(i)-lambda(i))*dgi(:,i);

end

例 28 利用程序 15 求解约束优化问题

min 𝑓(𝑥) = (𝑥1 − 2)2 + (𝑥2 − 1)2,

s.t. 𝑥1 − 2𝑥2 + 1 = 0,

0.25𝑥21 + 𝑥22 ≤ 1.

取初始点为 𝑥0 = (3, 3)𝑇 , 该问题有精确解 𝑥* =
(︁1
2

(︀√
7 − 1

)︀
,
1

4

(︀√
7 + 1

)︀)︁𝑇
≈ (0.82288, 0.91144)𝑇 , 𝑓(𝑥*) =

1

4

(︀√
7− 5

)︀2
+

1

16

(︀√
7− 3

)︀2 ≈ 1.39346.

解 先编制目标函数文件 f1.m

function f=f1(x)

f=(x(1)-2.0)^2+(x(2)-1.0)^2;

等式约束函数文件 h1.m

function he=h1(x)

he=x(1)-2.0*x(2)+1.0;

不等式约束函数文件 g1.m

function gi=g1(x)

gi=-0.25*x(1)^2-x(2)^2+1;

目标函数的梯度文件 df1.m

function g=df1(x)

g=[2.0*(x(1)-2.0), 2.0*(x(2)-1.0)]’;

等式约束（向量）函数的Jacobi矩阵（转置）文件 dh1.m

function dhe=dh1(x)

dhe=[1.0, -2.0]’;

不等式约束（向量）函数的Jacobi矩阵（转置）文件 dg1.m

· 152 ·



第九章 罚函数法 回回回目目目录录录 S9.4 乘子法的MATLAB 实现

function dgi=dg1(x)

dgi=[-0.5*x(1), -2.0*x(2)]’;

然后在Matlab 命令窗口输入如下命令:

x0=[3,3]’;

[x,mu,lambda,output]=multphr(’f1’,’h1’,’g1’,’df1’,’dh1’,’dg1’,x0);

得到如下输出:

x =

0.8229

0.9114

mu =

-1.5945

lambda =

1.8465

output =

fval: 1.3934

iter: 23

inner˙iter: 82

bta: 9.5419e-006

习 题 9

1. 用外罚函数法求解下列约束优化问题:

(1) min 𝑓(𝑥) = −𝑥1 − 𝑥2,

s.t. 𝑥2
1 + 𝑥2

2 = 1,

(2) min 𝑓(𝑥) = 𝑥2
1 + 𝑥2

2,

s.t. 𝑥1 + 𝑥2 = 1,

(3) min 𝑓(𝑥) = 𝑥2
1 + 𝑥2

2,

s.t. 2𝑥1 + 𝑥2 − 2 ≤ 0,

𝑥2 ≥ 1,

(4) min 𝑓(𝑥) = −𝑥1𝑥2,

s.t. −𝑥1 − 𝑥2
2 + 1 ≤ 0,

𝑥1 + 𝑥2 ≥ 0.

2. 用内点法求解下列约束优化问题

(1) min 𝑓(𝑥) = 𝑥1 + 𝑥2,

s.t. −𝑥2
1 + 𝑥2 ≤ 0,

𝑥1 ≥ 0,

(2) min 𝑓(𝑥) = 𝑥2
1 + 𝑥2,

s.t. −2𝑥1 − 𝑥2 + 2 ≥ 0,

𝑥2 − 1 ≥ 0,
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(3) min 𝑓(𝑥) = 2𝑥1 + 3𝑥2,

s.t. 1− 2𝑥2
1 − 𝑥2

2 ≥ 0,

(4) min 𝑓(𝑥) = (𝑥+ 1)2,

s.t. 𝑥 ≥ 0.

3. 用乘子法求解下列问题

(1) min 𝑓(𝑥) = 𝑥2
1 + 𝑥2

2,

s.t. 𝑥1 ≥ 0,

(2) min 𝑓(𝑥) =
1

2
𝑥2
1 +

1

6
𝑥2
2

s.t. 𝑥1 + 𝑥2 − 1 = 0,

(3) min 𝑓(𝑥) = 𝑥1 +
1
3
(𝑥2 + 1)2,

s.t. 𝑥1 ≥ 0,

𝑥2 ≥ 1,

(4) min 𝑓(𝑥) = (𝑥1 − 2)2 + (𝑥2 − 3)2,

s.t. (𝑥1 − 2)2 − 𝑥2 ≥ 0,

2𝑥1 − 𝑥2 − 1 = 0.

4. 考虑下列问题

min 𝑓(𝑥) = 𝑥1𝑥2,

s.t. 𝑔(𝑥) = −2𝑥1 + 𝑥2 + 3 ≥ 0.

(1) 用二阶最优性条件证明点 𝑥̄ =
(︁3
4
,−3

2

)︁𝑇
是局部极小点, 并说明它是否为全局极小

点.

(2) 定义障碍函数为 𝐺(𝑥, 𝑟) = 𝑥1𝑥2 − 𝑟 ln 𝑔(𝑥), 试用内点法求解此问题, 并说明内点法

产生的序列趋向于 𝑥̄.

5. 考虑下列非线性约束优化问题：

min 𝑥3
1 + 𝑥3

2

s.t. 𝑥1 + 𝑥2 = 1.

(1) 求问题的最优解.

(2) 定义罚函数 𝑃 (𝑥, 𝜎) = 𝑥3
1 + 𝑥3

2 + 𝜎(𝑥1 + 𝑥2 − 1)2, 试讨论能否通过求解无约束问题

min𝑃 (𝑥, 𝜎) 来获得原问题的最优解? 说明理由.

6. 利用乘子法的Matlab 程序求解下列约束优化问题：

(1) min 𝑓(𝑥) = (𝑥1 − 2)2 + (𝑥2 − 1)2,

s.t. 𝑥1 − 2𝑥2 + 1 = 0,

−0.25𝑥2
1 − 𝑥2

2 + 1 ≥ 0.

初始点取为 (2, 2)𝑇 , 极小点为
(︀
0.5(

√
7− 1), 0.25(

√
7 + 1)

)︀𝑇
.

(2) min 𝑓(𝑥) = 1000− 𝑥2
1 − 2𝑥2

2 − 𝑥2
3 − 𝑥1𝑥2 − 𝑥1𝑥3,

s.t. 8𝑥1 + 14𝑥2 + 7𝑥3 − 56 = 0,

𝑥2
1 + 𝑥2

2 + 𝑥2
3 − 25 = 0

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0.

初始点取为 (2, 2, 2)𝑇 , 极小点为 (3.512118, 0.216988, 3.552174)𝑇 .
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本章介绍的可行方向法是一类直接处理约束优化问题的方法, 其基本思想是

要求每一步迭代产生的搜索方向不仅对目标函数是下降方向, 而且对约束函数

来说是可行方向, 即迭代点总是满足所有的约束条件. 各种不同的可行方向法的

主要区别在于选取可行方向 𝑑𝑘 的策略不同, 我们主要介绍 Zoutendijk 可行方向

法、投影梯度法和简约梯度法三种类可行方向法.

10.1 Zoutendijk 可行方向法

Zoutendijk 可行方向法是用一个线性规划来确定搜索方向—下降可行方向

的方法, 它最早是由 Zoutendijk 于 1960 年提出来的. 我们分线性约束和非线性

约束两种情形来讨论其算法原理.

10.1.1 线性约束下的可行方向法

1. 基本原理

考虑下面的非线性优化问题⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min 𝑓(𝑥),

s.t. 𝐴𝑥 ≥ 𝑏,

𝐸𝑥 = 𝑒,

(10.1)

其中 𝑓(𝑥) 连续可微, 𝐴 是𝑚× 𝑛 矩阵, 𝐸 是 𝑙 × 𝑛 矩阵, 𝑥 ∈ R𝑛, 𝑏 ∈ R𝑚, 𝑒 ∈ R𝑙.

即 (10.1) 中有𝑚 个线性不等式约束和 𝑙 个线性等式约束.

下面的引理指出了问题 (10.1) 的下降可行方向 𝑑 应满足的条件.
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引理 17 设 𝑥̄是问题 (10.1)的一个可行点,且在 𝑥̄处有𝐴1𝑥̄ = 𝑏1, 𝐴2𝑥̄ > 𝑏2,

其中

𝐴 =

⎡⎣ 𝐴1

𝐴2

⎤⎦ , 𝑏 =

⎡⎣ 𝑏1

𝑏2

⎤⎦ .
则 𝑑 ∈ R𝑛 是点 𝑥̄ 处的下降可行方向的充要条件是

𝐴1𝑑 ≥ 0, 𝐸𝑑 = 0, ∇𝑓(𝑥̄)𝑇𝑑 < 0.

证 不难发现 𝑑 是 𝑓(𝑥) 在 𝑥̄ 处的下降方向的充要条件是 ∇𝑓(𝑥̄)𝑇𝑑 < 0. 另

外, 注意到条件 𝐴1𝑥̄ = 𝑏1 表明约束条件 𝐴1𝑥 ≥ 𝑏1 是点 𝑥̄ 出的有效约束, 而条件

𝐴2𝑥̄ > 𝑏2 表明约束条件 𝐴2𝑥 ≥ 𝑏2 是点 𝑥̄ 处的非有效约束. 因此, 在可行点 𝑥̄ 处

将约束矩阵 𝐴 分裂为相应的 𝐴1 和 𝐴2 两部分.

充分性. 设 𝐴1𝑑 ≥ 0, 𝐸𝑑 = 0. 因 𝑥̄ 是可行点, 且 𝐴1𝑥̄ = 𝑏1, 𝐸𝑥̄ = 𝑒. 故对任

意的 𝛼 > 0, 都有

𝐴1(𝑥̄+ 𝛼𝑑) = 𝐴1𝑥̄+ 𝛼(𝐴1𝑑) ≥ 𝐴1𝑥̄ = 𝑏1,

𝐸(𝑥̄+ 𝛼𝑑) = 𝐸𝑥̄+ 𝛼(𝐸𝑑) = 𝐸𝑥̄ = 𝑒.

又由 𝐴2𝑥̄ > 𝑏2, 故必存在一个 𝛼̄ > 0, 使得对于任意的 𝛼 ∈ (0, 𝛼̄], 都有

𝐴2(𝑥̄+ 𝛼𝑑) = 𝐴2𝑥̄+ 𝛼𝐴2𝑑 ≥ 𝑏2.

以上三式表明, 存在 𝛼̄, 使得对于任意的 𝛼 ∈ (0, 𝛼̄], 有

𝐴(𝑥̄+ 𝛼𝑑) ≥ 𝑏, 𝐸(𝑥̄+ 𝛼𝑑) = 𝑒,

即 𝑥̄+ 𝛼𝑑 是可行点, 从而 𝑑 是 𝑥̄ 处的可行方向.

必要性. 设 𝑥̄ 是可行点, 𝑑 是 𝑥̄ 处的一个可行方向. 由可行方向的定义, 存在

𝛼̄, 使得对于任意的 𝛼 ∈ (0, 𝛼̄], 有

𝐴(𝑥̄+ 𝛼𝑑) ≥ 𝑏, 𝐸(𝑥̄+ 𝛼𝑑) = 𝑒,

或

𝐴1(𝑥̄+ 𝛼𝑑) ≥ 𝑏1, 𝐴2(𝑥̄+ 𝛼𝑑) ≥ 𝑏2, 𝐸(𝑥̄+ 𝛼𝑑) = 𝑒.

于是由

𝐴1(𝑥̄+ 𝛼𝑑) = 𝐴1𝑥̄+ 𝛼(𝐴1𝑑) ≥ 𝑏1, 𝐴1𝑥̄ = 𝑏1, 𝛼 > 0
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可推出 𝐴1𝑑 ≥ 0. 又由

𝐸(𝑥̄+ 𝛼𝑑) = 𝐸𝑥̄+ 𝛼(𝐴1𝑑) ≥ 𝑒, 𝐸𝑥̄ = 𝑒, 𝛼 > 0

可推出 𝐸𝑑 = 0. 证毕. �

上面的引理启发我们, 要寻找问题 (10.1) 的可行点 𝑥̄ 处的一个下降可行方向

𝑑, 可以通过求解下述线性规划问题得到:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min ∇𝑓(𝑥̄)𝑇𝑑,

s.t. 𝐴1𝑑 ≥ 0,

𝐸𝑑 = 0,

−1 ≤ 𝑑𝑖 ≤ 1, 𝑖 = 1, · · · , 𝑛,

(10.2)

其中 𝑑 = (𝑑1, · · · , 𝑑𝑛)𝑇 . 增加约束条件 −1 ≤ 𝑑𝑖 ≤ 1, 𝑖 = 1, · · · , 𝑛 是为了防止
‖𝑑‖ → ∞.

注意到, 𝑑 = 0 显然是子问题 (10.2) 的一个可行解, 故目标函数 ∇𝑓(𝑥̄)𝑇𝑑 的
最优值必然小于或等于 0. 若目标函数的最优值 𝑧 = ∇𝑓(𝑥̄)𝑇𝑑 < 0, 则由引理 17

可知, 𝑑 即为 𝑥̄ 处的下降可行方向. 否则, 若标函数的最优值 𝑧 = ∇𝑓(𝑥̄)𝑇𝑑 = 0,

则可以证明 𝑥̄ 是问题 (10.1) 的 KT 点.

定理 49 设 𝑥̄是问题 (10.1)的一个可行点,且在 𝑥̄处有𝐴1𝑥̄ = 𝑏1, 𝐴2𝑥̄ > 𝑏2,

其中

𝐴 =

⎡⎣ 𝐴1

𝐴2

⎤⎦ , 𝑏 =

⎡⎣ 𝑏1

𝑏2

⎤⎦ .
则 𝑥̄ 是问题 (10.1) 的 KT 点的充要条件是子问题 (10.2) 的最优值为 0.

由于上述定理的证明需要用到 Farkas 引理 (引理 11), 为了使用方便, 我们给

出 Farkas 引理的一个等价描述方式.

引理 18 (Farkas 引理) 设 𝐴 为 𝑚× 𝑛 矩阵, 𝑐 为 𝑛 维向量. 则 𝐴𝑇𝑦 = 𝑐,

𝑦 ≥ 0 有解的充分必要条件是 𝐴𝑥 ≥ 0, 𝑐𝑇𝑥 > 0 无解, 其中 𝑥, 𝑦 分别是为 𝑛, 𝑚

维向量.

定理 49 的证明: 注意到, 𝑥̄ 是 KT 点充要条件是, 存在 𝜆 ≥ 0 和 𝜇, 使得

∇𝑓(𝑥̄)− 𝐴𝑇
1 𝜆− 𝐸𝑇𝜇 = 0. (10.3)
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令 𝜇 = 𝜈1 − 𝜈2 (𝜈1, 𝜈2 ≥ 0), 把 (10.3) 写成

(︀
− 𝐴𝑇

1 ,−𝐸𝑇 , 𝐸𝑇
)︀
⎛⎜⎜⎜⎝

𝜆

𝜈1

𝜈2

⎞⎟⎟⎟⎠ = −∇𝑓(𝑥̄),

⎛⎜⎜⎜⎝
𝜆

𝜈1

𝜈2

⎞⎟⎟⎟⎠ ≥ 0. (10.4)

根据 Farkas 引理, (10.4) 有解的充要条件是⎛⎜⎜⎜⎝
−𝐴1

−𝐸

𝐸

⎞⎟⎟⎟⎠ 𝑑 ≤ 0, −∇𝑓(𝑥̄)𝑇𝑑 > 0 (10.5)

无解, 即

𝐴1𝑑 ≥ 0, 𝐸𝑑 = 0, ∇𝑓(𝑥̄)𝑇𝑑 < 0

无解. 故 𝑥̄ 是问题 (10.1) 的 KT 点的充要条件是子问题 (10.2) 的最优值为 0. �

由上述定理可知, 求解子问题 (10.2) 的结果, 或者得到下降可行方向, 或者

得到原问题的一个 KT 点.

2. 计算步骤

下面讨论可行方向法的具体计算步骤. 首先分析如何确定搜索步长 𝛼𝑘. 设问

题的可行域为 ℱ . 第 𝑘 次迭代的出发点 𝑥𝑘 ∈ ℱ 是可行点, 𝑑𝑘 是其下降可行方向,

则后继点 𝑥𝑘+1 为

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘. (10.6)

为了使得 𝑥𝑘+1 ∈ ℱ , 且使 𝑓(𝑥𝑘+1) 的值尽可能小, 可以通过求解下面的一维搜索

问题来解决:

min
0≤𝛼≤𝛼̄

𝑓(𝑥𝑘 + 𝛼𝑑𝑘),

𝛼̄ = max{𝛼|𝑥𝑘 + 𝛼𝑑𝑘 ∈ ℱ}.
(10.7)

在求解 (10.7) 式时, 考虑到线性约束情形时的 (10.1) 式, 先求解⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min 𝑓(𝑥𝑘 + 𝛼𝑑𝑘),

s.t. 𝐴(𝑥𝑘 + 𝛼𝑑𝑘) ≥ 𝑏,

𝐸(𝑥𝑘 + 𝛼𝑑𝑘) = 𝑒.

(10.8)
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而 (10.8) 可作进一步的简化: 因为 𝑑𝑘 是可行方向, 有 𝐸𝑑𝑘 = 0; 而 𝑥𝑘 是可行点,

有 𝐸𝑥𝑘 = 𝑒. 因此 (10.8) 中的等式约束条件自然成立, 可不必再考虑它. 此外, 在

𝑥𝑘 处, 将不等式约束分为有效约束和非有效约束, 设

𝐴1𝑥𝑘 = 𝑏1, 𝐴2𝑥𝑘 > 𝑏2, (10.9)

其中

𝐴 =

⎡⎣ 𝐴1

𝐴2

⎤⎦ , 𝑏 =

⎡⎣ 𝑏1
𝑏2

⎤⎦ .
则 (10.8) 中的不等式约束条件可分裂成:

𝐴1𝑥𝑘 + 𝛼𝐴1𝑑𝑘 ≥ 𝑏1, (10.10)

𝐴2𝑥𝑘 + 𝛼𝐴2𝑑𝑘 ≥ 𝑏2. (10.11)

又因 𝑑𝑘 是可行方向, 由引理 17 知 𝐴1𝑑𝑘 ≥ 0. 注意到 𝐴1𝑥𝑘 = 𝑏1 及 𝛼 ≥ 0, 因此条

件 (10.10) 也自然成立. 于是 (10.8) 中的约束条件只剩下 (10.11), 故 (10.8) 可简

化为: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min 𝑓(𝑥𝑘 + 𝛼𝑑𝑘),

s.t. 𝐴2(𝑥𝑘 + 𝛼𝑑𝑘) > 𝑏2,

𝛼 ≥ 0.

(10.12)

以下讨论 (10.12) 中求 𝛼 上限的公式. 将 (10.12) 中的第一个约束条件改写成:

𝛼𝐴2𝑑𝑘 ≥ 𝑏2 − 𝐴2𝑥𝑘.

若记

𝑏̄ = 𝑏2 − 𝐴2𝑥𝑘, 𝑑 = 𝐴2𝑑𝑘, (10.13)

则有

𝛼𝑑 ≥ 𝑏̄, 𝛼 ≥ 0.

注意到 (10.9) 式, 我们有 𝑏̄ < 0. 由此可得 𝛼 的上界计算公式:

𝛼̄ =

⎧⎪⎪⎨⎪⎪⎩
min

{︁ 𝑏̄𝑖
𝑑𝑖

=
(𝑏2 − 𝐴2𝑥𝑘)𝑖

(𝐴2𝑑𝑘)𝑖

⃒⃒⃒
𝑑𝑖 < 0

}︁
, 𝑑 ̸≥ 0,

+∞, 𝑑 ≥ 0,

(10.14)
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其中 𝑏̄𝑖, 𝑑𝑖 分别是向量 𝑏̄, 𝑑 的第 𝑖 个分量. 因此, 求解 (10.12) 等价于求解⎧⎪⎨⎪⎩
min 𝑓(𝑥𝑘 + 𝛼𝑑𝑘),

s.t. 0 ≤ 𝛼 ≤ 𝛼̄,
(10.15)

其中 𝛼̄ 由 (10.14) 式计算.

至此, 我们可以写出求解问题 (10.1) 的可行方向法的详细计算步骤:

算法 25 (线性约束的可行方向法)

步 0 给定初始可行点 𝑥0, 终止误差 0 < 𝜀1 ≪ 1, 0 < 𝜀2 ≪ 1. 令 𝑘 := 0.

步 1 在 𝑥𝑘 处, 将不等式约束分为有效约束和非有效约束:

𝐴1𝑥𝑘 = 𝑏1, 𝐴2𝑥𝑘 > 𝑏2,

其中

𝐴 =

⎡⎣ 𝐴1

𝐴2

⎤⎦ , 𝑏 =

⎡⎣ 𝑏1
𝑏2

⎤⎦ .
步 2 若 𝑥𝑘 是可行域的一个内点 (此时问题 (10.1)中没有等式约束, 即𝐸 = 0

且 𝐴1 = 0), 且 ‖∇𝑓(𝑥𝑘)‖ < 𝜀1, 停算, 得到近似极小点 𝑥𝑘; 否则, 若 𝑥𝑘 是可行域

的一个内点但 ‖∇𝑓(𝑥𝑘)‖ ≥ 𝜀1,则取搜索方向 𝑑𝑘 = −∇𝑓(𝑥𝑘), 转步 5 (即用目标函

数的负梯度方向作为搜索方向再求步长, 此时类似于无约束优化问题). 若 𝑥𝑘 不

是可行域的一个内点, 则转步 3.

步 3 求解线性规划问题⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min 𝑧 = ∇𝑓(𝑥𝑘)𝑇𝑑,

s.t. 𝐴1𝑑 ≥ 0,

𝐸𝑑 = 0,

−1 ≤ 𝑑𝑖 ≤ 1, 𝑖 = 1, · · · , 𝑛,

(10.16)

其中 𝑑 = (𝑑1, · · · , 𝑑𝑛)𝑇 . 设求得最优解和最优值分别为 𝑑𝑘 和 𝑧𝑘.

步 4 若 |𝑧𝑘| < 𝜀2, 停算, 输出 𝑥𝑘 作为近似极小点. 否则, 以 𝑑𝑘 作为搜索方

向, 转步 5.
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步 5 首先由 (10.13) 和 (10.14) 计算 𝛼̄, 然后作一维线搜索:⎧⎪⎨⎪⎩
min 𝑓(𝑥𝑘 + 𝛼𝑑𝑘),

s.t. 0 ≤ 𝛼 ≤ 𝛼̄,

求得最优解 𝛼𝑘.

步步步 6 置 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 := 𝑘 + 1, 转步 1.

10.1.2 非线性约束下的可行方向法

1. 基本原理

考虑下面带有非线性不等式约束的优化问题:⎧⎪⎨⎪⎩
min 𝑓(𝑥),

s.t. 𝑔𝑖(𝑥) ≥ 0, 𝑖 = 1, · · · ,𝑚,
(10.17)

其中 𝑥 ∈ R𝑛, 𝑓(𝑥), 𝑔𝑖(𝑥) (𝑖 = 1, · · · ,𝑚) 都是连续可微的函数.

下面的引理指出了问题 (10.17)　的一个下降可行方向 所应满足的条件.

引理 19 设 𝑥̄ 是问题 (10.17) 的一个可行点, 指标集 𝐼(𝑥̄) = {𝑖 | 𝑔𝑖(𝑥̄) = 0},
𝑓(𝑥), 𝑔𝑖(𝑥) (𝑖 ∈ 𝐼(𝑥̄)) 在 𝑥̄ 处可微, 𝑔𝑖(𝑥) (𝑖 ̸∈ 𝐼(𝑥̄)) 在 𝑥̄ 处连续. 若

∇𝑓(𝑥̄)𝑇𝑑 < 0, ∇𝑔𝑖(𝑥̄)𝑇𝑑 > 0 (𝑖 ∈ 𝐼(𝑥̄)),

那么 𝑑 是问题 (10.17) 在 𝑥̄ 处的下降可行方向.

证 由引理 13 中的下降可行方向的代数条件 (8.10) 可知, 𝑑 必是问题 (10.17)

在 𝑥̄ 处的一个下降可行方向. 证毕. �

由上述引理可知, 问题 (10.17) 在可行点 𝑥̄ 处的下降可行方向 𝑑 应满足:⎧⎪⎨⎪⎩
∇𝑓(𝑥̄)𝑇𝑑 < 0,

∇𝑔𝑖(𝑥)𝑇𝑑 > 0, 𝑖 ∈ 𝐼(𝑥̄).
(10.18)

· 161 ·



第十章 可行方向法 回回回目目目录录录 S10.1 ZOUTENDIJK 可行方向法

而在 (10.18) 中引进辅助变量 𝑧 后, 等价于下面的线性不等式组求 𝑑 和 𝑧:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∇𝑓(𝑥̄)𝑇𝑑 ≤ 𝑧,

−∇𝑔𝑖(𝑥)𝑇𝑑 ≤ 𝑧, 𝑖 ∈ 𝐼(𝑥̄),

𝑧 ≤ 0.

(10.19)

注意到, 满足 (10.19) 的下降可行方向 𝑑 及数 𝑧 一般有很多个, 我们自然希望求

出能使目标函数下降最多的方向 𝑑. 故而可将 (10.19) 转化为以 𝑧 为目标函数的

线性规划问题 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝑧,

s.t. ∇𝑓(𝑥̄)𝑇𝑑 ≤ 𝑧,

−∇𝑔𝑖(𝑥)𝑇𝑑 ≤ 𝑧, 𝑖 ∈ 𝐼(𝑥̄),

−1 ≤ 𝑑𝑖 ≤ 1, 𝑖 = 1, · · · , 𝑛,

(10.20)

其中 𝑑 = (𝑑1, · · · , 𝑑𝑛)𝑇 .
设 (10.20) 的最优解为 𝑑, 最优值为 𝑧. 那么, 若 𝑧 < 0, 则 𝑑 是问题 (10.17) 在

𝑥̄ 处的下降可行方向; 否则, 若 𝑧 = 0, 则下面的定理将证明: 相应的 𝑥̄ 必为问题

(10.17) 的 Fritz John 点.

定理 50 设 𝑥̄ 是问题 (10.17) 的可行点, 𝐼(𝑥̄) = {𝑖 | 𝑔𝑖(𝑥̄) = 0}. 则 𝑥̄ 是问题

(10.17) 的 Fritz John 点的充要条件是子问题 (10.20) 的最优值为 0.

证 对于子问题 (10.20), 其最优值为 0 的充要条件是不等式组⎧⎪⎨⎪⎩
∇𝑓(𝑥̄)𝑇𝑑 < 0,

∇𝑔𝑖(𝑥̄)𝑇𝑑 > 0, 𝑖 ∈ 𝐼(𝑥̄),

即 ⎧⎪⎨⎪⎩
∇𝑓(𝑥̄)𝑇𝑑 < 0,

−∇𝑔𝑖(𝑥̄)𝑇𝑑 < 0, 𝑖 ∈ 𝐼(𝑥̄),
(10.21)

无解. 根据 Gordan 引理 (引理 12), 不等式组 (10.21) 无解的充要条件是存在不全

为 0 的数 𝜆0 ≥ 0 和 𝜆𝑖 (𝑖 ∈ 𝐼(𝑥̄), 使得

𝜆0∇𝑓(𝑥̄)−
∑︁
𝑖∈𝐼(𝑥̄)

𝜆𝑖∇𝑔𝑖(𝑥̄) = 0,
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即 𝑥̄ 是问题 (10.17) 的 Fritz John 点. 证毕. �

2. 计算步骤

与线性约束情形一样, 为了确定搜索步长 𝛼𝑘, 仍然需要求解一个一维搜索问

题:

min 𝑓(𝑥𝑘 + 𝛼𝑑𝑘),

s.t. 0 ≤ 𝛼 ≤ 𝛼̄,
(10.22)

其中

𝛼̄ = sup{𝛼 | 𝑔𝑖(𝑥𝑘 + 𝛼𝑑𝑘) ≥ 0, 𝑖 = 1, · · · ,𝑚}. (10.23)

现在, 我们写出求解问题 (10.17) 的可行方向法的详细计算步骤:

算法 26 (非线性约束的可行方向法)

步 1 确定 𝑥𝑘 处的有效约束指标集 𝐼(𝑥𝑘) :

𝐼(𝑥𝑘) = {𝑖 | 𝑔𝑖(𝑥𝑘) = 0, 1 ≤ 𝑖 ≤ 𝑚}.

若 𝐼(𝑥𝑘) = ∅ 且 ‖∇𝑓(𝑥𝑘)‖ < 𝜀1, 停算, 得到近似极小点 𝑥𝑘; 否则若 𝐼(𝑥𝑘) = ∅ 但
‖∇𝑓(𝑥𝑘)‖ ≥ 𝜀1, 则取搜索方向 𝑑𝑘 = −∇𝑓(𝑥𝑘), 转步 4. 反之, 若 𝐼(𝑥𝑘) ̸= ∅, 转步
2.

步 2 求解线性规划问题 (10.20), 得最优解 𝑑𝑘, 最优值 𝑧𝑘.

步 3 若 |𝑧𝑘| < 𝜀2, 停算, 输出 𝑥𝑘 作为近似极小点. 否则, 以 𝑑𝑘 作为搜索方

向, 转步 4.

步 4 首先由 (10.23) 计算 𝛼̄, 然后作一维线搜索:⎧⎪⎨⎪⎩
min 𝑓(𝑥𝑘 + 𝛼𝑑𝑘),

s.t. 0 ≤ 𝛼 ≤ 𝛼̄,

求得最优解 𝛼𝑘.

步 5 置 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 := 𝑘 + 1, 转步 1.

注 (1) 步 1 中的 𝐼(𝑥𝑘) = ∅, 表明 𝑥𝑘 是可行域 ℱ 的内点, 因此任意方向都是

可行方向. 此时, 若不满足终止条件, 类似于无约束优化问题, 可用最速下降法寻

求下一个迭代点. 但毕竟不是真正的无约束问题, 步长要受到可行与便捷的限制.

(2) 步 3 中若 𝑧𝑘 ≈ 0, 说明在 𝑥𝑘 处找不到下降可行方向, 可以认为 𝑥𝑘 是原

问题的一个 Fritz-John 点.
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(3) 算法 26 若推广到包含非线性等式约束的优化问题, 迭代过程会出现一

些困难. 因为对于等式约束和当前可行迭代点 𝑥𝑘, 一般难于找到一个可行方向.

这与罚函数类算法刚好相反, 罚函数类算法容易处理等式约束.

例 29 用 Zoutendijk 可行方向法求解下列问题:

min 𝑥21 + 𝑥22 − 2𝑥1 − 4𝑥2 + 3,

s.t. − 2𝑥1 + 𝑥2 ≥ −1,

−𝑥1 − 𝑥2 ≥ −2,

𝑥1 ≥ 0, 𝑥2 ≥ 0.

解 取初始可行点 𝑥0 = (0, 0)𝑇 .

第 1 次迭代. ∇𝑓(𝑥0) = (−2,−4)𝑇 . 有效约束和非有效约束的系数矩阵和右

端向量分别为:

𝐴1 =

⎡⎣ 1 0

0 1

⎤⎦ , 𝐴2 =

⎡⎣ −2 1

−1 −1

⎤⎦ , 𝑏1 =

⎡⎣ 0

0

⎤⎦ , 𝑏2 =

⎡⎣ −1

−2

⎤⎦ .
先求在 𝑥0 处的下降可行方向 𝑑0. 解线性规划问题

min ∇𝑓(𝑥0)𝑇𝑑,

s.t. 𝐴1𝑑 ≥ 0,

|𝑑𝑖| < 1, 𝑖 = 1, 2,

即

min −2𝑑1 − 4𝑑2,

s.t. 𝑑1 ≥ 0, 𝑑2 ≥ 0,

−1 ≤ 𝑑1 ≤ 1,

−1 ≤ 𝑑2 ≤ 1.

由单纯形方法求得最优解为 𝑑0 = (1, 1)𝑇 .
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再求步长因子 𝛼0. 分别计算 𝑏̄, 𝑑 和 𝛼̄:

𝑑 = 𝐴2𝑑0 =

⎡⎣ −2 1

−1 −1

⎤⎦⎡⎣ 1

1

⎤⎦ =

⎡⎣ −1

−2

⎤⎦ ,

𝑏̄ = 𝑏2 − 𝐴2𝑥0 =

⎡⎣ −1

−2

⎤⎦−

⎡⎣ −2 1

−1 −1

⎤⎦⎡⎣ 0

0

⎤⎦ =

⎡⎣ −1

−2

⎤⎦ ,
𝛼̄ = min

{︁−1

−1
,
−2

−2

}︁
= 1.

于是解下面的一维搜索问题求 𝛼0:

min 𝑓(𝑥0 + 𝛼𝑑0) = 2𝛼2 − 6𝛼 + 3,

s.t. 0 ≤ 𝛼 ≤ 1.

求得 𝛼0 = 1. 令 𝑥1 = 𝑥0 + 𝛼0𝑑0 = (1, 1)𝑇 . 至此第 1 次迭代完成.

第 2 次迭代. ∇𝑓(𝑥1) = (0,−2)𝑇 . 有效约束和非有效约束的系数矩阵和右端

向量分别为:

𝐴1 =

⎡⎣ −2 1

−1 −1

⎤⎦ , 𝐴2 =

⎡⎣ 1 0

0 1

⎤⎦ , 𝑏1 =

⎡⎣ −1

−2

⎤⎦ , 𝑏2 =

⎡⎣ 0

0

⎤⎦ .
解线性规划问题

min −2𝑑2,

s.t. 2𝑑1 + 𝑑2 ≥ 0,

−𝑑1 − 𝑑2 ≥ 0,

−1 ≤ 𝑑1 ≤ 1,

−1 ≤ 𝑑2 ≤ 1.

由单纯形方法求得最优解为 𝑑1 = (−1, 1)𝑇 .
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再求步长因子 𝛼1. 分别计算 𝑏̄, 𝑑 和 𝛼̄:

𝑑 = 𝐴2𝑑0 =

⎡⎣ 1 0

0 1

⎤⎦⎡⎣ −1

1

⎤⎦ =

⎡⎣ −1

1

⎤⎦ ,

𝑏̄ = 𝑏2 − 𝐴2𝑥0 =

⎡⎣ 0

0

⎤⎦−

⎡⎣ 1 0

0 1

⎤⎦⎡⎣ 1

1

⎤⎦ =

⎡⎣ −1

−1

⎤⎦ ,
得 𝛼̄ = 1. 于是解下面的一维搜索问题求 𝛼1:

min 𝑓(𝑥1 + 𝛼𝑑1) = 2𝛼2 − 2𝛼− 1,

s.t. 0 ≤ 𝛼 ≤ 1.

求得 𝛼1 = 0.5. 令 𝑥2 = 𝑥1 + 𝛼1𝑑1 = (1, 1)𝑇 + 0.5(−1, 1)𝑇 = (0.5, 1.5)𝑇 . 至此第 2

次迭代完成.

第 3 次迭代. ∇𝑓(𝑥2) = (−1,−1)𝑇 . 有效约束和非有效约束的系数矩阵和右

端向量分别为:

𝐴1 =
[︁
−1 −1

]︁
, 𝐴2 =

⎡⎢⎢⎢⎣
−2 1

1 0

0 1

⎤⎥⎥⎥⎦ , 𝑏1 =
[︁
−2

]︁
, 𝑏2 =

⎡⎢⎢⎢⎣
−1

0

0

⎤⎥⎥⎥⎦ .
解线性规划问题

min −𝑑1 − 𝑑2,

s.t. − 𝑑1 − 𝑑2 ≥ 0,

−1 ≤ 𝑑1 ≤ 1,

−1 ≤ 𝑑2 ≤ 1.

由单纯性方法求得最优解为 𝑑1 = (0, 0)𝑇 . 由定理 49 知, 𝑥2 = (0.5, 1.5)𝑇 是 KT

点. 由于此例是凸规划, 因此, 𝑥2 也是最优解, 相应地, 目标函数的最优值为

𝑓min = 𝑓(𝑥2) = 1.5.

10.2 梯度投影法

梯度投影法是 Rosen 于 1961 年针对线性约束的优化问题首先提出来的一种

优化算法, 次年 Rosen 又将他的这一算法推广到处理非线性约束的情形. 后来这
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一方法又得到了进一步的发展, 成为求解非线性规划问题的一类重要的方法.

10.2.1 梯度投影法的理论基础

我们考虑线性约束的优化问题⎧⎪⎪⎪⎨⎪⎪⎪⎩
min 𝑓(𝑥),

s.t. 𝐴𝑥 ≥ 𝑏,

𝐸𝑥 = 𝑒,

(10.24)

其中 𝑓 是连续可微的 𝑛 元实函数, 𝐴 ∈ R𝑚×𝑛, 𝐸 ∈ R𝑙×𝑛, 𝑏 ∈ R𝑚, 𝑒 ∈ R𝑙, 𝑥 ∈ R𝑛.

其可行域为 𝒟 = {𝑥 ∈ R𝑛 |𝐴𝑥 ≥ 𝑏, 𝐸𝑥 = 𝑒}.
梯度投影法的基本思想是: 当迭代点 𝑥𝑘 是可行域 𝒟 的内点时, 取 𝑑 =

−∇𝑓(𝑥𝑘) 作为搜索方向; 否则, 当 𝑥𝑘 是可行域 𝒟 的边界点时, 取 −∇𝑓(𝑥𝑘) 在这
些边界面交集上的投影作为搜索方向. 这也是“梯度投影法”名称的由来.

在具体介绍梯度投影法之前, 我们先引入投影矩阵的概念及其有关性质.

定义 20 称矩阵 𝑃 ∈ R𝑛×𝑛 为投影矩阵, 是指 𝑃 满足

𝑃 = 𝑃 𝑇 , 𝑃 2 = 𝑃.

由上述定义可知, 一个对称幂等矩阵就是投影矩阵. 投影矩阵具有如下一些基本

性质, 其证明可参看文献 [11].

引理 20 设矩阵 𝑃 ∈ R𝑛×𝑛.

(1) 若 𝑃 为投影矩阵, 则 𝑃 是半正定的. (2) 𝑃 是投影矩阵当且仅当 𝐼 −𝑃

也是投影矩阵, 其中 𝐼 是 𝑛 阶单位阵. (3) 设 𝑃 是投影矩阵, 𝑄 = 𝐼 − 𝑃 , 则

𝐿 = {𝑦 = 𝑃𝑥|𝑥 ∈ R𝑛}, 𝐿⊥ = {𝑧 = 𝑄𝑥|𝑥 ∈ R𝑛}

是互相正交的线性子空间, 并且对于任意的 𝑥 ∈ R𝑛 可唯一地表示为

𝑥 = 𝑦 + 𝑧, 𝑦 ∈ 𝐿, 𝑧 ∈ 𝐿⊥.

定理 51 设 𝑥̄ 是问题 (10.24) 的一个可行点, 且满足 𝐴1𝑥̄ = 𝑏1, 𝐴2𝑥 > 𝑏2,

其中

𝐴 =

⎡⎣ 𝐴1

𝐴2

⎤⎦ , 𝑏 =

⎡⎣ 𝑏1

𝑏2

⎤⎦ .
· 167 ·



第十章 可行方向法 回回回目目目录录录 S10.2 梯度投影法

又设

𝑀 =

⎡⎣ 𝐴1

𝐸

⎤⎦
是满秩矩阵, 𝑃 = 𝐼 −𝑀𝑇 (𝑀𝑀𝑇 )−1𝑀 , 𝑃∇𝑓(𝑥̄) ̸= 0. 若取 𝑑 = −𝑃∇𝑓(𝑥̄), 则 𝑑

是问题 (10.24) 的一个下降可行方向.

证 不难验证, 𝑃 = 𝐼 −𝑀𝑇 (𝑀𝑀𝑇 )−1𝑀 是投影矩阵, 故由 𝑃∇𝑓(𝑥̄) ̸= 0 可得

∇𝑓(𝑥̄)𝑇𝑑 = −∇𝑓(𝑥̄)𝑇𝑃∇𝑓(𝑥̄)𝑇 = −‖𝑃∇𝑓(𝑥̄)𝑇‖2 < 0,

即 𝑑 为下降方向. 又因

𝑀𝑑 = −𝑀𝑃∇𝑓(𝑥̄)𝑇

= −𝑀(𝐼 −𝑀𝑇 (𝑀𝑀𝑇 )−1𝑀)∇𝑓(𝑥̄)𝑇

= (−𝑀 +𝑀)∇𝑓(𝑥̄)𝑇 = 0,

即

𝑀𝑑 =

⎡⎣ 𝐴1

𝐸

⎤⎦ 𝑑 =

⎡⎣ 𝐴1𝑑

𝐸𝑑

⎤⎦ = 0,

从而 𝐴1𝑑 = 0, 𝐸𝑑 = 0. 根据引理 17, 𝑑 是在 𝑥̄ 的可行方向. 证毕. �

上述定理在 𝑃∇𝑓(𝑥̄) ̸= 0 的假设下, 给出了用投影来求下降可行方向的一种

方法. 但是, 当 𝑃∇𝑓(𝑥̄) = 0 时, 情况又该如何呢？下面的定理指出, 此时有两种

可能: 要么 𝑥̄ 是已是 KT 点, 要么构造新的投影矩阵, 以便求得下降可行方向.

定理 52 设 𝑥̄ 是问题 (10.24) 的一个可行点, 且满足 𝐴1𝑥̄ = 𝑏1, 𝐴2𝑥 > 𝑏2,

其中

𝐴 =

⎡⎣ 𝐴1

𝐴2

⎤⎦ , 𝑏 =

⎡⎣ 𝑏1

𝑏2

⎤⎦ .
又设

𝑀 =

⎡⎣ 𝐴1

𝐸

⎤⎦
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是行满秩矩阵, 令

𝑃 = 𝐼 −𝑀𝑇 (𝑀𝑀𝑇 )−1𝑀,

𝜔 = (𝑀𝑀𝑇 )−1𝑀∇𝑓(𝑥̄) =

⎡⎣ 𝜆

𝜇

⎤⎦ ,
其中 𝜆 和 𝜇 分别对应于 𝐴1 和 𝐸. 若 𝑃∇𝑓(𝑥̄) = 0, 则

(1) 如果 𝜆 ≥ 0, 那么 𝑥̄ 是 KT 点.

(2) 如果 𝜆 ̸≥ 0, 不妨设 𝜆𝑗 < 0, 那么先从 𝐴1 中去掉 𝜆𝑗 所对应的行, 得到新

矩阵 𝐴1, 然后令

𝑀̃ =

⎡⎣ 𝐴1

𝐸

⎤⎦ , 𝑃 = 𝐼 − 𝑀̃𝑇 (𝑀̃𝑀̃𝑇 )−1𝑀̃, 𝑑 = −𝑃∇𝑓(𝑥̄),

那么, 𝑑 是下降可行方向.

证 (1) 设 𝜆 ≥ 0. 注意到 𝑃∇𝑓(𝑥̄) = 0, 我们有

0 = 𝑃∇𝑓(𝑥̄) = [𝐼 −𝑀𝑇 (𝑀𝑀𝑇 )−1𝑀 ]∇𝑓(𝑥̄)

= ∇𝑓(𝑥̄)−𝑀𝑇 (𝑀𝑀𝑇 )−1𝑀∇𝑓(𝑥̄)

= ∇𝑓(𝑥̄)−𝑀𝑇𝜔 = ∇𝑓(𝑥̄)− [𝐴𝑇
1 , 𝐸

𝑇 ]

⎡⎣ 𝜆

𝜇

⎤⎦
= ∇𝑓(𝑥̄)− 𝐴𝑇

1 𝜆− 𝐸𝑇𝜇. (10.25)

(10.25) 恰为 KT 条件, 因此 𝑥̄ 是 KT 点.

(2) 设 𝜆𝑗 < 0. 先证明 𝑃∇𝑓(𝑥̄) ̸= 0. 用反证法. 若 𝑃∇𝑓(𝑥̄) = 0, 则由 𝑃 定

义可得

0 = 𝑃∇𝑓(𝑥̄) = [𝐼 − 𝑀̃𝑇 (𝑀̃𝑀̃𝑇 )−1𝑀̃ ]∇𝑓(𝑥̄) = ∇𝑓(𝑥̄)− 𝑀̃𝑇 𝜔̃, (10.26)

其中 𝜔̃ = (𝑀̃𝑀̃𝑇 )−1𝑀̃∇𝑓(𝑥̄). 设 𝐴1 中对应于 𝜆𝑗 的行为 𝑟𝑗 (第 𝑗 行). 由于

𝐴𝑇
1 𝜆+ 𝐸𝑇𝜇 = 𝐴𝑇

1 𝜆̃+ 𝜆𝑗𝑟
𝑇
𝑗 + 𝐸𝑇𝜇 = 𝑀̃𝑇 𝜔̄ + 𝜆𝑗𝑟

𝑇
𝑗 . (10.27)

将 (10.27) 代入 (10.25) 得

0 = ∇𝑓(𝑥̄)− 𝑀̃𝑇 𝜔̄ − 𝜆𝑗𝑟
𝑇
𝑗 . (10.28)
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(10.26) 减去 (10.28) 得

𝑀̃𝑇 (𝜔̄ − 𝜔̃) + 𝜆𝑗𝑟𝑗 = 0. (10.29)

上式左端是矩阵𝑀 的行向量的一个线性组合, 且至少有一个系数 𝜆𝑗 ̸= 0. 由此

可得𝑀 的行向量线性相关, 这与𝑀 是行满秩矛盾. 因此必有 𝑃∇𝑓(𝑥̄) ̸= 0.

由由由于 𝑃 亦为投影矩阵, 且 𝑃∇𝑓(𝑥̄) ̸= 0, 故

∇𝑓(𝑥̄)𝑇𝑑 = −∇𝑓(𝑥̄)𝑇𝑃∇𝑓(𝑥̄)𝑇 = −‖𝑃∇𝑓(𝑥̄)‖2 < 0,

即 𝑑 是下降方向. 以下只需证明 𝑑 是可行方向即可. 事实上, 因

𝑀̃𝑑 = −𝑀̃𝑃∇𝑓(𝑥̄)

= −𝑀̃ [𝐼 − 𝑀̃𝑇 (𝑀̃𝑀̃𝑇 )−1𝑀̃ ]∇𝑓(𝑥̄)

= −(𝑀̃ − 𝑀̃)∇𝑓(𝑥̄) = 0,

即

𝐴1𝑑 = 0, 𝐸𝑑 = 0. (10.30)

将 (10.28) 两边左乘 𝑟𝑗𝑃 得

𝑟𝑗𝑃∇𝑓(𝑥̄)− 𝑟𝑗𝑃𝑀̃
𝑇 𝜔̄ − 𝜆𝑗𝑟𝑗𝑃𝑟

𝑇
𝑗 = 0.

注意到 𝑃𝑀̃𝑇 = 0 及 𝑑 = −𝑃∇𝑓(𝑥̄), 上式即

𝑟𝑗𝑑+ 𝜆𝑗𝑟𝑗𝑃𝑟
𝑇
𝑗 = 0. (10.31)

因 𝑃 半正定 (𝑟𝑗𝑃𝑟
𝑇
𝑗 ≥ 0) 及 𝜆𝑗 < 0, 故有

𝑟𝑗𝑑 = −𝜆𝑗𝑟𝑗𝑃𝑟𝑇𝑗 ≥ 0. (10.32)

由 (10.30) 和 (10.32) 即得

𝐴1𝑑 ≥ 0, 𝐸𝑑 = 0.

最后, 根据引理 17, 𝑑 是在 𝑥̄ 的可行方向. 证毕. �
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10.2.2 梯度投影法的计算步骤

基于上述分析与讨论, 我们给出 Rosen 梯度投影法的详细计算步骤如下:

算法 27 (Rosen 梯度投影法)

步 0 给定初始可行点 𝑥0, 令 𝑘 := 0.

步 1 在 𝑥𝑘 处确定有效约束 𝐴1𝑥𝑘 = 𝑏1 和非有效约束 𝐴2𝑥𝑘 > 𝑏2, 其中

𝐴 =

⎡⎣ 𝐴1

𝐴2

⎤⎦ , 𝑏 =

⎡⎣ 𝑏1

𝑏2

⎤⎦ .
步 2 令

𝑀 =

⎡⎣ 𝐴1

𝐸

⎤⎦ .
若𝑀 是空的, 则令 𝑃 = 𝐼 (单位矩阵). 否则, 令 𝑃 = 𝐼 −𝑀𝑇 (𝑀𝑀𝑇 )−1𝑀 .

步 3 计算 𝑑𝑘 = −𝑃∇𝑓(𝑥𝑘). 若 ‖𝑑𝑘‖ ≠ 0, 转步 5; 否则, 转步 4.

步 4 计算

𝜔 = (𝑀𝑀𝑇 )−1𝑀∇𝑓(𝑥𝑘) =

⎡⎣ 𝜆

𝜇

⎤⎦ .
若 𝜆 ≥ 0, 停算, 输出 𝑥𝑘 为 KT 点. 否则, 选取 𝜆 的某个负分量, 比如 𝜆𝑗 < 0, 修

正矩阵 𝐴1, 即去掉 𝐴1 中对应于 𝜆𝑗 的行, 转步 2.

步 5 求解一维搜索问题, 确定步长 𝛼𝑘 :

min 𝑓(𝑥𝑘 + 𝛼𝑑𝑘),

s.t. 0 ≤ 𝛼 ≤ 𝛼̄,

其中 𝛼̄ 由下式确定

𝛼̄ =

⎧⎪⎨⎪⎩
min

{︁(𝑏2 − 𝐴2𝑥𝑘)𝑖
(𝐴2𝑑𝑘)𝑖

⃒⃒⃒
(𝐴2𝑑𝑘)𝑖 < 0

}︁
, (𝐴2𝑑𝑘) ̸≥ 0,

+∞, (𝐴2𝑑𝑘) ≥ 0.

步 6 令 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 := 𝑘 + 1, 转步 1.
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例 30 用 Rosen 梯度投影法求解下面的优化问题⎧⎪⎪⎪⎨⎪⎪⎪⎩
min 𝑓(𝑥) = 𝑥21 + 𝑥22 + 6𝑥1 + 9,

s.t. 2𝑥1 + 𝑥2 ≥ 4,

𝑥1, 𝑥2 ≥ 0.

取初始可行点为 𝑥0 = (2, 0)𝑇 .

解 首先目标函数的梯度

∇𝑓(𝑥) =

⎡⎣ 2𝑥1 + 6

2𝑥2

⎤⎦ .
第 1 次迭代. 在 𝑥0 处的梯度为

∇𝑓(𝑥0) =

⎡⎣ 10

0

⎤⎦ .
在 𝑥0 处有效约束的指标集为 𝐼 = {1, 3}, 即 2𝑥1 + 𝑥2 ≥ 4 和 𝑥2 ≥ 0 是在

𝑥0 = (2, 0)𝑇 处的有效约束. 将约束系数矩阵 𝐴 和右端向量 𝑏 分解为

𝐴1 =

⎡⎣ 2 1

0 1

⎤⎦ , 𝑏1 =

⎡⎣ 4

0

⎤⎦ , 𝐴2 =
[︁
1 0

]︁
, 𝑏2 =

[︁
0
]︁
.

因 𝐸 = ∅, 故𝑀 = 𝐴1. 计算投影矩阵

𝑃 = 𝐼 − 𝐴𝑇
1 (𝐴1𝐴

𝑇
1 )

−1𝐴1

=

⎡⎣1 0

0 1

⎤⎦−

⎡⎣2 0

1 1

⎤⎦(︃⎡⎣2 1

0 1

⎤⎦⎡⎣2 0

1 1

⎤⎦)︃−1
⎡⎣2 1

0 1

⎤⎦
=

⎡⎣1 0

0 1

⎤⎦−

⎡⎣2 0

1 1

⎤⎦(︃1

4

⎡⎣ 1 −1

−1 5

⎤⎦)︃⎡⎣2 1

0 1

⎤⎦ =

⎡⎣0 0

0 0

⎤⎦ .
令

𝑑0 = −𝑃∇𝑓(𝑥0) =

⎡⎣0
0

⎤⎦ .
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计算

𝜆 = (𝐴1𝐴
𝑇
1 )

−1𝐴1∇𝑓(𝑥0)

=

(︃
1

4

⎡⎣ 1 −1

−1 5

⎤⎦)︃⎡⎣2 1

0 1

⎤⎦⎡⎣10
0

⎤⎦ =

⎡⎣ 5

−5

⎤⎦ =

⎡⎣𝜆1
𝜆2

⎤⎦ .
修正 𝐴1. 去掉 𝐴1 中对应 𝜆2 = −5 的行, 得到

𝐴1 =
[︀
2, 1

]︀
.

再求投影矩阵

𝑃 = 𝐼 − 𝐴𝑇
1 (𝐴1𝐴

𝑇
1 )

−1𝐴1

=

⎡⎣1 0

0 1

⎤⎦−

⎡⎣2
1

⎤⎦(︃[︁2 1
]︁⎡⎣2

1

⎤⎦)︃−1 [︁
2 1

]︁

=
1

5

⎡⎣ 1 −2

−2 4

⎤⎦ .
令

𝑑0 = −𝑃∇𝑓(𝑥0) = −1

5

⎡⎣ 1 −2

−2 4

⎤⎦⎡⎣ 10

0

⎤⎦ =

⎡⎣ −2

4

⎤⎦ .
求步长 𝛼0:

min 𝑓(𝑥0 + 𝛼𝑑0),

s.t. 0 ≤ 𝛼 ≤ 𝛼̄.
(10.33)

由于

𝑏̂ = 𝑏2 − 𝐴2𝑥0 = 0−
[︁
1 0

]︁⎡⎣2
0

⎤⎦ = −2.

𝑑 = 𝐴2𝑑0 =
[︁
1 0

]︁⎡⎣−2

4

⎤⎦ = −2.

故

𝛼̄ =
−2

−2
= 1.
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这样, 问题 (10.33) 即为

min 20𝛼2 − 20𝛼 + 25,

s.t. 0 ≤ 𝛼 ≤ 1.

解之得 𝛼0 =
1

2
= 0.5. 从而

𝑥1 = 𝑥0 + 𝛼0𝑑0 =

⎡⎣2
0

⎤⎦+
1

2

⎡⎣−2

4

⎤⎦ =

⎡⎣1
2

⎤⎦ .
第 2 次迭代.

∇𝑓(𝑥1) =

⎡⎣ 2× 1 + 6

2× 2

⎤⎦ =

⎡⎣ 8

4

⎤⎦ .

𝐴1 =
[︁
2 1

]︁
, 𝑏1 =

[︁
4
]︁
, 𝐴2 =

⎡⎣ 1 0

0 1

⎤⎦ , 𝑏2 =

⎡⎣ 0

0

⎤⎦ .
因 𝐸 = ∅, 故𝑀 = 𝐴1. 计算投影矩阵

𝑃 = 𝐼 − 𝐴𝑇
1 (𝐴1𝐴

𝑇
1 )

−1𝐴1 =
1

5

⎡⎣ 1 −2

−2 4

⎤⎦ .
令

𝑑2 = −𝑃∇𝑓(𝑥1) = −1

5

⎡⎣ 1 −2

−2 4

⎤⎦⎡⎣8
4

⎤⎦ =

⎡⎣0
0

⎤⎦ .
计算

𝜆 = (𝐴1𝐴
𝑇
1 )

−1𝐴1∇𝑓(𝑥1) =
1

5

[︁
2 1

]︁⎡⎣ 8

4

⎤⎦ = 4 > 0,

故 𝑥1 = (1, 2)𝑇 是 KT 点. �
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10.3 简约梯度法

10.3.1 Wolfe 简约梯度法

Wolfe 于 1963 年针对线性等式约束的非线性优化问题提出一种新的可行方

向法, 称之为简约梯度法. 我们来介绍这种方法.

考考考虑具有约性约束的非线性优化问题⎧⎪⎪⎪⎨⎪⎪⎪⎩
min 𝑓(𝑥),

s.t. 𝐴𝑥 = 𝑏,

𝑥 ≥ 0,

(10.34)

其中 𝐴 ∈ R𝑚×𝑛, 秩为 𝑚, 𝑏 ∈ R𝑚, 𝑓 : R𝑛 → R 连续可微. 设矩阵 𝐴 的任意 𝑚 个

列都线性无关，并且约束条件的每个基本可行点都有 𝑚 个正分量. 那么在此假

设下, 每个可行解至少有𝑚 个正分量, 至多有 𝑛−𝑚 个零分量. 简约梯度法的基

本思想把求解线性规划的单纯形法推广到解线性约束的非线性优化问题 (10.34).

先利用等是约束条件消去一些变量，然后利用降维所形成的简约梯度来构造下

降方法, 接着作线性搜索求步长, 重复此过程逐步逼近极小点. 下面依次介绍如

何确立简约梯度、如何构造下降方向和计算线搜索的步长上界等.

先介绍简约梯度的确立. 将 𝐴 和 𝑥 进行分解. 不失一般性, 可令

𝐴 =
[︀
𝐵, 𝑁

]︀
, 𝑥 =

⎡⎣ 𝑥𝐵

𝑥𝑁

⎤⎦ ,
其中 𝐵 是𝑚×𝑚 可逆矩阵, 𝑥𝐵, 𝑥𝑁 分别是由基变量和非基变量构成的向量. 那

么线性约束 𝐴𝑥 = 𝑏 就可以表示为

𝐵𝑥𝐵 +𝑁𝑥𝑁 = 𝑏,

而 𝑥 ≥ 0 则变成

𝑥𝐵 = 𝐵−1𝑏−𝐵−1𝑁𝑥𝑁 ≥ 0, 𝑥𝑁 ≥ 0.

现假设 𝑥 是非退化的可行解, 即 𝑥𝐵 > 0. 由于 𝑥𝐵 可以用 𝑥𝑁 来表示, 因此 𝑓(𝑥)

可以化成关于 𝑥𝑁 的函数, 即

𝑓(𝑥) = 𝑓(𝑥𝐵, 𝑥𝑁) = 𝑓(𝐵−1𝑏−𝐵−1𝑁𝑥𝑁 , 𝑥𝑁) := 𝐹 (𝑥𝑁).
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称 𝑛−𝑚 维向量 𝑥𝑁 的函数 𝐹 (𝑥𝑁) 的梯度为 𝑓(𝑥) 的简约梯度, 记为 𝑟(𝑥𝑁), 即

𝑟(𝑥𝑁) = ∇𝑥𝑁
𝐹 (𝑥𝑁) = ∇𝑥𝑁

𝑓(𝐵−1𝑏−𝐵−1𝑁𝑥𝑁 , 𝑥𝑁)

= ∇𝑁𝑓(𝑥𝐵, 𝑥𝑁)− (𝐵−1𝑁)𝑇∇𝐵𝑓(𝑥𝐵, 𝑥𝑁), (10.35)

上式中∇𝑁 = ∇𝑥𝑁
, ∇𝐵 = ∇𝑥𝐵

.

再确定搜索方向, 即怎样确定在点 𝑥𝑘 处的下降可行方向 𝑑𝑘, 使得后继点

𝑥𝑘+1 + 𝛼𝑘𝑑𝑘 是可行点且目标函数值下降. 令

𝑑𝑘 =

⎡⎣ 𝑑𝐵𝑘

𝑑𝑁𝑘

⎤⎦ .
欲使 𝑑𝑘 为下降可行方向, 需其满足⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇𝑓(𝑥𝑘)𝑇𝑑𝑘 < 0,

𝐴𝑑𝑘 = 0,

(𝑑𝑘)𝑗 ≥ 0, 若 (𝑥𝑘)𝑗 = 0.

由等式 𝐴𝑑𝑘 = 0 得

𝐵𝑑𝐵𝑘 +𝑁𝑑𝑁𝑘 = 0,

即

𝑑𝐵𝑘 = −𝐵−1𝑁𝑑𝑁𝑘 , (10.36)

这表明 𝑑𝐵𝑘 是由 𝑑𝑁𝑘 确定的. 再由下降性条件∇𝑓(𝑥𝑘)𝑇𝑑𝑘 < 0 可得

∇𝑓(𝑥𝑘)𝑇𝑑𝑘 = ∇𝐵𝑓(𝑥𝑘)
𝑇𝑑𝐵𝑘 +∇𝑁𝑓(𝑥𝑘)

𝑇𝑑𝑁𝑘

= −∇𝐵𝑓(𝑥𝑘)
𝑇𝐵−1𝑁𝑑𝑁𝑘 +∇𝑁𝑓(𝑥𝑘)

𝑇𝑑𝑁𝑘

= 𝑟(𝑥𝑁𝑘 )
𝑇𝑑𝑁𝑘 < 0. (10.37)

由非负性条件可知

当 (𝑥𝑁𝑘 )𝑗 = 0时, (𝑑𝑁𝑘 )𝑗 ≥ 0. (10.38)

不难发现, 满足 (10.36)∼(10.38) 的 𝑑𝑘 有许多种选取方法, 其中一种简单的

取法为

(𝑑𝑁𝑘 )𝑗 =

⎧⎪⎨⎪⎩
−(𝑥𝑁𝑘 )𝑗 𝑟𝑗(𝑥

𝑁
𝑘 ), 如果 𝑟𝑗(𝑥

𝑁
𝑘 ) ≥ 0

−𝑟𝑗(𝑥𝑁𝑘 ), 否则.

(10.39)
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𝑑𝑘 =

⎡⎣−𝐵−1𝑁𝑑𝑁𝑘

𝑑𝑁𝑘

⎤⎦ =

⎡⎣−𝐵−1𝑁

𝐼𝑛−𝑚

⎤⎦ 𝑑𝑁𝑘 (10.40)

.

余下的问题就是确定步长 𝛼𝑘. 为保持

𝑥𝑘+1 ≥ 0,

即

(𝑥𝑘+1)𝑗 = (𝑥𝑘)𝑗 + 𝛼(𝑑𝑘)𝑗 ≥ 0, 𝑗 = 1 · · · , 𝑛, (10.41)

需确定 𝛼 的取值范围.

注意到, 当 (𝑑𝑘)𝑗 ≥ 0 时, 对任意的 𝛼 ≥ 0, (10.41) 恒成立. 而当 (𝑑𝑘)𝑗 < 0 时,

应取

𝛼 ≤ (𝑥𝑘)𝑗
−(𝑑𝑘)𝑗

.

因此, 令

𝛼̄ =

⎧⎪⎪⎨⎪⎪⎩
+∞, 𝑑𝑘 ≥ 0

min
{︁
− (𝑥𝑘)𝑗

(𝑑𝑘)𝑗

⃒⃒⃒
(𝑑𝑘)𝑗 < 0

}︁
, 否则.

(10.42)

可以证明, 按照上述方式构造的方向 𝑑𝑘, 若 𝑑𝑘 ̸= 0, 则它必为下降可行方向,

否则, 相应的 𝑥𝑘 必为 KT 点.

定理 53 设𝐴 = (𝐵,𝑁) 是𝑚×𝑛 矩阵, 𝐵 是𝑚 阶非奇异矩阵, 𝑥𝑘 =

⎡⎣𝑥𝐵𝑘
𝑥𝑁𝑘

⎤⎦
是问题 (10.34) 的可行点, 其中 𝑥𝐵𝑘 > 0 是相应于 𝐵 的 𝑚 维向量. 又假定函数 𝑓

在 𝑥𝑘 处连续可微, 𝑑𝑘 是由 (10.39) 和 (10.40) 定义的方向向量. 那么, 若 𝑑𝑘 ̸= 0,

则 𝑑𝑘 是下降可行方向, 且 𝑑𝑘 = 0 的充要条件是 𝑥𝑘 是 KT 点.

证 由 𝑑𝑘 的定义, 有

𝐴𝑑𝑘 = 𝐵𝑑𝐵𝑘 +𝑁𝑑𝑁𝑘 = 𝐵(−𝐵−1𝑁𝑑𝑁𝑘 ) +𝑁𝑑𝑁𝑘 = 0.

又由 (10.38), 当 (𝑥𝑁)𝑗 = 0 时, (𝑑𝑘)𝑗 ≥ 0. 注意到 𝑥𝐵𝑘 > 0, 因此根据引理 17, 𝑑𝑘 是

可行方向. 此外, 我们有

∇𝑓(𝑥𝑘)𝑇𝑑𝑘 = ∇𝐵𝑓(𝑥𝑘)
𝑇𝑑𝐵𝑘 +∇𝑁𝑓(𝑥𝑘)

𝑇𝑑𝑁𝑘

= ∇𝐵𝑓(𝑥𝑘)
𝑇 (−𝐵−1𝑁𝑑𝑁𝑘 ) +∇𝑁𝑓(𝑥𝑘)

𝑇𝑑𝑁𝑘

= 𝑟(𝑥𝑁𝑘 )
𝑇𝑑𝑘.
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注意到, 当 𝑑𝑁𝑘 ̸= 0 时, 根据 (10.39) 知 𝑟(𝑥𝑁𝑘 )
𝑇𝑑𝑘 < 0, 因此 𝑑𝑘 是下降可行方向.

现在证明 𝑑𝑘 = 0 当且仅当 𝑥𝑘 是 KT 点. 事实上, 我们知道, 𝑥𝑘 是问题 (10.34) 的

KT 点的充要条件是, 存在乘子 𝜆 = (𝜆𝑇𝐵, 𝜆
𝑇
𝑁)

𝑇 ≥ 0 及 𝜇, 使得

∇𝑓(𝑥𝑘)− 𝐴𝑇𝜇− 𝜆 = 0,

𝜆 ≥ 0, 𝑥𝑘 ≥ 0, 𝜆𝑇𝑥 = 0,

即 ⎡⎣∇𝐵𝑓(𝑥𝑘)

∇𝑁𝑓(𝑥𝑘)

⎤⎦−

⎡⎣𝐵𝑇

𝑁𝑇

⎤⎦𝜇−

⎡⎣𝜆𝐵
𝜆𝑁

⎤⎦ =

⎡⎣0
0

⎤⎦ , (10.43)

𝜆𝑇𝐵𝑥
𝐵
𝑘 = 0, 𝜆𝑇𝑁𝑥

𝑁
𝑘 = 0. (10.44)

我们先设 𝑥𝑘 是 KT 点, 则上述条件成立. 由于 𝑥𝐵𝑘 > 0 且 𝜆𝐵 ≥ 0, 则由

(10.44) 的第一式推出 𝜆𝐵 = 0. 从而由 (10.43) 的第一个方程可得

𝜇 = (𝐵𝑇 )−1∇𝐵𝑓(𝑥𝑘). (10.45)

将上式代入 (10.43) 的第二个方程可求得

𝜆𝑁 = ∇𝑁𝑓(𝑥𝑘)− (𝐵−1𝑁)𝑇∇𝐵𝑓(𝑥𝑘) = 𝑟(𝑥𝑁𝑘 ) ≥ 0. (10.46)

由 (10.46) 及 (10.44) 的第二式可得

𝑟(𝑥𝑁𝑘 )
𝑇𝑥𝑁𝑘 = 0. (10.47)

注意到 𝑥𝑁𝑘 ≥ 0, 故由上式可推出

𝑟𝑗(𝑥
𝑁
𝑘 )(𝑥

𝑁
𝑘 )𝑗 = 0, 𝑗 = 1, · · · , 𝑛. (10.48)

因此, 根据 (10.46), (10.48)和 (10.36), (10.39) 可推得 𝑑𝑘 = 0.

反之, 设 𝑑𝑘 = 0, 则 𝑟(𝑥𝑁𝑘 ) 均非负. 令

𝜆𝑁 = 𝑟(𝑥𝑁𝑘 ) = ∇𝑁𝑓(𝑥𝑘)− (𝐵−1𝑁)𝑇∇𝐵𝑓(𝑥𝑘) ≥ 0.

故由 (10.39) 可知必有 𝜆𝑇𝑁𝑥
𝑁
𝑘 = 0 成立. 再令

𝜆𝐵 = 0, 𝜇 = (𝐵𝑇 )−1∇𝐵𝑓(𝑥𝑘),

则有 𝜆𝑇𝐵𝑥
𝐵
𝑘 = 0 及 (10.43) 式成立. 故 𝑥𝑘 是 KT 点. 证毕. �

下面, 我们写出简约梯度法的详细计算步骤如下:
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算法 28 (Wolfe简约梯度法)

步 0 初始化. 选取初始可行点 𝑥0 ∈ R𝑛. 令 𝑘 := 0.

步 1 计算搜索方向. 将 𝑥𝑘 分解成

𝑥𝑘 =

⎡⎣𝑥𝐵𝑘
𝑥𝑁𝑘

⎤⎦ ,
其中, 𝑥𝐵𝑘 为基变量, 由 𝑥𝑘 的 𝑚 个最大分量组成, 这些分量的下标集记作 𝐽𝑘. 相

应地, 将 𝐴 分解成 𝐴 = (𝐵,𝑁). 按下式计算 𝑑𝑘 :

𝑟(𝑥𝑁𝑘 ) = ∇𝑁𝑓(𝑥
𝐵
𝑘 , 𝑥

𝑁
𝑘 )− (𝐵−1𝑁)𝑇∇𝐵𝑓(𝑥

𝐵
𝑘 , 𝑥

𝑁
𝑘 ),

(𝑑𝑁𝑘 )𝑗 =

⎧⎪⎨⎪⎩
−(𝑥𝑁𝑘 )𝑗 𝑟𝑗(𝑥

𝑁
𝑘 ), 如果 𝑟𝑗(𝑥

𝑁
𝑘 ) ≥ 0,

−𝑟𝑗(𝑥𝑁𝑘 ), 否则,

𝑑𝑘 =

⎡⎣𝑑𝐵𝑘
𝑑𝑁𝑘

⎤⎦ =

⎡⎣−𝐵−1𝑁

𝐼𝑛−𝑚

⎤⎦ 𝑑𝑁𝑘 .
步 2 检验终止准则. 若 𝑑𝑘 = 0, 则 𝑥𝑘 为 KT 点, 停算. 否则, 转步 3.

步 3 计算步长上界 𝛼̄ :

𝛼̄ =

⎧⎪⎪⎨⎪⎪⎩
+∞, 𝑑𝑘 ≥ 0

min
{︁
− (𝑥𝑘)𝑗

(𝑑𝑘)𝑗

⃒⃒⃒
(𝑑𝑘)𝑗 < 0

}︁
, 否则.

步 4 进行一维搜索. 求解下面的一维极小化问题得步长 𝛼𝑘 :⎧⎨⎩ min 𝑓(𝑥𝑘 + 𝛼𝑑𝑘),

s.t. 0 ≤ 𝛼 ≤ 𝛼̄.

令 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘.

步 5 修正基变量. 若 𝑥𝐵𝑘+1 > 0,则基变量不变.否则,若有 𝑗 使得 (𝑥𝑘+1)𝑗 = 0,

则将 (𝑥𝑘+1)𝑗 换出基, 而以 (𝑥𝑁𝑘+1)𝑗 中最大分量换入基, 构成新的基向量 𝑥𝐵𝑘+1 和

𝑥𝑁𝑘+1.

步 6 令 𝑘 := 𝑘 + 1, 转步 1.
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例 31 用Wolfe 简约梯度法重新求解例 29, 即

min 𝑥21 + 𝑥22 − 2𝑥1 − 4𝑥2 + 3,

s.t. − 2𝑥1 + 𝑥2 ≥ −1,

−𝑥1 − 𝑥2 ≥ −2,

𝑥1 ≥ 0, 𝑥2 ≥ 0.

解 首先, 引入松弛变量 𝑥3, 𝑥4 ≥ 0, 将原问题转化为等价的“标准形式”:

min 𝑥21 + 𝑥22 − 2𝑥1 − 4𝑥2 + 3,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2𝑥1 − 𝑥2 + 𝑥3 = 1,

𝑥1 + 𝑥2 + 𝑥4 = 2,

𝑥1 ≥ 0, 𝑥2 ≥ 0,

𝑥3 ≥ 0, 𝑥4 ≥ 0.

首先写出约束矩阵和梯度

𝐴 =

⎡⎣ 2 −1 1 0

1 1 0 1

⎤⎦ , ∇𝑓(𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎣
2𝑥1 − 2

2𝑥2 − 4

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ .

取初始可行点 𝑥0 = (0, 0, 1, 2)𝑇 .

第 1 次迭代. 𝑘 = 0. 𝐽0 = {3, 4}. ∇𝑓(𝑥0) = (−2,−4, 0, 0)𝑇 . 确立 𝐵,𝑁 等得

𝑥𝐵0 =

⎡⎣1
2

⎤⎦ , 𝑥𝑁0 =

⎡⎣0
0

⎤⎦ , 𝐵 =

⎡⎣1 0

0 1

⎤⎦ , 𝑁 =

⎡⎣2 −1

1 1

⎤⎦ .
计算

𝐵−1𝑁 =

⎡⎣2 −1

1 1

⎤⎦ , ∇𝑁𝑓(𝑥0) =

⎡⎣−2

−4

⎤⎦ , ∇𝐵𝑓(𝑥0) =

⎡⎣0
0

⎤⎦ .
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计算简约梯度 𝑟(𝑥𝑁0 ) 得

𝑟(𝑥𝑁0 ) = ∇𝑁𝑓(𝑥0)− (𝐵−1𝑁)𝑇∇𝐵𝑓(𝑥0)

=

⎡⎣−2

−4

⎤⎦−

⎡⎣2 −1

1 1

⎤⎦𝑇 ⎡⎣0
0

⎤⎦ =

⎡⎣−2

−4

⎤⎦ .
当 𝑟𝑗(𝑥

𝑁
0 ) ≤ 0 时, 取 (𝑑𝑁0 )𝑗 = −𝑟𝑗(𝑥𝑁0 ), 故

𝑑𝑁0 =

⎡⎣2
4

⎤⎦ , 𝑑𝐵0 = −𝐵−1𝑁𝑑𝑁0 = −

⎡⎣2 −1

1 1

⎤⎦⎡⎣2
4

⎤⎦ =

⎡⎣ 0

−6

⎤⎦ .
从而 𝑑0 = (2, 4, 0,−6)𝑇 .

求步长上界

𝛼̄ = − 2

−6
=

1

3
.

从 𝑥0 出发, 沿 𝑑0 搜索:

𝑥0 + 𝛼𝑑0 =

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

1

2

⎤⎥⎥⎥⎥⎥⎥⎦+ 𝛼

⎡⎢⎢⎢⎢⎢⎢⎣
2

4

0

−6

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
2𝛼

4𝛼

1

2− 6𝛼

⎤⎥⎥⎥⎥⎥⎥⎦ ,

𝑓(𝑥0 + 𝛼𝑑0) = 20𝛼2 − 20𝛼 + 3.

求解一维极小问题

min 20𝛼2 − 20𝛼 + 3,

s.t. 0 ≤ 𝛼 ≤ 1

3
,

得 𝛼0 =
1

3
, 从而 𝑥1 = 𝑥0 + 𝛼0𝑑0 =

(︁2
3
,
4

3
, 1, 0

)︁𝑇
.

第 2 次迭代. 𝐽1 = {2, 3}. ∇𝑓(𝑥1) =
(︁
− 2

3
,−4

3
, 0, 0

)︁𝑇
.

𝑥𝐵1 =

⎡⎢⎣ 4

3

1

⎤⎥⎦ , 𝑥𝑁1 =

⎡⎢⎣ 2

3

0

⎤⎥⎦ , 𝐵 =

⎡⎣−1 1

1 0

⎤⎦ , 𝑁 =

⎡⎣2 0

1 1

⎤⎦ .
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计算

𝐵−1𝑁 =

⎡⎣1 1

3 1

⎤⎦ , ∇𝑁𝑓(𝑥1) =

⎡⎢⎣−2

3

0

⎤⎥⎦ , ∇𝐵𝑓(𝑥1) =

⎡⎢⎣−4

3

0

⎤⎥⎦ .
计算简约梯度 𝑟(𝑥𝑁1 ) 得

𝑟(𝑥𝑁1 ) = ∇𝑁𝑓(𝑥1)− (𝐵−1𝑁)𝑇∇𝐵𝑓(𝑥1)

=

⎡⎢⎣−2

3

0

⎤⎥⎦−

⎡⎣1 1

3 1

⎤⎦𝑇
⎡⎢⎣−4

3

0

⎤⎥⎦ =

⎡⎢⎢⎣
2

3

4

3

⎤⎥⎥⎦ .
当 𝑟𝑗(𝑥

𝑁
1 ) > 0 时, 取 (𝑑𝑁1 )𝑗 = −(𝑥𝑁1 )𝑗𝑟𝑗(𝑥

𝑁
1 ), 故

𝑑𝑁1 =

⎡⎢⎣−4

9

0

⎤⎥⎦ , 𝑑𝐵1 = −(𝐵−1𝑁)𝑑𝑁1 = −

⎡⎣1 1

3 1

⎤⎦
⎡⎢⎣−4

9

0

⎤⎥⎦ =

⎡⎢⎢⎣
4

9

4

3

⎤⎥⎥⎦ .
从而

𝑑1 =
(︁
− 4

9
,
4

9
,
4

3
, 0
)︁𝑇
.

求步长上界

𝛼̄ = − 2/3

−4/9
=

3

2
.

从 𝑥1 出发, 沿 𝑑1 搜索:

𝑥1 + 𝛼𝑑1 =

⎡⎢⎢⎢⎢⎢⎢⎣
2/3

4/3

1

0

⎤⎥⎥⎥⎥⎥⎥⎦+ 𝛼

⎡⎢⎢⎢⎢⎢⎢⎣
−4/9

4/9

4/3

0

⎤⎥⎥⎥⎥⎥⎥⎦ =
1

9

⎡⎢⎢⎢⎢⎢⎢⎣
6− 4𝛼

12 + 4𝛼

9 + 8𝛼

0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

𝑓(𝑥1 + 𝛼𝑑1) =
32

81
𝛼2 − 24

81
𝛼− 117

81
.

求解一维极小问题

min
32

81
𝛼2 − 24

81
𝛼− 117

81
,

s.t. 0 ≤ 𝛼 ≤ 3

2
,
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得 𝛼1 =
3

8
, 从而 𝑥2 = 𝑥1 + 𝛼1𝑑1 =

(︁1
2
,
3

2
,
4

3
, 0
)︁𝑇

.

第 3 次迭代. 𝐽2 = {2, 3}. ∇𝑓(𝑥2) = (−1,−1, 0, 0)𝑇 .

𝑥𝐵2 =

⎡⎢⎣
3

2
4

3

⎤⎥⎦ , 𝑥𝑁2 =

⎡⎢⎣ 1

2

0

⎤⎥⎦ , 𝐵 =

⎡⎣−1 1

1 0

⎤⎦ , 𝑁 =

⎡⎣2 0

1 1

⎤⎦ .
计算

𝐵−1𝑁 =

⎡⎣1 1

3 1

⎤⎦ , ∇𝑁𝑓(𝑥1) =

⎡⎣−1

0

⎤⎦ , ∇𝐵𝑓(𝑥1) =

⎡⎣−1

0

⎤⎦ .
计算简约梯度 𝑟(𝑥𝑁1 ) 得

𝑟(𝑥𝑁1 ) = ∇𝑁𝑓(𝑥1)− (𝐵−1𝑁)𝑇∇𝐵𝑓(𝑥1)

=

⎡⎣−1

0

⎤⎦−

⎡⎣1 1

3 1

⎤⎦𝑇 ⎡⎣−1

0

⎤⎦ =

⎡⎣0
1

⎤⎦ .
当 𝑟𝑗(𝑥

𝑁
1 ) > 0 时, 取 (𝑑𝑁1 )𝑗 = −(𝑥𝑁1 )𝑗𝑟𝑗(𝑥

𝑁
1 ), 而 𝑟𝑗(𝑥

𝑁
1 ) = 0 时, 取 (𝑑𝑁1 )𝑗 =

−𝑟𝑗(𝑥𝑁1 ). 故

𝑑𝑁2 =

⎡⎣0
0

⎤⎦ , 𝑑𝐵2 = −(𝐵−1𝑁)𝑑𝑁2 =

⎡⎣0
0

⎤⎦ .
从而 𝑑2 = (0, 0, 0, 0)𝑇 . 根据定理 53, 𝑥2 即为KT 点, 故 𝑥* =

(︁1
2
,
3

2

)︁𝑇
是原问题的

全局极小点. �

10.3.2 广义简约梯度法

Abadie 和 Carpentier 于 1969 年将Wolfe 简约梯度法推广到一般非线性约

束的情形, 提出了所谓的广义简约梯度法. 设一般非线性约束优化问题为⎧⎪⎪⎪⎨⎪⎪⎪⎩
min 𝑓(𝑥),

s.t. ℎ𝑖(𝑥) = 0, 𝑖 ∈ 𝐸 = {1, · · · , 𝑙},

𝑔𝑖(𝑥) ≥ 0, 𝑖 ∈ 𝐼 = {1, · · · ,𝑚},

其中 𝑓, ℎ𝑖 (𝑖 ∈ 𝐸), 𝑔𝑖 (𝑖 ∈ 𝐼) 是连续可微的函数.
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假设 𝑥𝑘 是第 𝑘 次可行迭代点, 记 𝐼𝑘 = 𝐸 ∪ {𝑖 | 𝑖 ∈ 𝐼, 𝑔𝑖(𝑥𝑘) = 0},并设

𝑐(𝑥𝑘) =
(︀
ℎ1(𝑥𝑘), · · · , ℎ𝑙(𝑥𝑘); 𝑔𝑖(𝑥𝑘) (𝑖 ∈ 𝐼𝑘∖𝐸)

)︀𝑇
.

则在第 𝑘 步可考虑子问题: ⎧⎨⎩ min 𝑓(𝑥),

s.t. 𝑐(𝑥𝑘) = 0.
(10.49)

现在我们讨论如何确立简约梯度 𝑟(𝑥𝑁𝑘 ). 不失一般性, 设 𝐼𝑘 = {1, 2, · · · , 𝑠},
𝑠 ≥ 𝑙, 且约束函数的 Jacobi 矩阵[︁

∇ℎ1(𝑥𝑘), · · · ,∇ℎ𝑙(𝑥𝑘), ∇𝑔𝑖(𝑥𝑘) (𝑖 ∈ 𝐼𝑘∖𝐸)
]︁𝑇

行满秩 (不妨设其前 𝑠 列构成的方阵非奇异). 那么可以解出前 𝑠 个变量, 即可以

用其余的 𝑛− 𝑠 个变量来表示这 𝑠 个变量. 通常称这 𝑠 个变量组成的子向量为基

向量, 记为 𝑥𝐵𝑘 , 其余 𝑛− 𝑠 个变量组成的子向量为非基向量, 记为 𝑥𝑁𝑘 . 为方便计,

去掉下标 𝑘, 并记 𝑠× 𝑠 矩阵

∇𝐵𝑐(𝑥) =
[︁
∇𝐵ℎ1(𝑥), · · · ,∇𝐵ℎ𝑙(𝑥),∇𝐵𝑔1(𝑥), · · · , ∇𝐵𝑔𝑠−𝑙(𝑥)

]︁𝑇
,

其中

𝑐(𝑥) =
(︀
ℎ1(𝑥), · · · , ℎ𝑙(𝑥), 𝑔1(𝑥), · · · , 𝑔𝑠−𝑙(𝑥)

)︀𝑇
:=
(︀
𝑐1(𝑥), · · · , 𝑐𝑠(𝑥)

)︀𝑇
及

∇𝐵𝑐𝑖(𝑥) =

⎡⎢⎢⎢⎢⎣
𝜕𝑐𝑖(𝑥)

𝜕𝑥1
...

𝜕𝑐𝑖(𝑥)

𝜕𝑥𝑠

⎤⎥⎥⎥⎥⎦ , 𝑖 = 1, 2, · · · , 𝑠.

由假设可知∇𝐵𝑐(𝑥) 非奇异. 再记矩阵

∇𝑁𝑐(𝑥) =
[︁
∇𝑁𝑐1(𝑥), ∇𝑁𝑐2(𝑥), · · · , ∇𝑁𝑐𝑠(𝑥)

]︁𝑇
∈ R𝑠×(𝑛−𝑠),

其中

∇𝑁𝑐𝑖(𝑥) =

⎡⎢⎢⎢⎢⎢⎣
𝜕𝑐𝑖(𝑥)

𝜕𝑥𝑠+1
...

𝜕𝑐𝑖(𝑥)

𝜕𝑥𝑛

⎤⎥⎥⎥⎥⎥⎦ , 𝑖 = 1, 2, · · · , 𝑠.
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在 𝑥 的某邻域内, 由非线性方程组 𝑐(𝑥) = 𝑐(𝑥𝐵, 𝑥𝑁) = 0 可以确定 𝑥𝐵 为 𝑥𝑁 的函

数, 即 𝑥𝐵 = 𝜙(𝑥𝑁).

对对对等式 𝑐(𝑥) = 𝑐(𝑥𝐵, 𝑥𝑁) = 0 两边关于 𝑥𝑁 求梯度得 𝐽𝐵𝑁(𝑥𝑁)∇𝐵𝑐(𝑥) +

∇𝑁𝑐(𝑥) = 0, 其中

𝐽𝐵𝑁(𝑥𝑁) =

[︂
𝜕(𝑥1, · · · , 𝑥𝑠)
𝜕(𝑥𝑠+1, · · · , 𝑥𝑛)

]︂𝑇
=

⎡⎢⎢⎢⎢⎣
𝜕𝑥1
𝜕𝑥𝑠+1

𝜕𝑥2
𝜕𝑥𝑠+1

· · · 𝜕𝑥𝑠
𝜕𝑥𝑠+1

...
...

...
𝜕𝑥1
𝜕𝑥𝑛

𝜕𝑥2
𝜕𝑥𝑛

· · · 𝜕𝑥𝑠
𝜕𝑥𝑛

⎤⎥⎥⎥⎥⎦ .

从而, 我们有

𝐽𝐵𝑁(𝑥𝑁) = −∇𝑁𝑐(𝑥)
[︀
∇𝐵𝑐(𝑥)

]︀−1
. (10.50)

注意到 𝑓(𝑥) ≡ 𝑓(𝜙(𝑥𝑁), 𝑥𝑁), 对其求关于 𝑥𝑁 的梯度 (即简约梯度) 得

𝑟(𝑥𝑁) = ∇𝑁𝑓(𝑥) + 𝐽𝐵𝑁(𝑥𝑁)∇𝐵𝑓(𝑥).

将 (10.50) 代入上式即得

𝑟(𝑥𝑁) = ∇𝑁𝑓(𝑥)−∇𝑁𝑐(𝑥)
[︀
∇𝐵𝑐(𝑥)

]︀−1∇𝐵𝑓(𝑥). (10.51)

现在设下降可行方向为 𝑑 = (𝑑𝑇𝐵, 𝑑
𝑇
𝑁)

𝑇 , 则由下降可行条件知 𝑑 应满足

∇𝑓(𝑥)𝑇𝑑 < 0, ∇𝑐(𝑥)𝑇𝑑 = 0.

由∇𝑐(𝑥)𝑇𝑑 = 0 可得

∇𝐵𝑐(𝑥)
𝑇𝑑𝐵 +∇𝑁𝑐(𝑥)

𝑇𝑑𝑁 = 0.

于是有

𝑑𝐵 = −[∇𝐵𝑐(𝑥)
𝑇 ]−1∇𝑁𝑐(𝑥)

𝑇𝑑𝑁 = 𝐽𝐵𝑁(𝑥𝑁)
𝑇𝑑𝑁 . (10.52)

又由∇𝑓(𝑥)𝑇𝑑 < 0, 得

∇𝐵𝑓(𝑥)
𝑇𝑑𝐵 +∇𝑁𝑓(𝑥)

𝑇𝑑𝑁 < 0.

将 𝑑𝐵 的表达式代入上式得

∇𝑁𝑓(𝑥)
𝑇𝑑𝑁 −∇𝐵𝑓(𝑥)

𝑇 [∇𝐵𝑐(𝑥)
𝑇 ]−1∇𝑁𝑐(𝑥)

𝑇𝑑𝑁 < 0,
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即

𝑟(𝑥𝑁)
𝑇𝑑𝑁 < 0.

因此, 𝑑𝑁 的一种简单的选取方法是 𝑑𝑁 = −𝑟(𝑥𝑁). 至此, 我们在上述的推导过程

中以 𝑥 = 𝑥𝑘 代入得 𝑥𝑘 处的简约梯度为 𝑟(𝑥𝑁𝑘 ), 下降可行方向为

𝑑𝑘 =

⎡⎣ 𝑑𝐵𝑘
𝑑𝑁𝑘

⎤⎦ =

⎡⎣ −𝐽𝐵𝑁(𝑥
𝑁
𝑘 )

𝑇 𝑟(𝑥𝑁𝑘 )

−𝑟(𝑥𝑁𝑘 )

⎤⎦ =

⎡⎣ −𝐽𝐵𝑁(𝑥
𝑁
𝑘 )

𝑇

−𝐼𝑛−𝑠

⎤⎦ 𝑟(𝑥𝑁𝑘 ) (10.53)

最后确定步长 𝛼𝑘. 可以通过求解下述一维极小问题⎧⎪⎪⎪⎨⎪⎪⎪⎩
min 𝑓(𝑥𝑘 + 𝛼𝑑𝑘),

s.t. 𝑐𝑖(𝑥𝑘 + 𝛼𝑑𝑘) = 0, 𝑖 ∈ 𝐸,

𝑐𝑖(𝑥𝑘 + 𝛼𝑑𝑘) ≥ 0, 𝑖 ∈ 𝐼

(10.54)

获得搜索步长 𝛼𝑘, 然后令 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘 即得到后继可行迭代点 𝑥𝑘+1.

最后讨论拉格朗日乘子的估计. 由定理 39 知, 在极小点 𝑥* 处成立

∇𝑓(𝑥*) =
∑︁
𝑖∈𝐸

𝜇*
𝑖∇ℎ𝑖(𝑥*) +

∑︁
𝑖∈𝐼*

𝜆*𝑖∇𝑔𝑖(𝑥*), (10.55)

其中 𝜆*𝑖 ≥ 0, 𝑖 ∈ 𝐼* = {𝑖 | 𝑔𝑖(𝑥*) = 0}. 记

∇𝑐(𝑥*) =
[︀
∇ℎ1(𝑥*), · · · ,∇ℎ𝑙(𝑥*), ∇𝑔𝑖(𝑥*), (𝑖 ∈ 𝐼*)

]︀
,

𝜈* =
(︀
(𝜇*)𝑇 , (𝜆*)𝑇

)︀𝑇
=
(︀
𝜇1, · · · , 𝜇𝑙, 𝜆𝑖 (𝑖 ∈ 𝐼*)

)︀𝑇
.

那么 (10.55) 可以写成 ∇𝑓(𝑥*) = ∇𝑐(𝑥*)𝜈*. 由广义逆知识可得其极小最小二乘
解 𝜈* = [∇𝑐(𝑥*)]+∇𝑓(𝑥*). 因此, 计算相应的乘子估计

𝜈𝑘 = (𝜇𝑇
𝑘 , 𝜆

𝑇
𝑘 )

𝑇 = [∇𝑐(𝑥𝑘)]+∇𝑓(𝑥𝑘). (10.56)

下面给出广义简约梯度法的详细计算步骤.

算法 29 (广义简约梯度法)

步 0 选取初始值. 给定初始可行点 𝑥0 ∈ R𝑁 , 0 ≤ 𝜀≪ 1. 令 𝑘 := 0.

步 1 检验终止条件. 确定基变量 𝑥𝐵𝑘 和非基变量 𝑥𝑁𝑘 . 由 (10.51) 计算简约梯

度 𝑟(𝑥𝑁𝑘 ). 若 ‖𝑟(𝑥𝑁𝑘 )‖ ≤ 𝜀, 则 𝑥𝑘 为近似极小点, 停算.

步 2 确定搜索方向. 由 (10.53) 计算下降可行方向 𝑑𝑘.
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步 3 进行线搜索. 解子问题 (10.54) 得步长因子 𝛼𝑘. 令 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘.

步 4 修正有效集. 先求 𝑥𝑘+1 处的有效集, 设为 𝐼𝑘+1. 由 (10.56) 计算 𝜆𝑘. 若

𝜆𝑘+1 ≥ 0, 则 𝐼𝑘+1 = 𝐼𝑘+1. 否则, 𝐼𝑘+1 是 𝐼𝑘+1 中删去 𝜆𝑘+1 最小分量所对应的约束

指标集.

步步步 5 令 𝑘 := 𝑘 + 1, 转步 1.

注 (1) 在算法 29 的步 2 中, 当 ‖𝑟(𝑥𝑁𝑘 )‖ ≤ 𝜀 时, 实际还需要判别对应于不

等式约束的拉格朗日乘子的非负性, 若不满足还需进行改进. (2) 广义简约梯度

法通过消去某些变量在降维空间中运算, 能够较快确定最优解, 可用来求解大型

问题, 因而它是目前求解非线性优化问题的最有效的方法之一.

习 题 10

1. 设有下列最优化问题

min 𝑓(𝑥) = 𝑥2
1 + 𝑥1𝑥2 + 2𝑥2

2 − 6𝑥1 − 2𝑥2 − 12𝑥3,

s.t. 𝑥1 + 𝑥2 + 𝑥3 = 2,

𝑥1 − 2𝑥2 ≥ −3,

𝑥1, 𝑥2, 𝑥3 ≥ 0.

求出在点 𝑥 = (1, 1, 0)𝑇 处的一个下降可行方向.

2. 用Zoutendijk 方法求解下列问题:

(1) min 𝑓(𝑥) = 𝑥2
1 + 4𝑥2

2 − 34𝑥1 − 32𝑥2,

s.t. −2𝑥1 − 𝑥2 + 6 ≥ 0,

−𝑥2 + 2 ≥ 0,

𝑥1 ≥ 0, 𝑥2 ≥ 0.

取初始点为 𝑥0 = (1, 2)𝑇 .

(2) min 𝑓(𝑥) = 𝑥2
1 + 𝑥2

2 − 𝑥1𝑥2 − 2𝑥1 + 3𝑥2,

s.t. −𝑥1 − 𝑥2 + 3 ≥ 0,

−𝑥1 − 5𝑥2 + 6 ≥ 0,

, 𝑥1, 𝑥2 ≥ 0.

取初始点为 𝑥0 = (2, 0)𝑇 .

3. 用梯度投影法求解下列优化问题:
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(1) min 𝑓(𝑥) = 𝑥2
1 + 2𝑥2

2 + 𝑥1𝑥2 − 6𝑥1 − 2𝑥2 − 12𝑥3,

s.t. 𝑥1 + 𝑥2 + 𝑥3 − 2 = 0,

𝑥1 − 2𝑥2 + 3 ≥ 0,

𝑥1, 𝑥2, 𝑥3 ≥ 0.

取初始点为 𝑥0 = (1, 0, 1)𝑇 .

(2) min 𝑓(𝑥) = (4− 𝑥2)(𝑥1 − 3)2,

s.t. −𝑥1 − 𝑥2 + 3 ≥ 0,

−𝑥1 + 2 ≥ 0,

−𝑥2 + 2 ≥ 0,

𝑥1, 𝑥2 ≥ 0.

取初始点为 𝑥0 = (1, 2)𝑇 .

4. 用简约梯度法求解下列问题:

(1) min 𝑓(𝑥) = (𝑥1 − 2)2 + (𝑥2 − 2)2,

s.t. −𝑥1 − 𝑥2 + 2 ≥ 0,

𝑥1, 𝑥2 ≥ 0

(2) min 𝑓(𝑥) = 𝑥2
1 + 𝑥2

2 − 2𝑥1 − 4𝑥2,

s.t. −𝑥1 − 𝑥2 + 1 ≥ 0,

𝑥1, 𝑥2 ≥ 0

5. 设 (𝑧𝑘, 𝑑𝑘) 是下列线性规划

min 𝑧,

s.t. ∇𝑓(𝑥𝑘)
𝑇𝑑− 𝑧 ≤ 0,

∇𝑔𝑖(𝑥𝑘)
𝑇𝑑+ 𝑧 ≥ 0, 𝑖 ∈ 𝐼(𝑥𝑘),

−1 ≤ 𝑑𝑖 ≤ 1

的最优解且 𝑧𝑘 < 0, 这里 𝐼(𝑥𝑘) = {𝑖|𝑔𝑖(𝑥𝑘) = 0}. 试证明 𝑑𝑘 是下列问题

min 𝑓(𝑥),

s.t. 𝑔𝑖(𝑥) ≥ 0, 𝑖 = 1, · · · ,𝑚

在 𝑥𝑘 处的一个下降可行方向.

6. 证明关于投影矩阵 𝑃 的如下性质:

(1) 若 𝑃 ∈ R𝑛×𝑛 是投影矩阵，则 𝑃 是半正定的;
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(2) 矩阵 𝑃 是投影矩阵的充要条件是 𝑄 = 𝐼 − 𝑃 是投影矩阵.

(3) 设 𝑃 是投影矩阵, 则

𝐿 := {𝑃𝑥|𝑥 ∈ R𝑛} 与 𝐿⊥ := {(𝐼 − 𝑃 )𝑥|𝑥 ∈ R𝑛}

相互正交, 而且 ∀𝑥 ∈ R𝑛 可唯一分解为 𝑥 = 𝑦 + 𝑧, 𝑦 ∈ 𝐿, 𝑧 ∈ 𝐿⊥.

7. 对任一 𝑥 ∈ R𝑛 在子空间 𝐿 上的正交投影 𝑦, 证明 ‖𝑥− 𝑦‖22 = min
𝑧∈𝐿

‖𝑥− 𝑧‖22.

8. 设 𝑋 ⊂ R𝑛 是闭凸集, 证明下面的不等式:

(1) [𝑃𝑋(𝑥)− 𝑥]𝑇 [𝑦 − 𝑃𝑋(𝑥)] ≥ 0, ∀𝑥 ∈ R𝑛, 𝑦 ∈ 𝑋;

(2) [𝑃𝑋(𝑥)− 𝑃𝑋(𝑦)]𝑇 (𝑥− 𝑦) ≥ ‖𝑃𝑋(𝑥)− 𝑃𝑋(𝑦)‖2, ∀𝑥, 𝑦 ∈ R𝑛.

9. 用广义简约梯度法解下列优化问题

min 𝑓(𝑥) = 𝑥2
1 + 2𝑥1𝑥2 + 𝑥2

2 + 12𝑥1 − 4𝑥2 + 3,

s.t. 𝑥1 − 𝑥2 = 0,

1 ≤ 𝑥1 ≤ 3,

1 ≤ 𝑥2 ≤ 3.
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二次规划是非线性优化中的一种特殊情形, 它的目标函数是二次实函数, 约

束函数都是线性函数. 由于二次规划比较简单, 便于求解 (仅次于线性规划), 并

且一些非线性优化问题可以转化为求解一系列的二次规划问题 (即本书第十二章

所介绍的“序列二次规划法”), 因此二次规划的求解方法较早引起人们的重视,

成为求解非线性优化的一个重要途径. 二次规划的算法较多, 本章仅介绍求解等

式约束凸二次规划的零空间方法和拉格朗日方法以及求解一般约束凸二次规划

的有效集方法.

11.1 等式约束凸二次规划的解法

我们考虑如下的二次规划问题⎧⎪⎨⎪⎩
min

1

2
𝑥𝑇𝐻𝑥+ 𝑐𝑇𝑥,

s.t. 𝐴𝑥 = 𝑏,

(11.1)

其中 𝐻 ∈ R𝑛×𝑛 对称正定, 𝐴 ∈ R𝑚×𝑛 行满秩, 𝑐, 𝑥 ∈ R𝑛, 𝑏 ∈ R𝑚. 本节我们介绍

两种求解问题 (11.1) 的数值方法, 即零空间方法和值空间方法（通常称为拉格朗

日方法）.

11.1.1 零空间方法

设 𝑥0 满足 𝐴𝑥0 = 𝑏. 记 𝐴 的零空间为

𝒩 (𝐴) =
{︀
𝑧 ∈ R𝑛 |𝐴𝑧 = 0

}︀
,
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则问题 (11.1) 的任一可行点 𝑥 可表示成 𝑥 = 𝑥0 + 𝑧, 𝑧 ∈ 𝒩 (𝐴). 这样, 问题 (11.1)

可等价变形为 ⎧⎪⎨⎪⎩
min

1

2
𝑧𝑇𝐻𝑧 + 𝑧𝑇 (𝑐+𝐻𝑥0),

s.t. 𝐴𝑧 = 0.
(11.2)

令 𝑍 ∈ R𝑛×(𝑛−𝑚) 是 𝒩 (𝐴) 的一组基组成的矩阵, 那么, 对任意的 𝑑 ∈ R𝑛−𝑚,

有 𝑧 = 𝑍𝑑 ∈ 𝒩 (𝐴). 于是问题 (11.2) 变为无约束优化问题

min
1

2
𝑑𝑇 (𝑍𝑇𝐻𝑍)𝑑+ 𝑑𝑇 [𝑍𝑇 (𝑐+𝐻𝑥0)]. (11.3)

容易发现, 当𝐻 半正定时, 𝑍𝑇𝐻𝑍 也是半正定的. 此时, 若 𝑑* 是 (11.3) 的稳

定点, 𝑑* 也是 (11.3) 的全局极小点, 同时 𝑥* = 𝑥0 + 𝑍𝑑* 是 (11.1) 的全局极小点,

𝜆* = 𝐴+(𝐻𝑥* + 𝑐) 是相应的拉格朗日乘子, 其中 𝐴+ 是矩阵 𝐴 的 Penrose 广义

逆. 由于这种方法是基于约束函数的系数矩阵的零空间, 因此把它称之为零空间

方法.

余下的问题就是如何确定可行点 𝑥0 和零空间 𝒩 (𝐴) 的基矩阵 𝑍. 有多种方

法来确定这样的 𝑥0 和 𝑍. 我们在此介绍 1974 年 Gill 和Murry 所提出的一种方

法, 即先对 𝐴𝑇 作 QR 分解

𝐴𝑇 = 𝑄

⎡⎣𝑅
0

⎤⎦ =
[︁
𝑄1, 𝑄2

]︁⎡⎣𝑅
0

⎤⎦ , (11.4)

其中, 𝑄 是一个 𝑛 阶正交阵, 𝑅 是一个𝑚 上三角阵, 𝑄1 ∈ R𝑛×𝑚, 𝑄2 ∈ R𝑛×(𝑛−𝑚).

那么确立 𝑥0 和 𝑍 为

𝑥0 = 𝑄1𝑅
−𝑇 𝑏, 𝑍 = 𝑄2, (11.5)

同时有

𝐴+ = 𝑄1𝑅
−𝑇 . (11.6)

下面写出零空间方法的算法步骤:

算法 30 (零空间方法)

步 0 数据准备. 确定矩阵 𝐻, 𝐴 和向量 𝑐, 𝑏.

步 1 由 (11.4) 对 𝐴𝑇 进行 𝑄𝑅 分解, 得 𝑄1, 𝑄2 和 𝑅.

步 2 按 (11.5) 计算可行点 𝑥0 和零空间 𝒩 (𝐴) 的基矩阵 𝑍。

步 3 求解无约束优化子问题 (11.3) 得解 𝑑*.
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步 4 计算全局极小点 𝑥* = 𝑥0+𝑍𝑑
* 和相应的拉格朗日乘子 𝜆* = 𝐴+(𝐻𝑥*+

𝑐), 其中 𝐴+ 由 (11.6) 确定.

11.1.2 拉格朗日方法及其Matlab 程序

下面我们来推导用拉格朗日乘子法解问题 (11.1) 的求解公式.

首先写出拉格朗日函数:

𝐿(𝑥, 𝜆) =
1

2
𝑥𝑇𝐻𝑥+ 𝑐𝑇𝑥− 𝜆𝑇 (𝐴𝑥− 𝑏), (11.7)

令

∇𝑥𝐿(𝑥, 𝜆) = 0, ∇𝜆𝐿(𝑥, 𝜆) = 0,

得到方程组

𝐻𝑥− 𝐴𝑇𝜆 = −𝑐,

−𝐴𝑥 = −𝑏.

将上述方程组写成分块矩阵形式:⎡⎣ 𝐻 −𝐴𝑇

−𝐴 0

⎤⎦⎡⎣ 𝑥

𝜆

⎤⎦ =

⎡⎣ −𝑐

−𝑏

⎤⎦ . (11.8)

我们称上述方程组的系数矩阵 ⎡⎣ 𝐻 −𝐴𝑇

−𝐴 0

⎤⎦
为拉格朗日矩阵.

下面的定理给出了线性方程组 (11.8) 有唯一解的充分条件.

定理 54 设 𝐻 ∈ R𝑛×𝑛 对称正定, 𝐴 ∈ R𝑚×𝑛 行满秩. 若在问题 (11.1) 的解

𝑥* 处满足二阶充分条件, 即

𝑑𝑇𝐻𝑑 > 0, ∀ 𝑑 ∈ R𝑛, 𝑑 ̸= 0, 𝐴𝑑 = 0,

则线性方程组 (11.9) 的系数矩阵非奇异, 即方程组 (11.9) 有唯一解.
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证 设 (𝑑, 𝜈) 是下面的齐次线性方程组的解:⎡⎣ 𝐻 −𝐴𝑇

−𝐴 0

⎤⎦⎡⎣ 𝑑

𝜈

⎤⎦ = 0, (11.9)

即

𝐻𝑑− 𝐴𝑇𝜈 = 0, 𝐴𝑑 = 0.

故

𝑑𝑇𝐻𝑑 = 𝑑𝑇𝐴𝑇𝜈 = 0, 𝐴𝑑 = 0.

于是由二阶充分性条件必有 𝑑 = 0. 从而

𝐴𝑇𝜈 = 𝐻𝑑 = 0.

注意到 𝐴 行满秩, 故必有 𝜈 = 0. 由此可知, 齐次线性方程组 (11.9) 只有零解, 因

此其系数矩阵必然非奇异. 证毕. �

下面我们来导出方程 (11.8) 的求解公式. 根据定理 54, 拉格朗日矩阵必然是

非奇异的, 故可设其逆为⎡⎣ 𝐻 −𝐴𝑇

−𝐴 0

⎤⎦−1

=

⎡⎣ 𝐺 −𝐵𝑇

−𝐵 𝐶

⎤⎦ .
由恒等式 ⎡⎣ 𝐻 −𝐴𝑇

−𝐴 0

⎤⎦⎡⎣ 𝐺 −𝐵𝑇

−𝐵 𝐶

⎤⎦ =

⎡⎣ 𝐼𝑛 0𝑛×𝑚

0𝑚×𝑛 𝐼𝑚

⎤⎦
可得

𝐻𝐺+ 𝐴𝑇𝐵 = 𝐼𝑛, −𝐻𝐵𝑇 − 𝐴𝑇𝐶 = 0𝑛×𝑚,

−𝐴𝐺 = 0𝑚×𝑛, 𝐴𝐵𝑇 = 𝐼𝑚.

于是由上述 4 个等式得到矩阵 𝐺,𝐵,𝐶 的表达式

𝐺 = 𝐻−1 −𝐻−1𝐴𝑇 (𝐴𝐻−1𝐴𝑇 )−1𝐴𝐻−1, (11.10)

𝐵 = (𝐴𝐻−1𝐴𝑇 )−1𝐴𝐻−1, (11.11)

𝐶 = −(𝐴𝐻−1𝐴𝑇 )−1. (11.12)
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因此, 由 (11.8) 可得解的表达式⎡⎣ 𝑥̄

𝜆̄

⎤⎦ =

⎡⎣ 𝐺 −𝐵𝑇

−𝐵 𝐶

⎤⎦⎡⎣ −𝑐

−𝑏

⎤⎦ =

⎡⎣ −𝐺𝑐+𝐵𝑇 𝑏

𝐵𝑐− 𝐶𝑏

⎤⎦ , (11.13)

其中 𝐺,𝐵,𝐶 分别由 (11.10), (11.11) 和 (11.12) 给出.

下面给出 𝑥̄ 和 𝜆̄ 的另一种等价表达式. 设 𝑥𝑘 是问题 (11.1) 的任一可行点,

即 𝑥𝑘 满足 𝐴𝑥𝑘 = 𝑏. 而在此点处目标函数的梯度为 𝑔𝑘 = ∇𝑓(𝑥𝑘) = 𝐻𝑥𝑘 + 𝑐. 利

用 𝑥𝑘 和 𝑔𝑘, 可将 (11.13) 改写为

⎡⎣ 𝑥̄

𝜆̄

⎤⎦ =

⎡⎢⎣ 𝑥𝑘 −𝐺𝑔𝑘

𝐵𝑔𝑘

⎤⎥⎦ . (11.14)

下面我们给出求解等式约束二次规划拉格朗日方法的Matlab 程序.

程序 16 本程序用拉格朗日方法求解等式约束条件的二次规划问题.

function [x,lam,fval]=qlag(H,A,b,c)

% 功能: 用拉格朗日方法求解等式约束二次规划:

% min f(x)=0.5*x’Hx+c’x, s.t. Ax=b

%输入: H,c分别是目标函数的矩阵和向量, A,b分别是

% 约束条件中的矩阵和向量

%输出: (x, lam) 是 KT 点, fval 是最优值.

IH=inv(H);

AHA=A*IH*A’;

IAHA=inv(AHA);

AIH=A*IH;

G=IH-AIH’*IAHA*AIH;

B=IAHA*AIH;

C=-IAHA;

x=B’*b-G*c;

lam=B*c-C*b;

fval=0.5*x’*H*x+c’*x;

我们利用上述程序求解一个二次规划问题.
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例 32 利用程序 16 求解下列问题

min𝑥21 + 2𝑥22 + 𝑥23 − 2𝑥1𝑥2 + 𝑥3,

s.t. 𝑥1 + 𝑥2 + 𝑥3 = 4,

2𝑥1 − 𝑥2 + 𝑥3 = 2.

解 容易写出

𝐻 =

⎡⎢⎢⎢⎣
2 −2 0

−2 4 0

0 0 2

⎤⎥⎥⎥⎦ , 𝑐 =
⎡⎢⎢⎢⎣

0

0

1

⎤⎥⎥⎥⎦ , 𝐴 =

⎡⎣ 1 1 1

2 −1 1

⎤⎦ , 𝑏 =
⎡⎣ 4

2

⎤⎦ .
在Matlab 命令窗口依次输入:

H=[2 -2 0;-2 4 0; 0 0 2];

c=[0 0 1]’;

A=[1 1 1;2 -1 1];

b=[4 2]’;

[x,lam]=qlag(H,A,b,c)

得到

x =

1.9091

1.9545

0.1364

lam =

2.6364

-1.3636

fval =

3.9773

11.2 一般凸二次规划的有效集方法

考虑一般二次规划⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

1

2
𝑥𝑇𝐻𝑥+ 𝑐𝑇𝑥,

s.t. 𝑎𝑇𝑖 𝑥− 𝑏𝑖 = 0, 𝑖 ∈ 𝐸 = {1, · · · , 𝑙},

𝑎𝑇𝑖 𝑥− 𝑏𝑖 ≥ 0, 𝑖 ∈ 𝐼 = {𝑙 + 1, · · · ,𝑚},

(11.15)
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其中 𝐻 是 𝑛 阶对称阵. 记 𝐼(𝑥*) = {𝑖 | 𝑎𝑇𝑖 𝑥* − 𝑏𝑖 = 0, 𝑖 ∈ 𝐼}, 下面的定理给出了
问题 (11.15) 的一个最优性充要条件, 其证明可参见文献 [1].

定理 55 𝑥* 是二次规划问题 (11.15) 的局部极小点当且仅当

(1) 存在 𝜆* ∈ R𝑚, 使得⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐻𝑥* + 𝑐−
∑︀
𝑖∈𝐸

𝜆*𝑖𝑎𝑖 −
∑︀
𝑖∈𝐼
𝜆*𝑖𝑎𝑖 = 0,

𝑎𝑇𝑖 𝑥
* − 𝑏𝑖 = 0, 𝑖 ∈ 𝐸,

𝑎𝑇𝑖 𝑥
* − 𝑏𝑖 ≥ 0, 𝑖 ∈ 𝐼,

𝜆*𝑖 ≥ 0, 𝑖 ∈ 𝐼; 𝜆*𝑖 = 0, 𝑖 ∈ 𝐼∖𝐼(𝑥*).

(2) 记

𝒮 = {𝑑 ∈ R𝑛∖{0} | 𝑑𝑇𝑎𝑖 = 0, 𝑖 ∈ 𝐸; 𝑑𝑇𝑎𝑖 ≥ 0, 𝑖 ∈ 𝐼(𝑥*); 𝑑𝑇𝑎𝑖 = 0, 𝑖 ∈ 𝐼(𝑥*)且𝜆*𝑖 > 0}.

则对于任意的 𝑑 ∈ 𝒮, 均有 𝑑𝑇𝐻𝑑 ≥ 0.

容易发现, 问题 (11.15) 是凸二次规划的充要条件是 𝐻 半正定. 此时, 定理

55 的第二部分自然满足. 注意到凸优化问题的局部极小点也是全局极小点的性

质, 我们有下面的定理:

定理 56 𝑥* 是凸二次规划的全局极小点的充要条件是 𝑥* 满足 KT 条件,

即存在 𝜆* ∈ R𝑚, 使得⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐻𝑥* + 𝑐−
∑︀
𝑖∈𝐸

𝜆*𝑖𝑎𝑖 −
∑︀
𝑖∈𝐼
𝜆*𝑖𝑎𝑖 = 0,

𝑎𝑇𝑖 𝑥
* − 𝑏𝑖 = 0, 𝑖 ∈ 𝐸,

𝑎𝑇𝑖 𝑥
* − 𝑏𝑖 ≥ 0, 𝑖 ∈ 𝐼,

𝜆*𝑖 ≥ 0, 𝑖 ∈ 𝐼; 𝜆*𝑖 = 0, 𝑖 ∈ 𝐼∖𝐼(𝑥*).

下面我们介绍求解一般凸二次规划问题的有效集方法及其Matlab 实现.

11.2.1 有效集方法的理论推导

首先引入下面的定理, 它是有效集方法理论基础, 其证明可参见文献 [2].
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定理 57 设 𝑥* 是一般凸二次规划问题 (11.15) 的全局极小点, 且在 𝑥* 处的

有效集为 𝑆(𝑥*) = 𝐸 ∪ 𝐼(𝑥*), 则 𝑥* 也是下列等式约束凸二次规划⎧⎪⎨⎪⎩
min

1

2
𝑥𝑇𝐻𝑥+ 𝑐𝑇𝑥,

s.t. 𝑎𝑇𝑖 𝑥− 𝑏𝑖 = 0, 𝑖 ∈ 𝑆(𝑥*)

(11.16)

的全局极小点.

从上述定理可以发现, 有效集方法的最大难点是事先一般不知道有效集

𝑆(𝑥*), 因此只有想办法构造一个集合序列去逼近它. 即, 从初始点 𝑥0 出发, 计

算有效集 𝑆(𝑥0), 解对应的等式约束子问题. 重复这一做法, 得到有效集序列

{𝑆(𝑥𝑘)}, 𝑘 = 0, 1, · · · , 使之 𝑆(𝑥𝑘) → 𝑆(𝑥*), 以获得原问题的最优解.

基于上述定理, 我们分 4 步来介绍有效集方法的算法原理和实施步骤.

第 1步.形成子问题并求出搜索方向 𝑑𝑘. 设 𝑥𝑘 是问题 (11.15)的一个可行点,

据此确定相应的有效集 𝑆𝑘 = 𝐸 ∪ 𝐼(𝑥𝑘), 其中 𝐼(𝑥𝑘) = {𝑖|𝑎𝑇𝑖 𝑥𝑘 − 𝑏𝑖 = 0, 𝑖 ∈ 𝐼}. 求
解相应的子问题 ⎧⎪⎨⎪⎩

min
1

2
𝑥𝑇𝐻𝑥+ 𝑐𝑇𝑥,

s.t. 𝑎𝑇𝑖 𝑥− 𝑏𝑖 = 0, 𝑖 ∈ 𝑆𝑘.

(11.17)

上述问题等价于 ⎧⎪⎨⎪⎩
min 𝑞𝑘(𝑑) =

1

2
𝑑𝑇𝐻𝑑+ 𝑔𝑇𝑘 𝑑,

s.t. 𝑎𝑇𝑖 𝑑 = 0, 𝑖 ∈ 𝑆𝑘,

(11.18)

其中 𝑥 = 𝑥𝑘 + 𝑑, 𝑔𝑘 = 𝐺𝑥𝑘 + 𝑐. 设求出问题 (11.18) 的全局极小点为 𝑑𝑘, 𝜆𝑘 是对

应的拉格朗日乘子.

第 2 步. 进行线搜索确定步长因子 𝛼𝑘. 假设 𝑑𝑘 ̸= 0, 分两种情形讨论.

(1) 若 𝑥𝑘 + 𝑑𝑘 是问题 (11.15) 的可行点, 即

𝑎𝑇𝑖 (𝑥𝑘 + 𝑑𝑘)− 𝑏𝑖 = 0, 𝑖 ∈ 𝐸 及 𝑎𝑇𝑖 (𝑥𝑘 + 𝑑𝑘)− 𝑏𝑖 ≥ 0, 𝑖 ∈ 𝐼.

则令 𝛼𝑘 = 1, 𝑥𝑘+1 = 𝑥𝑘 + 𝑑𝑘.

(2) 若 𝑥𝑘 + 𝑑𝑘 不是问题 (11.15) 的可行点, 则通过线搜索求出下降最好的可

行点. 注意到目标函数是凸二次函数, 那么这一点应该在可行域的边界上达到.

因此只要求出满足可行条件的最大步长 𝛼𝑘 即可.
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当 𝑖 ∈ 𝑆𝑘时,对于任意的𝛼𝑘 ≥ 0,都有 𝑎𝑇𝑖 𝑑𝑘 = 0和 𝑎𝑇𝑖 (𝑥𝑘+𝛼𝑘𝑑𝑘) = 𝑎𝑇𝑖 𝑥𝑘 = 𝑏𝑖,

此时, 𝛼𝑘 ≥ 0 不受限制. 当 𝑖 ̸∈ 𝑆𝑘 时, 即第 𝑖 个约束是严格的不等式约束, 此时要

求 𝛼𝑘 满足 𝑎𝑇𝑖 (𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≥ 𝑏𝑖, 即

𝛼𝑘𝑎
𝑇
𝑖 𝑑𝑘 ≥ 𝑏𝑖 − 𝑎𝑇𝑖 𝑥𝑘, 𝑖 ̸∈ 𝑆𝑘.

注意到上式右端非正, 故当 𝑎𝑇𝑖 𝑑𝑘 ≥ 0 时, 上式恒成立. 而当 𝑎𝑇𝑖 𝑑𝑘 < 0 时, 由上式

可解得

𝛼𝑘 ≤
𝑏𝑖 − 𝑎𝑇𝑖 𝑥𝑘
𝑎𝑇𝑖 𝑑𝑘

.

故有

𝛼𝑘 = 𝛼̄𝑘 = min

{︂
𝑏𝑖 − 𝑎𝑇𝑖 𝑥𝑘
𝑎𝑇𝑖 𝑑𝑘

⃒⃒⃒
𝑎𝑇𝑖 𝑑𝑘 < 0

}︂
.

合并 (1) 和 (2) 可得

𝛼𝑘 = min{1, 𝛼̄𝑘}. (11.19)

第 3 步. 修正 𝑆𝑘. 当 𝛼𝑘 = 1, 有效集不变, 即 𝑆𝑘+1 := 𝑆𝑘. 而当 𝛼𝑘 < 1 时,

𝛼𝑘 = 𝛼̄𝑘 =
𝑏𝑖𝑘 − 𝑎𝑇𝑖𝑘𝑥𝑘

𝑎𝑇𝑖𝑘𝑑𝑘
,

故 𝑎𝑇𝑖𝑘(𝑥𝑘+𝛼𝑘𝑑𝑘) = 𝑏𝑖𝑘 ,因此在 𝑥𝑘+1 处增加了一个有效约束,即 𝑆𝑘+1 := 𝑆𝑘∪{𝑖𝑘}.
第 4 步. 考虑 𝑑𝑘 = 0 的情形. 此时 𝑥𝑘 是问题 (11.17) 的全局极小点. 若这时

对应的不等式约束的拉格朗日乘子均为非负, 则 𝑥𝑘 也是问题 (11.15) 的全局极小

点, 迭代终止. 否则, 如果对应的不等式约束的拉格朗日乘子有负的分量, 那么需

要重新寻找一个下降可行方向.

设 𝜆𝑗𝑘 < 0, 𝑗𝑘 ∈ 𝐼(𝑥𝑘). 现在要求一个下降可行方向 𝑑𝑘, 满足 𝑔𝑇𝑘 𝑑𝑘 < 0 且

𝑎𝑇𝑗 𝑑𝑘 = 0, ∀ 𝑗 ∈ 𝐸; 𝑎𝑇𝑗 𝑑𝑘 ≥ 0, ∀ 𝑗 ∈ 𝐼(𝑥𝑘). 为简便计, 按下述方式选取 𝑑𝑘:

𝑎𝑇𝑗𝑘(𝑥𝑘 + 𝑑𝑘) > 𝑏𝑗𝑘 ,

𝑎𝑇𝑗 (𝑥𝑘 + 𝑑𝑘) = 𝑏𝑗, ∀ 𝑗 ∈ 𝑆𝑘, 𝑗 ̸= 𝑗𝑘,

即 ⎧⎪⎨⎪⎩
𝑎𝑇𝑗𝑘𝑑𝑘 > 0,

𝑎𝑇𝑗 𝑑𝑘 = 0, ∀ 𝑗 ∈ 𝑆𝑘, 𝑗 ̸= 𝑗𝑘,
(11.20)
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另一方面, 注意到 𝑥𝑘 是子问题 (11.17) 的全局极小点, 故有

𝐻𝑥𝑘 + 𝑐−
∑︁
𝑖∈𝑆𝑘

𝜆𝑘𝑖 𝑎𝑖 = 0,

即

𝑔𝑘 = 𝐴𝑘𝜆𝑘,

其中

𝐴𝑘 = (𝑎𝑖)𝑖∈𝑆𝑘
, 𝜆𝑘 = (𝜆𝑘𝑖 )𝑖∈𝑆𝑘

.

从而, 𝑔𝑇𝑘 𝑑𝑘 = 𝜆𝑇𝑘𝐴
𝑇
𝑘 𝑑𝑘. 由 (11.20) 知

𝐴𝑇
𝑘 𝑑𝑘 =

∑︁
𝑗∈𝑆𝑘

(𝑎𝑇𝑗 𝑑𝑘) 𝑒𝑗 = (𝑎𝑇𝑗𝑘𝑑𝑘) 𝑒𝑗𝑘 ,

于是有

𝑔𝑇𝑘 𝑑𝑘 = 𝜆𝑇𝑘 (𝑎
𝑇
𝑗𝑘
𝑑𝑘) 𝑒𝑗𝑘 = 𝜆𝑘𝑗𝑘(𝑎

𝑇
𝑗𝑘
𝑑𝑘) < 0.

上式表明, 由 (11.20) 确定的 𝑑𝑘 是一个下降可行方向. 因此, 令 𝑆 ′
𝑘 = 𝑆𝑘∖{𝑗𝑘}, 则

修正后的子问题 ⎧⎪⎨⎪⎩
min 𝑞𝑘(𝑑) =

1

2
𝑑𝑇𝐻𝑑+ 𝑔𝑇𝑘 𝑑,

s.t. 𝑎𝑇𝑖 𝑑 = 0, 𝑖 ∈ 𝑆 ′
𝑘

的全局极小点必然是原问题的一个下降可行方向.

11.2.2 有效集方法的算法步骤

经过上面的分析和推导, 我们现在可以写出有效集方法的算法步骤.

算法 31 (有效集方法)

步 0 选取初值. 给定初始可行点 𝑥0 ∈ R𝑛, 令 𝑘 := 0.

步 1 解子问题. 确定相应的有效集 𝑆𝑘 = 𝐸 ∪ 𝐼(𝑥𝑘). 求解求解子问题⎧⎪⎨⎪⎩
min 𝑞𝑘(𝑑) =

1

2
𝑑𝑇𝐻𝑑+ 𝑔𝑇𝑘 𝑑,

s.t. 𝑎𝑇𝑖 𝑑 = 0, 𝑖 ∈ 𝑆𝑘,

得极小点 𝑑𝑘 和拉格朗日乘子向量 𝜆𝑘. 若 𝑑𝑘 ̸= 0 转步 3; 否则, 转步 2.
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步 2 检验终止准则. 计算拉格朗日乘子

𝜆𝑘 = 𝐵𝑘𝑔𝑘,

其中

𝑔𝑘 = 𝐻𝑥𝑘 + 𝑐, 𝐵𝑘 = (𝐴𝑘𝐻
−1𝐴𝑇

𝑘 )
−1𝐴𝑘𝐻

−1, 𝐴𝑘 = (𝑎𝑖)𝑖∈𝑆𝑘
.

令

(𝜆𝑘)𝑡 = min
𝑖∈𝐼(𝑥𝑘)

{︀
(𝜆𝑘)𝑖

}︀
.

若 (𝜆𝑘)𝑡 ≥ 0, 则 𝑥𝑘 是全局极小点, 停算. 否则, 若 (𝜆𝑘)𝑡 < 0, 则令 𝑆𝑘 := 𝑆𝑘∖{𝑡},
转步 1.

步 3 确定步长 𝛼𝑘. 令 𝛼𝑘 = min{1, 𝛼̄𝑘}, 其中

𝛼̄𝑘 = min
𝑖 ̸∈𝑆𝑘

{︂
𝑏𝑖 − 𝑎𝑇𝑖 𝑥𝑘
𝑎𝑇𝑖 𝑑𝑘

⃒⃒⃒
𝑎𝑇𝑖 𝑑𝑘 < 0

}︂
.

令 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘.

步 4 若 𝛼𝑘 = 1, 则令 𝑆𝑘+1 := 𝑆𝑘; 否则, 若 𝛼𝑘 < 1, 则令 𝑆𝑘+1 = 𝑆𝑘 ∪{𝑗𝑘}, 其
中 𝑗𝑘 满足

𝛼̄𝑘 =
𝑏𝑗𝑘 − 𝑎𝑇𝑗𝑘𝑥𝑘

𝑎𝑇𝑗𝑘𝑑𝑘
.

步 5 令 𝑘 := 𝑘 + 1, 转步 1.

下面给出算法 31 的收敛性定理.

定理 58 假设问题 (11.15) 中的矩阵𝐻 对称正定. 若在算法 31 每步迭代中

的矩阵

𝐴𝑘 =
(︀
𝑎𝑖
)︀
𝑖∈𝑆𝑘

列满秩, 且 𝛼𝑘 ̸= 0, 则算法 31 在有限步之内得到问题 (11.15) 的全局极小点.

证 注意到, 若 𝑑𝑘 = 0, 则 𝑥𝑘 是子问题 (11.17) 的 KT 点和全局极小点. 若

𝑑𝑘 ̸= 0 且 𝛼𝑘 = 1, 则 𝑆𝑘+1 = 𝑆𝑘, 这时关于 𝑥𝑘+1 的子问题仍为 (11.17), 所以, 𝑥𝑘+1

是 (11.17) 的全局极小点. 只有当 𝛼𝑘 < 1 时, 𝑥𝑘+1 才不是 (11.17) 的全局极小

点, 但这时要加进一个约束, 形成新的子问题. 这样的过程最多连续 𝑛 次, 因为这

时子问题至少有 𝑛 个等式约束, 从而 𝑥𝑘 为唯一的可行点, 因而是对应的子问题

(11.17) 的全局极小点.
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另一方面, 子问题 (11.17) 虽然约束条件在变化, 但其目标函数与原问题

(11.15) 是一致的. 由于 𝛼𝑘 ̸= 0, 故每次迭代目标函数值减少. 再注意到 𝐻 正定,

因此子问题的全局极小点是唯一的, 从而不会出现子问题的全局极小点被两个不

同的 𝑥𝑘 达到的情形. 而约束个数的有限性保证了有效集 𝑆𝑘 不同个数的有限性.

因此, 不失一般性, 设有效集 𝑆𝑘 不同个数为 𝑁0, 那么不同子问题的个数也为 𝑁0.

故而, 迭代至多在 𝑁0𝑛 步之后, 𝑥𝑘 遍历所有子问题的全局极小点. 由定理 57 知,

算法 31 在有限步之内达到问题 (11.15) 的全局极小点. �

例 33 用有效集方法求解下列二次规划问题⎧⎪⎪⎪⎨⎪⎪⎪⎩
min 𝑓(𝑥) = 𝑥21 − 𝑥1𝑥2 + 2𝑥22 − 𝑥1 − 10𝑥2,

s.t. − 3𝑥1 − 2𝑥2 ≥ −6,

𝑥1 ≥ 0, 𝑥2 ≥ 0.

解 首先确定矩阵 𝐻 和向量 𝑐:

𝐻 =

⎡⎣ 2 −1

−1 4

⎤⎦ , 𝑐 =

⎡⎣ −1

−10

⎤⎦ .
取初始可行点 𝑥0 = (0, 0)𝑇 . 在 𝑥0, 有效集 𝑆0 = {2, 3}. 求解相应的子问题⎧⎨⎩ min 𝑑21 − 𝑑1𝑑2 + 2𝑑22 − 𝑑1 − 10𝑑2,

s.t. 𝑑1 = 0, 𝑑2 = 0.

得解 𝑑0 = (0, 0)𝑇 . 因此, 𝑥0 是相应的子问题 (11.17) 的最优解. 计算拉格朗日乘

子. 由 𝑆0 = {2, 3} 知

𝐴0 = (𝑎𝑖)𝑖∈𝑆0 =

⎡⎣1 0

0 1

⎤⎦ , 𝑔0 = 𝐻𝑥0 + 𝑐 =

⎡⎣ −1

−10

⎤⎦ .
故 ⎡⎣(𝜆0)2

(𝜆0)3

⎤⎦ = [(𝐴0𝐻
−1𝐴𝑇

0 )
−1𝐴0𝐻

−1]𝑔0 =

⎡⎣ −1

−10

⎤⎦ .
由此可知, 𝑥0 不是所求问题的最优解.
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将 (𝜆0)3 = −10 对应的约束, 即原问题的第 3 个约束从有效集 𝑆0 中去掉, 置

𝑆0 = {2}, 再解相应的子问题:⎧⎨⎩ min 𝑑21 − 𝑑1𝑑2 + 2𝑑22 − 𝑑1 − 10𝑑2,

s.t. 𝑑1 = 0.

得解 𝑑0 =
(︁
0,

5

2

)︁𝑇
.

由于 𝑑0 ̸= 0, 需要计算步长 𝛼0. 注意到

𝛼̄ = min

{︂
𝑏𝑖 − 𝑎𝑇𝑖 𝑥0
𝑎𝑇𝑖 𝑑0

⃒⃒⃒
𝑖 ̸∈ 𝑆0, 𝑎

𝑇
𝑖 𝑑0 < 0

}︂
=

−6

(−3,−2) · (0, 2.5)𝑇
=

−6

−5
= 1.2.

故 𝛼0 = min{1, 𝛼̄} = 1. 令

𝑥1 = 𝑥0 + 𝛼0𝑑0 = (0, 0)𝑇 + 1 ·
(︁
0,

5

2

)︁𝑇
=
(︁
0,

5

2

)︁𝑇
.

计算出 𝑔1 = ∇𝑓(𝑥1) =
(︁
− 7

2
, 0
)︁𝑇

.

因 𝛼0 = 1, 置 𝑆1 = {2} (= 𝑆0). 在 𝑥1 处, 计算相应的拉格朗日乘子. 此时

𝐴1 = (1, 0), 那么,

(𝜆1)2 = [(𝐴1𝐻
−1𝐴𝑇

1 )
−1𝐴1𝐻

−1]𝑔1 = −7

2
.

由于 (𝜆1)2 < 0, 故 𝑥1 不是问题的最优解. 于是将指标 2 从 𝑆1 中剔除掉, 则更新

后的 𝑆1 = ∅. 再解相应的子问题

min 𝑑21 − 𝑑1𝑑2 + 2𝑑22 −
7

2
𝑑1,

得解向量 𝑑1 =
(︁
2,

1

2

)︁𝑇
.

由于 𝑑1 ̸= 0, 需要计算步长 𝛼1. 注意到

𝛼̄ = min

{︂
𝑏𝑖 − 𝑎𝑇𝑖 𝑥1
𝑎𝑇𝑖 𝑑1

⃒⃒⃒
𝑖 ̸∈ 𝑆1, 𝑎

𝑇
𝑖 𝑑1 < 0

}︂

=
−6− (−3,−2) · (0, 2.5)𝑇

(−3,−2) · (2, 0.5)𝑇
=

1

7
.
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故

𝛼1 = min{1, 𝛼̄} =
1

7
.

令

𝑥2 = 𝑥1 + 𝛼1𝑑1 =
(︁
0,

5

2

)︁𝑇
+

1

7

(︁
2,

1

2

)︁𝑇
=
(︁2
7
,
18

7

)︁𝑇
.

计算出 𝑔2 = ∇𝑓(𝑥2) = (−3, 0)𝑇 .

在 𝑥2 处, 第一个约束是有效约束, 即 𝑆2 = {1}, 解相应的子问题:⎧⎨⎩ min 𝑑21 − 𝑑1𝑑2 + 2𝑑22 − 3𝑑1,

s.t. 3𝑑1 − 2𝑑2 = 0.

得解向量 𝑑2 =
(︁ 3

14
,− 9

28

)︁𝑇
. 计算步长 𝛼2. 因

𝛼̄ = min

{︂
𝑏𝑖 − 𝑎𝑇𝑖 𝑥2
𝑎𝑇𝑖 𝑑2

⃒⃒⃒
𝑖 ̸∈ 𝑆2, 𝑎

𝑇
𝑖 𝑑2 < 0

}︂

=
0− (0, 1) ·

(︁2
7
,
18

7

)︁𝑇
(0, 1) ·

(︁ 3

14
,− 9

28

)︁𝑇 =
−18

7

− 9

28

= 8.

故

𝛼2 = min{1, 𝛼̄} = 1.

令

𝑥3 = 𝑥2 + 𝛼2𝑑2 =
(︁2
7
,
18

7

)︁𝑇
+ 1 ·

(︁ 3

14
,− 9

28

)︁𝑇
=
(︁1
2
,
9

4

)︁𝑇
.

计算出 𝑔3 = ∇𝑓(𝑥3) =
(︁
− 9

4
, −3

2

)︁𝑇
.

在点 𝑥3 处, 计算相应的拉格朗日乘子. 此时 𝑆3 = {1}, 𝐴3 = (−3,−2), 那么,

𝜆31 = [(𝐴3𝐻
−1𝐴𝑇

3 )
−1𝐴3𝐻

−1]𝑔3 =
3

4
> 0.

因此 𝑥3 =
(︁1
2
,
9

4

)︁𝑇
是所求的最优解.
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11.2.3 有效集方法的Matlab 程序

由于有效集方法是求解凸二次规划问题的一种值得推荐的方法, 本节给出有

效集方法的 Matlab 程序. 在实际使用有效集方法求解凸二次规划时, 一般用渐

进有效集约束指标集代替有效集约束指标集, 即取 {𝑖 ∈ 𝐼 | 𝑎𝑇𝑖 𝑥 − 𝑏𝑖 ≤ 𝜀} 近似代
替 𝐼(𝑥*), 其中 𝜀 > 0 是比较小的常数. 这样做的好处是使得迭代步长不至于太

短. 此外, 算法 31 还需要确立一个初始可行点. 可采用下述方法: 给出一个初始

估计点 𝑥̄ ∈ R𝑛, 定义下列线性规划⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min 𝑒𝑇 𝑧,

s.t. 𝑎𝑇𝑖 𝑥+ 𝜏𝑖𝑧𝑖 − 𝑏𝑖 = 0, 𝑖 ∈ 𝐸 = {1, · · · , 𝑙},

𝑎𝑇𝑖 𝑥+ 𝑧𝑖 − 𝑏𝑖 ≥ 0, 𝑖 ∈ 𝐼 = {𝑙 + 1, · · · ,𝑚},

𝑧1 ≥ 0, · · · , 𝑧𝑚 ≥ 0,

(11.21)

其中, 𝑒 = (1, · · · , 1)𝑇 , 𝜏𝑖 = −sign(𝑎𝑇𝑖 𝑥̄− 𝑏𝑖), 𝑖 ∈ 𝐸. 问题 (11.21) 的一个初始可行

点为

𝑥 = 𝑥̄, 𝑧𝑖 = |𝑎𝑇𝑖 𝑥̄− 𝑏𝑖| (𝑖 ∈ 𝐸); 𝑧𝑖 = max{𝑏𝑖 − 𝑎𝑇𝑖 𝑥̄, 0} (𝑖 ∈ 𝐼).

不难证明, 如果 𝑥̃ 是问题 (11.15) 的可行点, 那么 (𝑥̃, 0) 是子问题 (11.21) 的最优

解. 反之, 如果问题 (11.15) 有可行点, 则问题 (11.21)的最优值为 0, 从而子问题

(11.21) 的任何一个解产生问题 (11.15) 的一个可行点.

下面给出用有效集方法求解一般凸二次规划问题的Matlab 程序, 在某种意

义下, 该程序是通用的.

程序 17 本程序主要适用于求解一般约束条件下的凸二次规划问题.

function [x,lamk,exitflag,output]=qpact(H,c,Ae,be,Ai,bi,x0)

%功能: 用有效集方法解一般约束二次规划问题:

% min f(x)=0.5*x’*H*x+c’*x,

% s.t. a’˙i*x-b˙i=0,(i=1,...,l),

% a’˙i*x-b˙i¿=0,(i=l+1,...,m)

%输入: x0是初始点, H, c分别是目标函数二次型矩阵和向量；

% Ae=(a˙1,...,a˙l)’, be=(b˙1,...,b˙l)’;

% Ai=(a˙–l+1˝,...,a˙m), bi=(b˙–l+1˝,...,b˙m)’.

%输出: x是最优解， lambda是对应的乘子向量；output是结构变量,

% 输出极小值f(x), 迭代次数k等信息, exitflag是算法终止类型
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%%%%%%%%%%%%%%%%% 主程序开始 %%%%%%%%%%%%%%%%%

% 初始化

epsilon=1.0e-9; err=1.0e-6;

k=0; x=x0; n=length(x); kmax=1.0e3;

ne=length(be); ni=length(bi); lamk=zeros(ne+ni,1);

index=ones(ni,1);

for (i=1:ni)

if(Ai(i,:)*x¿bi(i)+epsilon), index(i)=0; end

end

%算法主程序

while (k¡=kmax)

%求解子问题

Aee=[];

if(ne¿0), Aee=Ae; end

for(j=1:ni)

if(index(j)¿0), Aee=[Aee; Ai(j,:)]; end

end

gk=H*x+c;

[m1,n1] = size(Aee);

[dk,lamk]=qsubp(H,gk,Aee,zeros(m1,1));

if(norm(dk)¡=err)

y=0.0;

if(length(lamk)¿ne)

[y,jk]=min(lamk(ne+1:length(lamk)));

end

if(y¿=0)

exitflag=0;

else

exitflag=1;

for(i=1:ni)

if(index(i)&(ne+sum(index(1:i)))==jk)

index(i)=0; break;

end

end

end

k=k+1;

else
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exitflag=1;

%求步长

alpha=1.0; tm=1.0;

for(i=1:ni)

if((index(i)==0)&(Ai(i,:)*dk¡0))

tm1=(bi(i)-Ai(i,:)*x)/(Ai(i,:)*dk);

if(tm1¡tm)

tm=tm1; ti=i;

end

end

end

alpha=min(alpha,tm);

x=x+alpha*dk;

%修正有效集

if(tm¡1), index(ti)=1; end

end

if(exitflag==0), break; end

k=k+1;

end

output.fval=0.5*x’*H*x+c’*x;

output.iter=k;

%%%%%%%% 求解子问题 %%%%%%%%%%%%%%%

function [x,lambda]=qsubp(H,c,Ae,be)

ginvH=pinv(H);

[m,n]=size(Ae);

if(m¿0)

rb=Ae*ginvH*c + be;

lambda=pinv(Ae*ginvH*Ae’)*rb;

x=ginvH*(Ae’*lambda-c);

else

x=-ginvH*c;

lambda=0;

end

注 (1) 关于上述程序,在子函数 qsubp中, 使用的是广义逆 ( pinv是Matlab

软件内置的求广义逆的函数 ), 这样不仅可计算 𝐻 是奇异阵的情形, 同时保证了

计算的数值稳定性. 另外, 该子函数还包含了子问题为无约束二次规划时的解.

(2) 使用程序 17 时, 需要用户提供所有问题的目标函数和约束函数的有关数据,
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可通过编制一个m文件来解决.

例 34 利用程序 17 重新求解例 33, 即⎧⎪⎪⎪⎨⎪⎪⎪⎩
min 𝑓(𝑥) = 𝑥21 − 𝑥1𝑥2 + 2𝑥22 − 𝑥1 − 10𝑥2,

s.t. − 3𝑥1 − 2𝑥2 ≥ −6,

𝑥1 ≥ 0, 𝑥2 ≥ 0.

解 首先确定有关数据:

𝐻 =

⎡⎣ 2 −1

−1 4

⎤⎦ , 𝑐 =
⎡⎣ −1

−10

⎤⎦ , Ae = [ ], be = [ ],Ai =

⎡⎢⎢⎢⎣
−3 −2

1 0

0 1

⎤⎥⎥⎥⎦ , bi =
⎡⎢⎢⎢⎣
−6

0

0

⎤⎥⎥⎥⎦ .
编制一个利用上述数据调用程序 17 的函数文件 callqpact.m

function callqpact

H=[2 -1; -1 4];

c=[-1 -10]’;

Ae=[ ]; be=[ ];

Ai=[-3 -2; 1 0; 0 1];

bi=[-6 0 0]’;

x0=[0 0]’;

[x,lambda,exitflag,output]=qpact(H,c,Ae,be,Ai,bi,x0)

然后在Matlab 命令窗口键入 callqpact, 回车即得结果

x =

0.5000

2.2500

lambda =

0.7500

exitflag =

0

output =

fval: -13.7500

iter: 8

可以看出, 上述结果跟例 33 用手算是一致的.
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例 35 利用程序 17 求解下列二次规划问题⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝑓(𝑥) =
1

2
𝑥21 − 𝑥1𝑥2 + 𝑥22 − 6𝑥1 − 2𝑥2,

s.t. − 2𝑥1 − 𝑥2 ≥ −3,

𝑥1 − 𝑥2 ≥ −1,

−𝑥1 − 2𝑥2 ≥ −2,

𝑥1 ≥ 0, 𝑥2 ≥ 0.

该问题有精确解 𝑥* =
(︁4
3
,
1

3

)︁𝑇
, 最优值 𝑓(𝑥*) = −8

1

9
.

解 在Matlab 命令窗口输入下列命令:

H=[1 -1;-1 2];

c=[-6 -2]’;

Ai=[-2 -1;1 -1;-1 -2; 1 0;0 1];

bi=[-3 -1 -2 0 0]’;

x=[0 0]’;

[x,lambda,exitflag,output]=qpact(H,c,[],[],Ai,bi,x0)

得计算结果为

x =

1.3333

0.3333

lambda =

2.4444

0.1111

exitflag =

0

output =

fval: -8.1111

iter: 7

习 题 11

1. 用拉格朗日方法求解下列二次规划问题:
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(1) min 𝑓(𝑥) = 2𝑥2
1 + 𝑥2

2 + 𝑥1𝑥2 − 𝑥1 − 𝑥2,

s.t. 𝑥1 + 𝑥2 = 1.

(2) min 𝑓(𝑥) = 3
2
𝑥2
1 − 𝑥1𝑥2 + 𝑥2

2 − 𝑥2𝑥3 +
1
2
𝑥2
3 + 𝑥1 + 𝑥2 + 𝑥3,

s.t. 𝑥1 + 2𝑥2 + 𝑥3 = 4.

2. 用有效集方法求解下列二次规划问题:

(1) min 𝑓(𝑥) = 9𝑥2
1 + 9𝑥2

2 − 30𝑥1 − 72𝑥2,

s.t. −2𝑥1 − 𝑥2 ≥ −4,

𝑥1, 𝑥2 ≥ 0.

(2) min 𝑓(𝑥) = 𝑥2
1 − 𝑥1𝑥2 + 𝑥2

2 − 3𝑥1,

s.t. −𝑥1 − 𝑥2 ≥ −2,

𝑥1, 𝑥2 ≥ 2.

3. 证明: 若矩阵

𝑀 =

⎛⎝ 𝐻 𝐴𝑇

𝐴 0

⎞⎠
非奇异, 则 𝐴 必是行满秩的.

4. 设矩阵𝑊 ∈ R𝑛×𝑛 对称, 𝑍 ∈ R𝑛×𝑙, 𝑢 ∈ R𝑛, 记 𝑍 = (𝑍, 𝑢), 试证明：若矩阵 𝑍𝑇𝑊𝑍

正定, 则矩阵 𝑍𝑇𝑊𝑍 半正定.

5. 设 𝐴 ∈ R𝑚×𝑛 行满秩, 𝑎 ∈ R𝑛, 证明: 二次规划问题

min
1

2
(𝑥− 𝑎)𝑇 (𝑥− 𝑎),

s.t. 𝐴𝑥 = 𝑏

的解以及相应的拉格朗日乘子分别为:

𝑥* = 𝑎+𝐴𝑇 (𝐴𝐴𝑇 )−1(𝑏−𝐴𝑎), 𝜆* = (𝐴𝐴𝑇 )−1(𝑏−𝐴𝑎).

6. 设 𝐻 对称正定, 𝜆* 是问题

min
1

2
𝜆𝑇 (𝐴𝑇𝐻−1𝐴)𝜆− (𝑏+𝐴𝑇𝐻−1𝑐)𝑇𝜆,

s.t. 𝜆𝑖 ≥ 0, 𝑖 ∈ 𝐼

的解. 证明: 𝑥* = −𝐻−1(𝑐−𝐴𝜆*) 是问题

min 𝑓(𝑥) =
1

2
𝑥𝑇𝐻𝑥+ 𝑐𝑇𝑥,

s.t. 𝑎𝑇𝑖 𝑥 ≥ 𝑏𝑖, 𝑖 ∈ 𝐼 = {1, · · · ,𝑚1},

𝑎𝑇𝑖 𝑥 = 𝑏𝑖, 𝑖 ∈ 𝐸 = {𝑚1 + 1, · · · ,𝑚}
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的最优解.

7. 设 𝑑𝑘 ̸= 0 是问题

min
1

2
𝑑𝑇𝐻𝑑+∇𝑓(𝑥𝑘)

𝑇𝑑,

s.t. 𝑎𝑇𝑖 𝑑 = 0, 𝑖 ∈ 𝑆(𝑥𝑘)

的最优解, 且二阶充分条件成立, 其中 𝑆(𝑥𝑘) = {𝑖 ∈ 𝐼 ∪ 𝐸 : 𝑎𝑇𝑖 𝑥𝑘 = 𝑏𝑖}, 证明:

𝑓(𝑥𝑘 + 𝛼𝑑𝑘) < 𝑓(𝑥𝑘), ∀𝛼 ∈ (0, 1].

8. 设 𝐻 ∈ R𝑛×𝑛 对称正定, 𝐴 ∈ R𝑚×𝑛 行满秩.

(1) 证明矩阵

𝑀 =

⎛⎝ 𝐻 𝐴𝑇

𝐴 0

⎞⎠
非奇异, 且

𝑀−1 =

⎛⎝ 𝐶 𝐸

𝐸𝑇 𝐹

⎞⎠ ,

其中

𝐶 = 𝐻−1 −𝐻−1𝐴𝑇 (𝐴𝐻−1𝐴𝑇 )−1𝐴𝐻−1,

𝐸 = 𝐻−1𝐴𝑇 (𝐴𝐻−1𝐴𝑇 )−1, 𝐹 = −(𝐴𝐻−1𝐴𝑇 )−1.

(2) 证明: 矩阵𝑀 有 𝑛 个正特征值, 𝑚 个负特征值, 没有 0 特征值.

(3) 证明线性方程组

𝑀

⎛⎝ −𝑝

𝜆

⎞⎠ =

⎛⎝ 𝑔

𝑏

⎞⎠
等价于下面的线性方程组

(𝐴𝐻−1𝐴𝑇 )𝜆 = 𝐴𝐻−1𝑔 − 𝑏, 𝐻𝑝 = 𝐴𝑇𝜆− 𝑔.
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本章考虑求解一般非线性优化问题⎧⎪⎪⎪⎨⎪⎪⎪⎩
min 𝑓(𝑥),

s.t. ℎ𝑖(𝑥) = 0, 𝑖 ∈ 𝐸 = {1, · · · , 𝑙},

𝑔𝑖(𝑥) ≥ 0, 𝑖 ∈ 𝐼 = {1, · · · ,𝑚}

(12.1)

的序列二次规划法 (SQP, Sequential Quadratic Programming). SQP 方法是求解

约束优化问题最有效的算法之一, 其基本思想是: 在每一迭代步通过求解一个二

次规划子问题来确立一个下降方向, 以减少价值函数来取得步长, 重复这些步骤

直到求得原问题的解. 这也是之所以称为序列二次规划法的由来. 本章主要介绍

SQP 方法的基本思想、迭代步骤和收敛性分析. 首先介绍求解等式约束优化问

题的牛顿-拉格朗日法.

12.1 牛顿-拉格朗日法

12.1.1 牛顿-拉格朗日法的基本理论

考虑纯等式约束的优化问题⎧⎨⎩ min 𝑓(𝑥),

s.t. ℎ𝑖(𝑥) = 0, 𝑖 ∈ 𝐸 = {1, · · · , 𝑙},
(12.2)

其中 𝑓 : R𝑛 → R, ℎ𝑖 : R𝑛 → R (𝑖 ∈ 𝐸) 都是二阶连续可微的实函数. 记

ℎ(𝑥) = (ℎ1(𝑥), · · · , ℎ𝑙(𝑥))𝑇 , 则不难写出该问题的拉格朗日函数为

𝐿(𝑥, 𝜇) = 𝑓(𝑥)−
𝑙∑︁

𝑖=1

𝜇𝑖ℎ𝑖(𝑥) = 𝑓(𝑥)− 𝜇𝑇ℎ(𝑥),

211



第十二章 序列二次规划法 回回回目目目录录录 S12.1 牛顿-拉格朗日法

其中 𝜇 = (𝜇1, · · · , 𝜇𝑙)
𝑇 为拉格朗日乘子向量. 约束函数 ℎ(𝑥) 的梯度矩阵为

∇ℎ(𝑥) =
[︀
∇ℎ1(𝑥), · · · ,∇ℎ𝑙(𝑥)

]︀
,

则 ℎ(𝑥) 的 Jacobi 矩阵为 𝐴(𝑥) = ∇ℎ(𝑥)𝑇 . 根据问题 (12.2) 的 KT 条件, 可以得

到如下的方程组

∇𝐿(𝑥, 𝜇) =

⎡⎢⎣ ∇𝑥𝐿(𝑥, 𝜇)

∇𝜇𝐿(𝑥, 𝜇)

⎤⎥⎦ =

⎡⎢⎣ ∇𝑓(𝑥)− 𝐴(𝑥)𝑇𝜇

−ℎ(𝑥)

⎤⎥⎦ = 0. (12.3)

现在考虑用牛顿法求解上述的非线性方程组 (12.3). 记函数 ∇𝐿(𝑥, 𝜇) 的
Jacobi 矩阵为

𝑁(𝑥, 𝜇) =

⎡⎣ 𝑊 (𝑥, 𝜇) −𝐴(𝑥)𝑇

−𝐴(𝑥) 0

⎤⎦ , (12.4)

其中

𝑊 (𝑥, 𝜇) = ∇2
𝑥𝑥𝐿(𝑥, 𝜇) = ∇2𝑓(𝑥)−

𝑙∑︁
𝑖=1

𝜇𝑖∇2ℎ𝑖(𝑥)

是拉格朗日函数 𝐿(𝑥, 𝜇) 关于 𝑥 的 Hesse 阵. (12.4) 所定义的矩阵 𝑁(𝑥, 𝜇) 亦称

之为 KT 矩阵. 对于给定的点 𝑧𝑘 = (𝑥𝑘, 𝜇𝑘), 牛顿法的迭代格式为

𝑧𝑘+1 = 𝑧𝑘 + 𝑝𝑘, (12.5)

其中 𝑝𝑘 = (𝑑𝑘, 𝜈𝑘) 满足下面的线性方程组:

𝑁(𝑥𝑘, 𝜇𝑘)𝑝𝑘 = −∇𝐿(𝑥𝑘, 𝜇𝑘),

即 ⎡⎣ 𝑊 (𝑥𝑘, 𝜇𝑘) −𝐴(𝑥𝑘)𝑇

−𝐴(𝑥𝑘) 0

⎤⎦⎡⎣ 𝑑𝑘

𝜈𝑘

⎤⎦ =

⎡⎣ −∇𝑓(𝑥𝑘) + 𝐴(𝑥𝑘)
𝑇𝜇𝑘

ℎ(𝑥𝑘)

⎤⎦ . (12.6)

不难发现, 只要矩阵 𝐴(𝑥𝑘) 行满秩且 𝑊 (𝑥𝑘, 𝜇𝑘) 是正定的, 那么方程组

(12.6)　的系数矩阵是非奇异的, 且该方程有唯一解. 由于 KT 条件 (12.3) 是拉格

朗日函数稳定点的条件, 所以人们通常把基于求解方程 (12.3) 的优化方法称为拉

格朗日方法. 特别地, 如果用牛顿法求解该方程组, 则称之为牛顿-拉格朗日方法.

因此, 根据牛顿法的性质, 该方法具有局部二次收敛性质.

下面写出牛顿-拉格朗日方法的详细算法步骤.
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算法 32 (牛顿-拉格朗日方法)

步 0 选取 𝑥0 ∈ R𝑛, 𝜇0 ∈ R𝑙, 𝜌, 𝛾 ∈ (0, 1), 0 ≤ 𝜀≪ 1. 令 𝑘 := 0.

步步步 1 计算 ‖∇𝐿(𝑥𝑘, 𝜇𝑘)‖ 的值. 若 ‖∇𝐿(𝑥𝑘, 𝜇𝑘)‖ ≤ 𝜀, 停算. 否则, 转步 2.

步 2 解方程组 (12.6) 得 𝑝𝑘 = (𝑑𝑘, 𝜈𝑘).

步 3 若

‖∇𝐿(𝑥𝑘 + 𝑑𝑘, 𝜇𝑘 + 𝜈𝑘)‖2 ≤ (1− 𝛾)‖∇𝐿(𝑥𝑘, 𝜇𝑘)‖2, (12.7)

则置 𝛼𝑘 := 1, 转步 5; 否则, 转步 4.

步 4 令𝑚𝑘 是使下面的不等式成立的最小非负整数𝑚 :

‖∇𝐿(𝑥𝑘 + 𝜌𝑚𝑑𝑘, 𝜇𝑘 + 𝜌𝑚𝜈𝑘)‖2 ≤ (1− 𝛾𝜌𝑚)‖∇𝐿(𝑥𝑘, 𝜇𝑘)‖2, (12.8)

置 𝛼𝑘 = 𝜌𝑚𝑘 .

步 5 令 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝜇𝑘+1 = 𝜇𝑘 + 𝛼𝑘𝜈𝑘. 置 𝑘 := 𝑘 + 1, 转步 1.

12.1.2 牛顿-拉格朗日法的Matlab 程序

本小节通过一个具体的例子来介绍算法 32 (牛顿-拉格朗日方法) 的Matlab

实现.

例 36 用算法 32 编程计算下列最优化问题的极小点⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min 𝑓(𝑥) = e𝑥1𝑥2𝑥3𝑥4𝑥5 − 1

2
(𝑥31 + 𝑥32 + 1)2,

s.t. 𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥25 − 10 = 0,

𝑥2𝑥3 − 5𝑥4𝑥5 = 0,

𝑥31 + 𝑥32 + 1 = 0.

该问题有最优解 𝑥* = (−1.71, 1.59, 1.82,−0.763,−0.763)𝑇 ,最优值 𝑓(𝑥*) = 0.0539.

解 编制Matlab 程序如下

function [x,mu,val,mh,k]=newtlagr(x0,mu0)

% 功能:用牛顿-拉格朗日法求解约束优化问题:

% min f(x), s.t. h˙i(x)=0, i=1,..., l.

%输入:x0是初始点, mu0是乘子向量的初始值
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%输出: x,mu分别是近似最优点及相应的乘子,

%val是最优值,mh是约束函数的模,k是迭代次数.

maxk=500; %最大迭代次数

n=length(x0); l=length(mu0);

rho=0.5; gamma=0.4;

x=x0; mu=mu0;

k=0; epsilon=1e-8;

while(k¡maxk)

dl=dla(x,mu); %计算乘子函数的梯度

if(norm(dl)¡epsilon), break; end %检验终止准则

N=N1(x,mu); % 计算拉格朗日矩阵

dz=-N“dl; %解方程组得搜索方向

dx=dz(1:n); du=dz(n+1:n+l);

m=0; mk=0;

while(m¡20) % Armijo搜索

if(norm(dla(x+rho^m*dx,mu+rho^m*du))^2¡=(1-gamma*rho^m)*norm(dl)^2)

mk=m; break;

end

m=m+1;

end

x=x+rho^mk*dx; mu=mu+rho^mk*du;

k=k+1;

end

val=f1(x);

mh=norm(h1(x),inf);

%%%%%%%%% 拉格朗日函数 L(x,mu) %%%%%%%%%%%%%

function l=la(x,mu)

f=f1(x); %调用目标函数文件

h=h1(x); %调用约束函数文件

l=f-mu’*h; % 计算乘子函数

%%%%%%%%% 拉格朗日函数的梯度 %%%%%%%%%%%%%

function dl=dla(x,mu)

df=df1(x); %调用目标函数梯度文件

h=h1(x); %调用约束函数文件

dh=dh1(x); %调用约束函数Jacobi矩阵文件

dl=[df-dh’*mu; -h]; %计算乘子函数梯度文件

%%%%%%%%% 拉格朗日函数的Hesse阵 %%%%%%%%%%%
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function d2l=d2la(x,mu)

d2f=d2f1(x); %调用目标函数Hesse阵文件

[d2h1,d2h2,d2h3]=d2h(x); %调用约束函数二阶导数文件

d2l=d2f-mu(1)*d2h1-mu(2)*d2h2-mu(3)*d2h3; %计算乘子函数的Hesse阵

%%%%%%%%% 系数矩阵N(x,mu) %%%%%%%%%%%

function N=N1(x,mu) %计算拉格朗日矩阵

l=length(mu);

d2l=d2la(x,mu); dh=dh1(x);

N=[d2l, -dh’; -dh, zeros(l,l)];

%%%%%%%%% 目标函数 f(x) %%%%%%%%%%%%%

function f=f1(x)

s=x(1)*x(2)*x(3)*x(4)*x(5);

f=exp(s)-0.5*(x(1)^3+x(2)^3+1)^2;

%%%%%%%%% 约束函数 h(x) %%%%%%%%%%%%%

function h=h1(x)

h=[x(1)^2+x(2)^2+x(3)^2+x(4)^2+x(5)^2-10;x(2)*x(3)-5*x(4)*x(5);x(1)^3+x(2)^3+1];

%%%%%%%%% 目标函数 f(x) 的梯度%%%%%%%%%%%%%

function df=df1(x)

s=x(1)*x(2)*x(3)*x(4)*x(5);

df(1)=s/(x(1))*exp(s)-3*(x(1)^3+x(2)^3+1)*x(1)^2;

df(2)=s/(x(2))*exp(s)-3*(x(1)^3+x(2)^3+1)*x(2)^2;

df(3)=s/(x(3))*exp(s); df1(4)=s/(x(4))*exp(s);

df(5)=s/(x(5))*exp(s);

df=df(:);

%%%%%%%%% 约束函数 h(x) 的Jacobi矩阵A(x)%%%%%%%%%%%%%

function dh=dh1(x)

dh=[2*x(1),2*x(2),2*x(3),2*x(4),2*x(5);0,x(3),x(2),-5*x(5),-5*x(4);...

3*x(1)^2,3*x(2)^2,0,0,0];

%%%%%%%%% 目标函数 f(x) 的Hesse阵%%%%%%%%%%%%%

function d2f=d2f1(x)

s=x(1)*x(2)*x(3)*x(4)*x(5);

d2f=[(s/(x(1)))^2*exp(s)-6*x(1)*(x(1)^3+x(2)^3+1)-9*x(1)^4,...

(1+s)*x(3)*x(4)*x(5)*exp(s)-9*x(1)^2*x(2)^2,(1+s)*x(2)*x(4)*x(5)*exp(s),...

(1+s)*x(2)*x(3)*x(5)*exp(s), (1+s)*x(2)*x(3)*x(4)*exp(s); ...

(1+s)*x(3)*x(4)*x(5)*exp(s)-9*x(1)^2*x(2)^2, ...

(s/(x(2)))^2*exp(s)-6*x(2)*(x(1)^3+x(2)^3+1)-9*x(2)^4,...

(1+s)*x(1)*x(4)*x(5)*exp(s),(1+s)*x(1)*x(3)*x(5)*exp(s),...
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(1+s)*x(1)*x(3)*x(4)*exp(s);...

(1+s)*x(2)*x(4)*x(5)*exp(s),(1+s)*x(1)*x(4)*x(5)*exp(s),s^2/(x(3))*exp(s),...

(1+s)*x(1)*x(2)*x(5)*exp(s),(1+s)*x(1)*x(2)*x(4)*exp(s); ...

(1+s)*x(2)*x(3)*x(5)*exp(s),(1+s)*x(1)*x(3)*x(5)*exp(s), ...

(1+s)*x(1)*x(2)*x(5)*exp(s),s^2/(x(4))*exp(s),(1+s)*x(1)*x(2)*x(3)*exp(s);...

(1+s)*x(2)*x(3)*x(4)*exp(s),(1+s)*x(1)*x(3)*x(4)*exp(s), ...

(1+s)*x(1)*x(2)*x(4)*exp(s),(1+s)*x(1)*x(2)*x(3)*exp(s),s^2/(x(5))*exp(s)]’;

%%%%%%%%% 约束函数 h(x) 的Hesse阵%%%%%%%%%%%%%

function [d2h1,d2h2,d2h3]=d2h(x)

d2h1=[2 0 0 0 0; 0 2 0 0 0; 0 0 2 0 0; 0 0 0 2 0; 0 0 0 0 2]’;

d2h2=[0 0 0 0 0; 0 0 1 0 0; 0 1 0 0 0; 0 0 0 0 -5; 0 0 0 -5 0]’;

d2h3=[6*x(1) 0 0 0 0;0 6*x(2) 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0]’;

利用上面的程序, 取乘子向量的初值为 𝜇0 = (0, 0, 0), 终止准则值取为

‖∇𝐿(𝑥𝑘, 𝜇𝑘)‖2 ≤ 10−12, 对于不同的初始点得到计算结果如下表所示.

初始点 (𝑥0) 迭代次数 (𝑘) 𝑓(𝑥𝑘) 的值 ‖ℎ(𝑥𝑘)‖ 的值

(−1.71.51.8− 0.6− 0.6)𝑇 11 0.0539 3.2894e-011

(−1.7, 1.6, 1.8,−0.7,−0.7)𝑇 11 0.0539 5.9272e-012

(−1.8, 1.7, 1.9,−0.8,−0.8)𝑇 9 0.0539 3.0606e-011

(−2, 1.5, 2,−1,−1)𝑇 14 0.0539 1.4766e-011

(−3, 2, 3,−2,−2)𝑇 16 0.0539 3.6545e-011

说明 Matlab 调用方式为: 在命令窗口依次输入如下命令并回车即得计算结

果.

x0=[-1.7,1.6,1.8,-0.7,-0.7]’;

mu0=[0.1 0.1 0.1]’;

[x,mu,val,mh,k]=newtlagr(x0,mu0)

12.2 SQP 方法的算法模型

12.2.1 基于拉格朗日函数 Hesse 阵的 SQP 方法

前一节介绍的牛顿-拉格朗日法, 由于每一迭代步求解方程组 (12.6) 数值上

不是很稳定, 因此这一方法并不实用. 但它有一个重要的贡献, 就是以它为基础
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发展了序列二次规划方法 (SQP 方法). 鉴于方程组 (12.6) 的求解数值不稳定, 故

考虑将它转化为一个严格凸二次规划问题. 转化的条件是 (12.2) 的解点 𝑥* 处最

优性二阶充分条件成立, 即对满足 𝐴(𝑥*)𝑇𝑑 = 0 的任一向量 𝑑 ̸= 0, 成立

𝑑𝑇𝑊 (𝑥*, 𝜇*)𝑑 > 0.

这时, 由引理 16 知, 当 𝜏 > 0 充分小时, 有

𝑊 (𝑥*, 𝜇*) +
1

2𝜏
𝐴(𝑥*)𝑇𝐴(𝑥*)

正定. 考虑 (12.6) 中的𝑊 (𝑥𝑘, 𝜇𝑘) 用一个正定矩阵来代替, 记

𝐵(𝑥𝑘, 𝜇𝑘) = 𝑊 (𝑥𝑘, 𝜇𝑘) +
1

2𝜏
𝐴(𝑥𝑘)

𝑇𝐴(𝑥𝑘),

则当 (𝑥𝑘, 𝜇𝑘) → (𝑥*, 𝜇*) 时, 矩阵 𝐵(𝑥*, 𝜇*) 正定. 注意到 (12.6) 的第一个展开式

为

𝑊 (𝑥𝑘, 𝜇𝑘)𝑑𝑘 − 𝐴(𝑥𝑘)
𝑇𝜈𝑘 = −∇𝑓(𝑥𝑘) + 𝐴(𝑥𝑘)

𝑇𝜇𝑘,

将上式变形为[︁
𝑊 (𝑥𝑘, 𝜇𝑘) +

1

2𝜏
𝐴(𝑥𝑘)

𝑇𝐴(𝑥𝑘)
]︁
𝑑𝑘 − 𝐴(𝑥𝑘)

𝑇
[︁
𝜇𝑘 + 𝜈𝑘 +

1

2𝜏
𝐴(𝑥𝑘)𝑑𝑘

]︁
= −∇𝑓(𝑥𝑘).

令

𝜇̄𝑘 := 𝜇𝑘 + 𝜈𝑘 +
1

2𝜏
𝐴(𝑥𝑘)𝑑𝑘,

即得

𝐵(𝑥𝑘, 𝜇𝑘)𝑑𝑘 − 𝐴(𝑥𝑘)
𝑇 𝜇̄𝑘 = −∇𝑓(𝑥𝑘).

因此 (12.6) 等价于⎡⎣𝐵(𝑥𝑘, 𝜇𝑘) −𝐴(𝑥𝑘)𝑇

𝐴(𝑥𝑘) 0

⎤⎦⎡⎣𝑑𝑘
𝜇̄𝑘

⎤⎦ = −

⎡⎣∇𝑓(𝑥𝑘)
ℎ(𝑥𝑘)

⎤⎦ . (12.9)

进一步, 可以把方程 (12.9) 转化为严格凸二次规划. 我们有下面的定理:

定理 59 设 𝐵(𝑥𝑘, 𝜇𝑘) 是 𝑛× 𝑛 正定矩阵, 𝐴(𝑥𝑘) 是𝑚× 𝑛 行满秩矩阵. 则

𝑑𝑘 满足 (12.9) 的充要条件是 𝑑𝑘 是下列严格凸二次规划⎧⎪⎨⎪⎩
min 𝑞𝑘(𝑑) =

1

2
𝑑𝑇𝐵(𝑥𝑘, 𝜇𝑘)𝑑+∇𝑓(𝑥𝑘)𝑇𝑑

s.t. ℎ(𝑥𝑘) + 𝐴(𝑥𝑘)𝑑 = 0

(12.10)

的全局极小点.
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证 设 𝑑𝑘 是 (12.10) 的全局极小点, 注意到 𝐴(𝑥𝑘) 行满秩, 故由 KT 条件, 存

在乘子向量 𝜇̄𝑘, 使得

∇𝑓(𝑥𝑘) +𝐵(𝑥𝑘, 𝜇𝑘)𝑑𝑘 − 𝐴(𝑥𝑘)
𝑇 𝜇̄𝑘 = 0.

再由 (12.10) 的约束条件知, (𝑑𝑘, 𝜇̄𝑘) 是方程组 (12.9) 的解.

反之, 设 (𝑑𝑘, 𝜇̄𝑘) 是方程组 (12.9) 的解. 由于 𝐵(𝑥𝑘, 𝜇𝑘) 正定, 𝐴(𝑥𝑘) 行满秩,

故方程组 (12.9) 的系数矩阵是非奇异的, 从而这个解是唯一的. 由定理 56 知,

(𝑑𝑘, 𝜇̄𝑘) 是 (12.10) 的 KT 对, 从而 𝑑𝑘 是 (12.10) 的全局极小点. �

为了方便, 定义罚函数

𝑃 (𝑥, 𝜇) = ‖∇𝐿(𝑥, 𝜇)‖2 = ‖∇𝑓(𝑥)− 𝐴(𝑥)𝑇𝜇‖2 + ‖ℎ(𝑥)‖2. (12.11)

不难证明, 由 (12.6) 确定的 𝑝𝑘 满足 (参见文献 [12])

∇𝑃 (𝑥𝑘, 𝜇𝑘)
𝑇𝑝𝑘 = −2𝑃 (𝑥𝑘, 𝜇𝑘) ≤ 0. (12.12)

我们有下面的算法:

算法 33 (纯等式约束优化问题的 SQP 方法)

步 0 选取 𝑥0 ∈ R𝑛, 𝜇0 ∈ R𝑙, 𝜌, 𝛾 ∈ (0, 1), 0 ≤ 𝜀≪ 1. 令 𝑘 := 0.

步 1 计算 𝑃 (𝑥𝑘, 𝜇𝑘) 的值. 若 𝑃 (𝑥𝑘, 𝜇𝑘) ≤ 𝜀, 停算. 否则, 转步 2.

步 2 求解二次规划子问题 (12.10) 得 𝑑𝑘 和 𝜇̄𝑘, 并置

𝜈𝑘 = 𝜇̄𝑘 − 𝜇𝑘 −
1

2𝜏
𝐴(𝑥𝑘)𝑑𝑘.

步 3 若

𝑃 (𝑥𝑘 + 𝑑𝑘, 𝜇𝑘 + 𝜈𝑘) ≤ (1− 𝛾)𝑃 (𝑥𝑘, 𝜇𝑘), (12.13)

则置 𝛼𝑘 := 1, 转步 5; 否则, 转步 4.

步 4 令𝑚𝑘 是使下面的不等式成立的最小非负整数𝑚 :

𝑃 (𝑥𝑘 + 𝜌𝑚𝑑𝑘, 𝜇𝑘 + 𝜌𝑚𝜈𝑘) ≤ (1− 𝛾𝜌𝑚)𝑃 (𝑥𝑘, 𝜇𝑘), (12.14)

置 𝛼𝑘 = 𝜌𝑚𝑘 .

步 5 令 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝜇𝑘+1 = 𝜇𝑘 + 𝛼𝑘𝜈𝑘. 置 𝑘 := 𝑘 + 1, 转步 1.
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不难发现, 在上面的算法中, 若 𝛼𝑘 < 1, 则必有

𝑃 (𝑥𝑘 + 𝜌𝑚𝑘−1𝑑𝑘, 𝜇𝑘 + 𝜌𝑚𝑘−1𝜈𝑘) > (1− 𝛾𝜌𝑚𝑘−1)𝑃 (𝑥𝑘, 𝜇𝑘). (12.15)

下面给出算法 33 的全局收敛性定理.

定理 60 对于等式约束问题 (12.2), 若 SQP 算法 33 生成的迭代序列

{(𝑥𝑘, 𝜇𝑘)} 使得 KT 矩阵的逆矩阵 𝑁(𝑥𝑘, 𝜇𝑘)
−1 一致有界, 则 {(𝑥𝑘, 𝜇𝑘)} 的任

何聚点 (𝑥*, 𝜇*) 都满足 𝑃 (𝑥*, 𝜇*) = 0. 特别地, {𝑥𝑘} 的任一聚点都是问题 (12.2)

的 KT 点.

证 用反证法. 不失一般性, 假定 {(𝑥𝑘, 𝜇𝑘)} → (𝑥*, 𝜇*). 若 𝑃 (𝑥*, 𝜇*) > 0. 由

步 3 和步 4 可知

𝑃 (𝑥𝑘+1, 𝜇𝑘+1) ≤ (1− 𝛾𝛼𝑘)𝑃 (𝑥𝑘, 𝜇𝑘) < 𝑃 (𝑥𝑘, 𝜇𝑘).

由上式及 𝑃 (𝑥𝑘, 𝜇𝑘) → 𝑃 (𝑥*, 𝜇*) > 0 可推得

lim
𝑘→∞

𝛼𝑘 = 0.

另外, 由 (12.6) 可得

𝑝𝑘 =

⎡⎣𝑑𝑘
𝜈𝑘

⎤⎦ = −𝑁(𝑥𝑘, 𝜇𝑘)
−1∇𝐿(𝑥𝑘, 𝜇𝑘).

注意到矩阵 𝑁(𝑥𝑘, 𝜇𝑘)
−1 的一致有界性, 𝑝𝑘 = (𝑑𝑘, 𝜈𝑘) 也是一致有界的, 且 𝑝𝑘 →

𝑝* = (𝑑*, 𝜈*), 其中 𝑝* 满足牛顿方程 𝑁(𝑥*, 𝜇*)𝑝* = −∇𝐿(𝑥*, 𝜇*). 由于 𝛼′
𝑘 =

𝛼𝑘/𝜌 = 𝜌𝑚𝑘−1 → 0. 故由 (12.15) 有

𝑃 (𝑥𝑘 + 𝛼′
𝑘𝑑𝑘, 𝜇𝑘 + 𝛼′

𝑘𝜈𝑘)− 𝑃 (𝑥𝑘, 𝜇𝑘)

𝛼′
𝑘

> −𝛾𝑃 (𝑥𝑘, 𝜇𝑘).

对上式两边取极限得

−𝛾𝑃 (𝑥*, 𝜇*) ≤ ∇𝑃 (𝑥*, 𝜇*)𝑇𝑝* = −2𝑃 (𝑥*, 𝜇*),

即

(2− 𝛾)𝑃 (𝑥*, 𝜇*) ≤ 0.
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注意到 0 < 𝛾 < 1, 故得 𝑃 (𝑥*, 𝜇*) ≤ 0, 这与假设 𝑃 (𝑥*, 𝜇*) > 0 矛盾. 因此必有

𝑃 (𝑥*, 𝜇*) = 0.

现在来证明定理的第二部分. 设 𝑥* 是序列 {𝑥𝑘}的任一聚点,不失一般性,假

设 {𝑥𝑘} → 𝑥*. 注意到序列 {𝑃 (𝑥𝑘, 𝜇𝑘)} 是单调不增的且矩阵序列 {𝑁(𝑥𝑘, 𝜇𝑘)
−1}

是一致有界的, 由此可推得 𝛼𝑘 → 0 (𝑘 → ∞), 且 {𝑝𝑘 = (𝑑𝑘, 𝜈𝑘)} 是有界的, 故

{𝑑𝑘} 和 {𝜈𝑘} 都是有界的. 又由步 2, 严格凸二次规划子问题的解 {(𝑑𝑘, 𝜇̄𝑘)} 也是
有界的, 故 {𝜇̄𝑘} 是有界的, 即 {𝜇̄𝑘 = 𝜇𝑘 + 𝜈𝑘} 是有界的. 特别地, 对于充分大的

𝑘, {𝜇𝑘+1 := 𝜇𝑘 + 𝛼𝑘𝜈𝑘} 是有界的, 于是存在收敛的子序列. 假设 𝜇* 是 {𝜇𝑘+1} 的
某个聚点, 则 (𝑥*, 𝜇*) 是迭代序列 {(𝑥𝑘, 𝜇𝑘)} 的一个聚点. 由第一部分的证明可知

𝑃 (𝑥*, 𝜇*) = 0, 因此, 𝑥* 是问题 (12.2) 的 KT 点. �

关于算法 33 的收敛速度, 我们有下面的定理, 其证明过程可参见文献 [1], 兹

略去不证.

定理 61 设算法 33 产生的迭代序列 {𝑥𝑘} 收敛到一个局部极小点 𝑥*. 若函

数 𝑓, ℎ = (ℎ1, · · · , ℎ𝑙)𝑇 在 𝑥* 附近三阶连续可微, Jacobi 矩阵 𝐴(𝑥*) = ∇ℎ(𝑥)𝑇

行满秩, 且二阶最优性充分条件成立. 则有

(1) 必有 {𝜇𝑘} → 𝜇*, 其中 𝜇* 是等式约束优化问题 (12.6) 的拉格朗日乘子,

且整个迭代序列 {(𝑥𝑘, 𝜇𝑘)} 是二阶收敛的, 即

‖(𝑥𝑘+1 − 𝑥*, 𝜇𝑘+1 − 𝜇*)‖ = 𝑂(‖(𝑥𝑘 − 𝑥*, 𝜇𝑘 − 𝜇*)‖2).

(2) 序列 {𝑥𝑘} 超线性收敛到 𝑥*, 且

‖𝑥𝑘+1 − 𝑥*‖ = 𝑜
(︁
‖𝑥𝑘 − 𝑥*‖

𝑡∏︁
𝑖=1

‖𝑥𝑘−𝑖 − 𝑥*‖
)︁
,

其中 𝑡 是任意给定的正整数.

例 37 编制Matlab 程序, 用算法 33 计算下列最优化问题的极小点⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min 𝑓(𝑥) = e𝑥1𝑥2𝑥3𝑥4𝑥5 − 1

2
(𝑥31 + 𝑥32 + 1)2,

s.t. 𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥25 − 10 = 0,

𝑥2𝑥3 − 5𝑥4𝑥5 = 0,

𝑥31 + 𝑥32 + 1 = 0.

该问题有最优解 𝑥* = (−1.71, 1.59, 1.82,−0.763,−0.763)𝑇 ,最优值 𝑓(𝑥*) = 0.0539.
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解 编制Matlab 程序如下

function [x,mu,val,k]=lagsqp(x0,mu0)

%功能: 用基于拉格朗日函数Hesse阵的SQP方法求解约束优化问题:

% min f(x) s.t. h˙i(x)=0, i=1,..., l.

%输入: x0是初始点, mu0是乘子向量的初始值

%输出: x, mu 分别是近似最优点及相应的乘子,

% val是最优值, mh是约束函数的模, k是迭代次数.

maxk=50; %最大迭代次数

n=length(x0); l=length(mu0);

rho=0.5; gamma=0.2;

x=x0; mu=mu0; tau=0.1;

k=0; epsilon=1e-8;

while(k¡maxk)

P1=P(x,mu) %计算罚函数的值

if(P1¡epsilon), break; end %检验终止准则

H=B(x,mu,tau); % 计算KT矩阵

c=df1(x); %计算目标函数梯度

be=-h1(x); %计算约束函数

Ae=dh1(x); %计算约束函数的Jacobi矩阵

[dx,lam]=qsubp(H,c,Ae,be);

du=lam-mu-1.0/(2*tau)*dh1(x)*dx;

m=0; mk=0;

while(m¡20) % Armijo搜索

if(P(x+rho^m*dx,mu+rho^m*du)¡=(1-gamma*rho^m)*P1)

mk=m; break;

end

m=m+1;

end

x=x+rho^mk*dx; mu=mu+rho^mk*du;

k=k+1;

end

val=f1(x);

%%%%%%%% 求解子问题 %%%%%%%%%%%%%%%

function [x,mu1]=qsubp(H,c,Ae,be)

ginvH=pinv(H);

[m,n]=size(Ae);

if(m¿0)
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rb=Ae*ginvH*c + be;

mu1=pinv(Ae*ginvH*Ae’)*rb;

x=ginvH*(Ae’*mu1-c);

else

x=-ginvH*c;

mu1=zeros(m,1);

end

%%%%%%%%% 拉格朗日函数 L(x,mu) %%%%%%%%%%%%%

function l=la(x,mu)

f=f1(x); %调用目标函数文件

h=h1(x); %调用约束函数文件

l=f-mu’*h; % 计算乘子函数

%%%%%%%%% 拉格朗日函数的梯度 %%%%%%%%%%%%%

function dl=dla(x,mu)

df=df1(x); %调用目标函数梯度文件

h=h1(x); %调用约束函数文件

dh=dh1(x); %调用约束函数Jacobi矩阵文件

dl=[df-dh’*mu; -h]; %计算乘子函数梯度文件

%%%%%%%%% 罚函数P(x,mu) %%%%%%%%%%%%%%%

function s=P(x,mu)

dl=dla(x,mu);

s=norm(dl)^2;

%%%%%%%%% 拉格朗日函数的Hesse阵 %%%%%%%%%%%

function d2l=d2la(x,mu)

d2f=d2f1(x); %调用目标函数Hesse阵文件

[d2h1,d2h2,d2h3]=d2h(x); %调用约束函数二阶导数文件

d2l=d2f-mu(1)*d2h1-mu(2)*d2h2-mu(3)*d2h3;

%%%%%%%%% KT矩阵B(x,mu) %%%%%%%%%%%

function H=B(x,mu,tau) %计算KT矩阵

d2l=d2la(x,mu); %计算Hesse阵

dh=dh1(x); %约束函数的Jacobi矩阵

H=d2l+1.0/(2*tau)*dh’*dh;

%%%%%%%%% 目标函数 f(x) %%%%%%%%%%%%%

function f=f1(x)

s=x(1)*x(2)*x(3)*x(4)*x(5);

f=exp(s)-0.5*(x(1)^3+x(2)^3+1)^2;

%%%%%%%%% 约束函数 h(x) %%%%%%%%%%%%%
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function h=h1(x)

h=[x(1)^2+x(2)^2+x(3)^2+x(4)^2+x(5)^2-10; ...

x(2)*x(3)-5*x(4)*x(5);x(1)^3+x(2)^3+1];

%%%%%%%%% 目标函数 f(x) 的梯度%%%%%%%%%%%%%

function df=df1(x)

s=x(1)*x(2)*x(3)*x(4)*x(5);

df(1)=s/(x(1))*exp(s)-3*(x(1)^3+x(2)^3+1)*x(1)^2;

df(2)=s/(x(2))*exp(s)-3*(x(1)^3+x(2)^3+1)*x(2)^2;

df(3)=s/(x(3))*exp(s);

df(4)=s/(x(4))*exp(s);

df(5)=s/(x(5))*exp(s);

df=df(:);

%%%%%%%%% 约束函数 h(x) 的Jacobi矩阵A(x)%%%%%%%%%%%%%

function dh=dh1(x)

dh=[2*x(1),2*x(2),2*x(3),2*x(4),2*x(5);0,x(3),x(2),-5*x(5),-5*x(4); ...

3*x(1)^2,3*x(2)^2,0,0,0];

%%%%%%%%% 目标函数 f(x) 的Hesse阵%%%%%%%%%%%%%

function d2f=d2f1(x)

s=x(1)*x(2)*x(3)*x(4)*x(5);

d2f=[(s/(x(1)))^2*exp(s)-6*x(1)*(x(1)^3+x(2)^3+1)-9*x(1)^4,...

(1+s)*x(3)*x(4)*x(5)*exp(s)-9*x(1)^2*x(2)^2, ...

(1+s)*x(2)*x(4)*x(5)*exp(s),...

(1+s)*x(2)*x(3)*x(5)*exp(s),(1+s)*x(2)*x(3)*x(4)*exp(s); ...

(1+s)*x(3)*x(4)*x(5)*exp(s)-9*x(1)^2*x(2)^2, ...

(s/(x(2)))^2*exp(s)-6*x(2)*(x(1)^3+x(2)^3+1)-9*x(2)^4, ...

(1+s)*x(1)*x(4)*x(5)*exp(s),(1+s)*x(1)*x(3)*x(5)*exp(s), ...

(1+s)*x(1)*x(3)*x(4)*exp(s); ...

(1+s)*x(2)*x(4)*x(5)*exp(s),(1+s)*x(1)*x(4)*x(5)*exp(s), ...

s^2/(x(3))*exp(s),(1+s)*x(1)*x(2)*x(5)*exp(s), ...

(1+s)*x(1)*x(2)*x(4)*exp(s); ...

(1+s)*x(2)*x(3)*x(5)*exp(s),(1+s)*x(1)*x(3)*x(5)*exp(s), ...

(1+s)*x(1)*x(2)*x(5)*exp(s),s^2/(x(4))*exp(s), ...

(1+s)*x(1)*x(2)*x(3)*exp(s);...

(1+s)*x(2)*x(3)*x(4)*exp(s),(1+s)*x(1)*x(3)*x(4)*exp(s), ...

(1+s)*x(1)*x(2)*x(4)*exp(s),(1+s)*x(1)*x(2)*x(3)*exp(s), ...

s^2/(x(5))*exp(s)]’;

%%%%%%%%%%%%%%%%约束函数h(x)的Hesse阵%%%%%%%%%%%%%%%%%%%%
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function [d2h1,d2h2,d2h3]=d2h(x)

d2h1=[2 0 0 0 0; 0 2 0 0 0; 0 0 2 0 0; 0 0 0 2 0; 0 0 0 0 2]’;

d2h2=[0 0 0 0 0; 0 0 1 0 0; 0 1 0 0 0; 0 0 0 0 -5; 0 0 0 -5 0]’;

d2h3=[6*x(1) 0 0 0 0;0 6*x(2) 0 0 0;0 0 0 0 0;0 0 0 0 0;0 0 0 0 0]’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

利用上面的程序, 取乘子向量的初值为 𝜇0 = (0, 0, 0), 终止准则值取为

𝑃 (𝑥𝑘, 𝜇𝑘) ≤ 10−12, 对于不同的初始点得到计算结果如下表所示.

初始点 (𝑥0) 迭代次数 (𝑘) 𝑓(𝑥𝑘) 的值 𝑃 (𝑥𝑘, 𝜇𝑘) 的值

(−1.71.51.8− 0.6− 0.6)𝑇 11 0.0539 4.7981e-013

(−1.7, 1.6, 1.8,−0.7,−0.7)𝑇 11 0.0539 8.6424e-014

(−1.8, 1.7, 1.9,−0.8,−0.8)𝑇 9 0.0539 4.4646e-013

(−2, 1.5, 2,−1,−1)𝑇 14 0.0539 2.1538e-013

(−3, 2, 3,−2,−2)𝑇 16 0.0539 5.3309e-013

12.2.2 基于修正 Hesse 阵的 SQP 方法

首先, 考虑将上一节中关于构造二次规划子问题求解等式约束优化问题的思

想推广到一般形式的约束优化问题 (12.1). 在给定点 (𝑥𝑘, 𝜇𝑘, 𝜆𝑘) 之后, 将约束函

数线性化, 并且对拉格朗日函数进行二次多项式近似, 得到下列形式的二次规划

子问题:

min
1

2
𝑑𝑇𝑊𝑘𝑑+∇𝑓(𝑥𝑘)𝑇𝑑

s.t ℎ𝑖(𝑥𝑘) +∇ℎ𝑖(𝑥𝑘)𝑇𝑑 = 0, 𝑖 ∈ 𝐸,

𝑔𝑖(𝑥𝑘) +∇𝑔𝑖(𝑥𝑘)𝑇𝑑 ≥ 0, 𝑖 ∈ 𝐼,

(12.16)

其中 𝐸 = {1, · · · , 𝑙}, 𝐼 = {1, · · · ,𝑚}, 𝑊𝑘 = 𝑊 (𝑥𝑘, 𝜇𝑘, 𝜆𝑘) = ∇2
𝑥𝑥𝐿(𝑥𝑘, 𝜇𝑘, 𝜆𝑘), 而

拉格朗日函数为

𝐿(𝑥, 𝜇, 𝜆) = 𝑓(𝑥)−
∑︁
𝑖∈𝐸

𝜇𝑖ℎ𝑖(𝑥)−
∑︁
𝑖∈𝐼

𝜆𝑖𝑔𝑖(𝑥).

于是, 迭代点 𝑥𝑘 的校正步 𝑑𝑘 以及新的拉格朗日乘子估计量 𝜇𝑘+1, 𝜆𝑘+1 可以分别

定义为问题 (12.16) 的最优解 𝑑* 和相应的拉格朗日乘子 𝜇*, 𝜆*.
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上述的二次规划子问题 (12.16) 可能不存在可行点, 为了克服这一困难,

Powell 引进了一个辅助变量 𝜉, 然后求解下面的线性规划

min −𝜉

s.t. −𝜉ℎ𝑖(𝑥𝑘) +∇ℎ𝑖(𝑥𝑘)𝑇𝑑 = 0, 𝑖 ∈ 𝐸,

−𝜉𝑔𝑘(𝑥𝑘) +∇𝑔𝑖(𝑥𝑘)𝑇𝑑 ≥ 0, 𝑖 ∈ 𝑈𝑘,

𝑔𝑘(𝑥𝑘) +∇𝑔𝑖(𝑥𝑘)𝑇𝑑 ≥ 0, 𝑖 ∈ 𝑉𝑘,

−1 ≤ 𝜉 ≤ 0,

(12.17)

其中 𝑈𝑘 = {𝑖|𝑔𝑖(𝑥𝑘) < 0, 𝑖 ∈ 𝐼}, 𝑉𝑘 = {𝑖|𝑔𝑖(𝑥𝑘) ≥ 0, 𝑖 ∈ 𝐼}. 显然 𝜉 = 0, 𝑑 = 0 上

述线性规划的一个可行点, 并且该线性规划的极小点 𝜉 = −1 当且仅当二次规划

子问题 (12.16) 是相容的, 即子问题的可行域非空.

当 𝜉 = −1 时, 可以用线性规划问题的最优解 𝑑 作为初始点, 求出二次规划

子问题的最优解 𝑑𝑘. 而当 𝜉 = 0 或接近于 0 时, 二次规划子问题无可行点, 此时

需要重新选择迭代初始点 𝑥𝑘, 然后启动 SQP 算法. 当 𝜉 ̸= −1 但比较接近 −1 时,

可以用对应 𝜉 的约束条件代替原来的约束条件, 再求解修正后的二次规划子问

题.

不失一般性, 以后为了讨论的方便, 我们假设二次规划子问题是相容的. 下

面的定理描述了迭代点对应的有效约束指标集与最优有效约束指标集之间的关

系，其证明可参见文献 [15].

定理 62 给定约束优化问题 (12.1) 的一个 KT 点 𝑥* 和相应的拉格朗日乘

子向量 𝜇*, 𝜆* ≥ 0. 假定在 𝑥* 处, 下面的条件成立:

(1) 有效约束的 Jacobi 矩阵 𝐽𝑆(𝑥*) 行满秩, 此处 𝑆(𝑥*) = 𝐸 ∪ 𝐼(𝑥*).
(2) 严格互补松弛条件成立, 即 𝑔𝑖(𝑥

*) ≥ 0, 𝜆*𝑖 ≥ 0, 𝜆*𝑖 𝑔𝑖(𝑥
*) = 0, 𝜆*𝑖 +

𝑔𝑖(𝑥
*) > 0.

(3) 二阶最优性充分条件成立, 即对任意满足 𝐴(𝑥*)𝑑 = 0 的向量 𝑑 ̸= 0, 成

立

𝑑𝑇𝑊 (𝑥*, 𝜇*, 𝜇*)𝑑 > 0.

那么, 若 (𝑥𝑘, 𝜇𝑘, 𝜆𝑘) 充分靠近 (𝑥*, 𝜇*, 𝜆*), 则二次规划子问题 (12.16) 存在一个

局部极小点 𝑑*, 使得其对应的有效约束指标集 𝑆(𝑑*) 与原问题在 𝑥* 处的有效约

束指标集 𝑆(𝑥*) 是相同的.
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注意到在构造二次规划子问题 (12.16) 时, 需要计算拉格朗日函数在迭代

点 𝑥𝑘 处的 Hesse 阵 𝑊𝑘 = 𝑊 (𝑥𝑘, 𝜇𝑘, 𝜆𝑘), 其计算量是巨大的. 为了克服这一缺

陷, 1976 年华裔数学家韩世平 (S.P. Han) 基于牛顿-拉格朗日方法提出了一种

利用对称正定矩阵 𝐵𝑘 替代拉格朗日矩阵 𝑊𝑘 的序列二次规划法. 另外由于

R.B. Wilson 在 1963 年较早地考虑了牛顿-拉格朗日方法, 加之M.J.D. Powell 于

1977 年修正了 Han 的方法, 所以人们也将这种序列二次规划法称之为WHP 方

法 (Wilson-Han-Powell 方法).

对于一般约束的优化问题 (12.1), 在迭代点 (𝑥𝑘, 𝜇𝑘, 𝜆𝑘) 处, WHP 方法需要

构造一个下列形式的二次规划子问题:

min
1

2
𝑑𝑇𝐵𝑘𝑑+∇𝑓(𝑥𝑘)𝑇𝑑

s.t. ℎ𝑖(𝑥𝑘) +∇ℎ𝑖(𝑥𝑘)𝑇𝑑 = 0, 𝑖 ∈ 𝐸,

𝑔𝑖(𝑥𝑘) +∇𝑔𝑖(𝑥𝑘)𝑇𝑑 ≥ 0, 𝑖 ∈ 𝐼,

(12.18)

并且用该二次规划子问题的解 𝑑𝑘 作为原问题的变量 𝑥 在第 𝑘 次迭代过程中的搜

索方向. 顺便提一下, 这个搜索方向 𝑑𝑘 具有一个比较好的性质: 即它是许多罚函

数 (价值函数) 的下降方向, 比如 ℓ1 罚函数 (价值函数)

𝑃𝜎(𝑥) = 𝑓(𝑥) +
1

𝜎

[︂∑︁
𝑖∈𝐸

|ℎ𝑖(𝑥)|+
∑︁
𝑖∈𝐼

⃒⃒
[𝑔𝑖(𝑥)]−

⃒⃒ ]︂
, (12.19)

其中罚参数 𝜎 > 0, [𝑔𝑖(𝑥)]− = max{0,−𝑔𝑖(𝑥)}.

现在我们写出WHP 方法的算法步骤如下.

算法 34 (WHP方法)

步 0 给定初始点 𝑥0 ∈ R𝑛, 初始对称矩阵 𝐵0 ∈ R𝑛×𝑛, 容许误差限 0 ≤ 𝜀≪ 1

和满足
∞∑︀
𝑘=0

𝜂𝑘 < +∞ 的非负数列 {𝜂𝑘}. 取参数 𝜎 > 0 和 𝛿 > 0. 置 𝑘 := 0.

步 1 求解子问题 (12.18), 得最优解 𝑑𝑘.

步 2 若 ‖𝑑𝑘‖ ≤ 𝜀, 停算, 输出 𝑥𝑘 作为近似极小点.

步 3 利用 ℓ1 罚函数 𝑃𝜎(𝑥), 按照某种线搜索规则确定步长 𝛼𝑘 ∈ (0, 𝛿], 使得

𝑃𝜎(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ min
𝛼∈(0,𝛿]

𝑃𝜎(𝑥𝑘 + 𝛼𝑑𝑘) + 𝜂𝑘.

步 4 置 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 更新 𝐵𝑘 为 𝐵𝑘+1.

步 5 令 𝑘 := 𝑘 + 1, 转步 1.
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在一定的条件下, 可以证明算法 34 的全局收敛性. 下面, 我们不加证明地给

出算法 34 的全局收敛性定理, 其证明过程可参见文献 [1].

定理 63 对于约束优化问题 (12.1), 假设 𝑓, ℎ𝑖 (𝑖 ∈ 𝐸) 和 𝑔𝑖 (𝑖 ∈ 𝐼) 都是连

续可微的, 且存在常数 0 < 𝑚 ≤𝑀 , 使得算法 34 中的对称正定矩阵 𝐵𝑘 满足

𝑚‖𝑑‖2 ≤ 𝑑𝑇𝐵𝑘𝑑 ≤𝑀‖𝑑‖2, (∀ 𝑑 ∈ R𝑛, 𝑘 = 1, 2, · · · ).

若罚参数 𝜎 > 0 和二次规划子问题 (12.18) 的拉格朗日乘子向量 𝜇𝑘+1, 𝜆𝑘+1 ≥ 0

满足

𝜎max{‖𝜆𝑘+1‖∞, ‖𝜇𝑘+1‖∞} ≤ 1, (∀ 𝑘 = 1, 2, · · · ).

则算法 34 生成的序列 {𝑥𝑘} 的任何聚点都是问题 (12.1) 的 KT 点.

12.3 SQP 方法的相关问题

12.3.1 二次规划子问题的 Hesse 阵

下面以纯等式的约束优化问题为例, 说明如何选择二次规划子问题的 Hesse

阵, 其中二次规划子问题为

min
1

2
𝑑𝑇𝑊𝑘𝑑+∇𝑓(𝑥𝑘)𝑇𝑑

s.t ℎ𝑖(𝑥𝑘) +∇ℎ𝑖(𝑥𝑘)𝑇𝑑 = 0, 𝑖 = {1, · · · , 𝑙}.
(12.20)

.

1. 基于拟牛顿校正公式的选择方法

由于拟牛顿法是处理无约束优化问题的有效算法, 故可利用拟牛顿法的基本

原理, 对拉格朗日函数 𝐿(𝑥𝑘, 𝜇𝑘) 的 Hesse 阵∇2
𝑥𝑥𝐿(𝑥𝑘, 𝜇𝑘) 的近似矩阵 𝐵𝑘 进行修

正. 令

𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘, 𝑦𝑘 = ∇𝑥𝐿(𝑥𝑘+1, 𝜇𝑘+1)−∇𝑥𝐿(𝑥𝑘, 𝜇𝑘+1). (12.21)

因 BFGS 校正公式要求向量 𝑠𝑘 和 𝑦𝑘 满足曲率条件, 即 𝑠𝑇𝑘 𝑦𝑘 > 0, 但由 (12.21) 确

定的向量 𝑠𝑘, 𝑦𝑘 可能不满足这一条件. 为此, 有必要对向量 𝑦𝑘 进行修正. 下面的

修正策略是由 Powell 于 1978 年给出的: 令

𝑧𝑘 = 𝜃𝑘𝑦𝑘 + (1− 𝜃𝑘)𝐵𝑘𝑠𝑘, (12.22)
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其中参数 𝜃𝑘 定义为

𝜃𝑘 =

⎧⎪⎪⎨⎪⎪⎩
1, 若 𝑠𝑇𝑘 𝑦𝑘 ≥ 0.2𝑠𝑇𝑘𝐵𝑘𝑠𝑘,

0.8𝑠𝑇𝑘𝐵𝑘𝑠𝑘
𝑠𝑇𝑘𝐵𝑘𝑠𝑘 − 𝑠𝑇𝑘 𝑦𝑘

, 若 𝑠𝑇𝑘 𝑦𝑘 < 0.2𝑠𝑇𝑘𝐵𝑘𝑠𝑘.
(12.23)

于是, 矩阵 𝐵𝑘 的约束 BFGS 校正公式为

𝐵𝑘+1 = 𝐵𝑘 −
𝐵𝑘𝑠𝑘𝑠

𝑇
𝑘𝐵𝑘

𝑠𝑇𝑘𝐵𝑘𝑠𝑘
+
𝑧𝑘𝑧

𝑇
𝑘

𝑠𝑇𝑘 𝑧𝑘
. (12.24)

注意到参数 𝜃𝑘 的定义 (12.23), 不难验证: 当 𝜃 = 1时,

𝑠𝑇𝑘 𝑧𝑘 = 𝑠𝑇𝑘 𝑦𝑘 ≥ 0.2𝑠𝑇𝑘𝐵𝑘𝑠𝑘 > 0,

而当 𝜃𝑘 ̸= 1 时,

𝑠𝑇𝑘 𝑧𝑘 = 𝜃𝑘𝑠
𝑇
𝑘 𝑦𝑘 + (1− 𝜃𝑘)𝑠

𝑇
𝑘𝐵𝑘𝑠𝑘 = 0.2𝑠𝑇𝑘𝐵𝑘𝑠𝑘 > 0.

因此, 约束 BFGS 校正公式 (12.24) 可以保持正定性.

2. 基于增广拉格朗日函数的选择方法

下面考虑增广拉格朗日函数

𝐿𝐴(𝑥, 𝜇, 𝜎) = 𝑓(𝑥)− 𝜇𝑇ℎ(𝑥) +
1

2𝜎
‖ℎ(𝑥)‖2, (12.25)

其中罚参数 𝜎 > 0, ℎ(𝑥) = (ℎ1(𝑥), · · · , ℎ𝑙(𝑥))𝑇 . 在 KT 点 (𝑥*, 𝜇*) 处, 根据

ℎ(𝑥*) = 0, 可知增广拉格朗日函数的 Hesse 阵为

∇2
𝑥𝑥𝐿𝐴(𝑥

*, 𝜇*, 𝜎) = ∇2
𝑥𝑥𝐿(𝑥

*, 𝜇*) +
1

𝜎
𝐴(𝑥*)𝑇𝐴(𝑥*). (12.26)

对于纯等式约束的优化问题, 若约束函数在 𝑥* 处的 Jacobi 矩阵 𝐴(𝑥*) 行满

秩, 并且二阶最优性二阶充分性条件成立, 则存在某个阈值 𝜎̄ > 0, 使得

∀𝜎 ∈ (0, 𝜎̄], ∇2
𝑥𝑥𝐿𝐴(𝑥𝑘, 𝜇𝑘, 𝜎) 是正定的. 于是二次规划子问题中的 𝑊𝑘 可取

为∇2
𝑥𝑥𝐿𝐴(𝑥𝑘, 𝜇𝑘, 𝜎), 或者取对∇2

𝑥𝑥𝐿𝐴(𝑥𝑘, 𝜇𝑘, 𝜎) 进行拟牛顿近似的校正矩阵 𝐵𝑘.
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12.3.2 价值函数与搜索方向的下降性

为了保证序列二次规划法 (SQP 方法)的全局收敛性, 通常借助于某价值函

数来确定搜索步长. 例如, 目标函数、罚函数以及增广拉格朗日函数等都可以作

为价值函数, 用来衡量一维搜索的好坏. 下面介绍两类著名的价值函数.

1. ℓ1 价值函数

首先, 以纯等式约束的优化问题为例, 考虑下列 ℓ1 价值函数

𝜑1(𝑥) = 𝑓(𝑥) +
1

𝜎
‖ℎ(𝑥)‖1, (12.27)

其中 𝜎 > 0 为罚参数.

命题 2 设 𝑑𝑘 和 𝜇𝑘+1 分别是子问题 (12.20) 的最优解和拉格朗日乘子, 则

𝜑1 沿方向 𝑑𝑘 的方向导数满足

𝜑′
1(𝑥𝑘, 𝜎; 𝑑𝑘) ≤ −𝑑𝑇𝑘𝑊𝑘𝑑𝑘 − (𝜎−1 − ‖𝜇𝑘+1‖∞)‖ℎ(𝑥𝑘)‖1. (12.28)

证 由泰勒公式可得

𝑓(𝑥𝑘 + 𝛼𝑑𝑘) = 𝑓(𝑥𝑘) +∇𝑓(𝑥𝑘)𝑇𝑑𝑘 +
1

2
𝛼2𝑑𝑇𝑘∇2𝑓(𝜉𝑘)𝑑𝑘,

ℎ(𝑥𝑘 + 𝛼𝑑𝑘) = ℎ(𝑥𝑘) + 𝛼𝐴(𝑥𝑘)𝑑𝑘 +
1

2
𝛼2𝑑𝑇𝑘∇2ℎ(𝜂𝑘)𝑑𝑘

= (1− 𝛼)ℎ(𝑥𝑘) +
1

2
𝛼2𝑑𝑇𝑘∇2ℎ(𝜂𝑘)𝑑𝑘,

其中

𝑑𝑇𝑘∇2ℎ(𝜂𝑘)𝑑𝑘 =
[︀
𝑑𝑇𝑘∇2ℎ1(𝜂𝑘)𝑑𝑘, 𝑑

𝑇
𝑘∇2ℎ2(𝜂𝑘)𝑑𝑘, · · · , 𝑑𝑇𝑘∇2ℎ𝑙(𝜂𝑘)𝑑𝑘

]︀𝑇
.

故对比较小的 𝛼 > 0, 有

𝜑1(𝑥𝑘 + 𝛼𝑑𝑘)− 𝜑1(𝑥𝑘) ≤ 𝛼(∇𝑓(𝑥𝑘)𝑇𝑑𝑘 − 𝜎−1‖ℎ(𝑥𝑘)‖1) + 𝛼2𝜗‖𝑑𝑘‖2,

其中 𝜗 > 0 是某个常数. 同理可证

𝜑1(𝑥𝑘 + 𝛼𝑑𝑘)− 𝜑1(𝑥𝑘) ≥ 𝛼(∇𝑓(𝑥𝑘)𝑇𝑑𝑘 − 𝜎−1‖ℎ(𝑥𝑘)‖1)− 𝛼2𝜗‖𝑑𝑘‖2.

根据多元函数方向导数的定义, 可得

𝜑′
1(𝑥𝑘, 𝜎; 𝑑𝑘) = ∇𝑓(𝑥𝑘)𝑇𝑑𝑘 − 𝜎−1‖ℎ(𝑥𝑘)‖1. (12.29)
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由 KT 条件, 有

∇𝑓(𝑥𝑘) +𝑊𝑘𝑑𝑘 − 𝐴(𝑥𝑘)
𝑇𝜇𝑘+1 = 0,

于是有

∇𝑓(𝑥𝑘)𝑇𝑑𝑘 = −𝑑𝑇𝑘𝑊𝑘𝑑𝑘 + 𝑑𝑇𝑘𝐴(𝑥𝑘)
𝑇𝜇𝑘+1

= −𝑑𝑇𝑘𝑊𝑘𝑑𝑘 − ℎ(𝑥𝑘)
𝑇𝜇𝑘+1.

注意到由 Schwartz 不等式, 有

−ℎ(𝑥𝑘)𝑇𝜇𝑘+1 ≤ ‖ℎ(𝑥𝑘)‖∞‖𝜇𝑘+1‖∞ ≤ ‖𝜇𝑘+1‖∞‖ℎ(𝑥𝑘)‖1.

至此, 命题的结论已得到证明. �

根据命题 2 可知, 若矩阵𝑊𝑘 正定, 且取罚参数

𝜎−1 ≥ ‖𝜇𝑘+1‖∞ + 𝛿,

其中 𝛿 > 0, 则可保证 𝑑𝑘 是 𝜑1(𝑥, 𝜎) 在相应点 𝑥𝑘 处的下降方向. 此外, 在构造二

次规划子问题 (12.20) 时, 如果用对称正定矩阵 𝐵𝑘 替代𝑊𝑘, 那么相应的最优解

𝑑𝑘 也可以是价值函数 𝜑1 的下降方向.

对于一般的约束优化问题 (12.1), 可以考虑相应的二次规划子问题 (12.18),

并且将 (12.19) 定义的罚函数作为价值函数:

𝑃𝜎(𝑥) = 𝑓(𝑥) + 𝜎−1
[︀
‖ℎ(𝑥)‖1 + ‖𝑔(𝑥)−‖1

]︀
= 𝑓(𝑥) +

1

𝜎

[︂∑︁
𝑖∈𝐸

|ℎ𝑖(𝑥)|+
∑︁
𝑖∈𝐼

⃒⃒
[𝑔𝑖(𝑥)]−

⃒⃒ ]︂
其中ℎ(𝑥) = (ℎ1(𝑥), · · · , ℎ𝑙(𝑥))𝑇 , 𝑔(𝑥) = (𝑔1(𝑥), · · · , 𝑔𝑚(𝑥))𝑇 , 𝑔(𝑥)− = max{0,−𝑔𝑖(𝑥)}.

命题 3 设 𝑑𝑘 和 𝜇𝑘+1, 𝜆𝑘+1 ≥ 0 分别是子问题 (12.18) 的最优解和拉格朗

日乘子, 则 𝑃𝜎 沿 𝑑𝑘 的方向导数满足

𝑃 ′
𝜎(𝑥𝑘; 𝑑𝑘) ≤ −𝑑𝑇𝑘𝐵𝑘𝑑𝑘 − (𝜎−1 − ‖𝜇𝑘+1‖∞)‖ℎ(𝑥𝑘)‖1

−(𝜎−1 − ‖𝜆𝑘+1‖∞)‖𝑔(𝑥𝑘)−‖1. (12.30)

证 注意到 1-范数 ‖ · ‖1 是凸函数以及函数 (·)− 具有下列性质

∀ 𝑡1 ≥ 𝑡2, 有 (𝑡1)− ≤ (𝑡2)−.
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利用与命题 2 类似的方法可得

𝑃 ′
𝜎(𝑥𝑘; 𝑑𝑘) = ∇𝑓(𝑥𝑘)𝑇𝑑𝑘 − 𝜎−1

[︀
‖ℎ(𝑥𝑘)‖1 + ‖𝑔(𝑥𝑘)−‖1

]︀
. (12.31)

再利用二次规划子问题 (12.18) 的 KT 条件, 有⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∇𝑓(𝑥𝑘) +𝐵𝑘𝑑𝑘 = ∇ℎ(𝑥𝑘)𝑇𝜇𝑘+1 +∇𝑔(𝑥𝑘)𝑇𝜆𝑘+1,

𝜆𝑘+1 ≥ 0, 𝑔(𝑥𝑘) +∇𝑔(𝑥𝑘)𝑇𝑑𝑘 ≥ 0,

𝜆𝑇𝑘+1[𝑔(𝑥𝑘) +∇𝑔(𝑥𝑘)𝑇𝑑𝑘] = 0.

(12.32)

又因 𝑑𝑘 满足可行性条件: ℎ(𝑥𝑘) +∇ℎ(𝑥𝑘)𝑇𝑑𝑘 = 0, 由此及 (12.32) 的第一、三两

式可得

∇𝑓(𝑥𝑘)𝑇𝑑𝑘 = −𝑑𝑇𝑘𝐵𝑘𝑑𝑘 − ℎ(𝑥𝑘)
𝑇𝜇𝑘+1 − 𝑔(𝑥𝑘)

𝑇𝜆𝑘+1. (12.33)

由 Schwartz 不等式可知⎧⎨⎩ −ℎ(𝑥𝑘)𝑇𝜇𝑘+1 = ‖ℎ(𝑥𝑘)‖∞‖𝜇𝑘+1‖∞ ≤ ‖𝜇𝑘+1‖∞‖ℎ(𝑥𝑘)‖1,

−𝑔(𝑥𝑘)𝑇𝜆𝑘+1 ≤ 𝜆𝑇𝑘+1[𝑔(𝑥𝑘)]− ≤ ‖𝜆𝑘+1‖∞‖𝑔(𝑥𝑘)‖1.
(12.34)

最后, 由 (12.31), (12.33) 和 (12.34) 即得命题的结论. �

2. Fletcher 价值函数

Fletcher 价值函数也叫做增广拉格朗日价值函数. SQP 方法问世后, 除了使

用 ℓ1 价值函数以得到算法的全局收敛性外, 优化工作者还引进过其他的价值函

数. 例如, Fletcher 曾经针对纯等式约束优化问题引入了下列增广拉格朗日价值

函数:

𝜑𝐹 (𝑥, 𝜎) = 𝑓(𝑥)− 𝜇(𝑥)𝑇ℎ(𝑥) +
1

2𝜎
‖ℎ(𝑥)‖2, (12.35)

其中 𝜇(𝑥) 是乘子向量, 𝜎 > 0 是罚参数. 若函数 ℎ(𝑥) 的 Jacobi 矩阵 𝐴(𝑥) =

∇ℎ(𝑥)𝑇 是行满秩的, 则乘子向量可取为

𝜇(𝑥) = [𝐴(𝑥)𝐴(𝑥)𝑇 ]−1𝐴(𝑥)∇𝑓(𝑥), (12.36)

即 𝜇(𝑥) 是下面的最小二乘问题的解:

min
𝜇∈R𝑙

‖∇𝑓(𝑥)− 𝐴(𝑥)𝑇𝜇‖.
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另一方面, Fletcher 函数在 𝑥𝑘 处的梯度为

∇𝜑𝐹 (𝑥𝑘, 𝜎) = ∇𝑓(𝑥𝑘)− 𝐴𝑇
𝑘 𝜇(𝑥𝑘)−∇𝜇(𝑥𝑘)ℎ(𝑥𝑘) + 𝜎−1𝐴𝑇

𝑘 ℎ(𝑥𝑘), (12.37)

其中 𝐴𝑘 = 𝐴(𝑥𝑘) 是 ℎ(𝑥) 在 𝑥𝑘 处的 Jacobi 矩阵, 且 𝐴𝑘 行满秩. 假设 𝑑𝑘 是子问

题

min
1

2
𝑑𝑇𝐵𝑘𝑑+∇𝑓(𝑥𝑘)𝑇𝑑

s.t. ℎ(𝑥𝑘) + 𝐴𝑘𝑑 = 0
(12.38)

的最优解, 并记

𝑑𝑘 = 𝐴𝑇
𝑘 𝑑

𝑦
𝑘 + 𝑍𝑘𝑑

𝑧
𝑘,

其中 𝑍𝑘 的列向量是零空间 𝒩 (𝐴𝑘) 的一组基. 根据子问题 (12.38) 的可行性条件,

我们有

𝑑𝑦𝑘 = −(𝐴𝑘𝐴
𝑇
𝑘 )

−1ℎ(𝑥𝑘).

然后, 利用最小二乘乘子 𝜇(𝑥𝑘) 的定义 (12.36) 可得

∇𝑓(𝑥𝑘)𝑇𝐴𝑇
𝑘 𝑑

𝑦
𝑘 = −𝜇(𝑥𝑘)𝑇ℎ(𝑥𝑘).

故有

∇𝜑𝐹 (𝑥𝑘, 𝜎)
𝑇𝑑𝑘 = ∇𝑓(𝑥𝑘)𝑇𝑍𝑘𝑑

𝑧
𝑘 − ℎ(𝑥𝑘)

𝑇∇𝜇(𝑥𝑘)𝑇𝑑𝑘 − 𝜎−1‖ℎ(𝑥𝑘)‖2. (12.39)

另由 KT 条件有

𝑊𝑘𝑑𝑘 +∇𝑓(𝑥𝑘)− 𝐴𝑘𝜇𝑘 = 0,

其中 𝜇𝑘 是拉格朗日乘子. 那么, 我们有

𝑍𝑇
𝑘 𝑊𝑘𝑑𝑘 = 𝑍𝑇

𝑘 𝑊𝑘𝑍𝑘𝑑
𝑧
𝑘 + 𝑍𝑇

𝑘 𝑊𝑘𝐴
𝑇
𝑘 𝑑

𝑦
𝑘

= 𝑍𝑇
𝑘 [𝐴𝑘𝜇𝑘 −∇𝑓(𝑥𝑘)]

= −𝑍𝑇
𝑘 ∇𝑓(𝑥𝑘).

于是, 有

∇𝜑𝐹 (𝑥𝑘, 𝜎)
𝑇𝑑𝑘 = −(𝑑𝑧𝑘)

𝑇 [𝑍𝑇
𝑘 𝑊𝑘𝑍𝑘]𝑑

𝑧
𝑘 − (𝑑𝑦𝑘)

𝑇𝐴𝑘𝑊𝑘𝑍𝑘𝑑
𝑧
𝑘

− ℎ(𝑥𝑘)
𝑇∇𝜇(𝑥𝑘)𝑇𝑑𝑘 − 𝜎−1‖ℎ(𝑥𝑘)‖2. (12.40)
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因此, 当简约 Hesse 阵 𝑍𝑇
𝑘 𝑊𝑘𝑍𝑘 正定时, 若取罚参数满足

𝜎−1 ≥
[︂
−(𝑑𝑦𝑘)

𝑇𝐴𝑘𝑊𝑘𝑍𝑘𝑑
𝑧
𝑘 − ℎ(𝑥𝑘)

𝑇∇𝜇(𝑥𝑘)𝑇𝑑𝑘
‖ℎ(𝑥𝑘)‖2

]︂
+ 𝛿, (12.41)

其中 𝛿 > 0, 则 𝑑𝑘 是 Fletcher 价值函数的下降方向.

下面我们给出一般形式约束优化问题的 SQP 方法的算法步骤.

算法 35 (一般约束优化问题的 SQP 方法)

步 0 给定初始点 (𝑥0, 𝜇0, 𝜆0) ∈ R𝑛 × R𝑙 × R𝑚, 对称正定矩阵 𝐵0 ∈ R𝑛×𝑛. 计

算

𝐴𝐸
0 = ∇ℎ(𝑥0)𝑇 , 𝐴𝐼

0 = ∇𝑔(𝑥0)𝑇 , 𝐴0 =

⎡⎣𝐴𝐸
0

𝐴𝐼
0

⎤⎦ .
选择参数 𝜂 ∈ (0, 1/2), 𝜌 ∈ (0, 1), 容许误差 0 ≤ 𝜀1, 𝜀2 ≪ 1. 令 𝑘 := 0.

步 1 求解子问题

min
1

2
𝑑𝑇𝐵𝑘𝑑+∇𝑓(𝑥𝑘)𝑇𝑑

s.t. ℎ(𝑥𝑘) + 𝐴𝐸
𝑘 𝑑 = 0,

𝑔(𝑥𝑘) + 𝐴𝐼
𝑘𝑑 ≥ 0,

(12.42)

得最优解 𝑑𝑘.

步 2 若 ‖𝑑𝑘‖1 ≤ 𝜀1 且 ‖ℎ𝑘‖1 + ‖(𝑔𝑘)−‖1 ≤ 𝜀2, 停算, 得到原问题的的一个近

似 KT 点 (𝑥𝑘, 𝜇𝑘, 𝜆𝑘).

步 3 对于某种价值函数 𝜑(𝑥, 𝜎), 选择罚参数 𝜎𝑘, 使得 𝑑𝑘 是该函数在 𝑥𝑘 处

的下降方向.

步 4 Armijo 搜索. 令𝑚𝑘 是使下列不等式成立的最小非负整数𝑚 :

𝜑(𝑥𝑘 + 𝜌𝑚𝑑𝑘, 𝜎𝑘)− 𝜑(𝑥𝑘, 𝜎𝑘) ≤ 𝜂𝜌𝑚𝜑′(𝑥𝑘, 𝜎; 𝑑𝑘), (12.43)

令 𝛼𝑘 := 𝜌𝑚𝑘 , 𝑥𝑘+1 := 𝑥𝑘 + 𝛼𝑘𝑑𝑘.

步 5 计算

𝐴𝐸
𝑘+1 = ∇ℎ(𝑥𝑘+1)

𝑇 , 𝐴𝐼
𝑘+1 = ∇𝑔(𝑥𝑘+1)

𝑇 , 𝐴𝑘+1 =

⎡⎣𝐴𝐸
𝑘+1

𝐴𝐼
𝑘+1

⎤⎦ .
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以及最小二乘乘子 ⎡⎣ 𝜇𝑘+1

𝜆𝑘+1

⎤⎦ =
[︀
𝐴𝑘+1𝐴

𝑇
𝑘+1

]︀−1
𝐴𝑘+1∇𝑓𝑘+1. (12.44)

步 6 校正矩阵 𝐵𝑘 为 𝐵𝑘+1. 令

𝑠𝑘 = 𝛼𝑘𝑑𝑘, 𝑦𝑘 = ∇𝑥𝐿(𝑥𝑘+1, 𝜇𝑘+1, 𝜆𝑘+1)−∇𝑥𝐿(𝑥𝑘, 𝜇𝑘+1, 𝜆𝑘+1),

𝐵𝑘+1 = 𝐵𝑘 −
𝐵𝑘𝑠𝑘𝑠

𝑇
𝑘𝐵𝑘

𝑠𝑇𝑘𝐵𝑘𝑠𝑘
+
𝑧𝑘𝑧

𝑇
𝑘

𝑠𝑇𝑘 𝑧𝑘
, (12.45)

其中

𝑧𝑘 = 𝜃𝑘𝑦𝑘 + (1− 𝜃𝑘)𝐵𝑘𝑠𝑘, (12.46)

参数 𝜃𝑘 定义为

𝜃𝑘 =

⎧⎪⎪⎨⎪⎪⎩
1, 若 𝑠𝑇𝑘 𝑦𝑘 ≥ 0.2𝑠𝑇𝑘𝐵𝑘𝑠𝑘,

0.8𝑠𝑇𝑘𝐵𝑘𝑠𝑘
𝑠𝑇𝑘𝐵𝑘𝑠𝑘 − 𝑠𝑇𝑘 𝑦𝑘

, 若 𝑠𝑇𝑘 𝑦𝑘 < 0.2𝑠𝑇𝑘𝐵𝑘𝑠𝑘.
(12.47)

步 7 令 𝑘 := 𝑘 + 1, 转步 1.

注 (1) 算法 35步 5隐含地假设了 𝐴𝑘 是行满秩的. 如果这个条件不成立, 则

在计算最小二乘乘子时, 需要使用计算广义你的技巧, 即此时 (12.44) 为⎡⎣ 𝜇𝑘+1

𝜆𝑘+1

⎤⎦ = (𝐴+
𝑘+1)

𝑇∇𝑓𝑘+1, (12.48)

其中 𝐴+
𝑘+1 是 𝐴𝑘+1 的 Penrose-Moore 广义逆.

(2) 算法 35 步 3 弱选择 ℓ1 价值函数

𝜑(𝑥, 𝜎) = 𝑓(𝑥) + 𝜎−1
[︀
‖ℎ(𝑥)‖1 + ‖𝑔(𝑥)−‖1

]︀
,

可令

𝜏 = max{‖𝜇𝑘‖, ‖𝜆𝑘‖},
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任意选择一个 𝛿 > 0, 定义罚参数的修正规则为

𝜎𝑘 =

⎧⎪⎨⎪⎩
𝜎𝑘−1, 若 𝜎−1

𝑘−1 ≥ 𝜏 + 𝛿,

(𝜏 + 2𝛿)−1, 若 𝜎−1
𝑘−1 < 𝜏 + 𝛿.

(12.49)

在本节最后, 需要指出的是, 对于无约束优化问题, 所谓的“超线性收敛步”

成立, 即如果 𝑥* 是 𝑓(𝑥) 的稳定点, 且 Hesse 阵∇2𝑓(𝑥*) 正定, 那么只要迭代序列

{𝑥𝑘} → 𝑥*, 且搜索方向满足

lim
𝑘→∞

|𝑥𝑘 + 𝑑𝑘 − 𝑥*‖
‖𝑥𝑘 − 𝑥*‖

= 0,

对于充分大的 𝑘, 就必然成立

𝑓(𝑥𝑘 + 𝑑𝑘) < 𝑓(𝑥𝑘).

换言之, 对于无约束优化问题, 超线性收敛步总是可以接受的. 但是对于约束优

化问题情况并非如此, 即对于有些约束优化问题, 不管 𝑥𝑘 如何靠近 𝑥*, 都不会有

𝜑(𝑥𝑘 + 𝑑𝑘, 𝜎) ≤ 𝜑(𝑥𝑘, 𝜎)

成立, 且 𝑥𝑘 + 𝑑𝑘 对应的目标函数值和可行度比 𝑥𝑘 对应的目标函数值和可行度还

要差一些. 也就是说, 对于约束优化问题, 在这种情况下, 超线性收敛步是无法接

受的, SQP 方法会失去收敛阶高的优点, 人们把这种现象称之为Maratos 效应.

为了克服 Maratos 效应, 人们已经提出了许多方法, 如放松接受试探步

𝑥𝑘 + 𝑑𝑘 的条件 (Watchdog 技术); 或者引进满足 ‖𝑑𝑘‖ = 𝑂(‖𝑑𝑘‖2) 的二阶校正步
𝑑𝑘, 使得相应的价值函数值 𝜑(𝑥𝑘 + 𝑑𝑘 + 𝑑𝑘, 𝜎) < 𝜑(𝑥𝑘, 𝜎); 或者使用光滑的精确罚

函数作为价值函数, 以提高超线性收敛步接受度, 例如, Schittkowski 提出增广拉

格朗日函数

𝜑(𝑥, 𝑣, 𝑟) = 𝑓(𝑥)−
∑︁
𝑗∈𝐸

(︁
𝑣𝑗ℎ𝑗(𝑥)−

1

2
𝑟𝑗ℎ

2
𝑗(𝑥)

)︁
−
∑︁

𝑗∈𝐽(𝑥,𝑣)

(︁
𝑣𝑗𝑔𝑗(𝑥)−

1

2
𝑟𝑗𝑔

2
𝑗 (𝑥)

)︁
− 1

2

∑︁
𝑗∈𝐾(𝑥,𝑣)

𝑣2𝑗/𝑟𝑗,
(12.50)

其中

𝐽(𝑥, 𝑣) = {𝑗 ∈ 𝐼 | 𝑔𝑗(𝑥) ≤ 𝑣𝑗/𝑟𝑗}, 𝐾(𝑥, 𝑣) = {𝑗 ∈ 𝐼 | 𝑔𝑗(𝑥) > 𝑣𝑗/𝑟𝑗}.

一般来说, ℓ1 精确罚函数形式简单, 但是非光滑, 增广拉格朗日函数是光滑的, 数

值计算结果较好.
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12.4 SQP 方法的Matlab 程序

本节讨论 SQP 方法的Matlab 实现. 注意到算法 35 每一迭代步的主要计算

量是求解子问题 (12.42), 因此, 我们先讨论子问题的Matlab 实现.

12.4.1 SQP 子问题的Matlab 实现

利用 KT 条件, 问题 (12.42) 等价于

𝐻1(𝑑, 𝜇, 𝜆) = 𝐵𝑘𝑑− (𝐴𝐸
𝑘 )

𝑇𝜇− (𝐴𝐼
𝑘)

𝑇𝜆+∇𝑓(𝑥𝑘) = 0, (12.51)

𝐻2(𝑑, 𝜇, 𝜆) = ℎ(𝑥𝑘) + 𝐴𝐸
𝑘 𝑑 = 0, (12.52)

𝜆 ≥ 0, 𝑔(𝑥𝑘) + 𝐴𝐼
𝑘𝑑 ≥ 0, 𝜆𝑇 [𝑔(𝑥𝑘) + 𝐴𝐼

𝑘𝑑] = 0. (12.53)

注意到 (12.53) 是一个𝑚 维的线性互补问题, 我们定义光滑 FB-函数

𝜑(𝜀, 𝑎, 𝑏) = 𝑎+ 𝑏−
√
𝑎2 + 𝑏2 + 2𝜀2,

其中 𝜀 > 0 是光滑参数. 令

Φ(𝜀, 𝑑, 𝜆) = (𝜑1(𝜀, 𝑑, 𝜆), 𝜑2(𝜀, 𝑑, 𝜆), · · · , 𝜑𝑚(𝜀, 𝑑, 𝜆))
𝑇 ,

其中

𝜑𝑖(𝜀, 𝑑, 𝜆) = 𝜆𝑖 + [𝑔𝑖(𝑥𝑘) + (𝐴𝐼
𝑘)𝑖𝑑]−

√︁
𝜆2𝑖 + [𝑔𝑖(𝑥𝑘) + (𝐴𝐼

𝑘)𝑖𝑑]
2 + 2𝜀2,

其中 (𝐴𝐼
𝑘)𝑖 表示矩阵 𝐴𝐼

𝑘 的第 𝑖 行. 记 𝑧 = (𝜀, 𝑑, 𝜇, 𝜆) ∈ R+ ×R𝑛 ×R𝑚 ×R𝑙. 那么

方程组 (12.51)-(12.52) 等价于

𝐻(𝑧) := 𝐻(𝜀, 𝑑, 𝜇, 𝜆) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜀

𝐻1(𝑑, 𝜇, 𝜆)

𝐻2(𝑑, 𝜇, 𝜆)

Φ(𝜀, 𝑑, 𝜆)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (12.54)

不难计算出 𝐻(𝑧) 的 Jacobi 矩阵为

𝐻 ′(𝑧) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 𝐵𝑘 −(𝐴𝐸
𝑘 )

𝑇 −(𝐴𝐼
𝑘)

𝑇

0 𝐴𝐸
𝑘 0 0

𝑣 𝐷2(𝑧)𝐴
𝐼
𝑘 0 𝐷1(𝑧)

⎤⎥⎥⎥⎥⎥⎥⎦ , (12.55)
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其中 𝑣 = ∇𝜀Φ(𝜀, 𝑑, 𝜆) = (𝑣1, · · · , 𝑣𝑚)𝑇 , 𝑣𝑖 由下式确定

𝑣𝑖 = − 2𝜀√︀
𝜆2𝑖 + [𝑔𝑖(𝑥𝑘) + (𝐴𝐼

𝑘)𝑖𝑑]
2 + 2𝜀2

, (12.56)

而𝐷1(𝑧) = diag(𝑎1(𝑧), · · · , 𝑎𝑚(𝑧)),𝐷2(𝑧) = diag(𝑏1(𝑧), · · · , 𝑏𝑚(𝑧)),其中 𝑎𝑖(𝑧), 𝑏𝑖(𝑧)

由下式确定

𝑎𝑖(𝑧) = 1− 𝜆𝑖√︀
𝜆2𝑖 + [𝑔𝑖(𝑥𝑘) + (𝐴𝐼

𝑘)𝑖𝑑]
2 + 2𝜀2

, (12.57)

𝑏𝑖(𝑧) = 1− 𝑔𝑖(𝑥𝑘) + (𝐴𝐼
𝑘)𝑖𝑑√︀

𝜆2𝑖 + [𝑔𝑖(𝑥𝑘) + (𝐴𝐼
𝑘)𝑖𝑑]

2 + 2𝜀2
. (12.58)

给定参数 𝛾 ∈ (0, 1), 定义非负函数

𝛽(𝑧) = 𝛾‖𝐻(𝑧)‖min{1, ‖𝐻(𝑧)‖}. (12.59)

算法 36 (求解子问题的光滑牛顿法)

步 0 选取 𝜌, 𝜂 ∈ (0, 1), 𝜀0 > 0, (𝑑0, 𝜇0, 𝜆0) ∈ R𝑛 × R𝑙 × R𝑚. 置 𝑧0 =

(𝜀0, 𝑑0, 𝜇0, 𝜆0), 𝑧 = (𝜀0, 0, 0, 0). 选取 𝛾 ∈ (0, 1) 使 𝛾𝜇0 < 1 及 𝛾‖𝐻(𝑧0)‖ < 1. 令

𝑗 := 0.

步 1 如果 ‖𝐻(𝑧𝑗)‖ = 0, 算法终止；否则, 计算 𝛽𝑗 = 𝛽(𝑧𝑗).

步 2 求解下列方程组得解 Δ𝑧𝑗 = (Δ𝜀𝑗,Δ𝑑𝑗,Δ𝜇𝑗,Δ𝜆𝑗, ),

𝐻(𝑧𝑗) +𝐻 ′(𝑧𝑗)Δ𝑧𝑗 = 𝛽𝑗𝑧. (12.60)

步 3 设𝑚𝑗 为满足下式的最小非负整数:

‖𝐻(𝑧𝑗 + 𝜌𝑚𝑗Δ𝑧𝑗)‖ ≤ [1− 𝜎(1− 𝛽𝜇0)𝜌
𝑚𝑗 ]‖𝐻(𝑧𝑗)‖. (12.61)

令 𝛼𝑗 := 𝜌𝑚𝑗 , 𝑧𝑗+1 = 𝑧𝑗 + 𝛼𝑗Δ𝑧𝑗 .

步 4 令 𝑗 := 𝑗 + 1, 转步 1.

下面我们给出算法 36 的Matlab 程序.

程序 18 利用光滑牛顿法求解二次规划子问题.
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function [d,mu,lam,val,k]=qpsubp(dfk,Bk,Ae,hk,Ai,gk)

% 功能: 求解二次规划子问题: min qk(d)=0.5*d’*Bk*d+dfk’*d+,

% s.t. hk+Ae*d=0, gk+Ai*d¿=0.

%输入: dfk是xk处的梯度, Bk是第k次近似Hesse阵, Ae,hk线性等式约束

% 的有关参数, Ai,gk是线性不等式约束的有关参数

%输出: d,val分别是是最优解和最优值, mu,lam是乘子向量, k是迭代次数.

n=length(dfk); l=length(hk); m=length(gk);

gamma=0.05; epsilon=1.0e-6; rho=0.5; sigma=0.2;

ep0=0.05; mu0=0.05*zeros(l,1); lam0=0.05*zeros(m,1);

d0=ones(n,1); u0=[ep0;zeros(n+l+m,1)];

z0=[ep0; d0; mu0;lam0,];

k=0; %k为迭代次数

z=z0; ep=ep0; d=d0; mu=mu0; lam=lam0;

while (k¡=150)

dh=dah(ep,d,mu,lam,dfk,Bk,Ae,hk,Ai,gk);

if(norm(dh)¡epsilon)

break;

end

A=JacobiH(ep,d,mu,lam,dfk,Bk,Ae,hk,Ai,gk);

b=beta(ep,d,mu,lam,dfk,Bk,Ae,hk,Ai,gk,gamma)*u0-dh;

dz=A“b;

if(l¿0&m¿0)

de=dz(1); dd=dz(2:n+1); du=dz(n+2:n+l+1); dl=dz(n+l+2:n+l+m+1);

end

if(l==0)

de=dz(1); dd=dz(2:n+1); dl=dz(n+2:n+m+1);

end

if(m==0)

de=dz(1); dd=dz(2:n+1); du=dz(n+2:n+l+1);

end

i=0; %mk=0;

while (mm¡=20)

if(l¿0&m¿0)

dh1=dah(ep+rho^i*de,d+rho^i*dd,mu+rho^i*du,lam+rho^i*dl,dfk,Bk,Ae,hk,Ai,gk);

end

if(l==0)

dh1=dah(ep+rho^i*de,d+rho^i*dd,mu,lam+rho^i*dl,dfk,Bk,Ae,hk,Ai,gk);
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end

if(m==0)

dh1=dah(ep+rho^i*de,d+rho^i*dd,mu+rho^i*du,lam,dfk,Bk,Ae,hk,Ai,gk);

end

if(norm(dh1)¡=(1-sigma*(1-gamma*ep0)*rho^i)*norm(dh))

mk=i; break;

end

i=i+1;

if(i==20), mk=10; end

end

alpha=rho^mk;

if(l¿0&m¿0)

ep=ep+alpha*de; d=d+alpha*dd;

mu=mu+alpha*du; lam=lam+alpha*dl;

end

if(l==0)

ep=ep+alpha*de; d=d+alpha*dd;

lam=lam+alpha*dl;

end

if(m==0)

ep=ep+alpha*de; d=d+alpha*dd;

mu=mu+alpha*du;

end

k=k+1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%

function p=phi(ep,a,b)

p=a+b-sqrt(a^2+b^2+2*ep^2);

%%%%%%%%%%%%%%%%%%%%%%%%%%

function dh=dah(ep,d,mu,lam,dfk,Bk,Ae,hk,Ai,gk)

n=length(dfk); l=length(hk); m=length(gk);

dh=zeros(n+l+m+1,1);

dh(1)=ep;

if(l¿0&m¿0)

dh(2:n+1)=Bk*d-Ae’*mu-Ai’*lam+dfk;

dh(n+2:n+l+1)=hk+Ae*d;

for(i=1:m)
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dh(n+l+1+i)=phi(ep,lam(i),gk(i)+Ai(i,:)*d);

end

end

if(l==0)

dh(2:n+1)=Bk*d-Ai’*lam+dfk;

for(i=1:m)

dh(n+1+i)=phi(ep,lam(i),gk(i)+Ai(i,:)*d);

end

end

if(m==0)

dh(2:n+1)=Bk*d-Ae’*mu+dfk;

dh(n+2:n+l+1)=hk+Ae*d;

end

dh=dh(:);

%%%%%%%%%%%%%%%%%%%%%%%%%%

function bet=beta(ep,d,mu,lam,dfk,Bk,Ae,hk,Ai,gk,gamma)

dh=dah(ep,d,mu,lam,dfk,Bk,Ae,hk,Ai,gk);

bet=gamma*norm(dh)*min(1,norm(dh));

%%%%%%%%%%%%%%%%%%%%%%%%%%

function [dd1,dd2,v1]=ddv(ep,d,lam,Ai,gk)

m=length(gk);

dd1=zeros(m,m); dd2=zeros(m,m); v1=zeros(m,1);

for(i=1:m)

fm=sqrt(lam(i)^2+(gk(i)+Ai(i,:)*d)^2+2*ep^2);

dd1(i,i)=1-lam(i)/fm;

dd2(i,i)=1-(gk(i)+Ai(i,:)*d)/fm;

v1(i)=-2*ep/fm;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%

function A=JacobiH(ep,d,mu,lam,dfk,Bk,Ae,hk,Ai,gk)

n=length(dfk); l=length(hk); m=length(gk);

A=zeros(n+l+m+1,n+l+m+1);

[dd1,dd2,v1]=ddv(ep,d,lam,Ai,gk);

if(l¿0&m¿0)

A=[1, zeros(1,n), zeros(1,l), zeros(1,m);

zeros(n,1), Bk, -Ae’, -Ai’;

zeros(l,1), Ae, zeros(l,l), zeros(l,m) ;
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v1, dd2*Ai, zeros(m,l), dd1];

end

if(l==0)

A=[1, zeros(1,n), zeros(1,m);

zeros(n,1), Bk, -Ai’;

v1, dd2*Ai, dd1];

end

if(m==0)

A=[1, zeros(1,n), zeros(1,l);

zeros(n,1), Bk, -Ae’;

zeros(l,1), Ae, zeros(l,l)];

end

下面我们利用程序 18, 求解三个分别是纯等式约束、纯不等式约束以及混

合约束的二次规划问题.

例 38 解二次规划问题

min 𝑓(𝑥) = 𝑥21 + 2𝑥22 + 𝑥23 − 2𝑥1𝑥2 + 𝑥3

s.t. 𝑥1 + 𝑥2 + 𝑥3 − 4 = 0,

2𝑥1 − 𝑥2 + 𝑥3 − 2 = 0.

该问题的极小点为 𝑥* =
(︁21
11
,
43

22
,
3

22

)︁𝑇
.

解 在Matlab 命令窗口依次输入下列命令:

dfk=[0 0 1]’;

Bk=[2 -2 0; -2 4 0; 0 0 2];

Ae=[1 1 1; 2 -1 1];

hk=[-4 -2]’;

Ai=[];

gk=[];

[d,mu,lam,val,k]=qpsubp(dfk,Bk,Ae,hk,Ai,gk)

得到计算结果:

d =

1.9091

1.9545
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0.1364

mu =

2.6364

-1.3636

lam =

Empty matrix: 0-by-1

val =

3.9773

k =

2

例 39 解二次规划问题

min 𝑓(𝑥) =
1

2
𝑥21 − 𝑥1𝑥2 + 𝑥22 − 6𝑥1 − 2𝑥2

s.t. −2𝑥1 − 𝑥2 + 3 ≥ 0,

𝑥1 − 𝑥2 + 1 ≥ 0;

−𝑥1 − 2𝑥2 + 2 ≥ 0;

𝑥1, 𝑥2 ≥ 0.

该问题的极小点为 𝑥* =
(︁4
3
,
1

3

)︁𝑇
.

解 在Matlab 命令窗口依次输入下列命令:

dfk=[-6 -2]’;

Bk=[1 -1; -1 2];

Ae=[ ];

hk=[ ]’;

Ai=[-2 -1;1 -1;-1 -2; 1 0; 0 1];

gk=[3 1 2 0 0]’;

[d,mu,lam,val,k]=qpsubp(dfk,Bk,Ae,hk,Ai,gk)

得到计算结果:

d =

1.3333

0.3333

mu =
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Empty matrix: 0-by-1

lam =

2.4444

0.0000

0.1111

0.0000

0.0000

val =

-8.1111

k =

5

例 40 解二次规划问题

min 𝑓(𝑥) = 𝑥21 + 𝑥1𝑥2 + 2𝑥22 − 6𝑥1 − 2𝑥2 − 12𝑥3

s.t. 𝑥1 + 𝑥2 + 𝑥3 − 2 = 0,

𝑥1 − 2𝑥2 + 3 ≥ 0;

𝑥1, 𝑥2, 𝑥3 ≥ 0.

该问题的极小点为 𝑥* = (0, 0, 2)𝑇 .

解 在Matlab 命令窗口依次输入下列命令:

dfk=[-6 -2 -12]’;

Bk=[2 1 0;1 4 0; 0 0 0];

Ae=[1 1 1];

hk=[-2]’;

Ai=[1 -2 0;1 0 0; 0 1 0;0 0 1];

gk=[3 0 0 0]’;

[d,mu,lam,val,k]=qpsubp(dfk,Bk,Ae,hk,Ai,gk)

得到计算结果:

d =

0.0000

0.0000

2.0000

mu =
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12.0000

lam =

0.0000

6.0000

10.0000

0.0000

val =

-24.0000

k =

6

12.4.2 SQP 方法的Matlab 实现

本小节给出 SQP 方法 (算法 35) 的一个Matlab 程序, 该程序在某种意义上

是通用的, 不同的问题只需编写目标函数、约束函数以及它们的梯度和 Jacobi

矩阵的M 文件即可调用该程序.

程序 19 一般约束优化问题 SQP 方法的Matlab 程序, 该程序在每一迭代
步调用了程序 18 qpsubp.m 求解二次规划子问题.

function [x,mu,lam,val,k]=sqpm(x0,mu0,lam0)

%功能: 用基于拉格朗日函数Hesse阵的SQP方法求解约束优化问题:

% min f(x) s.t. h˙i(x)=0, i=1,..., l.

%输入: x0是初始点, mu0是乘子向量的初始值

%输出: x, mu分别是近似最优点及相应的乘子,

%val是最优值, mh是约束函数的模, k是迭代次数.

maxk=100; %最大迭代次数

n=length(x0); l=length(mu0); m=length(lam0);

rho=0.5; eta=0.1; B0=eye(n);

x=x0; mu=mu0; lam=lam0;

Bk=B0; sigma=0.8;

epsilon1=1e-6; epsilon2=1e-5;

[hk,gk]=cons(x); dfk=df1(x);

[Ae,Ai]=dcons(x); Ak=[Ae; Ai];

k=0;

while(k¡maxk)

[dk,mu,lam]=qpsubp(dfk,Bk,Ae,hk,Ai,gk); %求解子问题

mp1=norm(hk,1)+norm(max(-gk,0),1);
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if(norm(dk,1)¡epsilon1)&(mp1¡epsilon2)

break;

end %检验终止准则

deta=0.05; %罚参数更新

tau=max(norm(mu,inf),norm(lam,inf));

if(sigma*(tau+deta)¡1)

sigma=sigma;

else

sigma=1.0/(tau+2*deta);

end

im=0; %Armijo搜索

while(im¡=20)

if(phi1(x+rho^im*dk,sigma)-phi1(x,sigma)¡eta*rho^im*dphi1(x,sigma,dk))

mk=im;

break;

end

im=im+1;

if(im==20), mk=10; end

end

alpha=rho^mk; x1=x+alpha*dk;

[hk,gk]=cons(x1); dfk=df1(x1);

[Ae,Ai]=dcons(x1); Ak=[Ae; Ai];

lamu=pinv(Ak)’*dfk; %计算最小二乘乘子

if(l¿0&m¿0)

mu=lamu(1:l); lam=lamu(l+1:l+m);

end

if(l==0), mu=[]; lam=lamu; end

if(m==0), mu=lamu; lam=[]; end

sk=alpha*dk; %更新矩阵Bk

yk=dlax(x1,mu,lam)-dlax(x,mu,lam);

if(sk’*yk¿0.2*sk’*Bk*sk)

theta=1;

else

theta=0.8*sk’*Bk*sk/(sk’*Bk*sk-sk’*yk);

end

zk=theta*yk+(1-theta)*Bk*sk;

Bk=Bk+zk*zk’/(sk’*zk)-(Bk*sk)*(Bk*sk)’/(sk’*Bk*sk);
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x=x1; k=k+1;

end

val=f1(x);

%p=phi1(x,sigma)

%dd=norm(dk)

%%%%%%%% l1精确价值函数 %%%%%%%

function p=phi1(x,sigma)

f=f1(x); [h,g]=cons(x); gn=max(-g,0);

l0=length(h); m0=length(g);

if(l0==0), p=f+1.0/sigma*norm(gn,1); end

if(m0==0), p=f+1.0/sigma*norm(h,1); end

if(l0¿0&m0¿0)

p=f+1.0/sigma*(norm(h,1)+norm(gn,1));

end

%%%%% 价值函数的方向导数%%%%%

function dp=dphi1(x,sigma,d)

df=df1(x); [h,g]=cons(x); gn=max(-g,0);

l0=length(h); m0=length(g);

if(l0==0), dp=df’*d-1.0/sigma*norm(gn,1); end

if(m0==0), dp=df’*d-1.0/sigma*norm(h,1); end

if(l0¿0&m0¿0)

dp=df’*d-1.0/sigma*(norm(h,1)+norm(gn,1));

end

%%%%%%%%% 拉格朗日函数 L(x,mu) %%%%%%%%%%%%%

function l=la(x,mu,lam)

f=f1(x); %调用目标函数文件

[h,g]=cons(x); %调用约束函数文件

l0=lemgth(h); m0=length(g);

if(l0==0), l=f-lam*g; end

if(m0==0), l=f-mu’*h; end

if(l0¿0&m0¿0)

l=f-mu’*h-lam’*g;

end

%%%%%%%%% 拉格朗日函数的梯度 %%%%%%%%%%%%%

function dl=dlax(x,mu,lam)

df=df1(x); %调用目标函数梯度文件

[Ae,Ai]=dcons(x); %调用约束函数Jacobi矩阵文件
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[m1,m2]=size(Ai); [l1,l2]=size(Ae);

if(l1==0), dl=df-Ai’*lam; end

if(m1==0), dl=df-Ae’*mu; end

if(l1¿0&m1¿0), dl=df-Ae’*mu-Ai’*lam; end

下面我们利用程序 19 来计算两个约束优化问题的极小点.

例 41 解非线性规划问题

min 𝑓(𝑥) = −𝜋𝑥21𝑥2
s.t. 𝜋𝑥1𝑥2 + 𝜋𝑥21 − 150 = 0,

𝑥1 ≥ 0, 𝑥2 ≥ 0.

解 首先编写四个m 函数:

%%%%%%%%目标函数f(x)%%%%%%%%%%%

function f=f1(x) %f1.m

f=-pi*x(1)^2*x(2);

%%%%%%%目标函数f(x)的梯度%%%%%%%%

function df=df1(x) %df1.m

df=[-2*pi*x(1)*x(2),-pi*x(1)^2]’;

%%%%%%%%%约束函数 %%%%%%%%%%%%%%

function [h,g]=cons(x) %cons.m

h=[pi*x(1)*x(2)+pi*x(1)^2-150];

g=[x(1);x(2)];

%%%%%%%%约束函数Jacobi矩阵%%%%%%%%

function [dh,dg]=dcons(x) %dcons.m

dh=[pi*x(2)+2*pi*x(1), pi*x(1)];

dg=[1 0; 0 1];

在Matlab 命令窗口依次输入下列命令:

x0=[3 3]’;

mu0=[0]’;

lam0=[0 0]’;

[x,mu,lam,val,k]=sqpm(x0,mu0,lam0)

得到计算结果:
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x =

3.9894

7.9788

mu =

-3.9894

lam =

1.0e-007 *

0.4248

0.0039

val =

-398.9423

k =

8

例 42 解非线性规划问题

min 𝑓(𝑥) = 𝑥21 + 𝑥22 − 16𝑥1 − 10𝑥2

s.t. −𝑥21 + 6𝑥1 − 4𝑥2 + 11 ≥ 0,

𝑥1𝑥2 − 3𝑥2 − e𝑥1−3 + 1 ≥ 0,

𝑥1 ≥ 0, 𝑥2 ≥ 0.

解 首先编写四个 m 函数:

%%%%%%%%目标函数f(x)%%%%%%%%%%%

function f=f1(x) %f1.m

f=x(1)^2+x(2)^2-16*x(1)-10*x(2);

%%%%%%%目标函数f(x)的梯度%%%%%%%%

function df=df1(x) %df1.m

df=[2*x(1)-16; 2*x(2)-10];

%%%%%%%%%约束函数 %%%%%%%%%%%%%%

function [h,g]=cons(x) %cons.m

h=[ ];

g=[-x(1)^2+6*x(1)-4*x(2)+11; ...

x(1)*x(2)-3*x(2)-exp(x(1)-3)+1;x(1);x(2)];

%%%%%%%%约束函数Jacobi矩阵%%%%%%%%

function [dh,dg]=dcons(x) %dcons.m

dh=[ ];

dg=[-2*x(1)+6,-4;x(2)-exp(x(1)-3),x(1)-3;1,0;0,1];
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在Matlab 命令窗口依次输入下列命令:

x0=[4 4]’;

mu0=[ ]’;

lam0=[0 0 0 0]’;

[x,mu,lam,val,k]=sqpm(x0,mu0,lam0)

得到计算结果:

x =

5.2396

3.7460

mu =

Empty matrix: 0-by-1

lam =

0.8133

0.3327

0.0000

0.0000

val =

-79.8078

k =

5

习 题 12

1. 用 SQP 方法求解问题

min 𝑓(𝑥) = 𝑥1 + 𝑥2,

s.t. 𝑥2 − 𝑥2
1 ≥ 0.

初始点为 𝑥0 = (0, 0)𝑇 . 𝐵𝑘 用两种取法

(1) 取 𝐵𝑘 = ∇2
𝑥𝑥𝐿(𝑥𝑘, 𝜆𝑘), 且 𝜆0 = 1; 若取 𝜆0 = 0, 结果怎样?

(2) 取 𝐵0 = 𝐼 (单位阵), 并采用校正公式 (12.45) ∼ (12.47) 校正 𝐵𝑘.

2. 用线搜索全局 SQP 方法求解问题

min 𝑓(𝑥) = −𝑥1 − 𝑥2,

s.t. −𝑥2
1 + 𝑥2 ≥ 0,

−𝑥2
1 − 𝑥2

2 + 1 ≥ 0.
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此问题的最优解为 𝑥* =
(︁√2

2
,

√
2

2

)︁𝑇
. 取初始点 𝑥0 =

(︁1
2
, 1
)︁𝑇

, 𝜆0 = (0, 0)𝑇 , 𝐵𝑘 用两种方式

计算:

(1) 𝐵𝑘 = ∇2
𝑥𝑥𝐿(𝑥𝑘, 𝜆𝑘).

(2) 取𝐵0 = 𝐼 (单位阵), 并采用校正公式 (12.45) ∼ (12.47) 校正 𝐵𝑘.

3. 考虑最优化问题

min 𝑓(𝑥) = −𝑥1 + 2(𝑥2
1 + 𝑥2

2 − 1),

s.t. 𝑥2
1 + 𝑥2

2 − 1 = 0.

若取价值函数为 Fletcher 精确罚函数, 试问单位步长能否使价值函数下降?

4. 设等式约束优化问题为

min 𝑓(𝑥) = 𝑥1𝑥
2
2,

s.t. 𝑔(𝑥) = 𝑥2
1 + 𝑥2

2 − 2 = 0.

(1) 取初始点 𝑥0 = (−2,−2)𝑇 . 初始矩阵 𝐵0 = 𝐼 (单位阵). 用步长为 1 的 SQP 方法求

解此问题.

(2) 取 𝑥̄ = (−0.8,−1, 1)𝑇 , 𝜆 = −0.8. 求 𝑟* > 0, 使得 0 < 𝑟 < 𝑟* 时,

∇2
𝑥𝑥𝐿(𝑥̄, 𝜆) +

1

𝑟
∇𝑔(𝑥̄)∇𝑔(𝑥̄)𝑇

正定.

5. 用光滑牛顿法的Matlab 程序求解二次规划子问题

(1) min 𝑓(𝑥) =
1

2
(𝑥2

1 + 2𝑥2
2 − 2𝑥1𝑥2 + 𝑥2

3),

s.t. 𝑥1 + 𝑥2 − 𝑥3 = 4,

𝑥1 − 2𝑥2 + 𝑥3 = −2.

(2) min 𝑓(𝑥) = 𝑥2
1 + 𝑥2

2,

s.t. −2𝑥1 − 𝑥2 + 2 ≥ 0,

𝑥2 − 1 ≥ 0

6. 用 SQP 方法的Matlab 程序求解下列优化问题

(1) min 𝑓(𝑥) = (𝑥1 − 2)4 + (𝑥1 − 2𝑥2)
2,

s.t.− 𝑥2
1 + 𝑥2 ≥ 0.

取初始点 𝑥0 = (0, 0)𝑇 , 初始矩阵 𝐵0 = 𝐼 (单位阵).
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(2) min 𝑓(𝑥) = 𝑒−𝑥1−𝑥2 + 𝑥2
1 + 2𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 6𝑥2,

s.t. 2− 𝑥1 − 𝑥2 ≥ 0,

𝑥1, 𝑥2 ≥ 0.

取初始点 𝑥0 = (2, 0)𝑇 , 初始矩阵 𝐵0 = 𝐼 (单位阵).
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在科学工程领域中, 优化问题有着十分广泛的应用. 根据数学理论定义, 优

化是指在某种约束条件下, 寻求目标函数的最大值或者最小值. 将上面的定义转

换为数学公式:

min
𝑥∈𝑆

𝑓(𝑥),

在上面的公式中, 𝑥 表示变量向量, 即 𝑥 = (𝑥1, · · · , 𝑥𝑛), 𝑓(𝑥) 是优化情况下的目
标函数, 𝑆 表示的是所承受的约束条件. 如果没有接受任何的约束条件, 或者 𝑆

是数值条件下的全集, 则该优化为无约束优化; 否则, 则是约束优化. 本节首先介

绍无约束优化的内容, 然后约束优化的内容, 最后, 将介绍线性规划和二次规划

这两种在实际中比较常见的优化问题.

本附录将简要介绍Matlab 软件的 Optimization Toolbox (优化工具箱) 的使

用方法, 所涉及的内容将都是MATLAB 内置的函数, 有些比较复杂的优化处理

工具会涉及 Optimization Toolbox 中的函数和内容. 如果希望自行演示本附录中

的程序代码, 请选择安装 Optimization Toolbox 组件.

A.1 线性规划

线性规划是一种特殊的优化问题, 目标函数和约束条件都是线性的. 对于这

种优化问题, 可以使用比较特使的方法来求解, 典型的线性规划问题为:

min
𝑥

𝑓(𝑥) = 𝑐𝑇𝑥

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐴 · 𝑥 ≤ 𝑏,

𝐴𝑒 · 𝑥 = 𝑏𝑒,

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏.
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在MATLAB 优化工具箱中, 求解线性规划的命令为 linprog, 其完整的调用

格式如下:

[x,fval,exitflag,output,lambda]=linprog(c,A,b,Ae,be,lb,ub,x0,options)

输入参数: 参数 c 表示目标函数中的常向量, x0 表示的是优化的初始值, 参

数 A, b 表示的是满足线性关系式 𝐴𝑥 ≤ 𝑏 的系数矩阵合结果矩阵; 参数 Ae, be

表示的式满足线性等式 𝐴𝑒 · 𝑥 = 𝑏𝑒 的矩阵; 参数 lb, ub 则表示满足参数取值范围

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏 的上限和下限; 参数 options 就是进行优化的属性设置;

输出参数: exitflag 表示程序退出优化运算的类型, output 参数包含多种关

于优化的信息, 包含 iterations 等; 参数 lambda 则表示各种约束问题的拉各朗日

参数数值.

例 43 求解线性规划, 其中目标函数为 𝑓(𝑥) = −3𝑥1− 2𝑥2, 其中参数满足下

面的关系式: 0 ≤ 𝑥1, 𝑥2 ≤ 10. 同时, 该目标函数满足下面的约束条件:⎧⎪⎪⎪⎨⎪⎪⎪⎩
3𝑥1 + 4𝑥2 ≤ 7,

2𝑥1 + 𝑥2 ≤ 3,

−3𝑥1 + 2𝑥2 = 2.

1. 在MATLAB 的命令窗口中输入下面的程序代码:

x0=[0 0]’;

c=[-3 -2]’;

A=[3 4;2 1];

b=[7 3]’;

Ae=[-3 2];

be=2;

lb=[0 0]’;

ub=[10 10]’;

[x,fval,exitflag,output,lambda]=linprog(c,A,b,Ae,be,lb,ub,x0);

2. 查看线性规划求解的结果. 在命令窗口中输入下面的程序代码

x, fval

说明: 从上面的结果中可以看出,使用线性规划求解的最优解为 (0.3333, 1.500),

对应的最优解对应的函数值为 −4.

说明: 函数 linprog 的输入参数 x0 是可选的, 我们看下面的例子.
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例 44 求解下面的现行线性规划:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min −5𝑥1 + 4𝑥2 + 2𝑥3,

s.t. 6𝑥1 − 𝑥2 + 𝑥3 ≤ 8,

𝑥1 + 2𝑥2 + 4𝑥3 ≤ 10,

−1 ≤ 𝑥1 ≤ 3,

0 ≤ 𝑥2 ≤ 2,

0 ≤ 𝑥3.

在MATLAB 的命令窗口中输入下面的程序代码:

c=[-5 4 2]’;

A=[6 -1 1;1 2 4]; b=[8 10]’;

Ae=[ ]; be=[ ];

lb=[-1 0 0]’;

ub=[3 2]’;

[x,fval,exitflag,output,lambda]=linprog(c,A,b,Ae,be,lb,ub);

A.2 二次规划

二次规划是指其目标函数 2 次多项式而约束函数全部是线性函数的优化问

题, 标准的二次规划格式如下:

min
𝑥
𝑓(𝑥) =

1

2
𝑥𝑇𝐻𝑥+ 𝑐𝑇𝑥

s.t. 𝐴 · 𝑥 ≤ 𝑏

𝐴𝑒 · 𝑥 = 𝑏𝑒

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

在MATLAB 中, 求解二次规划的命令为 quadprog, 其完整的调用格式如下:

[x,fval,exitflag,output,lambda]=quadprog(c,A,b,Aeq,beq,lb,ub,x0,options)

关于该命令中的各个参数的含义, 请参考前面的 linprog 命令.

例 45 求解二次规划, 其目标函数为:

min 𝑓(𝑥) =
1

2
𝑥21 + 𝑥22 − 𝑥1𝑥2 − 2𝑥1 − 6𝑥2
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约束条件为: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑥1 + 𝑥2 ≤ 2,

−𝑥1 + 2𝑥2 ≤ 2,

2𝑥1 + 𝑥2 ≤ 3,

𝑥1 ≥ 0, 𝑥2 ≥ 0.

1. 将二次规划进行转换, 转换为标准形式. 根据线性代数知识, 得到的结果

为:

𝐻 =

⎛⎝ 1 −1

−1 2

⎞⎠ , 𝑐 =

⎛⎝ −2

−6

⎞⎠ 𝑥 =

⎛⎝ 𝑥1

𝑥2

⎞⎠ .

2. 进行二次规划求解. 在MATLAB 的命令窗口中输入下面的代码:

H=[1 -1;-1 2];

c=[-2;-6];

A=[1 1;-1 2;2 1];

b=[2;2;3];

lb=[0;0];

[x,fval,exitflag,output,lambda]=quadprog(H,c,A,b,[],[],lb);

3. 查看二次规划求解的结果. 在MATLAB 的命令窗口中输入代码:

x, fval

在上面的二次规划问题中, 求得的最优解为 (0.6667, 1.3333), 对应的函数数

值为 −8.222.

A.3 无约束非线性优化

在上面介绍过, 无约束优化相当于约束集为全集. MATLAB 为解决非约束

优化提供 fminsearch 和 fminunc 函数, 其对应的详细调用格式如下:

[x,fval,exitflag,output] = fminsearch(fun,x0,options)

在上面的命令格式中, 参数比较繁多, 下面分别分详细介绍.

输入参数: 参数“fun”表示优化的目标函数, 参数“”表示执行优化的初始

数值, 参数“options”表示进行优化的各种属性, 一般需要使用 optimset 函数进

行设置.
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输出参数: 参数“x”表示最优解; “fval”表示最优解对应的函数值; 参数

“exitflag”则表示函数退出优化运算的原因, 取值为 1、0 和 −1. 其中数值 1 表

示函数收敛于最优解, 0 则表示函数迭代次数超过了优化属性的设置, −1 则表示

优化迭代算法被 output 函数终止; 参数“output”是一种结构变量, 显示的是关

于优化的属性信息, 例如优化迭代次数和优化算法等.

说明: 在 MATLAB 中, fminsearch 一般适用于没有约束条件的非线性优化

情况, 对于线性优化的情况, 将在后面介绍.

fminunc 函数的调用格式如下:

[x,fval,exitflag,outflag,grad,hessian] = fminunc(fun,x0,options)

该函数的大部分参数的含义和 fminsearch 函数相同, 而输出参数“grad”

表示的是函数在最优解下的梯度; 参数“hessian”则表示目标函数在最优解的

Hessian 矩阵数值; 参数“exitflag”表示的也是停止最优解的类型, 但是其取值

包括了 −2, −1, 0, 1, 2 和 3. 因此, 该函数比上面的函数能够更加详细地描述优

化情况. 关于其具体的含义, 可自行查看相应的帮助文件.

下面看一个无约束非线性优化实例

例 46 求解二元函数 𝑓(𝑥) = 3𝑥21 +2𝑥1𝑥2 + 𝑥22 在全集范围之内的最小值, 分

别使用不同的优化函数和优化属性. 为了让读者能够直观查看优化求解情况, 可

以在求解之后绘制二元函数的图形.

1. 选择命令窗口编辑栏中的“File-New”-“M-File”命令, 打开M 文件编

辑器, 在其中输入下面的程序代码:

function[f,g]=optfun(x)

f=3*x(1)^2+2*x(1)*x(2)+x(2)^2;

if nargout¿1

g(1)=6*x(1)+2*x(2);

g(2)=2*x(1)+2*x(2);

end

在上面的程序代码中, g 表示的是 f 函数的梯度.

在输入完上面的程序代码后, 将该代码保存为“optfun.m”文件.

2. 选择优化的初始数值 [1, 1], 分别使用不同的函数求解优化. 在MATLAB

命令窗口中输入下面的程序代码:

x0=[1,1];
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options=optimset(’Display’,’iter’,’TolFun’,1e-18,’GradObj’,’on’);

[x,fval,exitflag,output,grad]=fminunc(@optfun,x0,options)

[x1,fval1,exitflag1,output1]=fminsearch(@optfun,x0,options)

说明: 在上面的结果中, 使用 fminuc 函数的最优解为 (0, 0), 而且迭代的次数

为 2,对应的优化求解方法为“large-scale:trust-region Newton”;使用 fminsearch

函数求解的最优解为 (0, 0), 且迭代次数为 81, 使用的优化求解方法为“Nelder-

Mead simplex direct search”. 因此, 在相同的初值条件下, 两个方法求解的性质

不同.

3. 选择优化的初始值 [−1, 1], 分别使用不同的函数求解优化. 在MATLAB

的命令窗口中输入下面的程序代码:

x0=[-1,1];

options=optimset(’Display’,’iter’,’TolFun’,1e-18,’GradObj’,’on’);

[x,fval,exitflag,output,grad]=fminunc(@optfun,x0,options)

[x1,fval1,exitflag1,output1]=fminsearch(@optfun,x0,options)

从上面的程序结果中可以看出, 当修改优化的初始条件后, 各种优化函数使

用的迭代次数会明显的改变. 因此, 设置初值将直接影响优化求解的效率.

A.4 非线性最小二乘问题

非线性最小二乘问题 (nonlinear least-squares) 是非线性约束优化的一种特

例, 其优化的目标函数为

min
𝑛∑︁

𝑖=1

𝑓 2
𝑖 (𝑥).

在 MATLAB 中, 为了求解非线性最小二乘问题, 提供 lsqnonlin 函数命令, 其最

完整的调用格式如下:

[x,resnorm,residual,exitflag,output,lambada]=lsqnonlin(fun,x0,lb,ub,options)

在上面的命令中, 函数的参数比较复杂, 下面详细介绍各参数的具体含义.

输入参数: 参数 fun 表示优化的目标函数, 参数 x0 表示优化的初值条件,

lb 是进行优化求解的下限, ub 是进行优化求解的上限, 相当于 lb≤x≤ub; 参数

options 则表示优化求解的优化属性.

输入参数: 参数 x 表示所求的最优解; 参数 resnorm 则表示二阶范数, 在数

值上等于sum(fun(x).2); 参数 residual 则表示优化求解后的残数; 参数 lambda 则

表示在最优解处的拉各朗日数值; 其他参数和其他优化命令中含义相同.
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提示: 在上面的命令格式中, 并不是所有的参数都是必须输入的. 在参数

输入部分, 只有 fun, x0 是必须输入的, 而在输出参数部分, 则只有 x 是必须的.

MATLAB 之所以提供上面的许多参数, 是为了方便用户自行研究和比较优化的

属性.

下面看一个非线性最小二乘问题实例.

例 47 以函数 𝑓(𝑥) =
1

1 + 8𝑥2
为基准函数, 对其进行非线性最小二乘运算,

同时以最小二乘为目标进行数据拟合.

1. 选择命令窗口编辑栏中得“File-New”-“M-File”命令, 打开M 文件编

辑器, 在其中输入下面得程序代码:

function F=flq(a)

xx=-2+[0:200]/50;

F=polyval(a,xx)-1./(1+8*xx.*xx);

在输入上面的程序代码后, 将上面的程序代码保存为“flq.m”文件.

2. 进行非线性最小方差求解. 在MATLAB 的命令窗口中输入下面的程序代

码:

N=5;

a0=zeros(1,N);

lb=-1*ones(1,N);

ub= ones(1,N);

options=optimset(’Display’,’iter’,’TolFun’,1e-18,’Gradobj’,’on’);

[x,resnorm,residual,exitflag,output,lambda]=lsqnonlin(’flq’,a0,lb,ub,options);

3. 查看程序结果. 在输入上面的程序代码后, 按“Eenter”键, 得到的结果如

下:

x

resnorm

exitflag

output

A.5 约束条件的非线性优化命令

有约束条件的优化情况比无约束条件的优化情况要复杂得多, 处理起来也更

困难, 种类也比较繁杂. 这里仅限于讨论MATLAB 内置函数 fmincon 的使用方
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法. 首先, fmincom 函数主要用于解决具有下面约束条件的优化

min 𝑓(𝑥)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑐(𝑥) ≤ 0,

𝑐𝑒(𝑥) = 0,

𝐴 · 𝑥 ≤ 𝑏,

𝐴𝑒 · 𝑥 = 𝑏𝑒,

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏.

该函数的完整调用格式如下:

[x,fval,exitflag,output,lambda]

=fmincon(fun,x0,A,b,Ae,be,lb,ub,nonlcon,options)

该函数的参数比较复杂, 下面详细介绍各种参数的含义.

输入参数: 参数 fun 表示的是优化目标函数, x0 表示的是优化的初始值, 参

数 A, b 表示的是满足线性关系式 𝐴𝑥 ≤ 𝑏 的系数矩阵合结果矩阵; 参数 Ae, be

表示的式满足线性等式 𝐴𝑒 · 𝑥 = 𝑏𝑒 的矩阵; 参数 lb, ub 则表示满足参数取值范

围 𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏 的上限和下限; 参数 nonlcon 则表示需要参数满足的非线性关系

式 𝑐(𝑥) ≤ 0 和 𝑐𝑒(𝑥) = 0 的优化情况; 参数 options 就是进行优化的属性设置;

输入参数: exitflag 表示程序退出优化运算的类型, 取值为 −2, −1, 0, 1, 2,

3, 4 和 5, 其数值对应的类型在此不作详细说明. output 参数包含多种关于

优化的信息, 包含 iterations、 funcCount、algorithm、cgiterations、 stepsize 和

firstorderopt等;参数 lambda则表示 lower、upper、ublneqlin、eqlin、ineqnonlin

和 eqnonlin等, 分别表示优化问题的各种约束问题的拉各朗日参数数值.

下面给出一个约束条件的非线性优化实例.

例 48 求解在约束条件 0 ≤ 𝑥1 +2𝑥2 +3𝑥3 ≤ 72, 函数 𝑓(𝑥) = −𝑥1𝑥2𝑥3 的最
小值的最优解以及最优解的数值.

1. 转换约束条件, 将上面的约束条件转换为下面的关系式⎧⎨⎩ −𝑥1 − 2𝑥2 − 3𝑥3 ≤ 0,

𝑥1 + 2𝑥2 + 3𝑥3 ≤ 72.

提示: 由于在 fmincon 中, 所有的约束条件都是以上面的不等式形式出现的,

因此在本步骤中需要将原来的约束条件转换为不等式方程组.
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2. 选择命令窗口编辑栏中的“File”-“New”-“M-File”命令, 打开M 文

件安编辑器, 在其中输入下面的程序代码;

function f=optcon(x)

f=-x(1)*x(2)*x(3);

将上面的程序代码保存为“optcon.m”文件,该文件将是最优解的目标函数.

3. 在MATLAB 的命令窗口中输入下面的程序代码:

A=[-1 -2 -3; 1 2 3];

b=[0;72];

x0=[10;10;10];

[x,fval,exitflag,output,lambda]=fmincon(@optcon,x0,A,b);

4. 查看优化信息. 在输入上面的程序代码后, 按“Enter”键, MATLAB 将

会进行优化运算, 并显示对应的优化信息;

在上面的程序中显示了实质起作用的约束条件和优化中止的类型.

5. 查看优化的结果. 在MATLAB 的命令窗口中输入下面的程序代码;

x

fval

output

6. 重新设置优化条件, 进行优化运算. 将最优问题的约束条件修改为下面的

关系式: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥2 ≤ 5,

𝑥3 ≤ 10,

𝑥1 + 2𝑥2 + 3𝑥3 ≤ 72.

同时, 将初值设置为 [1, 1, 1], 然后进行优化求解, 得到的结果如下:

x0=[1,1,1];

A=[1,2,3;0,1,0;0,0,1];

b=[72;5;10];

[x,fval,exitflag,output,lambda]=fmincon(@optcon,x0,A,b);

x

fval

exitflag

output
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提示: 从上面的条件可以看出, 当修改关于优化的各种属性后, 优化问题会

发生质的改变, 因此在进行优化求解问题的时候, 需要特别注意优化求解的条件.

A.6 最小最大值的优化问题

最小最大值的优化问题函是以个比较特殊的问题, 其表示的是从一系列最大

值中选取最小的数值, 相当于求解下面的优化问题:

min
𝑥

max
𝑖

{𝐹𝑖(𝑥)},

约束条件为: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑐(𝑥) ≤ 0,

𝑐𝑒(𝑥) = 0,

𝐴 · 𝑥 ≤ 𝑏,

𝐴𝑒 · 𝑥 = 𝑏𝑒,

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏.

在上面的目标函数中, 𝐹 (𝑥) = (𝐹1(𝑥), 𝐹2(𝑥), · · · , 𝐹𝑚(𝑥))
𝑇 . MATLAB提供了函数

fminmax 来求解最小最大值优化问题, 该函数的参数和使用方法和前面介绍的

fmincon 完全相同, 这里不重复介绍. 下面使用简单的实例来介绍如何使用该函

数命令.

例 49 求解函数 𝐹 (𝑥) = (𝐹1(𝑥), · · · , 𝐹5(𝑥)) 的最小最大值, 其中各分量函

数依次为 𝐹1(𝑥) = 2𝑥21 + 𝑥22 − 48𝑥1 − 40𝑥2 + 125, 𝐹2(𝑥) = −𝑥21 − 3𝑥22, 𝐹3(𝑥) =

𝑥1 + 3𝑥2 − 18, 𝐹4(𝑥) = −𝑥1 − 𝑥2 和 𝐹5(𝑥) = 𝑥1 + 𝑥2 − 8.

1. 选择命令窗口中的“File”-“New”-“M-File”命令, 打开M 文件编辑

器, 在其中输入下面的程序代码:

function f=mnmax(x)

f(1)=2*x(1)^2+x(2)^2-48*x(1)-40*x(2)+125;

f(2)=-x(1)^2-3*x(2)^2;

f(3)=x(1)+3*x(2)-18;

f(4)=-x(1)-x(2);

f(5)=x(1)+x(2)-8;
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在输入上面的程序代码后, 将该代码保存为“mnmax.m”文件.

2. 求解最小最大值的优化问题, 在MATLAB 的命令窗口中输入下面的程序

代码:

x0=[0.1;0.1];

[x,fval]=fminimax(@mnmax,x0)

在上面的求解过程中, 首先设置了初值条件, 然后直接调用函数求解优化问

题.
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