


前　　言
本书内容包括黑洞的经典理论和量子理论两部分．经典理论部分包括球对称

引力场的奇异性， 球对称恒星的引力塌缩， Ｋｅｒｒ 黑洞、 Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞和经典
黑洞热力学等内容．量子理论部分包括黑洞热力学的量子理论、黑洞的量子辐射、
黑洞的微扰理论和黑洞的量子化等内容．在内容安排上， 侧重于黑洞的量子
理论．

近年来， 许多学者对黑洞熵的量子理论颇感兴趣．严格地说， 计算黑洞量子
熵须用到量子引力理论， 而至今还没有建立一个令人满意的量子引力理论．用量
子引力理论研究黑洞的熵依赖于量子引力理论的细节．但是， 如果认为黑洞熵和
视界面积成正比这一结论是普适的， 则黑洞熵就应该与量子引力理论的细节没有
关系．因此， 人们可以避开量子引力理论的细节， 来研究黑洞的热力学熵和统计
力学熵．书中详细讨论了黑洞热力学的量子修正， 黑洞量子熵的计算方法， 即壳
（ｏｎ ｓｈｅｌｌ）和离壳（ｏｆｆ ｓｈｅｌｌ）方案（其中包括砖墙模型、顶角奇异性方法、钝锥方法
和体积截断方法）， 协变欧氏方案和共形场论方法．

黑洞热力学的四条定律与普通热力学定律的一致， 使人们自然认为黑洞处于
热平衡状态（至少静态和稳态黑洞如此）．如果给黑洞一个微扰， 微扰衰减后黑洞
应该回到平衡状态．黑洞微扰理论表明， 微扰场在黑洞时空中的演化过程分为初
始扰动、准正规模（指数衰减）和晚期拖尾（幂律衰减）三个阶段．黑洞状态对于微
扰是稳定的．研究表明， 黑洞准正规模的频谱只决定于黑洞本身的性质， 与扰动
的初始形式无关．这一结果在黑洞的天文观测中具有重要而深远的意义， 因此也
使人们对黑洞准正规模的研究产生了极大的兴趣．犹如不同的乐器发出不同种类
的声音一样， 不同的黑洞具有不同的准正规模频谱．书中详细讨论了几种黑洞时
空的准正规模频谱和它们的晚期幂律拖尾．

黑洞是宇宙中最简单和最漂亮的物体， 只由三个参量（质量， 电荷和角动量）
便可惟一确定．所有其他性质， 如磁场、磁矩、物质结构（轻子数、重子数）等性质
在形成黑洞时已全部化为乌有．

黑洞如此简单， 很像氢原子， 它只有质量、电荷和角动量三个经典自由度．氢
原子也只有三个经典自由度， 即电子的三个空间坐标 x，y，z ．因此人们想到， 不
用量子引力理论， 用量子力学描述黑洞的量子化， 揭示黑洞的量子性质．书中讨
论了黑洞时空的哈密顿正则量子化方案， 给出类似薛定谔方程的黑洞时空动力学
方程， 导出量子化的黑洞质量谱、面积谱、电荷谱和角动量谱．书中还讨论了暗物



质和暗能量， 以及被暗能量包围的黑洞的量子性质．
本书假定读者已具备广义相对论、量子场论、张量分析和微分几何等基础

知识．
作者与同事、合作者荆继良教授、余洪伟教授和唐智明教授获得过两届国际引
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第 1 章　史瓦希黑洞
黎曼空间度规张量既决定于空间的几何性质又依赖于坐标系的选择．因此，

度规的奇异性分为两种， 一种是内禀奇异性， 另一种是坐标奇异性．坐标奇点可
以通过坐标变换消除， 而内禀奇点是空间的内禀属性， 不能由坐标变换消除．

１畅１　史 瓦 希 面
在史瓦希外部场中，

ｄs２ ＝ １ － r sr ｄt
２ － １ － r sr

－１
ｄr２ －r２ ｄΩ２ ， （１畅１畅１）

r ＝r s ＝２m处有 g１１ ＝∞， g００ ＝０， 称为史瓦希奇点．由于在 r ＝r s 处度规张量的行
列式和标曲率都是正常的， g ＝－r４s ｓｉｎ２ θ， R≡gμνRμν ＝１２r －４

s ， 可见 r ＝r s 处的奇异
性并不是度规的内禀特性．下面将看到， 通过适当的坐标变换可以消除奇点 r ＝r s，
因此这是坐标奇点．史瓦希度规还有一个奇点， 即 r ＝０．由于相应的标曲率 R＝
１２r２s ／r６→∞， 所以这一奇点是无法用坐标变换消除的， 这是内禀奇点（或称真奇
点）．

史瓦希奇点 r ＝r s 构成一个面， 称为史瓦希面．现在我们讨论这个面的性质．
容易发现， 满足条件 ｄt＝ｄθ ＝ｄφ＝０ 的线是短程线， 沿着这些线有

ｄs２ ＝－ １ － r sr
－１
ｄr２． （１畅１畅２）

这些线在 r ＞r s 的区域是类空的， 在 r ＜r s 区域是类时的．但一条短程线的切矢量
在沿短程线移动时不能由类时的变为类空的（只能沿线平移）， 因此， 这两个区域
在面上无光滑连接．我们也可以考虑沿径向传播的光线来说明这一点．此时有 ｄθ
＝ｄφ＝０，ｄs ＝０，

ｄr
ｄt ＝± １ － r sr ． （１畅１畅３）

类时方向包含在光锥之内， 我们考察当 r 减小时光锥顶角的变化．在区域 r ＞r s
中， 光锥顶角随 r 的减小而减小；当 r→r s 时光锥顶角趋于零；进入区域 r ＜r s 之后，
坐标 t的参数线变为类空的， 光锥转 ９０°；r 从 r s 到 ０， 光锥顶角减小．上述情况如
图 １ 所示．比较史瓦希面两侧的两个不同的光锥图， 可见 r ＞r s 和 r ＜r s 两个区域
无光滑连接．



图 １
考虑一粒子沿径向自由落下， 此时有 u２ ＝u３ ＝０，uμ＝ｄx

μ

ｄs ．
由短程线方程可得

ｄu０
ｄs ＋Γ０

μνuμu ν ＝０，
ｄu０
ｄs ＝－Γ０

μνuμuν ＝－g００ g００， １ u０ u１ ＝－g００ ｄg００ｄs u
０． （１畅１畅４）

积分， 得到
g００ u０ ＝k ＝ｃｏｎｓｔ．． （１畅１畅５）

式中常数 k是 u１ ＝０（开始自由下落）处 g００的值．又由线元的表达式（１畅１畅１）可得
gμνuμuν ＝g００ u０２ ＋g１１ u１２ ＝１． （１畅１畅６）

用 g００乘以（１畅１畅６）式并注意 g００g１１ ＝－１， 得到
k２ －u１２ ＝１ － r sr ，

由此得到

u１ ＝－ k２ －１ ＋ r sr
１ ／２ （注意 u１ ＜０）． （１畅１畅７）

由（１畅１畅５）和（１畅１畅７）式可知
ｄt
ｄr ＝u

０

u１
＝－k １ － r sr

－１
k２ －１ ＋ r sr

－１ ／２
． （１畅１畅８）

积分（１．１．８）式， 得到
t ＝－∫rsr０ kｄr

（１ －r s ／r） k２ －１ ＋r s ／r → ∞． （１畅１畅９）
（１．１．９）式表明， 自由粒子自 r ＝r０ ＞r s 处落至史瓦希面， 在远处观察者看来， 需
要经过无限长时间．自 r０ 至 r s 的径向距离是有限的， 由 ｄl２ ＝γi jｄx iｄx j 得

l ＝∫rsr０ ｄr
１ －r s ／r， （１畅１畅１０）
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此式具有有限值．
在与下落粒子固连的坐标系中， 测得的对应时间间隔为

∫s０ ｄs ＝∫rsr０ ｄru１ ＝－∫rsr０ ｄr
k２ －１ ＋r s ／r， （１畅１畅１１）

此式具有有限值．这就是说， 对于自由下落的观察者来说， 质点经过有限长时间
便可到达史瓦希面．此后它可以越过史瓦希面一直到达 r ＝０（如果源质量集中在
中心奇点）．如果把恒星物质看作零压流体（“尘埃”）， 恒星一经坍缩， 由上面的
讨论可知， 在随动坐标系观测， 恒星表面将在有限时间内缩至奇点 r ＝０．而在远
处观察者看来， 恒星表面缩至 r ＝r s 需要无限长时间．在 ２畅２ 节中我们还要讨论这
一问题．

设一束光波由史瓦希面附近发出， 频率为 νA， 远处观察者接收到的频率为
νB．由光谱线的频移公式有

νB
νA ＝ gA００

gB００
，

对无限远处的观察者 B， gB００→１．所以当 gA００ ＝０ 时出现无限红移．即当光源位于史
瓦希面上时， 远处观察者测得无限红移．故称面r＝r s（g００ ＝０ 的面）为无限红移面．
由此可知， 当试验粒子落到无限红移面上时， 粒子上发生的一切物理过程， 在远
处观察者看来都变得无限缓慢．

１畅２　自由下落坐标系
在沿径向自由下落的坐标系中测得粒子自 r ＝r０ 到达 r ＝r s 需要有限长时间，

可见在这一坐标系中奇点 r ＝r s 已不存在．因此， 为了把史瓦希度规延拓到 r ＜r s
的区域， 我们寻找一个坐标变换， 由史瓦希坐标系（ t，r）变至自由下落坐标系（τ，
ρ）．为此， 令

τ＝t ＋f（ r），ρ ＝t ＋φ（ r）． （１畅２畅１）
式中 f和 φ是待定函数．我们希望能够通过 f和 φ的选择， 以新的线元表达式 ｄτ２

－r sr ｄρ
２
代替（１畅１畅１）式的右端， 这样便消除了奇点r ＝r s．由（１畅２畅１）式有

ｄτ２ － r sr ｄρ
２ ＝（ｄt ＋f′ｄr） ２ － r sr （ｄt ＋φ′ｄr） ２

＝ １ － r sr ｄt
２ －２ f ′－ r sr φ′ｄtｄr ＋ f ′２ － r sr φ′

２ ｄr２．　　（１畅２畅２）

式中 f′≡ｄfｄr．可见只要选择 f和 φ， 使之满足
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f ′＝r sr φ′， （１畅２畅３）
r s
r φ′

２ －f′２ ＝ １ － r sr
－１畅 （１畅２畅４）

从这些方程中消去 f， 得到
φ′＝ r s

r

－１ ／２
１ － r sr

－１
， （１畅２畅５）

积分得

φ＝ ２
３Ar

３ ／２ ＋２Ar１ ／２ －A２ ｌｎ r
１ ／２ ＋A
r１ ／２ －A． （１畅２畅６）

式中 A ＝r１ ／２
s ．又由（１畅２畅３）和（１畅２畅５）式得

φ′－f′＝ １ － r sr φ′＝ r
r s

１ ／２ ，
积分上式， 注意到（１畅２畅１）式， 得到

φ－f ＝ρ －τ＝ ２
３ r

－１ ／２
s r３ ／２ ， （１畅２畅７）

或者

r ＝r１ ／３
s

３
２ （ρ －τ） ２ ／３． （１畅２畅８）

由（１畅２畅６）和（１畅２畅７）式便完全确定了变换（１畅２畅１）式：
r ＝r１ ／３

s
３
２ （ρ －τ） ２ ／３

t＝τ－２ r s r －r s ｌｎ ｜ r － r s ｜
r ＋ r s

＝τ－２r２ ／３
s

３
２ （ρ －τ） １ ／３ －r s ｌｎ

３
２ （ρ －τ） １ ／３ －r１ ／３

s

３
２ （ρ －τ） １ ／３ ＋r１ ／３

s

． （１畅２畅９）

这就是说， 可以找到满足（１畅２畅３） ～（１畅２畅４）式的函数 f 和 φ．于是史瓦希度规
变为

ｄs２ ＝ｄτ２ － ３
２ ρ －τ

r s

－２ ／３ ｄρ２ －r２ ／３
s

３
２ （ρ －τ） ４ ／３ ｄΩ２． （１畅２畅１０）

此即 Ｌｅｍａｉｔｒｅ 度规．
由（１畅２畅７）式可知， 当 r ＝r s 时， ρ －τ＝２r s ／３， 此时度规（１畅２畅１０）式不再有奇

异性．
由于度规（１畅２畅１０）式和史瓦希度规由坐标变换相联系， 所以度规（１畅２畅１０）
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式在 r ＞r s 区域满足爱因斯坦方程；解析延拓至 r＜r s 的区域之后， 由 r ＝r s 处无奇
点可以推断， 在 r≤r s 区域（１畅２畅１０）式仍满足爱因斯坦方程．仅在 r ＝０（即 ρ －τ＝
０）处有一奇点．

由（１畅２畅７）式得到
ｄρ ＝ｄτ＋ r

r s
ｄr ＝ｄt ＋ r

r s
ｄr

１ －r s ／r． （１畅２畅１１）
由（１畅１畅５）和（１畅１畅７）式给出

ｄt
ｄs ＝ k

１ －r s ／r，　
ｄr
ｄs ＝u１ ＝－ k２ －１ ＋ r sr

１ ／２． （１畅２畅１２）
粒子开始下落时有 u１ ＝０，r→∞， 代入（１．２．１２）式确定 k ＝１， 于是（１．２．１２）式给
出
ｄr
ｄs ＝－ r s

r
，ｄtｄs ＝k（１ －r s ／r） －１ ， 代入（１畅２畅１１）式， 得到 ｄρ ＝０．这正表明坐标系

（τ， ρ）是自由下落的．
显然， 度规（１畅２畅１０）式是一个动态度规．
在史瓦希度规中， r＞r s 和 r＜r s 两个区域的 g００和 g１１均反号， 这相当于时间轴

和空间轴对换， 导致两个区域不连通， r＝r s 为奇异面．在 Ｌｅｍａｉｔｒｅ 度规中， 这一奇
异性已消除．由（１畅２畅１０）式可知， 在 r＞r s 和 r ＜r s 两个区域， ρ恒为空间轴， τ恒
为时间轴， 除 r ＝０ 以外不存在史瓦希奇点．

１畅３　史瓦希黑洞
我们考察沿径向的光信号的行为．令 ｄs＝０，ｄθ ＝ｄφ＝０， 得到

ｄρ
ｄτ＝±c r

r s
． （１畅３畅１）

式（１畅３畅１）给出的空－时图表明， 在 R 区（ r ＞r s 的区域）， 沿径向向外发射的光线
可达无限远处， 沿径向向内的光线可穿过史瓦希面到达奇点 r ＝０．在 T 区（ r ＜r s
的区域）， 沿两个方向的光线都要到达奇点 r ＝０．总之， 史瓦希面是一个单向膜，
外面的粒子或光子可以通过它进入 T区， 到达奇点 r ＝０， 而里面（T 区）的粒子和
光子都不可能到达 R 区．这一单向膜称为视界（Ｈｏｒｉｚｏｎ）， T 区称为史瓦希黑洞
（ｂｌａｃｋ ｈｏｌｅ）．

由于爱因斯坦引力场方程在时间反演下是不变的， 所以度规（１畅２畅１０）式经过
时间反演变换后仍满足爱因斯坦方程．这时有

ｄs２ ＝ｄτ２ － ３
２

ρ ＋τ
r s

－２ ／３ ｄρ２ － ３
２ （ρ ＋τ） ４ ／３

r２ ／３
s ｄΩ２． （１畅３畅２）

这仍是一个动态度规．
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对于径向光线（ｄs ＝０，ｄθ ＝ｄφ＝０）， 由空－时图可见， 径向光信号的行为与图
２ 给出的相反， 任何粒子和光子都不可能由 R 区进入 珘T 区， 而 珘T 区的粒子和光子
都要进入 R 区（图 ３）．这样， 史瓦希面仍是单向膜， 但只允许由里向外的辐射．珘T
区称为白洞（ｗｈｉｔｅ ｈｏｌｅ）．

图 ２　　　　　　　　　　　　　　　　图 ３

１畅４　Ｋｒｕｓｋａｌ坐标
１．３ 节中引入的 Ｌｅｍａｉｔｒｅ 度规虽然消除了史瓦希度规中的奇点 r ＝r s， 但是仍

图 ４

不能统一地描述 R 区、T 区和 珘T 区的过程 （图
４）．Ｋｒｕｓｋａｌ（１９６０）提出一个坐标变换， 使史瓦希
度规在新坐标系中除了 r ＝０ 以外不存在奇点，
而且可以统一地描述 R 区、T 区和 珘T区的过程．

如果从流形中任一点出发的短程线在两个

方向上都可无限延长， 或终止于内禀奇点， 则此
流形称为最大解析的流形．如果从流形中任一点
出发的短程线在两个方向上都可无限延长， 则
此流形称为完备的．下面讨论的 Ｋｒｕｓｋａｌ 流形是

最大解析的但不是完备的（有奇点 r ＝０）．
Ｋｒｕｓｋａｌ引入一个新的坐标系：

x０ ＝v，　x１ ＝u，　x２ ＝θ，　x３ ＝φ． （１畅４畅１）
度规具有形式：

ｄs２ ＝f ２ ｄv２ －f ２ ｄu２ －r２（ v，u）ｄΩ２． （１畅４畅２）
令（１畅４畅２）和（１畅１畅１）式相等， 并要求函数 f ＝f（ r）， 当 v ＝u ＝０ 时， f 有限且不等
于零， 可以确定由史瓦希坐标变至 Ｋｒｕｓｋａｌ坐标的变换式， 当 r＞r s 时， 得
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v＝± r
r s

－１ １ ／２ ｅｘｐ r
２r s ｓｈ

t
２r s ，

u ＝± r
r s

－１
１ ／２ ｅｘｐ r

２r s ｃｈ
t
２r s ． （１畅４畅３）

逆变换为

r
r s

－１ ｅｘｐ rr s ＝u２ －v２ ，
t

２r s ＝ａｒｃ ｔｈ
v
u ； （１畅４畅４）

f由（１．４．５）式确定：
f ２ ＝３２m３

r ｅｘｐ － rr s ＝f ２ （u２ －v２ ）． （１畅４畅５）
式中右端表示自变量为（u２ －v２ ）的一个超越函数．

当 r ＜r s 时， 得到
v＝± １ － rr s

１ ／２ ｅｘｐ r
２r s ｃｈ

t
２r s ，

u ＝± １ － rr s
１ ／２ ｅｘｐ r

r s
ｓｈ t

２r s ； （１畅４畅３ａ）

逆变换为
r
r s －１ ｅｘｐ

r
r s ＝u２ －v２ ，

t
２t s ＝ａｒｃ ｔｈ uv ． （１畅４畅４ａ）

最后得到 Ｋｒｕｓｈａｌ度规：
ｄs２ ＝３２m３

r ｅｘｐ － rr s （ｄv２ －ｄu２ ） －r２ ｄΩ２． （１畅４畅６）
由（１．４．６）式可见， 度规除了 r ＝０ 有一奇点以外， 再无奇点．由（１畅４畅４）可知， r ＝
r s 对应于 v＝±u， 即空 －时图中两条 ±π

４ 分角线．由（１畅４畅４）还可看出， 中心奇点
r ＝０ 对应于 v２ －u２ ＝１， 是两条等轴双曲线， 其渐近线就是上述两条 ±π

４ 分角线．
以 r＝０（两条双曲线）和 r ＝r s（两条分角线）为界， 可将空时分成四个区域：左

右两个区域（R２ 区和 R１ 区）， r ＞r s；上下两个区域（T区和 珘T 区）， r ＜r s．
在 R１ 区和 R２ 区， r＝常数 ＞r s 对应于 u２ －v２ ＝C ＞０， 是以 u 轴为对称轴的双

曲面簇．
在 T区和 珘T区， r ＝常数 ＜r s 对应于 v２ －u２ ＝C ＞０， 是以 v轴为对称轴的双曲

面簇．
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对于光子的径向运动， ｄs＝ｄθ ＝ｄφ＝０， 由（１畅４畅６）得
ｄv
ｄu ＝±１， （１畅４畅７）

即光锥面与 ±π
４ 分角线平行， 与狭义相对论中的情形相同．因此类时线满足

ｄs２ ＞０， 　 ｄu
ｄv ＜１，

与 u 轴夹角大于π
４ ．类空线满足

ｄs２ ＜０， 　 ｄu
ｄv ＞１，

与 u 轴夹角小于π
４ ．

由空－时图可见， R１ 区和 R２ 区的粒子随时间坐标 v 的增大不可能进入 珘T 区，
只能进入 T区；T区的粒子随 v的增大将一律到达中心奇点 r ＝０， 不可能沿相反方
向运动．因此， T区即史瓦希黑洞， r ＝r s 为视界．

珘T区内的粒子将一律进入 R 区（R１ ， R２ ）， 相反的过程是不可能的．因此， 珘T 区
即史瓦希白洞， r＝r s 仍为单向膜．

在 Ｋｒｕｓｋａｌ空时中存在两个不联通的宇宙， 对应于 R１ 区和 R２ 区．不可能用任
何信号把这两个区域联系起来．两个区域中间隔一个“喉”（ ｔｈｒｏａｔ）或称为“虫洞”
（ｗｏｒｍｈｏｌｅ）．这两个宇宙的含义现在尚不清楚．

１畅５　Ｐｅｎｒｏｓｅ图
首先区分下列几个不同的无穷远概念：
Ⅰ ＋：类时未来无穷远
定义　对于任一有限 r值， 当 t→ ＋∞时， 类时世界线伸展的区域．
Ⅰ －：类时过去无穷远
定义　对于任一有限 r值， 当 t→ －∞时， 类时世界线伸展的区域．
Ⅰ０ ：类空无穷远
定义　对于任一有限 t值， 当 t→∞时， 类空世界线伸展的区域．
L ＋：类光未来无穷远
定义　当（ t －r）为有限值， 而（ t ＋r）→∞的区域， 或所有出射类光世界线的

伸展区域．
L －：类光过去无穷远
定义　当（ t＋r）为有限值， 而（ t －r）→ －∞的区域， 或发出入射类光世界线
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的区域．
可以证明， 在共形变换下， 闵可夫斯基时空图 ５ 可变为 Ｐｅｎｒｏｓｅ 图 ６．同样，

Ｋｒｕｓｋａｌ时空图 ４ 可变为 Ｐｅｎｒｏｓｅ 图 ７．

图 ５　　　　　　　　　　　　　　图 ６

图 ７
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第 2 章　球对称恒星的引力坍缩
一颗温度高于环境温度的恒星会连续发射能量， 它的质量不断减少．恒星物

质在引力的压缩过程中被加热， 使氢核聚变， 成为氦， 从而提供防止恒星冷却的
能源， 并产生强大的辐射压与引力相平衡．这样的恒星的平均密度是 １ ｇ· ｃｍ －３．
太阳就是这类恒星的一个例子．

当恒星的氢燃烧殆尽以后， 可以发生其他的核反应过程， 产生更重的核．但
这些过程持续的时间很短．在强大的引力的作用下， 恒星物质密度迅速增大， 致
使恒星物质（除极薄的外层部分以外）的电子发生简并， 于是恒星进入一个新的平
衡阶段， 由电子的简并压和引力相平衡．这种恒星的密度约为 １０７ ｇ· ｃｍ －３ ， 白矮
星就属于这类恒星．

质量大于 １畅２M⊙的白矮星不可能稳定， 电子和核内的质子反应变为中子， 从
而使恒星物质呈中子态．中子星便属于这类恒星， 其密度约为 １０１４ ｇ· ｃｍ －３．如果
中子星质量 M ＜３畅２M⊙ ， 则可以稳定存在．现在人们知道， 脉冲星即中子星， 它们
发出的光和电磁辐射脉冲周期从 １０ －３ ～１ｓ．观测到的脉冲星周期相当准确， 这只
可能解释为中子星在旋转， 而以这样的周期旋转的恒星半径应该相当小．中子星
靠着简并中子气产生的简并压支撑引力以维持力学平衡．

质量大于 ３畅２M⊙的中子星不可能稳定， 它会无限坍缩， 成为黑洞倡．

２畅１　广义相对论恒星的引力平衡
史瓦希内部解为

ｄs２ ＝ｅνｄt２ －ｅλｄr２ －r２ ｄΩ２． （２畅１畅１）
式中 ν ＝ν（ r），λ＝λ（ r）．度规（２畅１畅１）描述静态球对称恒星内部的引力场．质量密
度 ρ ＝ρ（ r）、压力 p＝p（ r）的理想流体模型是星际物质的一个很好的近似．当 ρ不
等于常数时， 解场方程得到（２畅１畅１）式中的度规系数

ｅ－λ ＝１ －２m（ r）
r ． （２畅１畅２）

式中 m（ r）为质量函数， 定义为

倡 白矮星和中子星的临界质量的数值因态方程（模型）不同而略有不同．



m（ r） ≡ ４π∫r０ ρ（x） r２ ｄr． （２畅１畅３）
采用（２畅１畅２）， 可将其余场方程写为

ν′＝－ ２p′
p ＋ρ， （２畅１畅４）

kp ＝ν′
r １ －２m

r －２m
r３

． （２畅１畅５）
　　我们先讨论 ρ ＝ρ（ r）的一般情况， 然后再讨论 ρ ＝ｃｏｎｓｔ．的情况．一个稳定平
衡的恒星须满足一些物理条件．设恒星半径为 r０ ， p（ r０ ） ＝０，pｍａｘ ＝p（０） ＝有限值，
ρｍａｘ ＝ρ（０） ＝有限值；质量密度 ρ（ r）随 r的增大而减小：

ρ′（ r） ＜０． （２畅１畅６）
在恒星表面， eν 和它的导数应该是连续的， m（ r０ ）应等于史瓦希外解中的质量 M：

m（ r０ ） ≡ M． （２畅１畅７）
由（２畅１畅３）式可知， 在 r ＝０ 处 m（ r） ／r３ 是有限的．

下面我们要寻求对于给定 r０ 的最大可能质量 M， 即寻求恒星的临界质量．令
f（ r） ≡ ｅν／２ ， （２畅１畅８）

上述压强有限的条件可表示为， f′／rf 在 r ＝０ 处有限． （２畅１畅９）
由（２畅１畅４）和（２畅１畅５）式可以得到

ｄ
ｄr １
r １ －２m

r f ′＝ f
１ －２m／r

ｄ
ｄr
m
r３

． （２畅１畅１０）

由（２畅１畅６）式可知， ｄｄr
m
r３ ≤０， 故有

ｄ
ｄr １
r １ －２m

r f ′≤ ０． （２畅１畅１１）
在 r＝r０ ， 应有 p（ r０ ） ＝０， 且内、外解应光滑连接， 因此有

f ２ （ r０ ） ＝１ －２M
r０

，　 ｄf
ｄr

r ＝０
＝M
r２０

１
１ －２M／r０． （２畅１畅１２）

用（２．１．１２）式对（２畅１畅１１）式从 r到 r０ 积分， 得到
f ′（ r） ≥ Mrr３０ １ －２m

r
－１ ／２． （２畅１畅１３）

应用条件（２畅１畅１２）和（２畅１畅１３）式， 在 ０ 到 r０ 之间积分， 得到
f（０） ≤ １ －２M

r０

１ ／２ －M
r３０ ∫r００ rｄr

（１ －２m／r） １ ／２． （２畅１畅１４）
把 ρ（ r）写成

ρ（ r） ＝ρ０ ＋μ．

·１１·２畅１　广义相对论恒星的引力平衡



式中 ρ０ ＝６M／kr３０ ，μ满足式
∫r００ μ（ r） r２ ｄr ＝０，　μ′≤ ０， μ（０） ≥ ０． （２畅１畅１５）

则有

m（ r） ＝M r３
r３０

＋∫r０ μ（ r） r２ ｄr． （２畅１畅１６）
式中的积分总是正的．用 m（ r）代替 Mr３ ／r３０ 将使（２畅１畅１４）式右端的值增大．由此可
以得到

f（０） ≤ ３
２ １ －２M

r０

１ ／２ －１
２ ． （２畅１畅１７）

注意 f（０） ＞０， 则由（２．１．１７）式得到
２M
r０

＜ ８
９ ． （２畅１畅１８）

这就是恒星保持稳定平衡的条件．应注意（２．１．１８）式中 M 和 r０ 的定义．M 是质量
密度 ρ在坐标体积中的积分， 对应于牛顿引力理论中的引力质量．半径 r０ 的定义
要使表面积为 ４πr２０．（２畅１畅１８）表明， 表面积一定的恒星， 只要其质量小于临界质
量， 就是稳定的．质量大于临界质量的恒星不会稳定， 会因引力的作用而坍缩．

当 ρ ＝ｃｏｎｓｔ．时， 由（２畅１畅３）， （２畅１畅７）和（２畅１畅１８）式得到临界质量的表示式：
MC ＝ ８

９
２

３kC２ ρ． （２畅１畅１９）
式中 C２ ＝１畅８６ ×１０ －２７ ｃｍ· ｇ －１．代入几个典型密度， 得到下列临界质量：

ρ／（ ｇ· ｃｍ） －３ １ １０ ６ １０ １５

M C／M⊙ １畅１４ ×１０ ８ １畅１４ ×１０ ５ ３畅９６

这些数值虽不很精确， 但已清楚地表明， 中子星只能具有几倍太阳的质量， 质量
再大的中子星将没有稳定的终态．

由（２畅１畅１８）式及光谱线引力红移的公式可以得到， 稳定的恒星表面发出的光
最大的红移值是 Z ＝２．

２畅２　球对称恒星的引力坍缩
２．１ 节的讨论已经表明， 在恒星演化的晚期， 如果恒星质量大于中子星的临

界质量， 将无限坍缩．这实际上只是一个直观的假设．在本节中， 我们利用一个简
单的态方程， 进行严格的计算， 来证明上述假设的正确性．

·２１· 第 ２章　球对称恒星的引力坍缩



假设恒星物质是零压流体．由于压强等于零， 只要恒星开始收缩， 就必然要
坍缩至一点．由这一模型所得到的度规在整个空时区域内满足爱因斯坦场方程．

取随动坐标系（ t，r，θ， φ）， 解爱因斯坦场方程， 将得到 Ｔｏｌｍａｎ 度规：
ｄs２ ＝ｄt２ －［R′（ r，t）］ ２

１ ＋f（ r） ｄr
２ －R２ （ r，t）ｄΩ２． （２畅２畅１）

式中 f（ r）是满足条件 f（ r） ＞－１ 的任意函数．令 R（ r，t） ＝R（ t）· r， f（ r） ＝－kr２ ，
得到一个最简单的恒星内部解：

ｄs２ ＝ｄt２ －R２ （ t） ｄr２
１ －kr２ ＋r２ ｄΩ２ ． （２畅２畅２）

这正是 Ｒｏｂｅｒｔｓｏｎ唱Ｗａｌｋｅｒ度规．由于它描述均匀、各向同性空－时， 所以在宇宙学中
有重要意义．

在随动坐标系中有 u i ＝０，u０ ＝１， 守恒方程 T ν
μ；ν ＝０ 的空间分量自然满足， 时

间分量为

T ν
０；ν ＝－抄ρ

抄t －ρ 痹a
２a ＋ 痹b

b ＝０． （２畅２畅３）
式中， a≡ －R

２ （ t）
１ －kr２ ，b≡ －R２ （ t） r２．

又由场方程 R１１ －１
２ g１１R ＝４πT１１得

２k －R　·· （ t）R（ t） －２ 痹R２ （ t） ＝４πρ． （２畅２畅４）
由（２畅２畅３）和（２畅２畅４）式得到 ρ（ t）R３ （ t） ＝ｃｏｎｓｔ．，调整径向坐标， 使

R（０） ＝１． （２畅２畅５）
此时有 ρ（ t）R３ （ t） ＝ρ（０）， 即

ρ（ t） ＝ρ（０）R－３ （ t）． （２畅２畅６）
将（２畅２畅５） ～（２畅２畅６）和（２畅２畅２）式代入场方程， 可将场方程化为

４πρ（０）R－１ （ t） ＝２k ＋R（ t） R　·· （ t） ＋２ 痹R２ （ t）， （２畅２畅７）

４π
３ ρ（０）R－１ （ t） ＝－R（ t） R　·· （ t）． （２畅２畅８）

消去 R
　· · （ t）， 得到

痹R２ （ t） ＝－k ＋８π
３ ρ（０）R－１ （ t）． （２畅２畅９）

假设 t＝０ 时流体是静止的， 则有
痹R（ t） ＝０． （２畅２畅１０）

代入（２畅２畅９）式得
k ＝８π

３ ρ（０）． （２畅２畅１１）

·３１·２畅２　球对称恒星的引力坍缩



（２畅２畅９）式化为
痹R２ （ t） ＝k［R－１（ t） －１］， （２畅２畅１２）

此方程的解具有形式：
t ＝ １

２ k（ψ＋ｓｉｎψ），

R ＝ １
２ （１ ＋ｃｏｓψ）．

（２畅２畅１３）
（２畅２畅１４）

这是摆线（图 ８）的参数方程， 当 ψ＝π， 即当 t ＝π／２ k时， R（ t） ＝０．这表明一个
零压流体球将在有限长的时间 π／２ k内从静止坍缩到中心奇点．

图 ８

虽然在随动坐标系中观测， 这一坍缩过程只
需要有限长时间， 但是对于远处观察者， 由 １畅１
节可知， 星体表面要达到史瓦希面需经过无限长
时间；要坍缩到 r ＝０， 外面的观察者是看不到的．

由随动坐标系变至史瓦希坐标系， 可以求得
远处观察者测得的自星球表面发出的光的红移

（Ｗｅｉｎｂｅｒｇ，１９７２）：
Z≡Δν

ν ＝ １ － ka２R（ t）
－１

［ １ －ka２ ＋a k［１ －R（ t）］R－１ （ t）］ －１．
（２畅２畅１５）

对（２．２．１５）式的详细分析表明， 由开始坍缩时记时（对于远处观察者）， 红移 Z 由
零开始缓慢增大， 然后 Z 的增大速度突然加快（接近指数规律）， 红移趋于无限
大．这就是说， 在远处观察者看来， 坍缩着的恒星实际上是突然消失的．
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第 3 章　克 尔 黑 洞

史瓦希解是球对称无转动场源的引力场， 这是十分特殊的情况．一般的引力
坍缩不可能是球对称的， 因为各种天体都具有角动量．本章讨论具有轴对称性的
旋转天体的引力性质．

３畅１　克 尔 度 规
轴对称旋转天体的引力场由 Ｐａｐａｐｅｔｒｏｕ 度规描述：

ｄs２ ＝f（ｄt －ωｄφ） ２ －f －１［ｅ２ r（ｄρ２ ＋ｄz２ ） ＋ρ２ ｄφ２ ］． （３畅１畅１）
变换到椭球坐标：

ρ ＝k（x２ －１） １ ／２ （１ －y２ ） １ ／２ ，　z ＝kxy． （３畅１畅２）
令　k≡Mpδ ， 将场方程的解写为

f＝Aδ ／Bδ，ｅ２ r ＝Aδ ／p２δ（x２ －y２ ） δ２，
ω＝－２MqCδ（１ －y２ ） ／Aδ． （３畅１畅３）

式中 p和 q满足条件 p２ ＋q２ ＝１；不旋转时 q ＝０， p＝１．δ＝１， 对应于 Ｋｅｒｒ 解
A１ ＝p２ x ＋q２ y －１，　B１ ＝（px ＋１） ２ ＋q２ y，
C１ ＝－（px ＋１）． （３畅１畅４）

δ＝２ 时的解为
A２ ＝［p２ （x２ －１） ２ ＋q２ （１ －y２ ）］ ２

－４p２ q２ （x２ －１）（１ －y２ ）（x２ －y２ ），
B２ ＝（p２ x４ ＋q２ x４ －１ ＋２px３ －２px） ２

＋４q２ y２ （px３ －pxy２ －y２ ＋１） ２ ，
C２ ＝p２ （x２ －１）［ －４x２ （x２ －y２ ） ＋（x２ －１）（１ －y２ ）］

＋p３ x（x２ －１） ×［－２（x４ －１） －（３ ＋x２ ）（１ －y２ ）］
＋q２ （３x ＋１）（１ －y２ ） ３． （３畅１畅５）

　　在上述诸式中， 如果 q ＝０， 则 f 和 ｅ２ r的表达式成为第一篇中的（３畅３畅３０）和
（３畅３畅３１）式， ω＝０， 设物体的角动量为 J， 则有

J ＝M２ q ＝Ma． （３畅１畅６）
将 δ ＝１ 的解作变换



px ＝ r
M －１，　y ＝ｃｏｓθ， （３畅１畅７）

得到通常形式的 Ｋｅｒｒ度规
ｄs２ ＝ １ － ２Mr

r２ ＋a２ ｃｏｓ２ θ ｄt
２ － r２ ＋a２ ｃｏｓ２ θ
r２ ＋a２ －２Mrｄr

２

－（ r２ ＋a２ ｃｏｓ２ θ）ｄθ２ － （ r２ ＋a２） ｓｉｎ２θ 　
　

＋２Mra２ ｓｉｎ４ θ
r２ ＋a２ ｃｏｓ２ θ ｄφ

２ ＋ ４Mraｓｉｎ２θ
r２ ＋a２ ｃｏｓ２θｄtｄφ． （３畅１畅８）

３畅２　特 征 曲 面
无限红移面是 g００ ＝０ 的面．史瓦希场的无限红移面为 r ＝rs≡２m， 克尔场中的

无限红移面为

r∞± ＝M ± M２ －a２ ｃｏｓ２ θ． （３畅２畅１）
　　由空－时图可知， 一个超曲面 f（xμ） ＝０ 为单向膜的条件是其法向矢量 nμ＝f，μ
为非类空矢量， nμ为零矢量对应于单向膜开始出现的超曲面， 称为视界．因此，
视界 f（xμ） ＝０ 满足条件

nμnμ ＝gμν 抄f
抄xμ

抄f
抄xν ＝０． （３畅２畅２）

　　将史瓦希度规代入（３．２．２）式， 注意到球对称性［ f（xμ） ＝f（ r）］， 得到
gμν fμ f， ν ＝－ １ －２M

r
抄f
抄r

２ ＝０．
此方程的解为 r＝２M≡r s．显然， 史瓦希场的视界和无限红移面重合．

将克尔度规（３畅１畅８）式代入（３畅２畅２）式， 注意到辐射对称性［ f（xμ） ＝f（ r，θ）］，
得到

gμν f， μf， ν ＝g１１ f ２
， １ ＋g２２ f ２

， ２

＝２Mr －r２ －a２
r２ ＋a２ ｃｏｓ２ θ f

２
， １ － １

r２ ＋a２ ｃｏｓ２ θ f
２
， ２ ＝０．

由于 r２ ＋a２ ｃｏｓ２ θ≠０， 得到
（ r２ ＋a２ －２Mr） f ２， １ ＋f ２

， ２ ＝０． （３畅２畅３）
分离变量， 得到此方程的解：

rh± ＝M ± M２ －a２． （３畅２畅４）
比较（３畅２畅４）和（３畅２畅１）式， 知克尔场的无限红移面和视界不重合．

类似地， 将 Ｋｅｒｒ唱Ｎｅｗｍａｎ 度规代入（３畅２畅２）式， 得到视界面
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rh± ＝M ± M２ －a２ －kQ２ （３畅２畅５）
　　对于 Ｋｅｒｒ唱Ｎｅｗｍａｎ唱Ｋａｓｙｕａ 场， 只要将（３．２．５）式中的 Q２

换为（ｅ２ ＋q２ ）．
在克尔空－时中， 直角坐标（x，y，z）与坐标（ r，θ， φ）的关系为（Ｋｅｒｒ，１９６３）

x＝（ rｃｏｓφ－aｓｉｎφ） ｓｉｎθ，
y＝（ rｓｉｎφ＋aｃｏｓφ） ｓｉｎθ，
z ＝rｃｏｓθ． （３畅２畅６）

在直角坐标系中， 克尔度规具有形式：
ｄs２ ＝ｄt２ －ｄx２ －ｄy２ －ｄz２

－ ２Mr
r４ ＋a２ z２

r（xｄx ＋yｄy） －a（xｄy －yｄx）
r２ ＋a２

＋zｄzr ＋ｄt
２． （３畅２畅７）

这一表达式消除了视界处的坐标奇异性．r ＝０ 处仍为奇点．由（３畅２畅６）式可知， 中
心奇点对应于

z ＝０，　x２ ＋y２ ＝a２ ｓｉｎ２ θ，　０ ≤ θ ≤ π
２ ． （３畅２畅８）

这是二维空间（x，y）中的一个圆盘．又由度规（３畅１畅８）可知
r２ ＋a２ ｃｏｓ２ θ ＝０ （３畅２畅９）

为奇异面．（３．２．９）式仅当 r＝０ 且 θ ＝π
２ 时方能成立（a≠０）．由于此时标曲率 R ＝

∞， 可知这一奇异性是内禀的．在直角坐标系（３畅２畅５）中， 这一奇异性对应于
z ＝０，　x２ ＋y２ ＝a２． （３畅２畅１０）

这是二维空间（x，y）中的一个圆环．比较（３畅２畅１０）和（３畅２畅８）式可以发现， 只有圆
环（３畅２畅１０）式才是内禀奇异的．圆盘（３畅２畅８）式比圆环（３畅２畅１０）式多出来的一个
开域只是坐标奇异的， 因为在这个开域上 r＝０，θ ＜π

２ 度规（３畅１畅８）式是解析的．
由（３畅２畅４）， （３畅２畅６）和（３畅２畅１０）式可以看出， 在二维空间（ x，y）内， 内禀奇

异环（３畅２畅１０）在视界 rh±的里面．即克尔场的视界面包围了真奇点（内禀奇点）， 如
图 ９ 所示．图中虚线表示视界， 实线表示无限红移面， 倡表示真奇点．

详细分析表明， δ ＝１， ２， ３， …对应的辐射对称解中， 只有 δ ＝１ 的解（ ｋｅｒｒ
解）没有裸奇点．

克尔时空的无限红移面 r s±和视界 rh±满足
r s＋≥ rh＋ ＞rh－≥ r s－，

如图 １０ 所示．视界 rh＋和无限红移面包围的区域叫能层．面 rh＋和 r s＋在自转轴处相
切．对于史瓦希黑洞， rh＋ ＝r s＋， 能层不存在．
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图 ９

图 １０
当粒子静止于能层外面时， 有

g００ ＝ １ － ２mr
r２ ＋a２ ｃｏｓ２ θ ＞０，

ｄs２ ＝g００ c２ ｄt２ ＞０，
世界线为类时曲线， 这当然是合理的．但是当粒子位于能层内部（静止）时，

g００ ＝ １ － ２mr
r２ ＋a２ ｃｏｓ２ θ ＜０，

ｄs２ ＝g００ c２ ｄt２ ＜０．
世界线是类空曲线， 这表明粒子不可能静止于能层内部．

在能层内部， 线元可写为
ｄs２ ＝g００ c２ｄt２ ＋g１１ ｄr２ ＋g２２ ｄθ２ ＋g３３ｄφ２ ＋２g０３ cｄφｄt，

其中，
g００ ＝ １ － ２mr

r２ ＋a２ ｃｏｓ２ θ ＜０，
g１１ ＜０，g２２ ＜０，　g３３ ＜０，　g０３ ＞０．

因此， 不能再把 t看作时间坐标， 把 r，θ， 矱看作空间坐标．但是可以把线元改写为
ｄs２ ＝ g００ －g０２g３３ c

２ｄt２ ＋g１１ ｄr２ ＋g２２ ｄθ２ ＋
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g３３ ｄ矱＋g０３g３３ cｄt
２．

由于 r ＞rh＋时有
g００ －g

２
０３
g３３

＝ r２ －２mr ＋a２
r２ ＋a２ ＋２mra２ ｓｉｎ２ θ

r２ ＋a２ ｃｏｓ２ θ
＞０，

所以只要令

ｄ矱＋g０３g３３ cｄt ＝０，
便可以保证 r ＝ｃｏｎｓｔ．和 θ ＝ｃｏｎｓｔ．时， ｄs２ ＞０．这表明， t 仍可作为时间轴， 其余三
个轴可看作空间轴．这正是能层外部观测者所看到的．但是这时坐标轴随转动球一
起作同方向转动．我们有

矱· ＝－cg０３g３３ ＝ rgar
（ r２ ＋a２ ｃｏｓ２ θ）（ r２ ＋a２ ） ＋rg ra２ ｓｉｎ２ θ，

在靠近视界的地方有

矱· → a／rg rh＋，
一般地， 有

矱· （ r ＝rh＋） ＞矱· （ r ＞rh＋）， 　　rg ＝２m．
　　这就是说， 能层内部的坐标系必须被转动球体拖曳， 以角速度

矱· ＝－cg０３g３３
绕对称轴与球体作同方向转动．无限红移面是一个静止的界面， 亦称静界．

３畅３　黑洞的无毛定理
Ｃａｒｔｅｒ唱Ｒｏｂｉｎｓｏｎ 定理断言， 渐近平直稳态轴对称中性黑洞的外部引力场有惟

一解， 即克尔解．这就是说， 所有渐近平直的稳态黑洞， 都只由三个参量惟一确
定， 这三个参量就是黑洞的质量 M， 角动量 J（或比角动量 a）以及电荷（有电荷时
相应的解为克尔－纽曼解）．

下面我们导出克尔黑洞的两个基本关系式， 积分关系式
M ＝２ΩJ ＋κ

４πA， （３畅３畅１）
和微分关系式

δM ＝ΩδJ ＋κ
８πδA． （３畅３畅２）
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　　稳态轴对称空间存在两个 Ｋｉｌｌｉｎｇ 矢量， 类时 Ｋｉｌｌｉｎｇ 矢量 ξ（ t）和类空 Ｋｉｌｌｉｎｇ 矢
量 ξφ， 它们满足恒等式

ξ（ t）μ；ν ＝ξ（ t） ［μ；ν］ ；　ξ（φ）μ；ν ＝ξ（φ） ［μ；ν］ ， （３畅３畅３）
ξ（ t）μ；νξν

（φ） ＝ξ（φ）μ；νξν
（ t） ， （３畅３畅４）

ξμ；ν
（ t） ；ν ＝－Rμ

νξν
（ t） ， （３畅３畅５）

ξμ；ν
（φ） ；ν ＝－Rμ

νξν
（φ） ． （３畅３畅６）

由关于 ξμ
（ t） ， ξμ

（φ）的 Ｋｉｌｌｉｎｇ 方程
ξ（ t）μ；ν ＋ξ（ t） ν；μ ＝０，

得

－ξ（ t） ν；μ ＝ξ（ t）μ；ν

故

ξ（ t） ［ u；ν］ ≡ １
２ （ξ（ t） u；ν －ξ（ t） ν；u） ＝ξ（ t） u；ν．

类似地可证

ξ（φ）μ；ν ＝ξ（φ） ［μ；ν］ ．
　　（３畅３畅４）式的证明如下．设时间位移生成元和 φ位移生成元分别为

I t ＝抄
抄t ＝ξu（ t） 抄

抄xμ，
Iφ ＝抄

抄φ＝ξμ
（φ）

抄
抄xμ．

由于 I t· Iφ ＝Iφ· I t， 故
ξμ
（ t）

抄
抄xμ ξν

（φ）
抄
抄xν ＝ξν

（φ）
抄
抄xν ξμ

（ t）
抄
抄xμ，

即

ξμ
（ t） ξν

（φ） ， μ
抄
抄xν ＝ξν

（φ） ξμ
（ t） ， ν

抄
抄xμ，

或

ξμ
（ t） （ξν

（φ） ；μ －Γν
λμξλ

（φ） ） 抄
抄xν ＝ξμ

（φ） （ξμ
（ t） ；ν －Γμ

λνξλ
（ t） ） 抄

抄xμ
＝ξμ

（φ） ξν
（ t） ；μ －Γν

λμξλ
（ t）

抄
抄xν，

即

（ξμ
（ t） ξν

（φ） ；μ －ξμ
（φ） ξν

（ t） ；μ） 抄
抄xν ＝０．

由于这是一个恒等式， 故（３畅３畅４）式得证．
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现在 ４ 维时空中选一个不含奇异性的类空超曲面（例 t ＝常数）， 对（３畅３畅５）
式两边进行面积分得

∫Sξμ；ν
（ t） ；νｄΣμ ＝∫SRμ

νξν
（ t） ｄΣμ．

按高斯定理

∫Sξμ；ν
（ t） ；νｄΣμ ＝∫Sξμ；ν

（ t） ｄΣμν，
式中抄S 是类空超曲面 S 的边界， 取抄S 为

抄S ＝抄SB ＋抄S∞ ，
其中抄SB 为包围黑洞的界面， 抄S∞为无限远界面．在无限远处度规渐近球对称， ξμ

（ t）

＝（ξ０
t ， ０， ０， ０）， 我们有

∫抄S∞ξμ；ν
（ t） ｄΣμν ＝∫ξ０；r

（ t） ｄΣ０ r ＝∫g rrξ０
（ t） ；rｄΣ０ r

＝∫g rr 抄ξ０
（ t）
抄r ＋Γ０

０ rξ０
（ t） ｄΣ

＝∫g rrΓ０
０ rξ０

（ t） ｄΣ０ r ＝∫１
２ g

rrg００ g００， rｄΣ０ r

＝∫１
２ g

rrg００g００，r g００ g rr r２ ｓｉｎθｄθｄφ
＝－∫（ －１

２ ） －２M
r２
r２ ｓｉｎθｄθｄφ

＝－４πM．
故

M ＝ １
４π∫SRμ

νξν
（ t） ｄΣμ ＋１

４π∫抄S Bξμ；ν
（ t） ｄΣμν． （３畅３畅７）

可见等式右边第一个积分即黑洞外部空间总质量， 右边第二个积分即黑洞总质
量．若选取上述类空超曲面处处与 ξμ

（φ）相切， 并对（３畅３畅６）式两边进行面积分得
∫Sξμ；ν

（φ） νｄΣμ ＝－∫SRμ
νξν

（φ） ｄΣμ，
上式左边可化为 ∫抄Sξμ；ν

（φ） ｄΣμν．
右边利用

Rμν －１
２ Rgμν ＝－８πTμν，

可化为

－４π∫S（２Tμ
ν －Tδμ

ν）ξν
（φ） ｄΣμ ＝－８π∫STμ

νξν
（φ） ｄΣμ （因ξμ

（φ） ｄΣμ ＝０）．
　　令　ｄΣμ＝（ｄΣ０ ， ０， ０， ０）， 则
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－∫STμ
νξν

（φ） ｄΣμ ＝－∫ST０
φｄΣ０ ＝J．

这显然就是超曲面 S 内的总角动量 J．若黑洞外无物质分布， J 即黑洞总角动量，
M 即黑洞质量．

J＝－１
８π∫抄S Bξμ；ν

（φ） ｄΣμν， （３畅３畅８）
M ＝１

４π∫抄S Bξμ；ν
（ t） ｄΣμν． （３畅３畅９）

由于视界的性质， 过视界上任一点有且仅有一光锥和视界面相切， 即有且仅有一
根视界面上的零短程线（称为视界的母线）．

沿上述母线上任一点引入以时间 t为参量的零短程线切矢量
lμ ＝ｄxμｄt ，

则

lμ ＝抄xμ
抄xν
ｄxν
ｄt ＝δμ

t ＋δμ
φ
ｄφ
ｄt ＝ξμ

（ t） ＋Ωξμ
（φ） ． （３畅３畅１０）

由于 ξμ
（ t） ，ξμ

（φ）都是 Ｋｉｌｌｉｎｇ 矢量， 故 lμ也是 Ｋｉｌｌｉｎｇ 矢量， 满足 Ｋｉｌｌｉｎｇ 方程
lμ；ν ＋lν；μ ＝０．

由（３畅３畅８）和（３畅３畅９）式得
M ＝１

４π∫抄S B（ lμ；ν －Ωξμ；ν
（φ） ）ｄΣμν

＝１
４π∫抄S B lμ；νｄΣμν －Ω∫１

４πξ
μ；ν
（φ） ｄΣμν

＝１
４π∫抄S B lμ；νｄΣμν ＋２ΩJ． （３畅３畅１１）

现在在视界上任一点引入局部零标架 lμ， nμ，mμ，珚mμ．其中 lμ即沿母线该点的切
矢， nμ

是与抄SB 垂直的法矢， mμ， 珚mμ
是在视界内的另两个切矢量．视界面上的面

元可写为

ｄΣμν ＝ １
２ （ lμnν －lνnμ）ｄA ＝l［μnν］ ｄA．

由此得

１
４π∫抄S B lμ；ν １

２ （ lμnν －lνnμ）ｄA
＝１
４π∫抄B S １

２ lμnν（ lμ；ν －lν；μ）ｄA
＝１
４π∫抄B S lμnν lμ；νｄA

＝－１
４π∫抄B S lν；μlμn νｄA
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＝－１
４π∫抄SB lμ；νnμlνｄA ＝ １

４π∫抄S BκｄA． （３畅３畅１２）
式中

κ≡－lμ；ν lν· nμ ＝－Dlμｄt · nμ，
代表与视界一起转动的粒子的坐标加速度的内法向分量， 也就是视界面上的引力
加速度， 它满足

κ， μlμ ＝κ， μmμ ＝κ， μ珚mμ ＝０．
因此， κ在视界面上为一常数．由（３畅３畅１１）和（３畅３畅１２）式便得到（３畅３畅１）式．

下面计算 Ω， A和 κ， 能层内各点的拖曳角速度 Ω具有形式
Ω ＝－cg０３g３３ ，

代入 r ＝rh＋， 便得到视界的角速度
Ω＝ a

rg rh＋
＝ J
２M［M２ ＋（M４ －J２ ） １ ／２ ］ ＝ J

４M· M２
ir
． （３畅３畅１３）

式中

M ir ≡ １
２［M

２ ＋（M４ －J２ ） １ ／２ ］ １ ／２

叫黑洞的不可约质量．在史瓦希黑洞的情况下它等于黑洞的质量 M．
由（３．３．１３）式可以看出， 视界上所有的点具有同一个拖曳角速度， 即黑洞作

刚性转动， 只有一个角速度 Ω．
令 t＝ｃｏｎｓｔ．，　r＝rh＋， 克尔度规变为

ｄl２ ＝－（ rh２＋ ＋a２ ｃｏｓ２ θ）ｄθ２ － （ rh２＋ ＋a２ ）ｓｉｎ２ θ ＋　
　

２mrh＋ a２ ｓｉｎ４ θ
rh２＋ ＋a２ ｃｏｓ２ θ ｄφ

２ ，

g１ ／２ ＝ g θθ　gθφ
gφθ　gφφ

１ ／２
＝（ rh２＋ ＋a２ ） ｓｉｎθ．

故

ｄA ＝ gｄθｄφ，
即

A＝∫ｄA ＝４π（ rh２＋ ＋a２ ）
＝８π［M２ ±（M４ －J２ ） １ ／２ ］ ＝１６πM２

ir． （３畅３畅１４）
　　对于克尔－纽曼黑洞有
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A ＝４πG
c４

［２GM２ －Q２ ＋２（G２M４ －J２ c２ －GM２Q２ ） １ ／２］．
　　由（３畅３畅１３）和（３畅３畅１４）式可以得到

M ＝４π J
AΩ ＝２ΩJ －２ΩJ ＋４π J

AΩ．
而右端第二、三项为

４π J
AΩ－２ΩJ ＝ M２ －J２

M２
１ ／２ ＝ １

M （M４ －J２ ） １ ／２ ，
将此两式与（３畅３畅１）式比较， 可知

κ
４πA ＝ １

M （M４ －J２ ） １ ／２，
即

κ＝４π（M４ －J２ ） １ ／２

MA ＝ （M４ －J２ ） １ ／２

２M［M２ ＋（M４ －J２ ） １ ／２ ］ ＝
２M２

ir －M２

４MM２
ir

＝ （ rh＋－rh－）
２（ rh２＋ ＋a２ ）．

　　在克尔－纽曼黑洞的情况下（采用 ＣＧＳ 制）有
κ＝４π

A G２M２ －J２ c２
M２ －GQ２ １ ／２．

在史瓦希黑洞的情况下， 显然有 κ＝１
４M ＝Mr２g ， 即史瓦希黑洞表面的引力加速度．

由克尔情况可知， 当 M２ ＝J（或 M ＝a）时 κ＝０．这可以解释为惯性离心力和
引力相抵消；这类黑洞称为极端克尔黑洞．

如果 J＞M２ （或者 a ＞M）， 视界不存在， 中心奇点裸露， 这在物理学中是不可
接受的．所以 Ｐｅｎｒｏｓｅ（１９６８）提出：“……是否存在一位‘宇宙监督’， 他严禁出现裸
奇点， 把每一个奇点都用视界面覆盖住？”这就是著名的宇宙监督原理．按照这一
原理， 不可能有 J＞M２．

下面证明（３畅３畅２）式：
对 M ir的定义式

２M２
ir ＝M２ ＋（M４ －J２ ） １ ／２ ，

两边微分， 得到
δM ir ＝ M ir

（M２ －a２ ） １ ／２ δM － J
４MM２

ir
δJ ．

考虑到（３畅３畅１３）式知上式即
δM ir ＝ M ir

（M２ －a２ ） １ ／２ ［δM －ΩδJ］．
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由（３畅３畅１４）和（３畅３畅１５）式知上式即
δM ＝ΩδJ ＋κ

８πδA．
在 ＣＧＳ 单位制中

δ（Mc２ ） ＝ΩδJ ＋κc２
８πGδA．

在克尔－纽曼黑洞的情况下有
δM ＝ΩδJ ＋κ

８πδA ＋VδQ，

V＝ Qrh＋
c２ （ rh２＋ ＋a２）．

３畅４　Ｒｉｎｄｌｅｒ变 换
这是一个由闵可夫斯基时空坐标（X －T）向弯曲时空坐标（ x －t）的变换， 变

换式为

T ＝xｓｈt，
X ＝xｃｈt；　R 区 （３畅４畅１）
T ＝－xｓｈt，
X ＝－xｃｈt；　L 区 （３畅４畅２）
T ＝xｃｈt，
X ＝xｓｈt；　F 区 （３畅４畅３）
T ＝－xｃｈt，
X ＝－xｓｈt；　P 区 （３畅４畅４）
Y ＝y， 　Z ＝z．

在上述变换下， 线元由闵可夫斯基的
ｄs２ ＝ｄT２ －ｄX２ －ｄY２ －ｄZ２ （３畅４畅５）

化为

ｄs２ ＝x２ｄt２ －ｄx２ －ｄy２ －ｄz２　（R， L 区）； （３畅４畅６）

ｄs２ ＝－x２ ｄt２ ＋ｄx２ －ｄy２ －ｄz２　（F， P 区）． （３畅４畅７）
　　Ｒｉｎｄｌｅｒ变换把闵可夫斯基时空分为 ４ 个区域（如图 １１ 所示）， 以 T， X 轴的角
平分线划分．

R 区和 L 区是两个 Ｒｉｎｄｌｅｒ时空区， 它们与闵氏时空一样是静态的， 但都只能
覆盖闵氏时空的一部分．R 区和 L 区没有因果关系， 可以看作互不连通的两个时
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空．闵氏时空无内禀奇点， 也无坐标奇点．Ｒｉｎｄｌｅｒ 时空当然也没有内禀奇点， 但在
x ＝０ 有坐标奇点．此处有

g００ ＝x２ ＝０， （３畅４畅８）
可见这是无限红移面．考虑到 Ｒｉｎｄｌｅｒ时空有 ３ 个 Ｋｉｌｌｉｎｇ 矢量 抄

抄t，
抄
抄y，

抄
抄z ， 零曲面

方程具有形式

gμν 抄f
抄xμ

抄f
抄xν ＝

１
x２

抄f
抄t

２ ＋ 抄f
抄x

２ ＋ 抄f
抄y

２ ＋ 抄f
抄z

２

＝１
x２

抄f
抄t

２ ＋ 抄f
抄x

２

＝０． （３畅４畅９）
（３．４．９）式两端乘以 x２ ，消去 抄f

抄t项， 并注意 抄f
抄x≠０， 我们得到具有 Ｒｉｎｄｌｅｒ 时空对称

性的零超曲面

x ＝０． （３畅４畅１０）
可以证明， 此面即 Ｒｉｎｄｌｅｒ 时空的事件视界．

图 １２ 是闵氏时空的 Ｐｅｎｒｏｓｅ 图．比较 Ｒｉｎｄｌｅｒ 变换和史瓦希时空的克鲁斯卡变
换， 以及二者的时空图和 Ｐｅｎｒｏｓｅ 图， 可以发现， 闵氏时空对应于克鲁斯卡时空，
Ｒｉｎｄｌｅｒ 时空对应于史瓦希时空．其 F 区和 P 区分别对应于史瓦希的黑洞和白洞．

图 １１　　　　　　　　　　　　　　　　　图 １２

Ｒｉｎｄｌｅｒ系中静止观测者的固有加速度具有形式
a ＝－ －g１１ ｄ

２ x
ｄτ２

＝－ －g１１Γ１
００
ｄt
ｄτ

２

＝－ －g１１ Γ′
００
g００

＝ １
x ． （３畅４畅１１）

此式表明， 静止于 x点的观测者的固有加速度为一常数， 即观测者做匀加速运动．
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加速度的方向沿 x增加的方向， 惯性力指向视界x＝０．
在视界（x ＝０），a→∞．静止于史瓦希黑洞表面的观测者的固有加速度也等于

无限大， 这是事件视界的特点．人们定义在视界上不发散的“表面引力”加速度：
κ≡ ｌｉｍ

g００→０（a g００ ）． （３畅４畅１２）
对于 Ｒｉｎｄｌｅｒ 视界有

κ＝ ｌｉｍ
g００→０

１
２ g００， １ －g１１／g００ ＝１． （３畅４畅１３）

　　Ｒｉｎｄｌｅｒ 坐标系是一个匀加速系．Ｒｉｎｄｌｅｒ 时空是闵氏时空的一部分， 是静态
的， 存在事件视界．

引入新的坐标变换

t ＝aη，
x ＝ １

a ＋ξ，
（y，z不变）．

（３畅４畅１４）

式中（x，y，z，t）为 Ｌｉｎｄｌｅｒ 坐标， Ｒｉｎｄｌｅｒ 变换成为
T ＝ １

a ＋ξｓｈ（aη），
X ＝ １

a ＋ξｃｈ（aη）；
R 区 （３畅４畅１５）

T ＝－ １
a ＋ξｓｈ（aη），

X ＝－ １
a ＋ξｃｈ（aη）；

L 区 （３畅４畅１６）

T ＝ １
a ＋ξｃｈ（aη），

X ＝ １
a ＋ξｓｈ（aη）；

F 区 （３畅４畅１７）

T ＝－ １
a ＋ξｃｈ（aη），

X ＝－ １
a ＋ξｓｈ（aη）；

P 区 （３畅４畅１８）

线元为

ｄs２ ＝±（１ ＋aξ） ２ ｄη２ 碢 ｄξ２ －ｄy２ －ｄz２． （３畅４畅１９）
上面的符号对应于 R 区和 L 区， 下面的符号对应于 F 区和 P 区．

变换（３畅４畅１５） ～（３畅４畅１８）式称为局部 Ｌｉｎｄｌｅｒ 变换．
代替（３畅４畅１４）式， 引入另一坐标变换：
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t ＝aη，　x ＝ １
a ｅ

aξ，　（y，z不变） （３畅４畅２０）
则由 Ｒｉｎｄｌｅｒ 变换得到

T ＝a－１ ｅaξｓｈ（aη），
X ＝a－１ eaξｃｈ（aη）；　R 区 （３畅４畅２１）
T ＝－a－１ ｅaξｓｈ（aη），
X ＝－a－１ ｅaξｃｈ（aη）；　L 区 （３畅４畅２２）
T ＝a－１ ｅaξｃｈ（aη），
X ＝a－１ ｅaξｓｈ（aη）；　F 区 （３畅４畅２３）
T ＝－a－１ ｅaξｃｈ（aη），
X ＝－a－１ ｅaξｓｈ（aη）；　P 区 （３畅４畅２４）

线元的表示式为

ｄs２ ＝±ｅ２aξ（ｄη２ －ｄξ２ ） －ｄy２ －ｄz２． （３畅４畅２５）
式中 ＋号对应于 R 区和 L 区， －号对应于 F 区和 P 区．这一时空的特点是事件视
界移至坐标无限远（ξ→ －∞）处， 这是乌龟坐标的特点．由（３畅４畅１９）式可得

ξ＝ １
a ｌｎ（ax）， （３畅４畅２６）

可见 ξ确是 Ｒｉｎｄｌｅｒ时空中的乌龟坐标．此坐标系中， 静止观测者的固有加速度为
aｅ －aξ， 视界面上表面引力加速度为 κ＝a．在原点（ξ＝０）， 加速度也等于 κ＝a．在
原点附近， 线元（３畅４畅２５）趋近闵氏时空的线元．

闵氏时空的零坐标为

V ＝T ＋X， 　U ＝T －X， （３畅４畅２７）
Ｒｉｎｄｌｅｒ 时空的零坐标为

v ＝t ＋ｌｎx，　u ＝t －ｌｎx． （３畅４畅２８）

和史瓦希时空相似， 在 R 区有
V ＝ｅ v，　U ＝－ｅu． （３畅４畅２９）

在未来视界上， v为群参量， V为仿射参量；在过去世界上， u 为群参量， U 为仿射
参量．κ＝１ 是群参量对仿射参量的偏离．

对于式（３畅４畅２１）中的 Ｒｉｎｄｌｅｒ 坐标， 相应的零坐标为
珓v ＝η＋ξ， 　珘u ＝η－ξ． （３畅４畅３０）

在 F 区有
V ＝ｅa珓v， 　U ＝ｅ－a珘u． （３畅４畅３１）

　　在视界面上， κ＝a 也表示群参量对仿射参量的偏离．
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３畅５　稳态时空中的事件视界
超曲面方程可表示为

F（xμ） ＝０　（μ＝０， １， ２， ３）， （３畅５畅１）
其法矢量具有形式

nμ ＝F， μ． （３畅５畅２）
零超曲面定义为

nμnμ ＝０， （３畅５畅３）
或

gμνF， μF， ν ＝０． （３畅５畅４）
对于稳态时空， （３畅５畅４）具有形式：

g００F２
， ０ ＋２g０３F， ０３ ＋g１１F２

， １ ＋g２２F２
， ２ ＋g３３F２

， ３ ＝０． （３畅５畅５）
设 g００≠０， （３．５．５）式可写为

F２
， ０ ＋（g００ ） －１ （２g０３F， ０３ ＋g１１F２

， １ ＋g２２F２
， ２ ＋g３３F２

， ３ ） ＝０． （３畅５畅６）
稳态条件使 F， ０ ＝０， （３．５．６）式化为

（g００ ） －１ （g１１F２
， １ ＋g２２F２

， ２ ＋g３３F２
， ３ ） ＝０． （３畅５畅７）

此方程可分为两个方程：
（g００ ） －１ ＝０， （３畅５畅８）

和

g１１F２
， １ ＋g２２F２

， ２ ＋g３３F２
， ３ ＝０． （３畅５畅９）

（３畅５畅９）式的解和（３畅５畅８）式的解均满足（３畅５畅７）式．
（３畅５畅９）式就是通常稳定稳态视界的方程， 而（３畅５畅８）式则常被忽略．这一忽略，
用数学的语言表述就是解方程丢了根．

采用拖曳坐标时我们有

z， ０ ＝－g０３ ／g３３． （３畅５畅１０）
线元可写为

ｄs２ ＝g００ ｄx０２ ＋２g０３ ｄx０ ｄx３ ＋g１１ ｄx１２ ＋g２２ ｄx２２ ＋g３３ ｄx３２
＝g^００ ｄx０２ ＋g１１ ｄx１２ ＋g２２ｄx２２ ＋g３３ ｄx３２， （３畅５畅１１）

式中
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g^００ ＝g００ －g
２
０３
g３３

． （３畅５畅１２）

容易证明

g^００ ＝（g００ ） －１． （３畅５畅１３）
这样， 零曲面条件（３畅５畅８）可写成

g^００ ＝０． （３畅５畅１４）
　　在克尔黑洞的情况下， 坐标为（ t，r，θ， φ）．除了稳态条件 F， ０ ＝０ 以外， 还有
轴对称， 即 F， ３ ＝０．于是（３畅５畅９）式简化为

g１１F２
， １ ＋g２２F２

， ２ ＝０． （３畅５畅１５）
不难看出， （３畅５畅１４）和（３畅５畅１５）式都化为同一个方程

Δ＝r２ ＋a２ －２mr ＝０． （３畅５畅１６）
　　在史瓦希场的情况下（静态球对称）， 方程（３畅５畅７）化为两个简单的方程：

g００ ＝０ 和 g１１ ＝０，
这两个方程是同一个方程， 解为

r ＝２m．
　　对于 Ｒｉｎｄｌｅｒ 时空， g００ ＝－x２ ，g１１ ＝１．可以发现， 方程（３畅５畅９）无解， 而方程
（３畅５畅８）有解：

－x２ ＝０，　x ＝０．
即视界位于 x ＝０ 处．这表明方程（３畅５畅７）分解成的两个方程（３畅５畅８）和（３畅５畅９）是
不能随便丢掉一个的．

熟知， 不是所有的零超曲面都是事件视界．稳态时空中的事件视界应是满足
下述条件的零超曲面：① 曲面的母线线汇应该是零短程线汇；② 该线汇的切矢量

场应该是零 Ｋｉｌｌｉｎｇ 矢量场；这里说的零矢量指 ｎｕｌｌ（类光）矢量．也就是说， 作为
Ｋｉｌｌｉｎｇ 视界的超曲面才是事件视界．

３畅６　黑洞的第四个参量
对于真空 Ｅｉｎｓｔｅｉｎ 方程， 惟一性定理告诉我们， 由总质量 M 和角动量 J 这两
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个参数所表征的 Ｋｅｒｒ 度规是其最一般的稳态渐近平直黑洞解．惟一性定理使我们
能够划分质量充分大的物体（例如质量超过 Ｃｈａｎｄｒａｓｅｋｈａｒ 极限的恒星）引力坍缩
的最终状态．真空情况下， 黑洞只具有两种“毛发”或者说“荷”， 即质量和角动量．
原来物质分布的许多特性都在引力坍缩中消失了．正比于其事件视界面积的黑洞
的熵就是这样一种信息丢失的例子．在真空情况下， 除零极矩（质量）和一极矩
（角动量）外， 原来质量分布的所有其他多极矩也都在引力坍缩中被辐射掉了．

如果考虑引力与一个 Ａｂｅｌｌ规范场（电磁场）的耦合， 则黑洞可带有电荷和磁
荷．耦合的 Ｍａｘｗｅｌｌ唱Ｅｉｎｓｔｅｉｎ 方程有一个类似于真空情形的惟一性定理———存在一
个由 Ｋｅｒｒ唱Ｎｅｗｍａｎｎ 度规所描述的惟一的 ４ 参数黑洞解族．当将 Ａｂｅｌｌ 规范理论推
广到非 Ａｂｅｌｌ情形时， 目前并没有类似的结果存在．因为非线性的非 Ａｂｅｌｌ 理论的
结构毕竟要比线性的 Ａｂｅｌｌ情形丰富和复杂得多．除了质量、角动量和电（磁）荷之
外， 黑洞是否还能含有第四种参量呢？

正如 Ｂｏｗｉｃｋ 指出的那样， 目前仍不很清楚黑洞是否可携带非 Ａｂｅｌｌ 荷（毛
发）， 例如 ＱＣＤ 颜色荷．为了研究这个问题， 必须研究引力与 Ｙａｎｇ唱Ｍｉｌｌｓ 场和
Ｙａｎｇ唱Ｍｉｌｌｓ唱Ｈｉｇｇｓ场的耦合， 即耦合 ＥＹＭ 系统和耦合 ＥＹＭＨ 系统．

引力与 ＳＵ（５）大统一理论的耦合由下述作用量描述：
S ＝∫ｄ４ x －g［ － R

１６πG －１
２ g

μρgνσT r（FμνFρσ）

＋gμνT r（Dμ矱Dν矱） ＋gμν（DμH） ＋ （DνH） －V（矱， H）］ ， （３畅６畅１）
其中，

Fμν ＝抄μAν －抄νAμ －ｉg′［Aμ， Aν］，
Aμ＝Aaμλa，a ＝１，…， ２４，
Dμ矱＝抄μ矱－ｉg′［Aμ， 矱］，
DμH ＝抄μH －ｉg′AμH，

V（矱， H） ＝a１T r 矱－ １
１５ν

２ 矱＋ ３ν
２ １５

２

＋a２ （２T r矱２ －ν２ ） ２ ＋a３ （H＋ H －ω２ ） ２

＋a４H＋ 矱＋ ３
２ １５ν

２
H，
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a i ＞０，　ν ～１０１４ＧｅＶ，　ω～１０２ＧｅＶ，　g′＝ ８
３

１ ／２
e，

这里 g′是 ＳＵ（５）规范耦合常数， e 是正电子电荷．群生成元 λα
满足 T rλaλb ＝１

２
δab，λ＋a ＝λa．Ｈｉｇｇｓ场 矱和 H 分别是 ＳＵ（５）的 ２４ 维和 ５ 维表示．它们的如下真空
平均值将 ＳＵ（５）破缺到 ＳＵ（３） c ×U（１） ｅｍ ：

枙矱枛 ＝νｄｉａｇ １
１５，　

１
１５，　

１
１５，　

－３
２ １５，　

－３
２ １５ ，

枙H枛 ＝Ｃｏｌ．（０， ０， ０， ０， ω）．
与（３畅６畅１）式相应的能－动张量是

Tμ
ν ＝－２gμαgρβT r（FαβFνρ） ＋１

２ δμ
ν gραgσβT r（FρσFαβ）

＋２gμρT r（Dρ矱Dν矱） －δμ
νgρσT r（Dρ矱Dσ矱）

＋２gμρ（DρH） ＋ （DνH） －δμ
ν gρσ（DρH） ＋ （DσH）

＋δμ
νV（矱， H）． （３畅６畅２）

从（３畅６畅１）式可求出关于 Aμ， gμν， 矱， H 的运动方程如下：
R μν －１／２g μνR ＝δπGT μν，
（ －g） －１Dν（ －gg μρg νσFρσ） ＝－ｉg′g μν［矱， Dν矱］
－ｉg′g μνλa（H ＋ λaDνH －（DνH） ＋ λαH），
（ －g） －１Dμ（ －gg μνDν矱） ＝－１

２
抄V（矱， H）

抄矱 ，

（ －g） －１Dμ（ －gg μνDνH） ＝－抄V（矱， H）
抄H＋ ．

（３畅６畅３）

具有球对称性的最一般的静态度规可表示为

gμν ＝ｄｉａｇ（ｅA， －ｅB， －r２ ， －r２ ｓｉｎ２ θ）．
这里 μ， ν ＝t，r，θ， φ， A和 B 仅仅是 r 的函数．为了求得球对称解， 对 Aν， 矱， H，
假定

·２３· 第 ３章　克 尔 黑 洞



H（ r） ＝ １
g′Ｃｏｌ．（０，０，０，０，h（ r）），

矱（ r） ＝ １
g′ｄｉａｇ（矱１ （ r），矱１ （ r），矱２ （ r）

　　　 ＋矱３ （ r） r^· τ， －２（矱１ （ r） ＋矱２ （ r））），
A l（ r） ＝ １

g′ｄｉａｇ J１ （ r），J１ （ r），J２ （ r） ＋１
２ J３ （ r） r^· τ

　　 　
　 －２（J１ （ r） ＋J２（ r）） ，

A i（ r） ＝K（ r） －１
g′r （T ×r^） i，

T ＝ １
２ ｄｉａｇ（０，０，τ， ０）， 　 r^ ＝ r

｜r｜．

（３畅６畅４）

上述形式是球对称且拓扑稳定的．这里球对称定义为 L ×T 的不变性 （ L ＝ｉr
×Δ）．
利用上述假定， 耦合 ＥＹＭＨ 方程（３畅６畅３）简化为下面的径向方程：
ｅ－B （ rB′－１） ／r２ ＋１／r２ ＝８πGT tt，
－ｅ－B（ rA′＋１）／r２ ＋１／r２ ＝８πGT rr，
－１

２ ｅ
－B A″＋１

２ A′
２ －１

２ A′B′＋（A －B）′／r ＝８πGTθ
θ ＝８πGTφ

φ，
（ rJ１ ）″－１

２ r（A ＋B）′J′１ ＋２
５ rｅ

B（J１ ＋J２ ）h２ ＝０，
（ rJ２ ）″－１

２ r（A ＋B）′J′２ ＋２
５ rｅ

B（J１ ＋J２ ）h２ ＝０，
（ rJ３ ）″－１

２ r（A ＋B）′J′３ ＋２
５ rｅ

B（J１ ＋J２ ）h２ －２ｅB J３K２ ／r ＝０，
K″＋１

２ （A －B）′K′－ｅBK（K２ －１ ＋４r２矱２
３ －ｅ－A（ rJ３ ） ２ ） ／r２ ＝０

（ r矱１）″＋１
２ r（A －B）′矱′１ ＝－１

２ g′
２ rｅB 抄V

抄矱１
，

（ r矱２）″＋１
２ r（A －B）′矱′２ ＝－１

２ g′
２ rｅB 抄V

抄矱２
，

（ r矱３）″＋１
２ r（A －B）′矱′３ －２ｅBK２矱３ ／r２ ＝－１

２ g′
２ rｅB 抄V

抄矱３
，

（ rh）″＋１
２ r（A －B）′h′＋４rｅB－A（J１ ＋J２ ） ２ h ＝－rg′２ ｅB 抄V抄h．

（３畅６畅５）
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能－动张量则成为
T tt ＝ １

g′２ ｛ｅ
－A－B［２J′２１ ＋４（J′１ ＋J′２ ） ２ ＋２J′２２ ＋J′２３ ／２］

　　 ＋ｅ－BK′２ ／r２ ＋ｅ－A J２３K２ ／r２
　　 ＋（K２ －１） ２ ／２r４ ＋ｅ－B［２矱′２１ ＋４（矱′１ ＋矱′２ ） ２

　　 ＋２矱′２２ ＋２矱′２３ ］ ＋４矱２
３K２ ／r２

　　 ＋４ｅ－A（J１ ＋J２ ） ２ h２ ＋h′２ ／r２ ＋g′２V（矱， H）｝，
T rr ＝ １

g′２ ｛ｅ
－A－B［２J′２１ ＋４（J′１ ＋J′２ ） ２ ＋２J′２２ ＋J′２３ ／２］

　　 －ｅ－BK′２ ／r２ ＋ｅ－A J２３K２ ／r２ ＋（K２ －１） ２ ／２r４
　　 －ｅ－B［２矱′２１ ＋４（矱′１ ＋矱′２ ） ２ ＋２矱′２２ ＋２矱′２３ ］ ＋４矱２

３K２ ／r２
　　 －４ｅ－A（J１ ＋J２ ） ２ h２ －h′２ ／r２ ＋g′２V（矱， H）｝，
Tθ

θ ＝ １
g′２ ｛ｅ

－A－B［２J′２１ ＋４（J′１ ＋J′２ ） ２ ＋２J′２２ ＋J′２３ ／２］
　　 ＋ｅ－B［２矱′２ ＋４（矱′１ ＋矱′２ ） ２ ＋２矱′２２ ＋２矱′２３ ］
　　 －（K２ －１） ２ ／２r４ －４ｅ－A（J１ ＋J２ ） ２ h２

　　 ＋h′２ ／r２ ＋g′２ （V矱， H）｝
　 ＝Tφ

φ．

（３畅６畅６）

从方程组（３畅６畅５）的第一和第二两个方程， 可以导出
ｅ－B

r （A ＋B）′＝８πG（T tt －Trr）
＝１６πG
g′２ ［ｅ－B｛２（矱′１ ） ２ ＋４（矱′１ ＋矱′２） ２

＋２（矱′２） ２ ＋２矱′２３ ｝ ＋ｅ－A J２３K２ ／r２
＋ｅ－BK′２ ／r２ ＋h′２ ／r２ ＋４ｅ－A（J１ ＋J２ ） ２ h２ ］

≥０． （３畅６畅７）
我们将寻求运动方程的静态球对称解， 故要求 T tt ＝T rr ．利用（３畅６畅７）式， 有

A ＋B ＝C（常数）， 　矱′i ＝０，　i ＝１，２，３，
h′＝０，　K′＝０， 　J３K ＝０， 　（J１ ＋J２ ）h ＝０． （３畅６畅８）

在下面的讨论中， 将令常数 C 等于零．这样得到的度规是渐近平直的．利用
（３畅６畅８）式及无穷远处 Ｈｉｇｇｓ场趋于其真空平均值这一边界条件和 J i， K 所满足的
运动方程， 得到

矱１ ＝ １
１５νg′， 　矱２ ＝－ １

４ １５νg′， 　矱３ ＝ ５
４ １５νg′，
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h ＝ωg′， 　J１ ＋J２ ＝０， 　K ＝０．
J i ＝ ０，

b i／r ＋c i， 　 且 b１ ＝－b２，　c１ ＝－c２． （３畅６畅９）

这里 b i，c i 是积分常数．注意 J i ＝０ 的情形对应磁单极解， 而 J i≠０ 的情形则与所谓
双荷解相对应．把以上结果代入（３畅６畅２）式便有

T tt ＝T rr ＝－T θ
θ ＝－T φ

φ ＝１ ＋４b２１ ＋４b２２ ＋b２３
２g′２ r４ ． （３畅６畅１０）

求解关于 A， B 的方程， 可得
ｅA ＝ｅ－B ＝１ －２GM／r ＋４πG（１ ＋４b２１ ＋４b２２ ＋b２３ ）

g′２ r２ ． （３畅６畅１１）
这里 M 是积分常数， 它代表本文所求得解的质量．

由于这里所得度规是渐近平直的， 因而， 可利用相应场在无穷远处球面上的
积分来求场方程解所具有的电荷、磁荷和色荷．电磁场强度可以定义为

F′μν ≡ ２
g′T r（Fμν（ r）Q（ r））． （３畅６畅１２）

这里电荷算子 Q（ r） ～
r →０→ｅｄｉａｇ（ －１／３， －１／３，１／３ －２ r^／３· τ， ０）．而通常的电场强

度 E（ r）和磁场强度 B（ r）由下式给出：
E i（ r）≡F′０ i（ r） ＝ ２

g′T r（F０ i（ r）Q（r）），

B i（ r）≡ １
g′T r（ε ijkF jk（ r）Q（r））． （３畅６畅１３）

从（３畅６畅４）和（３畅６畅９）式， 可以求得
F i j（ r） ＝－ ２

g′r２Ta（ε jab r^b r^ i －ε iab r^b r j －ε ija）

　　　　 － １
g′r２ ε ijb r^b r^· T，

F０ i（ r） ＝ r^ i
g′r２ ｄｉａｇ b１ ，b１ ，b２ ＋b３２ r^· τ， ０ ．

（３畅６畅１４）

这样

B（ r） ～
r→∞

r^
２ｅr２ ，　E（ r） ～

r→∞
－b１ ＋b２ －b３

２ｅ · r^
r２
． （３畅６畅１５）

而对 ＳＵ（３） c．色电场 Ea（ r）和色磁场 Ba（ r）， 有
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Eai （ r） ≡ ２T r（F０ i（r）λa（ r）） ～
r→∞

４π（４b１ －b３ ）
８ｅ

r^
４πr２ δ

a８，
λa 是 Ｇｅｌｌ唱Ｍａｎｎ 矩阵，a ＝１，…， ８，
Bai （ r） ≡ T r（ε ijkF i j（ r）λa（ r）） ～

r→∞
１
３
r^
g′r２ δ

a８．
（３畅６畅１６）

从上述结果可以看出， 场方程解所具有的电荷 Q、磁荷 P 和 QCD 色荷 Ca 分别是
Q＝４π（－b１ ＋b２ －b３ ）

２ｅ ，　P ＝４π
２ｅ ，

Ca ＝４π（４b１ －b３ ）
８ｅ δa８． （３畅６畅１７）

因此， 所得度规便可表为
ｄS２ ＝ １ －２GM／r ＋ ３G

８πr２ P
２ ＋２

３ （Q２ ＋（C８ ） ２ ） ｄt２

－ １ －２GM／r ＋ ３G
８πr２ P

２ ＋２
３ （Q２ ＋C８ ） ２

－１ｄr２

－r２ （ｄθ２ ＋ｓｉｎ２ θｄφ２ ）． （３畅６畅１８）
从度规表达式（３畅６畅１８）容易证明， 存在如下事件视界：

rH ＝GM ± （GM） ２ －３G
８π P２ ＋２

３ （Q２ ＋（C８ ） ２ ） ． （３畅６畅１９）
因此， 如果

３G
８π P２ ＋２

３ （Q２ ＋（C８） ２ ） ≤ （GM） ２， （３畅６畅２０）
则我们所得的解就代表一个黑洞， 它除了带有通常的电荷和磁荷外， 还带有 ＳＵ
（３） c 色荷．

下面我们给出耦合 ＥＹＭＨ 方程组（３畅６畅３）的一个稳态轴对称解．对于稳态轴
对称情形， 时空度规可表为如下形式：

ｄS２ ＝Xｄt２ －Yｄr２ －Zｄθ２ －Vｄφ２ －２Wｄtｄφ． （３畅６畅２１）
这里 X， Y， Z， V， W， 只是 r，θ的函数．为了寻求场方程的稳态轴对称解， 将球对
称的 Ｄｏｋｏｓ Ｔｏｍａｒａｓ假定推广为如下的轴对称形式：

A０ （ r，θ） ＝ １
g′Σｄｉａｇ B１ ，B１ ，B２ ＋r^· τ

２ B３ ， －２（B１ ＋B２ ） ，
A r ＝０， 　Aθ（ r，θ） ＝ C

g′Σ（T ×R） θ，
Aφ（ r，θ） ＝ Dg′Σ（T ×R）φ，
矱（ r，θ） ＝ １

g′Σｄｉａｇ（F１ ， F１ ， F２ ＋F３ r^· τ， －２（F１ ＋F２）），
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H（ r，θ） ＝１
g′Ｃｏｌ．（０， ０， ０， ０， ／（ r，θ））， （３畅６畅２２）

其中

T＝１／２ｄｉａｇ（０， ０， τ， ０）， 　 r^ ＝ rr ，
R ＝ｓｉｎθｃｏｓφex ＋ｓｉｎθｓｉｎφey ＋E（ r，θ）ｃｏｓθe z，
Σ＝r ＋a２ ｃｏｓ２ θ．

B i， C， D， E， F i， I 均是 r，θ的函数．显然， 当转动参数 a ＝０ 时， （３畅６畅２２）式应回
到（３畅６畅４）式， 故应有

B i／Σ＝J i（ r），　Σ－１C ＝（K（ r） －１） r－１ ，
D／Σ＝（K（ r） －１） ／r， 　a ＝０．
E ＝１， 　F i／Σ＝矱i（ r），　I ＝h（ r）．

（３畅６畅２３）

对于 a≠０， 即轴对称情形， 将（３畅６畅２１）和（３畅６畅２２）式代入耦合 ＥＹＭＨ 方程组
（３畅６畅３）， 我们很幸运地找到了场方程的一个严格解如下：

B１ ＝b１ r ＝－B２ ＝b２ r，　B３ ＝b３ r －aｃｏｓθ，
C ＝－Σ

r ·
１

ｓｉｎ２ θ ＋Eｃｏｓ２ θ，

D ＝－（ r ＋b３ aｃｏｓθ）， 　E ＝r
２ ＋a２ －b３ raｓｉｎθｔａｎθ
r２ ＋b３ raｃｏｓθ ，

F１ ＝ １
１５νg′Σ， 　F２ ＝－ １

４ １５νg′Σ，

F３ ＝ ５
４ １５νg′Σ， 　I ＝ωg′，

（３畅６畅２４）

及

X ＝１ －GΣ ２Mr －３
８π P２ ＋２

３ ［Q２ ＋（C８）２］ ，
Y ＝Σ／Δ， 　Z ＝Σ，
V ＝ r２ ＋a２ ＋GΣ ２Mr －３

８π
　　 × P２ ＋２

３ ［Q２ ＋（C８）２］ aｓｉｎ２θ ｓｉｎ２θ，
W ＝－GΣ ２Mr －３

８π P
２ ＋２

３ ［Q２ ＋（C８）２］ aｓｉｎ２θ，
Δ＝r２ ＋a２ －G ２Mr －３

８π P２ ＋２
３ ［Q２ ＋（C８）２］ ，

（３畅６畅２５）
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其中， b i 是积分常数， P， Q， C８
的值由（３畅６畅１７）式给出．可以看出， M 代表质量，

a 代表单位质量的角动量．至于 P， Q， C８ ， 利用与上节同样的分析方法， 即可得出
它们分别代表磁荷、电荷和 ＳＵ（３） c畅色荷．

从度规表达式（３畅６畅２５）， 可以证明存在如下事件视界：
r±H ＝GM ± （GM） ２ －a２ －３G

８π P２ ＋２
３ ［Q２ ＋（C８ ） ２ ］

１ ／２．（３畅６畅２６）
因此， 若

a２ ＋３G
８π P２ ＋２

３ ［Q２ ＋（C８ ） ２ ］ ≤ （GM） ２ ， （３畅６畅２７）
则本节所给出的解就代表一个具有电荷、磁荷及 ＳＵ（３） c 色荷的旋转黑洞．进一
步， 在条件（３畅６畅２７）下， 可求出黑洞的无限红移面为

r∞± ＝GM ±［（GM） ２ －a２ ｃｏｓ２ θ －
３G
８π P２ ＋２

３ ［Q２ ＋（C８ ） ２ ］ ］ １ ／２． （３畅６畅２８）
　　注意　利用度规表达式（３畅６畅２１）， （３畅６畅２４）和（３畅６畅２５）， 可计算出 Ｅｉｎｓｔｅｉｎ
张量 Eμ

ν≡Rμ
ν －１

２ δμ
νR 的非零分量为

E tt ＝ １
４Yρ ２X抄２

r V ＋抄rV抄rX ＋２W抄２
rW ＋（抄rW） ２

－（X抄rV ＋W抄rW）抄r ｌｎ ρYZ
＋ １
４Zρ ２X抄２

θV ＋抄θV抄θX ＋２W抄２
θW ＋（抄θW） ２

－（X抄θV ＋W抄θW）抄θ ｌｎ ρz
Y

＋ １
４YZ［２抄

２
r Z ＋２抄２

θY －抄rZ抄r（ ｌｎYZ） －抄θY抄θ（ ｌｎYZ）］，
E tφ ＝－ １

４Yρ ２抄r（W抄rV －V抄rW）
－（W抄rV －V抄rW）抄r ｌｎ ρYZ
－ １
４Zρ ２抄θ（W抄θV －V抄θW）

－（W抄θV －V抄θW）抄θ ｌｎ ρZY ，
E rr ＝ １

４Yρ［抄rρ抄r（ ｌｎZ） ＋抄rZ抄rV ＋（抄rW） ２ ］
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＋ １
４Zρ［２抄

２
θρ －抄θρ抄θ（ ｌｎρZ） －抄θX抄θV －（抄θW） ２ ］，

E rθ ＝－ １
４Yρ［２抄r抄θρ －抄rρ抄θ（ ｌｎρY） －抄r（ ｌｎZ）抄θρ

－（抄rX抄θV ＋抄θX抄rV ＋２抄rW抄θW）］，
Eθ

θ ＝ １
４Yρ［２抄

２
r ρ －抄rρ抄r（ ｌｎρY） －抄rX抄rV －（抄rW） ２ ］

＋ １
４Zρ［抄θρ抄θ（ ｌｎY） ＋抄θX抄θV ＋（抄θW） ２ ］，

Eφ
φ ＝ １

４Yρ［２V抄
２
r X ＋抄rX抄rV ＋２W抄２

rW ＋（抄rW） ２

－（V抄rX ＋W抄rW）抄r ｌｎ ρYZ
＋ １
４Zρ ２V抄２

θX ＋抄θX抄θV ＋２W抄２
θW ＋（抄θW） ２ 　

　
－（V抄θX ＋W抄θW）抄θ ｌｎ ρZY ＋ １

４YZ［２抄
２
r Z ＋２抄２

θY

－抄rZ抄r（ ｌｎYZ） －抄θY抄θ ｌｎ（YZ）］，
这里 ρ ＝XV ＋W２ ， －g ＝（ρYZ） １ ／２．从 （３畅６畅２２）和 （３畅６畅２４）式， 经过冗长的计
算， 有

F t r ＝ １
g′Σ２ ｄｉａｇ（Γ１ ， Γ１ ， Γ２ ＋Γ３ r^· τ／２， －２（Γ１ ＋Γ２ ）），

F tθ ＝aｓｉｎθg′Σ２ ｄｉａｇ（Λ１ ， Λ１ ， Λ２ ＋Λ３ r^· τ／２， ０）， 　F tφ ＝０，
Fθφ ＝ １

g′Σ２ ｄｉａｇ（０， ０， Λ３ （ r２ ＋a２ ）ｓｉｎθ r^· τ／２， ０），
Fφr ＝ １

g′Σ２ ｄａｉｇ（０，０， －Γ３ aｓｉｎ２ θ r^· τ／２， ０）， 　F rθ ＝０，
Dμ矱＝０， 　μ＝t，r，θ， φ， 　DμH ＝０， 　μ＝t，r，θ， φ，

（在推导 DμH ＝０ 时， 利用了关系 B１ ＝－B２ ， ）其中
Γ１ ＝b１ （ r２ －a２ ｃｏｓ２ θ）， 　Γ２ ＝b２ （ r２ －a２ ｃｏｓ２ θ），
Γ３ ＝－２raｃｏｓθ ＋b３ （ r２ －a２ ｃｏｓ２ θ），

（B１ ＝－B２痴b１ ＝－b２痴Γ１ ＋Γ２ ＝０），
Λ１ ＝－２b１ raｃｏｓθ， 　Λ２ ＝－２b２ raｃｏｓθ，
Λ３ ＝－２b３ raｃｏｓθ －（ r２ －a２ ｃｏｓ２ θ）

（B１ ＝－B２痴b１ ＝－b２痴Λ１ ＋Λ２ ＝０）．
为了得到能－动张量的明显表达式， 将用到逆变度规张量 gμν．按照（３畅６畅２１）式，
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它们可写为

g tt ＝Vρ ， 　g rr ＝－１
Y ，　g

θθ ＝－１
Z ，

gφφ ＝Xρ ， 　g tφ ＝－Wρ ，　ρ ＝XV ＋W２．
将上述式子代入（３畅６畅２）式， 可求得能－动张量的非零分量为

T tt ＝ ３
６４π２ P２ ＋２

３ （Q２ ＋（C８ ） ２ ）
×１
Σ３ （ r２ ＋a２ （１ ＋ｓｉｎ２ θ）） ＝－Tφ

φ，
T tφ ＝－ ３

３２π２ P２ ＋２
３ （Q２ ＋（C８ ） ２ ）

×１
Σ３ （ r２ ＋a２ ）aｓｉｎ２ θ，

Tφ
t ＝ ３

３２π２ P２ ＋２
３ （Q２ ＋（C８ ） ２ ） · aΣ３ ，

T rr ＝ ３
６４π２ P２ ＋２

３ （Q２ ＋（C８ ） ２ ） · １
Σ３

＝－Tθ
θ．

利用前面所给出的一系列结果， 经验证（３畅６畅２４）和（３畅６畅２５）式的确是耦合 ＥＹＭＨ
方程组（３畅６畅３）的一个严格解．
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第 4 章　经典黑洞热力学
１９７３ 年 Ｊ畅Ｄ畅Ｂｅｋｅｎｓｔｅｉｎ 指出， 可以在黑洞物理学中引入热力学概念———黑洞

也具有温度和熵．黑洞的熵是以它的面积表征的．与此相联系， 我们首先讨论黑洞
物理学中最重要的一个定理．

４畅１　经典黑洞的面积不减定理
经典史瓦希黑洞的面积惟一地决定于质量， 而经典史瓦希黑洞的质量不可能

减少， 所以它的面积不减是不言而喻的．一般黑洞没有这么简单， 面积不减这一
结论是需要证明的．

面积不减定理的一般证明是霍金于 １９７２ 年给出的．
Ｐｅｎｒｏｓｅ 于 １９６８ 年给出一定理， 其内容是：黑洞的视界以零短程线为其母线

（ｇｅｎｅｒａｔｏｒ）；沿着逆时间方向母线可能在视界上的某一焦散点（ ｃａｕｓｔｉｃ）离开视界
而进入外部空间， 顺着时间方向母线一旦进入视界将不会再离开视界， 而且母线
永不相交叉；母线通过视界上任一点（焦散点除外）有一条且仅有一条．此定理的
证明如下．

过视界上任一点都只有一条零短程线．如果有两条零短程线在视界上一点处
相交， 则过此点的局部光锥一定要与视界相交， 这显然是不可能的．这表明， 视界
以零短程线为母线， 且母线在视界上永不相交．

如果沿着顺时针方向， 母线在视界上一点离开视界， 则沿此母线上的点的逆
时方向， 母线的切矢量就是该点过去局部光锥与视界的切矢量．又沿这一母线的
顺时方向， 母线只能在该点的未来局部光锥面上， 由于零短程线在该点的切矢量
是惟一的， 故沿顺时针方向， 该点的母线就是未来局部光锥与视界的切线．这就
证明了， 一旦母线进入视界就将永不离开视界．

我们认为光波的波长足够短， 以致于在局部时空中可以把它看作平面波．这
样， 光的传播便遵守几何光学的基本定律．

定义波矢量

κμ ＝ 抄θ
抄xμ， θ为等位相面，

可以证明

κν；μκμ ＝０． （４畅１畅１）



　　实际上， 我们有
Dκμ
ｄλ＝ｄκμ

ｄλ＋Γν
μρκνUρ ＝抄κμｄxρ

抄xρｄλ＋Γν
μρκνUρ

＝ 抄κμ
抄xρ ＋Γμ

μρκν U
ρ ＝κμ；ρUρ ＝０， 　（Uρ ～κρ）．

矢势可以展开为

Aμ ＝（aμ ＋εbμ ＋ε２ cμ ＋…）ｅ ｉθ（ x， t） ／ε， （４畅１畅２）
其中

θ ＝κμxμ，　ε ～λ
L ，　λ≡ λ

２π，　λ虫 L，
L 即几何光学适用的空间线度．由广度相对论真空麦克斯韦方程

Fμν ＝Aν；μ －Aμ；ν，
Fμν

；ν ＝０，
Aμ

；μ＝０， （４畅１畅３）
可以导出

－Aμν
；ν ＋Rμ

νAν ＝０． （４畅１畅４）
实际上

Fμν
；ν ＝gμλgνρFλρ；ν ＝gμλgνρ（Aλ；ρ －Aρ；λ） ；ν

＝Aμν
；ν －Aνμ

；ν ＝０．
而

Aνμ
；ν ＝gμλgνρAρ；λν ＝gμλgνρ（ －Rα…

畅ρλνAα ＋Aρ；νλ）
＝－Rανμ

…ν Aα ＋Aνμ
；ν ＝－Rανμ

…ν Aα．
此即（４畅１畅４）式．

由（４畅１畅２）式可以得到
Aμ

；ν ＝ （aμ ＋εbμ ＋…）；ν ＋ ｉε κν（aμ ＋εbμ ＋…） ｅ ｉθ ／ε

－Aμν
；ν ＋Rμ

νAν ＝ １
ε２ κνκν（aμ ＋εbμ ＋…）

－２ ｉε κν（aμ ＋εbμ ＋…） ；ν － ｉε κν
；ν（aμ ＋εbμ ＋…） －（aμ

＋εbμ ＋…） ν
；ν ＋Rμ

ν （aν ＋εbν ＋…）］ ｅ ｉθ／ε
＝０．

合并同阶项， 令其为零， 得到
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１
ε２ ， 　κνκνaμ ＝０ 或 κνκν ＝０，

此式表明波矢量为零矢量：
１
ε ， 　κνκνbμ －２ｉ κνaμ

；ν ＋１
２ κν

；νaμ ＝０．
于是得到矢量振幅的传播方程：

aμ
；νκν ＋１

２ κν
；νaμ ＝０． （４畅１畅５）

对标量振幅的传播方程而言， 先引入
aμ ＝afμ，

fμ是单位极化矢量且 fμ· f μ＝１．则
２aκμa；μ＝κμa２；μ ＝κμ（a νaν） ；μ ＝κμa ν；μaν ＋κμaνaν；μ

＝２κμaν；μaν ＝－κμ
；μaνaν ＝－a２κμ

；μ，
故得标量振幅的传播方程为

κμa；μ ＝－１
２ aκ

μ
；μ． （４畅１畅６）

　　我们可以把（４．１．６）式写成一个微分守恒定律
κμa２；μ ＋a２κμ

；μ ＝０， 　 即（a２κμ） ；μ ＝０．
取如图 １３ 所示的光束超曲面， 应用高斯定理， 有

∫Σ（a２κμ） ；μｄΣ＝∫V（a２κμ）ｄVμ

＝－∫V（ １） （a２κμ）ｄVμ ＋∫V（ ２） （a２κμ）ｄVμ

＝０． （４畅１畅７）

图 １３
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式中 Σ是 ４ 维体积， V是 ３ 维超曲面， 侧面与零短程线平行， 上下截面（端面）与
零短程线垂直．由此可以得到积分守恒量

∫（a２κμ）ｄVμ ＝ｃｏｎｓｔ．．
它在光的传播过程中保持不变， 这自然解释为光通量．

对于一个无穷小光束而言， 设它在 t０ 时刻的截面或等位相面为 σ， 则上述积
分守恒量可改写为

a２σ＝常数．
亦即

ｄ（a２σ）
ｄλ ＝（a２σ） ；μκμ ＝０，

式中λ是沿某一零短程线的仿射参量．利用（４畅１畅６）式即得在光束传播过程中， 光
束截面积的变化规律

κμσ；μ ＝κμ
；μσ． （４畅１畅８）

　　最后， 我们由自由电磁场方程和 Ｅｉｎｓｔｅｉｎ 引力场方程来推导一个重要的几何
光学定理， 即光线束聚焦定理

ｄ２σ１ ／２

ｄλ２ ＝－ δ２ ＋１
２ Rμνκμκν σ１ ／２ ， （４畅１畅９）

式中

δ２ ≡ １
２ κμ；νκν；μ －１

４ （κμ
；μ） ２．

　　实际上我们有
ｄσ１ ／２

ｄλ ＝κμ（σ１ ／２ ） ；μ ＝κμσ；μ
１
２ σ－１ ／２

＝（κμ
；μ）σ· １

２ σ－１ ／２ ＝ １
２ （κμ

；μ）σ１ ／２ ，
ｄ２σ１ ／２

ｄλ２ ＝１
２ ［（κμ

；μ）σ１ ／２ ］ ；νκν

＝１
２ ［（κμ

；μ） ；νκνσ１ ／２ ＋κμ
；μ（σ１ ／２ ） ；νκν］

＝１
２ （κμ

；μν）κν ＋１
２ （κμ

；μ） ２ σ１ ／２

＝１
２ （κμ

；νμ）κν －Rμ
畅ανμκακν ＋１

２ （κμ
；μ） ２ σ１ ／２．

又由 κμ
；νκν ＝０

得

（κμ
；νκν） ；μ ＝０ ＝κμ

；νμκν ＋κμ
；νκν

；μ，
或
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κμ
；νμκν ＝－κμ

；νκν
；μ，

以之代入上式即得（４畅１畅９）式．现引入能量正定条件
T００ ≥ ０．

在（４畅１畅９）式中 δ２ ＝１
２ κμ；νκν；μ－１

４ （κμ
；μ） ２

是一个广义协变标量， 引入局部惯性系
后， 可令 κμ＝（κ０ ， κ３ ）， 　κμ＝（κ０ ， －κ３ ），

δ２ ＝ １
４ （κ０， ０ －κ０， ３ ） ２ ≥ ０，

而

Rμνκμκν ＝ １
２ Rgμν ＋κTμν κμκν

＝１
２ Rgμνκμκν ＋κTμνκμκν ＝κTμνκμκν．

上述不变量在局部随动惯性系中， T０３ ＝T３０ ＝０．
κTμνκμκν ＝κ（T００κ０κ０ ＋T３３κ３κ３ ） ＝κ（T００ ＋T３３ ）κ２

０．
　　考虑到 T００ ＝ρc２ 是能量密度， T３３是压强 p， 已知的物态均满足 ρc２冲p， 故仅需
T００或能密度非负， 即有

Rμνκμκν ≥ ０（所谓零会聚条件）．
这就最后证明了

ｄ２σ１ ／２

ｄλ２ ≤ ０． （４畅１畅１０）
即光束截面增长率

ｄσ１ ／２

ｄλ沿光束传播方向永不增加．
下面我们证明霍金的面积不减定理：若宇宙监督原理成立， 能量正定条件成

立， 则沿着时间方向， 所有黑洞的总面积永不减少．
实际上， 可以把视界上的母线分成无限多个无穷小线束， 对于任一线束有

（４畅１畅１０）式， 即
ｄ２σ１ ／２

ｄλ２ ≤ ０ 或 ｄｄλ ｄσ
１ ／２

ｄλ ≤ ０．
　　设当 λ＝λ０ 时， ｄσ

１ ／２

ｄλ λ＝λ０
＜０， 在此点 σ１ ／２ （λ）曲线单调下降， 则当 λ１ ＞λ０

时， 应有
ｄσ１ ／２

ｄλ λ１ ＞λ０
≤ ｄσ１ ／２

ｄλ λ＝λ０
．

所以在 λ１ 点， 曲线仍然单调下降．又因为
ｄ２σ１ ／２

ｄλ２ ≤ ０，
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所以曲线还是凸的， 肯定要与λ轴相交．这就是说， 经过有限长时间［对应于（λ－
λ０ ）］， 使得 σ１ ／２ ＝０， 在视界上同一线束中的诸多条母线互相交叉， 这违背 Ｐｅｎ唱
ｒｏｓｅ 定理．因此， 要么是由于我们的假设ｄσ

１ ／２

ｄλ ＜０ 不合理；要么线束中的母线在交
叉之前已落入奇点， 这导致奇点裸露， 不符合宇宙监督原理．既然前提是遵守宇
宙监督原理和 Ｐｅｎｒｏｓｅ 定理的， 就只能是ｄσ

１ ／２

ｄλ≥０．即任一母线束的截面积在顺时
针方向不减少， 故整个视界面积（线束截面面积之和）永不减少， 于是证明了黑洞
视界面积不减定理．

４畅２　经典黑洞的温度和熵
考虑一个由热源、冷源和工作物质组成的热机（Ｇｅｒｏｃｈ 引力热机）， 如图 １４ 所

示．

图 １４

冷源：克尔－纽曼黑洞．
热源：距黑洞无限远处一个含有（温度为 T 的）黑体辐

射的大热库．
工作物质：盒子和缆绳．
循环过程：盒子由热源处装满热辐射， 缓慢地移到黑洞

视界附近， 这一过程系统（引力）对外做功 A１ ；打开盒子， 将
质量为 δμ的辐射注入黑洞；盒子关上， 缓慢地升至热库处，
这一过程外界对系统做功 A２．

在一个循环过程中， 系统对外界做功（A１ －A２ ）．从热源
吸出热量 Q＝δμ．此热机的效率为

η＝A１ －A２
Q ＝A１ －A２

δμ ． （４畅２畅１）
　　设盒子（静止的）中心与黑洞视界的固有距离为 d， 我们下面将证明， 这时盒
子和黑洞的结合能为

B ＝μ（１ －κd）． （４畅２畅２）
式中 μ为盒子在渐近平直空间的质量， κ是黑洞表面的引力加速度， d 远小于黑
洞半径．我们有

A１ ＝B ＝μ（１ －κd），
A２ ＝（μ－δμ）（１ －κd），

A１ －A２ ＝δμ（１ －κd），
于是（４畅２畅１）给出效率
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η＝１ －κd． （４畅２畅３）
　　下面证明（４畅２畅２）式．

有电磁场存在时， 质点的哈密顿主函数
S ＝∫Lｄτ

满足哈密顿－雅可比方程
gμν 抄S

抄xμ －eAμ
抄S
抄xν －eAν ＋μ２ ＝０． （４畅２畅４）

式中 e 和 μ分别为荷电质点的电荷和静质量， Aμ为电磁 ４ 矢， τ为固有时．L 可
写为

L ＝ｄSｄτ＝ 抄S
抄xμ痹x

μ． （４畅２畅５）
于是广义动量可写为

Pμ ＝ 抄L
抄痹xμ ＝ 抄S

抄xμ． （４畅２畅６）
　　克尔－纽曼时空有两个 Ｋｉｌｌｉｎｇ 矢量： 抄

抄t和
抄
抄φ．广义动量的 ４ 个分量可表为

P r ＝抄S
抄r ＝ ｄｄrR（ r），

Pθ ＝抄S
抄θ ＝ ｄｄθH（θ），

Pφ ＝抄S
抄φ＝m， （４畅２畅７）

P t ＝抄S
抄t ＝－ω，

式中 R（ r）和 H（θ）分别表示分离变量后的径向函数和横向函数， m 为磁量子数，
ω为质点能量．分离变量后， 径向方程和横向方程具有形式

Δ ｄRｄr
２ －１

Δ［－ω（ r２ ＋a２ ） ＋Ma ＋Qer］ ２ ＋μ２ r２ ＝－K， （４畅２畅８）

ｄH
ｄθ

２ ＋ M
ｓｉｎθ －aωｓｉｎθ ２ ＋μ２a２ ｃｏｓ２ θ ＝K． （４畅２畅９）

式中 M，Q 和 a 分别为黑洞的质量， 电荷和比角动量， K 为分离变量常数．
Δ＝（ r －r＋）（ r －r－） ＝r２ ＋a２ ＋Q２ －２Mr， （４畅２畅１０）

r± ＝M ± M２ －a２ －Q２． （４畅２畅１１）
把（４畅２畅７）式代入（４畅２畅８）式， 得到
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［ω（ r２ ＋a２ ） －（aPφ ＋Qer）］ ２ ＝（P rΔ） ２ ＋（μ２ r２ ＋K）Δ． （４畅２畅１２）
解此方程， 得到

ω＝（ΩPφ ＋eV０ ） ± １
r２ ＋a２ ［（P r Δ）

２ ＋（μ２ r２ ＋K）Δ］ １ ／２． （４畅２畅１３）
式中，

Ω ＝ a
r２ ＋a２ ，　V０ ＝ Qr

r２ ＋a２． （４畅２畅１４）
　　对于无限远处的观测者， 相对克尔 －纽曼黑洞视界面静止的质点满足

r ＝ｃｏｎｓｔ．，　θ ＝ｃｏｎｓｔ．，　 痹φ＝－g０３g３３ ，
P r ＝Pθ ＝０，
Pφ ＝μU３ ＝μg３αUα ＝μ g０３ ｄtｄτ＋g３３ ｄφｄτ ＝０． （４畅２畅１５）

由此可知

m ＝０， （４畅２畅１６）
即在拖曳系中观测， 质点不转动．考虑不带电质点的正能态， （４畅２畅１３）式可简
化为

ω＝ １
r２ ＋a２ ［（μ

２ r２ ＋K）Δ］ １ ／２． （４畅２畅１７）
　　设 δ很小， 且有

r ＝r＋＋δ， （４畅２畅１８）
则

r２ ＋a２≈（ r２＋＋a２ ） １ ＋ ２r＋ δ
r２＋＋a２ ，

μ２ r２ ＋K≈（μ２ r２ ＋K） １ ＋２r＋ δμ２

μ２ r２＋＋K ，
Δ≈２δ（ r＋－M）． （４畅２畅１９）

将（４．２．１９）式代入（４畅２畅１７）式， 略去高阶小量， 得到
ω≈ （μ２ r２＋＋K） １ ／２

r２＋＋a２ ［２δ（ r＋－M）］ １ ／２． （４畅２畅２０）
式中 δ为坐标距离， 应该用固有距离表之．固有距离（纯空间距离）具有形式

ｄl２ ＝γijｄx iｄx j ＝g１１ ｄr２ ＋ g３３ －g
２
０３
g００
ｄφ２． （４畅２畅２１）

将克尔－纽曼度规代入上式， 并注意 Δ～δ→０， 得到
ｄl≈ ρ

Δ１ ／２ ｄr． （４畅２畅２２）
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与 δ对应的固有距离是
d ＝∫r＋＋δ

r＋
ρ

Δ１ ／２ ｄr≈ r２＋＋a２ ｃｏｓ２ θ
r＋－r－

１ ／２∫r＋＋δ

r＋
（ r －r＋）ｄr． （４畅２畅２３）

注意我们用了 δ很小这一近似条件， 下面不再写近似于的符号，
d ＝２δ１ ／２ r２＋－a２ ｃｏｓ２ θ

r＋－r－
１ ／２ ， （４畅２畅２４）

δ＝ d２ （ r＋－r－）
４（ r２＋＋a２ ｃｏｓ２ θ）． （４畅２畅２５）

代入（４畅２畅２０）式， 得到
ω＝κd μ２ r２＋＋K

r２＋＋a２ ｃｏｓ２ θ
１ ／２
， （４畅２畅２６）

式中，
κ＝ r＋－r－

２（ r２＋＋a２ ） （４畅２畅２７）
为视界表面的引力加速度．

由（４畅２畅１５） ～（４．２．１６）和（４畅２畅９）式可得
K ＝ω２ a２ ｓｉｎ２ θ ＋μ２ a２ ｃｏｓ２ θ， （４畅２畅２８）

代入（４畅２畅２６）式， 得到
ω＝dκμ２ ＋ ω２ a２ ｓｉｎ２ θ

r２＋＋a２ ｃｏｓ２ θ
１ ／２． （４畅２畅２９）

由（４畅２畅２６）式知 ω和 d 是同阶小量， 故右端括号中第二项与第一项比较可略去，
于是有

ω＝μκd． （４畅２畅３０）
此即视界面附近一质点具有的引力势能（无限远处观测）．此质点若静止于无限远
处， 其能量为 μ， 因此， 当此质点静止于视界面附近时， 其引力结合能为

B ＝μ－ω＝μ（１ －κd）．
此即（４畅２畅２）式．

下面我们继续讨论 Ｇｅｒｏｃｈ 引力热机的效率 （４畅２畅３）式．当 d→０， 则 η→
１畅Ｃｅｒｏｃｈ（１９７１）由此指出第二类永动机的可能性．但是 Ｂｅｋｅｎｓｔｅｉｎ（１９７３）指出， 量
子力学原理不允许 b ＝０， 给出了盒子大小的下限， 因此效率仍然小于 １．

假设盒子是边长为 a 的正方体， 盒内充满温度为 T 的热辐射．显然热辐射的
最大波长为

λｍａｘ ＝l，
或

νｍｉｎ ＝c／l．
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　　根据维恩位移定律，
νwm ＝２畅８２２kT／h．

式中 k为玻尔兹曼常数．我们有
νｍｉｎ ＜νwm ，

即

１
２ ＞ β

T ， 　β＝ ２π珔hc
２ ×２畅８２２k ≈

珔hc
k ．

于是有

d ＞ l
２ ＞ β

T．
代入（４畅２畅３）式， 得到

η＜１ －βκ
T ． （４畅２畅３１）

　　另一方面， 由卡诺定理知道
η＜１ －TBT． （４畅２畅３２）

式中 TB 为黑洞（冷源）的温度．人们发现， （４畅２畅３１）和（４畅２畅３２）式惊人地相似， 黑
洞具有温度

TB ＝βκ， （４畅２畅３３）
TB ＝βκ／c２ ＝珔hκ／ck．（ＣＧＳ 单位）． （４畅２畅３４）

此式表明， 黑洞的热力学量和它的引力参量有着密切的联系．由于式中还含有普
朗克常数， 此式还表明黑洞温度还具有量子论方面的性质．

由上面的讨论可知， （４畅２畅３４）式适用于克尔黑洞和克尔－纽曼黑洞．对于史瓦
希黑洞这一特殊情况， 我们有

κ＝ c４
４GM， 　β＝珔hc

k ，

TB ＝ 珔hc３
４GMk ～１０ －７ M⊙

M ． （４畅２畅３５）
此式表明史瓦希黑洞的温度由其引力质量惟一确定．质量越大的黑洞， 温度越低．
当 M ～M⊙ ， 则 TB ～１０ －７Ｋ．可见质量大的黑洞温度接近绝对零度．而当 M ～１０１５ ｇ，
TB ～１０１２Ｋ．可见原初小黑洞的温度极高， 约为太阳中心温度（ ～１０７Ｋ）的 １０ 万倍．

黑洞具有非零温度， 按热力学第二定律， 黑洞应该有辐射， 即黑洞不是黑的，
这与经典黑洞理论矛盾．要解决这一矛盾， 必须突破经典（非量子）的概念．１９７４
年， 霍金论证了黑洞的量子辐射， 从而解决了这一矛盾．我们将在第 ６ 章中专门讨
论黑洞的量子辐射．

现在我们继续讨论建立在黑洞温度概念基础上的黑洞热力学问题．

·０５· 第 ４章　经典黑洞热力学



在热力学中， 可以证明， 对于一个转动物体有
δM ＝TδS ＋ΩδJ． （４畅２畅３６）

考虑到（４畅２畅３３）式， （３畅３畅２）式可写为
δM ＝Tδ A

８πβ＋ΩδJ． （４畅２畅３７）
比较上两式， 可认为黑洞作为一热力学系统， 具有熵

SB ＝ A
８πβ． （４畅２畅３８）

黑洞的熵与其表面积成正比， 即与其引力半径的平方或质量平方成正比．因此，
一颗恒星的质量为 M， 熵为 SM ， 则坍缩成黑洞后， 其熵与原来的熵之比为

SB
SM

＝αM． （４畅２畅３９）
对于太阳， S⊙≈１０４２ ｅｒｇ／Ｋ， 当 MB ＝M⊙时， 有 SB≈１０６０ ｅｒｇ／Ｋ， 所以

SB
S⊙

＝αM⊙ ＝１０１８，
从而有

α＝１０１８ ／M⊙．
（４畅２畅３９）式具体化为

SB
SM

＝１０１８ M
M⊙

． （４畅２畅４０）
可见恒星坍缩为黑洞的过程中熵增加， 信息量减少．

Ｂｅｋｅｎｓｔｅｉｎ 曾指出， 在（４．２．４０）式中令
SB ／SM ＝１，

得到

MBｍｉｎ ＝１０１５ ｇ，rｍｉｎ ≈ １０ －１３ ｃｍ． （４畅２畅４１）
这是可以坍缩为黑洞的恒星质量下限， 就是原初小黑洞的质量下限．这类最小的
原初小黑洞所含核子数为 １０３９ ， 恰等于静电力与引力的比值， 它的寿命恰等于宇
宙的年龄．这些看似巧合的事情究竟反映了自然界的什么内容规律至今尚不清楚．

４畅３　黑洞热力学的基本定律
前面的讨论可以总结为黑洞热力学的四条基本定律．

1畅热力学第零定律
黑洞可以定义温度．由于稳态黑洞的表面引力加速度在视界面上是恒定的，
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因此可以按（４畅２畅３３）式定义温度．
2畅热力学第一定律

δM ＝TδS ＋ΩδJ ＋VｄQ．
式中，

T ＝βκ， 　S ＝ A
８πβ， 　V ＝ r ＋Qr２＋＋a２．

3畅热力学第二定律
δ（SB ＋Sm ） ≥ ０．

式中 Sm 为黑洞周围物质的熵．即含黑洞的系统的总熵沿顺时方向永不减少．
4畅热力学第三定律

不可能通过任何有限步骤把黑洞的表面引力加速度 κ降到零．
下一章将讨论黑洞热力学的量子修正， 假定读者已经熟悉热力学中各个量和

各个方程， 熟悉统计和量子场论的知识．
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第 ５ 章　黑洞热力学的量子理论
５畅１　离壳与即壳

按照黑洞物理中的热力学类比，爱因斯坦引力理论中的黑洞熵（４畅２畅３８）式可
写为

SBH ＝AH４l２p ， （５畅１畅１）
式中 AH 是黑洞视界面积，lp ＝（珔hG／c３ ） １ ／２

是普朗克长度．在黑洞物理中，Ｂｅｋｅｎｓｔｅｉｎ唱
Ｈａｗｋｉｎｇ熵 SBH的基本地位与普通热力学中的相同．它可以由含黑洞系统的自由能
对系统温度的偏导数决定．在欧氏方案中，自由能直接与真空爱因斯坦方程的规则
欧氏解（Ｇｉｂｂｏｎｓ唱Ｈａｗｋｉｎｇ 瞬子）的欧氏作用量相联系．按照热力学第一定律，黑洞
的热力学熵定义为

ｄF ＝－STDｄT． （５畅１畅２）
式中 T 为系统温度，自由能既含经典（主级）贡献，又含量子（单圈）修正．因此，热
力学熵除了含经典（主级）部分 SBH以外，还应含有量子修正 STD１ ：

STD ＝SBH ＋STD１ ． （５畅１畅３）
为了得到 STD ，须比较两个平衡位形，为此，通常确定 STD的计算都以规则 Ｇ桘Ｈ 瞬子
作为背景度规．这种计算方法称为即壳（ｏｎ ｓｈｅｌｌ）方法．

黑洞热力学的基本问题是其统计力学基础．这个问题包括三部分：① 定义黑

洞的内在自由度；② 计算统计力学熵 SSM ＝－T r（ ρ^H ｌｎ ρ^H ），密度矩阵ρ^H 描述动力学
自由度；③ 建立 SSM和 STD之间的关系．

为避免歧义，我们使用了“统计力学熵”，以强调 SSM是按统计力学规则计算得
到的．至于密度矩阵ρ^，其形式和性质依赖于具体模型，本章我们考虑一类模型，黑
洞的内部自由度就是其量子激发，这种想法最近有不少文献采用．这类模型的共同
特点是所考虑的ρ^是热的，有大量文章就各种黑洞模型计算了统计力学熵．我们下
面力图阐明这些计算结果和可观测的热力学黑洞熵 STD之间的关系．

应该指出，对于黑洞，STD和 SSM之间的关系并不简单．通常的热力学系统，STD
＝SSM．而黑洞具有与其他热力学系统不同的性质．在热平衡态下，黑洞质量 M 是
温度 T 的普适函数．但是质量惟一决定黑洞几何，从而决定了描述其量子激发的
哈密顿的内禀参数．这个性质带来两个后果：① STD与 SSM对黑洞来说是不相同的；
② 计算 SSM并与 STD比较要用离壳（ ｏｆｆ ｓｈｅｌｌ）方法．这就是必须把温度 T 和黑洞质



量 M 看成独立参数．这导致当 T≠TＢＨ≡（８πM） －１
时，不存在规则真空欧氏解．这

样，只能考虑非真空引力场方程解的背景度规，或者去掉视界附近的时空，使解不
完整，二者必居其一．在这两种情况下，自由能的计算都会遇到问题，甚至其结果会
依赖于具体离壳方法的选择．

下面我们将给出黑洞熵不同定义之间的关系．我们还将讨论并比较各种离壳
方法（砖墙，顶角奇异性，钝锥，体积截断），以及它们与即壳方法之间的联系．我们
就一个简化了的 ２ 维模型说明这些联系．这是因为在这简化模型中所有计算都能
精确进行．可以明显给出热力学熵与统计力学熵不同，我们可以找到单圈修正的
STD和 SSM之间的关系．其中一主要结果是，在所考虑的 ２ 维模型中，量子场对热力
学熵的单圈贡献 STD１ 可写成

STD１ ＝SSM －SSMＲｉｎ ＋ΔS． （５畅１畅４）
式中 SSMＲｉｎ是在 Ｒｉｎｄｌｅｒ 空间所计算的统计力学熵，ΔS 是一附加的有限修正，来源于
量子效应引起的视界改变．用砖墙和体积截断方法所计算的熵直接和 SSM相关，它
正比于 ｌｎ矯，在 ２ 维情况下是发散的，其中 矯是离视界的距离．另一方面，用顶角奇
异性和钝锥方法计算的熵与（ SSM －SSMＲｉｎ ）相符．因为 SSM中的对数发散项恰好与
Ｒｉｎｄｌｅｒ 熵中的发散项抵消，所以它是有限的．

如所知，决定自由能的单圈有效作用量含局域紫外发散．为了得到定义很好的
有限量，须重整化．通常假设裸经典作用量所包含的局域结构与单圈计算中出现的
相同．在重整化过程中，通过对经典作用量中耦合常数的重新定义，可以去掉局域
单圈发散性．在我们的讨论中，假设此重整化一开始就已完成，我们把重整化的可
观测量当作即壳解的参数，这时，重整化的单圈有效作用量是有限的．影响此解的
量子修正可视为对大质量（远大于普朗克质量）黑洞的微扰，我们发现，用可观测
参数表示的所有黑洞热力学特征量都是有限的，且其定义不需要普朗克尺度的物
理知识．下面我们首先重温欧氏方案的主要特征，并给出我们要讨论的熵的一般定
义，然后讨论 ２ 维模型和即壳、离壳方案．

５畅２　欧氏方案和热力学熵
用欧氏方案解决黑洞热力学问题的出发点是配分函数 Z（β）和有效作用量 W

（β）．一个有黑洞存在的系统，其自由能由路径积分定义：
ｅ－w（β） ＝Z（β） ＝∫〔D矱〕ｅ－I〔矱〕 ， （５畅２畅１）

式中 I〔矱〕是欧氏经典作用量，而所有的物理量 矱，包括引力场 gμν，在欧氏时间 τ
上都假定为周期性的或反周期性的（依赖于统计），周期为 β∞ ．（５畅２畅１）式中的度
规是渐近平直的，参数 β∞的倒数是空间无穷远处测得的温度．假定积分测度〔D矱〕
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是协变测度．
计算 W 的标准方法是用半经典近似．若 矱０ 是 I〔矱〕的稳态点，即若

δI
δ矱 矱＝矱０

＝０， （５畅２畅２）
则有分解式：

I〔矱０ ＋珟矱〕 ＝I〔矱０ 〕 ＋I２ 〔珟矱〕 ＋…， （５畅２畅３）
式中，I２ 是线性化作用量中对涨落 矱为二阶的部分，而省略号代表珟矱的高阶项．由
此可得

Z（β） ＝ｅ－I〔矱０〕∫〔D珟矱〕ｅ－I２〔 珘矱〕 ≡ ｅ－I〔矱０〕 Z１ （β）． （５畅２畅４）
式中对珟矱的高斯积分可用相应的波算符 D j 的行列式表示：

Z１ （β） ≡ Z１ 〔矱０ （β）〕 ＝Π
j
｛ｄｅｔ〔 －μ２D j（矱０ ）〕｝ ±１ ／２． （５畅２畅５）

算符 D j 由作用量的二阶部分 I２ ＝１
２ ∫ｄx g珟矱D j珟矱决定，其显式依赖于自旋 j．例如，

对于 d 维空间中共形不变的无质量标量场，D０ ＝Δ－（d －２）〔４（d －１）〕 －１ R．式中
Δ＝ΔμΔμ

是拉普拉斯算符，R 是标曲率．常数 μ２
是一任意的重整化参数，量纲为

长度，且不依赖于场位形 矱．由（５畅２畅５）式可以写出单圈近似下的有效作用量：
W（β） ＝I〔矱０ （β）〕 －ｌｎZ１ （β） ≡ I〔矱０ （β）〕 ＋W１ 〔矱０ （β）〕． （５畅２畅６）

单圈贡献 W１ 〔矱０ 〕是紫外发散的，且像通常一样，经典作用量这样选择，使得只要
重新定义 I 中的耦合常数，就能去掉 W１ 中相应的局域发散性．现在，我们假定这些
程序已经完成，且经典作用量是用重整化参数写出来的，矱０ 为其极值点．W１ 是重

整化的单圈作用量．（５畅２畅５）式中参数 μ选择的任意性对应于重整化后作用量可
附加一有限部分．

为了把这个一般方案运用于黑洞情况，我们假设黑洞不旋转，不荷电，且不存
在对称性破缺，使得所有场的平均值除引力场外均为零，而且，为了给出引力场
（真空）方程的渐近平直解，取重整化宇宙常数为零．其解代表一个 Ｇｉｂｂｏｎｓ唱Ｈｏｗｋ唱
ｉｎｇ 瞬子，它在欧氏视界处规则．在爱因斯坦理论中，此瞬子由史瓦希度规描述，且
只依赖于一个常数，即黑洞质量 m，这一度规在视界处规则的具体含意是 β∞ ＝βH
＝８πm．
当考虑量子修正时，须记住，对给定边界条件（τ上的周期性）的系统，黑洞与

周围的热辐射处于平衡状态，而此辐射也将对可观测的热力学量有贡献．对于无限
大尺度的热澡（ｈｅａｔ ｂａｔｈ），此贡献是无限大，而且黑洞与无限大热澡的平衡是不稳
定的．因此，必须从一开始就考虑由一有限尺度的边界面 B 包围的黑洞．我们假定
此面不能被场穿透．这一点可以由相应的边界条件保证．为简单起见，设 B 是球
面，半径为 rB，黑洞位于球心处．对于史瓦希黑洞，若 rB ＜３m，则热稳定性便得到保
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证．最后，在这一问题的描述中，参数 β是在 B 上测得的温度的倒数．另外，我们假
定所有必要的要求都已达到，不再重复讨论．

（５畅２畅６）式中的重整化有效作用量 W 是由一个特殊的经典解计算得到的．它
本身由泛函定义：

W［矱］ ＝I〔矱〕 ＋W１ 〔矱〕， （５畅２畅７）
其中场 矱任意，边界条件已选定．极值点

δW
δ矱 矱＝矱

＝０ （５畅２畅８）
描述一修正的场位形；与经典解之差为量子修正：珚矱＝矱０ ＋珔h矱１．须强调的是，如果
对单圈效应感兴趣，矱０ 和珚矱的 W 值之差将是普朗克常数 珔h 的二阶项：

W（β） ＝W〔矱０ （β）〕 ＝W〔珚矱（β）〕 ＋o（珔h２ ）． （５畅２畅９）
这可由（５畅２畅８）式得出，只要量子修正解和经典解满足同样的边界条件．

rB 固定，自由能 F（β） ＝β－１W（β）对温度倒数 β的变化便可确定黑洞的热力
学熵：

STD（β） ＝β２ ｄF（β）
ｄβ ＝ βｄｄβ－１ W（β）． （５畅２畅１０）

我们记得，重整化有效作用量 W（β）是即壳计算的，即 β∞ ＝８πm．热力学熵可写为
STD ＝STD０ ＋STD１ ． （５畅２畅１１）

可以证明，
STD０ ＝ βｄｄβ－１ I〔矱０ （β）〕 （５畅２畅１２）

就是（５畅１畅１）给出的 Ｂ桘Ｈ 熵 SBH，而
STD１ （β） ＝ βｄｄβ－１ W１〔矱０ （β）〕 （５畅２畅１３）

表示量子修正．此修正也含黑洞外热辐射的熵．由构成来看，热力学熵 STD定义得
很好且有限．所有的计算都是即壳的，即在一引力场方程的规则完整欧氏解上做出
的．此解的参数仅由重整化耦合常数表示．

５畅３　模型描述：即壳结果
在 ４ 维情况下，STD１ 的计算相当复杂，为了讨论 STD１ 的性质及其与 SSM的联系，

我们考虑一个能够精确计算的简化 ２ 维模型．虽然这些量的 ２ 维和 ４ 维显式不同，
但研究 ２ 维模型可以对 ４ 维情况做出一些确定的结论．为保留与 ４ 维情况最大限
度的相似性，我们考虑 ２ 维 ｄｉｌａｔｏｎ 引力．其作用量为

I＝－１
４∫M ２〔 r２R ＋２（Δ r） ２ ＋２〕 γｄ２ x
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　 －１
２∫抄M ２ r

２ （k －k０ ）ｄy ＋１
２∫γφ，μφ，μｄx． （５畅３畅１）

２ 维度规 γ，ｄｉｌａｔｏｎ 场 r和标量场φ是这一问题的动力学变量．R 为γ的曲率，k 为抄
M２
的外曲率．若标量场 φ不存在，此作用量可由 ４ 维欧氏爱因斯坦作用量

I（４） ＝－ １
１６π∫M ４R

（４） gｄ４ x －１
８π∫抄M ４（K（４） －K（ ４）

０ ） hｄ３ x （５畅３畅２）
通过球对称度规

ｄs２ ＝γabｄxaｄxb ＋r２ ｄω２ （５畅３畅３）
退化得到．这里 γab是 ２ 维度规，r 是 ２ 维流形上的标函数，ｄω２

是单位球上的线元，
K（ ４）

０ 是标准删除项，且 k０ ＝K（ ４）
０ ．

由于 ２ 维作用量与 ４ 维作用量是退化相关的，场对（γ０ ，φ０ ）显然是泛函数 I 的
极值点，其中 φ０ ＝０；γ０ 是 ２ 维史瓦希度规

ｄs２ ＝fｄτ２ ＋f－１ ｄr２ ，　f ＝１ －r＋ ／r． （５畅３畅４）
r＝r ＋处的规则化条件要求 τ是周期性的，且周期为 βH ＝４πr ＋．具有度规（５畅３畅４）
式的 Ｇ桘Ｈ 瞬子，即规则完整欧氏流形，如图 １５（ａ）所示．

考虑 Ｇ桘Ｈ 瞬子上外边界 ΣB（ r＝rB，见图 １５（ｂ））内的区域 MB．若在面 ΣB 上固
定边界条件，而 β是线 r ＝rB 的固有长度，则由边界条件（β，rB ）表示的区域 MB 的
经典欧氏作用量为

I（β，rB） ＝I〔γ０ ，φ０ 〕 ＝３πr２＋－４πr＋ rB ＋βrB． （５畅３畅５）

（ａ）　　　　　　　　　　　　　（ｂ）　
式中 r ＋由（５．３．６）式定义：

β＝４πr＋ （１ －r＋ ／rB） １ ／２． （５畅３畅６）
β为 rB 处温度的倒数．当 rB→∞时，β＝４πr ＋．经典作用量简化为

I（β） ＝ １
１６πβ

２． （５畅３畅７）
　　按照 ５畅２ 节中的一般讨论，有效作用量的单圈贡献为

W１ （β） ＝ １
２ ｌｎｄｅｔ（ －μ２Δ）． （５畅３畅８）

·７５·５畅３　模型描述：即壳结果



这里，重整化的行列式是在 ２ 维瞬子（５畅３畅４）式的区域 MB 上计算的．为了具体讨
论，我们假定场 φ在包围黑洞的边界 ΣB 上遵从狄里赫利边界条件．作用量中去掉
的发散项是

Wｄｉｖ１ ［MB］ ＝－ １
８πδ∫MB γｄ２ x ＋ｌｎδ１２ χ［MB］， （５畅３畅９）

χ［MB］ ＝ １
４π∫M BR γｄ２ x ＋２∫ΣBk hｄy ． （５畅３畅１０）

式中 δ是紫外规则化参数， χ〔MB〕是 Ｇ桘Ｈ 瞬子 MB 的欧拉示性数．为了去掉体积发
散性∫MB，须在裸经典作用量中引入宇宙常数 λ．重整化之后我们令它等于 －１／２，
见（５畅３畅１）式．要去掉（５畅３畅１０）中其他发散项，需在（５畅３畅１）式中引入附加项，但由
于此项仅为拓扑不变量，故可略去．

应用共形变换，单圈有效作用量 W１ （β）可表为显式．注意度规（５畅３畅４）式可
写为

ｄs２ ＝ １ －r＋r ｄτ
２ ＋ １ －r＋r

－１
ｄr２ ＝ｅ２σｄ珓s２ ， （５畅３畅１１）

ｄ珓s２ ＝μ２ （x２ ｄ珘τ２ ＋ｄx２ ）． （５畅３畅１２）
这里，

珘τ＝ τ
２r＋，　０ ≤ 珘τ≤ ２π，

x ＝ r －r＋
rB －r＋

１ ／２
ｅ（ r－rB） ／２ r＋，　０ ≤ x≤ １， （５畅３畅１３）

且共形因子 σ为
σ（ r） ＝ １

２ ｌｎ rB －r＋
r

＋rB －r
r＋

＋２ｌｎ ２r＋
μ ． （５畅３畅１４）

为保持量纲一致，在平直空间度规（５畅３畅１２）中引入了量纲为长度的参数 μ．上述共
形变换

γμν ～珘γμν ＝ｅ－２σγμν （５畅３畅１５）
是区域 MB 到平直 ２ 维单位盘 D２ （用μ的单位测量）上的映射．可以证明，μ的选择
不影响物理结果．

对于共形场，此映射下 W１ 的变换式在后面 ５畅１１ 节中给出．用 C 表示单位盘
D２ 〔（５畅３畅１２）式〕的重整化单圈有效作用量，采用关系式（５畅１１畅９），得到

W１ （β，rB） ＝珟W１ ［β，y（β，rB）］． （５畅３畅１６）
式中，y＝r ＋／rB ，而且

珟W１ （β，y） ＝ １
４８ －２

y ＋２ｌｎy ＋１７ －２y －１３y２
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　 －１
６ ｌｎ

β
２πμ＋C． （５畅３畅１７）

此两式需作些解释．首先，不仅边界处的温度倒数 β依赖于“半径” rB，单圈有效作
用量也依赖于 rB．对给定的 rB 和β，引力半径 r ＋由（５畅３畅６）式定义．为了简化表达，
我们采用量纲为一的变量 y＝r ＋／rB，而不用 rB．（５畅３畅６）式意味着 y是由关系式

y（１ －y） １ ／２ ＝ β
４πrB （５畅３畅１８）

定义的 β和 rB 的函数．
自由能和热力学熵的各自单圈贡献 F１ 和 STD１ 由下列公式确定：

F１ （β，rB） ＝β－１W１ （β，rB），
STD１ ＝β抄W１ （β，rB）

抄β r B

－W１ （β，rB）． （５畅３畅１９）
W１ 的导数可用 珟W１ 的导数表示：

抄W１ （β，rB）
抄β rB

＝抄珟W１ （β，y）
抄β y

＋抄珟W１ （β，y）
抄y β

抄y
抄β r B

． （５畅３畅２０）
式中，

抄y
抄β rB

＝２y（１ －y）
β（２ －３y）． （５畅３畅２１）

（５．３．２１）式来源于（５畅３畅１８）式．根据（５畅３畅１９） ～（５畅３畅２１）式，最后得到
STD１ （y，β） ＝ １

４８（２ －３y） ８
y －１３y －２８y２ ＋１３y３

　 －１
２４ｌｎy ＋１

６ ｌｎ
β

２πμ－１７
４８ －C． （５畅３畅２２）

此量是有限的．量纲为一的常数 C 不依赖于系统的参数，而反映熵定义中的不确
定性．对于进一步讨论，这不确定性并不重要，因此这项和其他类似常数可省略．当
rB 很大（ rB冲r ＋或 y虫１）时，STD１ 中的主要项是π

３ rBβ
－１．此项和一维无质量标量量

子热气体的熵相合．我们所考虑的情况总是 rB ＜３
２ r ＋，所以上面的限制只有形式

上的意义．当 rB ＝３
２ r ＋时，STD１ ＝∞，致使 y ＝３

２ 时热容量为无限大．可以预见，４ 维
情况下这些量有相同的行为．

５畅４　离 壳 方 法
在前面的讨论中我们用到了（５畅３畅６）式．它可以写成 β∞ ＝βH．其中 β∞ ＝β（１

·９５·５畅４　离 壳 方 法



－r ＋／rB） －１ ／２，是无限远处观测到的边界 ΣB 处的温度的倒数，（１ －r ＋／rB ） －１ ／２
是红

移因子．βH 是 Ｈａｗｋｉｎｇ 温度倒数（也是在无限远处测量的）．β∞ ＝βH 明显给出了热
辐射和黑洞之间的平衡条件．也正因为有这一条件，我们才谈及即壳量．

下面我们讨论另一种方法———离壳方法，其中背景度规不满足 β∞ ＝βH．这时
有效作用量的单圈贡献为三个变量（β，rB 和 r ＋）的函数：

W倡
１ ＝W倡

１ （β，r＋，rB，…）．
用上标倡表示此量依赖于离壳方案的选择，W倡

１ 的自变量中的省略号表示它还可

能依赖于某些附加参数，这些参数由于离壳方案的不同而不相同．因为这些参量并
不重要，故下面将不再表示出来．

在一般情况下，离壳熵定义为离壳自由能 F倡 ＝β－１W倡
对温度变化的反应．条

件是系统的参数（ rB）和黑洞参数（ r ＋）固定．按这个定义，单圈离壳熵为
S倡

１ ＝β抄W倡
１

抄β rB，r＋，…
－W倡

１ ． （５畅４畅１）
这里假定计算结束后要回到即壳极限．这就是说，令 S倡

１ 中的 r ＋等于即壳值，此值
由解相应的引力场方程确定．

如果不采用 rB 和 r ＋，而采用量纲为一的变量
y ＝y（ rB ，r＋） ＝ r＋rB ，

α＝α（β，rB，r＋） ＝β∞
βH ＝ β

４πr ＋ １ －r＋rB
， （５畅４畅２）

则 W倡
１ 和 S倡

１ 的显式就可以变得很简单．变量 α是离壳参数．当系统即壳时，α＝１．
定义

W１ （β，rB，r＋，…） ＝珟W１ （β，α（β，rB，r＋），y（ r＋，rB），…）． （５畅４畅３）
当固定 r ＋和 rB 时，y也固定，于是（５畅４畅２）表明 α正比于 β．因此有

S倡
１ ＝β抄珟W倡

１ （β，α，y，…）
抄β α，y，…

＋α抄珟W倡
１ （β，α，y，…）

抄α β，y，…
－W倡

１ ．（５畅４畅４）
如前所说，当计算完毕后，须令 α＝１．于是 S倡

１ 相应的即壳值只依赖于边界条件 β
和 rB．做了一般的讨论之后，下面我们讨论具体的离壳方法．

５畅５　砖 墙 模 型
1畅有效作用量

作为离壳方法的第一个例子，我们讨论所谓“砖墙模型”（ｂｒｉｃｋ唱ｗａｌｌ ｍｏｄｅｌ），它
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由′ｔ Ｈｏｏｆｔ提出，随后有诸多文章讨论．其基本思想是在离黑洞视界很近的地方（固
有距离为 矯），引入一附加的类光边界 Σ矯，ΣB 和 Σ矯之间的区域表示为 MB，矯（如图
１６），按′ｔ Ｈｏｏｆｔ 的意见，进一步假设场 φ在两边界 ΣB 和 Σ矯处都满足狄里赫利条

件．砖墙模型的出发点是在区域 MB，矯中的无质量标量场的配分函数 ZBW１ （β）：

图 １６

ｌｎZBW１ （β） ＝－１
２ ｌｎｄｅｔ（ －μ２Δ）． （５畅５畅１）

式中β为ΣB 处测得的温度的倒数．“ ｌｎ ｄｅｔ”理解为重整化量，Δ是区域 MB，矯内满足
狄里赫利条件的标量场的拉普拉斯算符．由于内边界 Σ矯的存在，热气体不能穿透
的黑洞视界附近区域就被完全消除掉了．因此，无论参数 β和 m 的关系如何，这系
统都不是奇异的，而且砖墙模型适用于离壳情况．为了区别用这一离壳方法算得的
量，我们用缩写字母 BW 作为上标，相应的配分函数 ZBW１ 和作用量 WBW１ 不仅依赖于
β和 rB，也依赖于 矯和视界处的 ｄｉｌａｔｏｎ 值 r ＋．现在我们的任务是找出 WBW１ （β，rB，
r ＋，矯）．

显然，这一问题可以简化为某种“标准”２ 维平直区域的有效作用量的计算．我
们取圆柱面为这一区域（如图）．

一个比较方便的方法是分两次完成共形变换．
首先，采用映射（５畅３畅１５）式，其中 σ由（５畅３畅１４）式给出，在此变换下，度规形

式为

ｄ珓s２ ＝μ２ （x２ ｄ珘τ２ ＋ｄx２ ），　０ ≤ 珘τ≤ ２πα，　矯x ≤ x ≤ １． （５畅５畅２）
此空间的嵌入图见上图．它是圆锥 Cα在面 ΣB（x＝１）和 Σ矯（矯x ）之间的部分 Kα，矯x，x
＝矯x 的值和固有距离 矯的联系为

矯x ＝矯２παβ yｅｘｐ y －１
２y ． （５畅５畅３）

式中参数 y和 α由（５畅４畅２）式确定．
其次，把 Kα，矯x映射到度规为 μ２ （ｄ珘τ２ ＋ｄz２ ）的圆柱 Qα，矯z上：

ｄ珓s２ ＝μ２（x２ ｄ珘τ２ ＋ｄx２） ＝x２ ［μ２（ｄ珘τ２ ＋ｄz２ ）］，z ＝－ｌｎx． （５畅５畅４）
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此柱面周长为 ２πα，母线长为 矯z ＝－ｌｎ矯（在 μ单位下）．
因此，只要知道“标准”柱 Qα，矯z的有效作用量 W１ ［Qα，矯z］，通过共形变换，就可

以得到作用量 WBW１ （β，rB，r ＋，矯）．可以证明（见 ５畅１２ 节）
W１［Qα，矯z］ ＝－ｌｎｔｒｅ－２παμH^． （５畅５畅５）

式中H^是满足狄里赫利边界条件的无质量标量场在区间（０，μ矯z ）内的哈密顿．于
是，对于 矯z冲１ 有（见 ５畅１２ 节）

W１ ［Qα，矯z］ ＝－ １
１２α矯z －

１
２ ｌｎ

πα
矯z ＋o １

矯z ． （５畅５畅６）
尺度参量 μ在（５．５６）式中不出现是因为柱面上的作用量有尺度不变性．共形变换
下有效作用量 W１［Kα，矯z］为

W１ ［Kα，矯x］ ＝W１ ［Qα，矯z］ －α
１２矯z， （５畅５畅７）

而变换（５畅３畅１５）式给出
W１ ［MB，矯］ ＝W１ ［Kα，矯x］ ＋αf（y）， （５畅５畅８）
f（y） ＝－１

４８ －２
y ＋２ｌｎy ＋２y ＋１３y２ －１３ ． （５畅５畅９）

应用（５畅５畅６） ～（５畅５畅８）节，可以得到最后结果．用（β，α，y，矯）写出的有效作用量
WBW１ （β，rB，r ＋，矯）为

WBW１ （β，rB，r＋，矯） ＝珟WBW１ （β，α（β，rB，r＋），y（ rB ，r＋），矯）， （５畅５畅１０）
珟WBW１ （β，α，y，矯） ＝ １

１２ α＋１
α ｌｎ

２πα矯
β

　 －１
２ ｌｎ

πα
ｌｎ（β／２πα矯） ＋α

４８（１５ －２y －１３y２ ）
　 ＋ １

２４α１ －１
y ＋ｌｎy ＋o（ ｌｎ－１ （β／矯））． （５畅５畅１１）

当 α＝１，就是即壳情况，此时作用是可以写成和的形式：
珟W１

BN（β，α＝１，y，矯） ＝珟W１ （β，y） ＋１
６ ｌｎ矯

　 －１
２ ｌｎ

π
ｌｎ（β／２π矯） ＋o（ ｌｎ－１ （B／矯））． （５畅５畅１２）

式中区域 MB 上的热力学作用量 珟W１ （β，y）由式（５畅３畅１７）给出，而附加项来源于墙
的存在，当 矯→０ 时它对数发散．
2畅熵

砖墙模型的熵 SBW１ 由（５畅４畅１）式用 WBW１ 给出．写成（β，α，y，矯）的形式为
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SBW１ （β，α，y，矯） ＝ １
１２α２ｌｎ β

２πα矯－ｌｎy ＋１
y －１

　 ＋１
２ ｌｎ

πα
ｌｎ（β／２πα矯） ＋o（ ｌｎ－１ （β／矯））． （５畅５畅１３）

令 α＝１ 便得到 SBW１ 的即壳值．
这里应注意，重整化参数 μ未出现于（５畅５畅１１）和（５畅５畅１３）式，故砖墙作用量

WBW１ 和熵 SBW１ 都不含有 μ．这是因为在常共形变换下，有效作用量需附加一正比于
流形的欧拉示性数的项．但是 MB，矯与柱面的拓扑相同，欧拉示性数为零．因此，有效
作用量在常共形变换下不变，并不含 μ．另一方面，完全规则瞬子的欧拉示性数与
D２
相同，都不为零．结果共形反常积分不为零，因而 μ作为维数变换的参数出现在

热力学作用量和熵中．
下面我们证明，砖墙熵（５畅５畅１３）和统计力学熵相合并可写成

SBW１ （β，α，y，矯） ＝－ｔｒ［ρ^H矯（β） ｌｎ ρ^H矯（β）］． （５畅５畅１４）
式中ρ^H矯（β）是黑洞附近区域 MB，矯中的无质量气体的热密度矩阵，β是 ΣB 处测得的
温度的倒数．在′ｔ Ｈｏｏｆｔ的砖墙模型中，这种热气体被认为是黑洞的内部自由度．

为了证明（５畅５畅１４）式，我们先把 SBW１ 的表示式改写一下．（５畅５畅７）和（５畅５畅８）
式给出

WBW１ （β，rB，r＋，矯） ＝αf（y） －α矯z
１２ ＋W１ ［Qα，矯z］． （５畅５畅１５）

为了得到 SBW１ ，我们固定 rB， r ＋和 矯．于是 y 不依赖于 β，而 α正比于 β，结果
（５畅５畅１５）式中前两项对 SBW１ 无贡献，故有

SBW１ ＝ α抄
抄α－１ W１ ［Qα，矯z］ ＝ １

６α矯z ＋
１
２ ｌｎ

πα
矯z ＋o（矯－１

z ）． （５畅５畅１６）
易证（５．５．１６）式和（５畅５畅１３）式相合．注意 W１ ［Qα，矯z］由（５畅５畅５）式给出，量（１ －β
（抄／抄β）） ｌｎｔｒｅ －βH^ L可写成

－ｔｒ［ρ^L（β） ｌｎ ρ^L（β）］．
式中，H^L 是长 L 区域内的哈密顿，而

ρ^L（β） ＝ρ０ ｅ－β^HL．
应用这些关系式，可以把（５畅５畅１６）式写为

SBW１ ＝－ｔｒ［ρ^μ矯z（２πμα） ｌｎ ρ^μ矯z（２πμα）］． （５畅５畅１７）
此式表明 SBW１ 是区间 μ矯内温度为（２πμα） －１

的 １ 维热气体的熵［由于前面说明的
原因，μ不出现在（５畅５畅１６）式中］．

此结果可以用来证明（５畅５畅１４）式，因为密度矩阵ρ^μ矯z（２πμα）和黑洞密度矩阵
ρ^H矯（β）相合．实际上，我们用了保持对称性（Ｋｉｌｌｉｎｇ 矢量）的共形变换，并没有影响
边界条件．在这些条件下，共形无质量场的哈密顿是不变的，故密度矩阵也是不变
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的．但是要注意，我们用来定义温度和距离的尺度会改变．为了定义能量、温度等，
我们必须保证 Ｋｉｌｌｉｎｇ 矢量的归一性．现在我们选择（在外边界 ΣB 处）条件（ξ２ ） B ＝
１．若共形因子 σ在边界处不为零，则必须重新标度 ξμ→珓ξμ ＝ｅｘｐ（ －σB ）ξμ，使得共
形变换后，在边界处有 珓ξ２ ＝１．我们有

ｅ－βH^ L ＝ｅ－珘β珟HL， （５畅５畅１８）
式中，

珘β＝ｅｘｐ（ －σB）β，　珟H ＝ｅｘｐ（σB） H^．
珘L 是共形相关度规 珘γμν ＝ｅ －zσγμν中区间的固有长度．

特别是考虑到我们在第一步中用到的共形映射 （ ５畅３畅１１） 和 （ ５畅３畅１４），
（５畅５畅１８）式给出

ρ^H矯（β） ＝ρ^Rμ矯x（２πμα）． （５畅５畅１９）
式中ρ^H 是初始黑洞密度矩阵，ρ^R 是 Ｒｉｎｄｌｅｒ 空间中的热密度矩阵，其度规为

ｄ珓s２ ＝μ２ ［x２ ｄ珘τ２ ＋ｄx２ ］ ＝ X
μ

２ ｄT２ ＋ｄX２． （５畅５畅２０）
Ｒｉｎｄｌｅｒ 空间的温度倒数 ２πμα是在边界 X ＝μ处测量的，此处满足 gTT ＝１．参数μ矯x
为内边界到视界的固有距离，用 Ｒｉｎｄｌｅｒ度规测量．注意固有距离并非共形不变量．
最后，把 Ｒｉｎｄｌｅｒ 空间映射到平直空间［相应的有效作用量的变换 Kα，矯x→Qα，矯z由

（５畅５畅４）式给出］，可以得到 Ｒｉｎｄｌｅｒ密度矩阵和区间内的密度矩阵之间的关系：
ρ^Rμ矯x（２πμα） ＝ρ^μ矯z（２πμα）． （５畅５畅２１）

SBW１ 的统计力学形式（５畅５畅１４）式便可由（５畅５畅１７）， （５畅５畅１９）和（５畅５畅２１）式得到．

５畅６　顶角奇异性方法
我们可以不去掉视界附近的 矯区域，而直接研究完整的黑洞几何．但是若 β∞

和 Ｈａｗｋｉｎｇ 值 βH 不同，时空不再是规则的，因为视界 r ＝r ＋（Ｋｉｌｌｉｎｇ 矢量的固定
点）处有角亏损为 ２π（１ －α）的顶角奇异性．这样的空间在顶角处具有类 δ的曲
率．因此，它不是真空爱因斯坦场方程的解．我们称这空间为奇异瞬子，用 Mα

B 表示

（如图 １７）：
直接用这一流形做单圈计算是可能的．我们把相应的方法称为顶角奇异性方

法．所得结果和规则空间的区别在于紫外发散性的结构．顶角奇异性导致有效作用
量中出现附加的、源于视界面的发散项；重整化需要新的项．但是重要的是这些项
的数量级为

（β∞ －βH ） ２ ～（１ －α） ２ ，
故即壳时它们对黑洞熵和自由能均无贡献．
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图 １７
在 ２ 维情况下，由（５畅１１畅２）和（５畅１１畅３）式，可将奇异瞬子 Mα

B 上作用量的发散

部分写成

Wｄｉｖl ［Mα
B］ ＝－ １

８πδ∫MαB
γｄx２ ＋ｌｎδ１２ χ［Mα

B］ ＋１
２α（１ －α） ２ ． （５畅６畅１）

χ［Mα
B］ ＝ １

４π∫MαB
Rｄ２ x ＋２∫ΣBkｄy ＋４π（１ －α） ． （５畅６畅２）

如（５畅３畅９）式一样，式中，δ是紫外截断参数，R 是规则曲率．量χ［Mα
B］是 Mα

B 的欧拉

示性数，且与 Ｇｉｂｂｏｎｓ唱Ｈａｗｋｉｎｇ 瞬子相同：
χ［Mα

B］ ＝χ［MB］ ＝１．
因此，精确到 （１ －α） ２ ，规则瞬子的发散项与奇异情况相合 ［比较 （５畅３畅９）和
（５畅６畅１）式］，而其差在即壳时不影响熵．如前，我们假设已重整化，只采用重整化
的量．

现在我们用顶角奇异性方法计算离壳有效作用量 WCS１ 和熵 SCS１ ．
与前面的讨论相似，β为 ΣB 处的温度倒数，α＝β∞ ／βH 为离壳参数．我们再次

采用共形变换（５畅３畅１）式．但是现在它把奇异瞬子映射到标准锥 Cα，其母线为单位
长度（以 μ为单位）：

ｄ珓s２ ＝μ２ （x２ ｄ珘τ２ ＋ｄx２ ），　０ ≤ x≤ １，　０ ≤ τ≤ ２πα． （５畅６畅３）
利用（５畅３畅１１）， （５畅３畅１４）和（５畅１１畅９）式，可以把有效作用量 WCS１ 和 Cα上的作用

量联系起来．如前，用变量（β，α，y）写出，此作用量为：
WCS１ （β，rB，r＋） ＝珟WCS１ （β，α（β，rB，r＋），y（ rB，r＋））． （５畅６畅４）
珟WCS１ （β，α，y） ＝－α

４８ ２y ＋１３y２ －１５ ＋４ｌｎ β
２πμα

　 － １
２４α １

y －１ －ｌｎy ＋２ｌｎ β
２πμα ＋C（α）． （５畅６畅５）

式中 C（α）是单位锥的有效作用量，当 α＝１ 时，与单位盘 D２
的有效作用量相同：C

（α＝１） ＝C．函数 C（α）不含 μ，并导致熵的一纯数项．它的形式对我们不重要．
取即壳极限 α＝１ 时，顶角奇异性消失，故

珟WCS１ （β，α＝１，y） ＝珟W１ （y，β）． （５畅６畅６）
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或 珟W１ （y，β）是（５畅３畅１７）给出的即壳有效作用量．
熵 SCS１ 由 珟WCS１ （β，α，y）通过（５畅４畅４）式确定，于是有

SCS１ （β，α，y） ＝ １
１２α １

y －１ －ｌｎy ＋２ｌｎ β
２πμα ＋CCS（α）． （５畅６畅７）

式中，
CCS（α） ＝ α抄

抄α－１ C（α） （５畅６畅８）
在 α＝１ 时是无关常数．在顶角奇异性方法中，重整化作用量 WCS１ 和熵 SCS１ 都是有
限的．

５畅７　钝 锥 方 法
考虑前页图中的奇异瞬子和一系列在顶角处几何略有变化的规则流形（如图

１８），这些几何，黎曼曲率处处规则，仅在视界附近和奇异瞬子不同．我们称这种几
何为“钝瞬子”，而把这种离壳延拓称为钝锥方法．在这一方法中，可以避免无限曲

图 １８

率流形的量子化和重整化问题．计算的最后才去掉顶角
奇异性的规则化．

为了简化计算，我们选择离壳延拓的一种特殊形式．
它由两个参量表征：离壳参数 α＝β∞ ／βH 和一个新参数
η，它描述钝瞬子顶点圆化的程度．钝瞬子度规取为

ｄs２ ＝ β
２π

２ （ρ２ ｄτ２ ＋b２ ｄρ２ ），
０ ≤ τ≤ ２π，０ ≤ ρ≤ １； （５畅７畅１）
b ＝ １

（１ －ρ２ ＋yρ２ ） ２
ρ２ ＋αη２

αρ２ ＋αη２．
　　区域的边界 ΣB 位于 ρ ＝１，其长为 β．如前，黑洞质量

参数含于量纲为一的量y ＝r ＋／rB 中．惟一确定钝瞬子的参数为 β，rB，r ＋和 η．当 α
＝１，此度规和Ｇ桘Ｈ瞬子度规相同．
为了计算钝瞬子上重整化的单圈有效作用量，我们把这一钝瞬子映射到一单

位盘 D２
上．首先考虑一任意的静态欧氏 ２ 维流形，其线元 ｄs２ 和单位盘上线元 ｄ珓s２

共形：
ｄs２ ＝ β

２π
２ ［a２ ｄτ２ ＋b２ ｄρ２ ］ ＝ｅｘｐ（２σ）μ２ ［x２ ｄ珘τ２ ＋ｄx２ ］． （５畅７畅２）

式中，
０ ≤ τ≤ ２π，　０ ≤ 珘τ≤ ２π，　０ ≤ ρ ≤ １，
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０ ≤ x≤ １．
于是，度规系数 a，b和共形因子

σ（ρ） ＝ｌｎ a（ρ）a（１） ＋∫１ρ ｄρ ba ＋ｌｎ β
２πμ （５畅７畅３）

都只含 ρ．归一化条件要求 σ（１） ＝ｌｎ（β／２πμ）和 珘τ＝τ．
把共形反常积分（见 ５畅１１ 节）用于度规（５畅７畅２）式，得到单圈有效作用量

WBC１ ＝－１
６ ｌｎ β

２πμ－１
１２∫１０ ｄρ （a′－b） ２

ab － a′
４b ρ ＝１

＋１
４ ＋C． （５畅７畅４）

这里 a′＝ｄa／ｄρ，常数 C（与前面类似）是单位盘 D２
的有效作用量．在导出此式时

已用到视界处度规的规则化条件（a′／b） ｜ρ ＝０ ＝１．对于钝瞬子度规（５畅７畅１）式，有
a ＝ρ，　b ＝ １

（１ －ρ２ ＋yρ２ ） ２
ρ２ ＋αη２

αρ２ ＋αη２ ， （５畅７畅５）

σ＝ｌｎρ ＋１
２∫１ρ２ｄz z ＋αη２

z（αz ＋αη２ ）（１ －z ＋yz） ２ ＋ｌｎ β
２πμ．

钝锥有效作用量为

WBC１ （β，rB，r＋，η） ＝珟WBC１ （β，α（β，rB，r＋），y（ rB，r＋），η）， （５畅７畅６）
珟WBC１ （β，α，y，η） ＝－１

６ ｌｎ［ β
２πμ］ －（α－１）

２４α
１

（１ ＋η２ －yη２ ） ２ ｌｎ η２

１ ＋η２

　 ＋α－１
２４ （１ ＋αη２ －yαη２ ） ２ ｌｎ αη２

１ ＋αη２ ＋１
２４ｌｎ ｜y ｜

　 × １ －α－１
α

１
（１ ＋η２ －yη２ ） ２

　 ＋１
２４（１ －y） ２α－ １ ＋αη２ －yαη２

αy（１ ＋η２ －yη２ ）
　 －１

４８α（１ －y） ２［１ －２（α－１）η２ ］ －１
４ ×α＋αη２

１ ＋αη２ y
２ ＋１

４ ＋C．
（５畅７畅７）

参数 η的作用类似于砖墙模式中的截断参数 矯．当规则化参数 η→０ 时，作用量
变为

珟WBC１ （β，α，y，η） ＝－１
６ ｌｎ

β
２πμ＋１

４８［ －２
αy ＋２

αｌｎy －２αy
　 －１３αy２ ＋２（α－１） ｌｎα＋２

α＋３α＋１２］
　 ＋C ＋ １

２４α（α－１） ２ ｌｎη２ ＋o（η２ ）． （５畅７畅８）
在即壳时（α＝１），度规（５畅７畅１）式变为 Ｇ桘Ｈ 瞬子度规，相应的即壳有效作用量为
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珟WBC１ （β，α＝１，y，η） ＝－１
６ ｌｎ

β
２πμ

　 ＋１
４８ －２

y ＋２ｌｎy －２y －１３y２ ＋１７ ＋C．（５畅７畅９）
与（ ５畅３畅１７ ） 式 给 出 的 即 壳 作 用 量 珟W１ （ β， y ） 相 同， 相 应 的 钝 锥 熵
当η＝０ 时有限，且为

SBC１ （β，１，y，０） ＝ １
１２y －１

１２ｌｎy ＋１
６ ｌｎ

β
２πμ－１

２ －C． （５畅７畅１０）
此结果和顶角奇异性方法得到的熵 SCS１ 相同（差一个不重要的常数）．

５畅８　体积截断方法
本节我们再讨论一种黑洞有效作用量 W１ 的离壳定义．W１ 可以表示为某一拉

格朗日密度 L１ （x）对背景空间的体积分：
W１ ＝∫gｄxL（x）． （５畅８畅１）

相应的拉氏密度可写成热核算符在坐标表象中的对角元素的项：
L１ （x） ＝－１

２∫∞

０
ｄs
s 枙x｜ｅ

sΔ ｜x枛， （５畅８畅２）
于是，对作用量本身有标准公式

W１ ＝ １
２ ｌｎ ｄｅｔ（ －μ２Δ） ＝－１

２∫∞

０
ｄs
s ｔｒｅ

sμ２Δ． （５畅８畅３）
　　现在考虑一奇异瞬子，并对规则点 r ＞r ＋计算 L１ （ x）．令 Σ矯表示距视界一很

小距离 矯的面．把积分限制在 Σ矯外的区域 MB，矯中，如图 １９．于是，作用量 W１ 依赖

于新参量 矯，我们称这一离壳方法为体积截断方法，相应的量用上标 vc表示．

图 １９

体积截断方法自然地来源于黑洞熵的动力学 －内部方案．在这一方法中，黑洞
的内部自由度等同于在视界附近传播的场的态．由于视界的量子涨落，对于视界极
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近处的传播模式，其量子涨落幅相对较大，故将这些模式区分为外部（在视界外传
播）和内部（在视界内传播）是不可能的．因此，在此方案中计算黑洞统计力学熵时
对模式的求和只能限制为视界涨落区域外的模式．这等效于上述有效作用量体积
分中的截断．体积截断方法已被许多文章所采用．黑洞度规被映射到一光学（极端
静态）度规上，视界则映射到无限远，此光学空间的固有体积变成无限大．为处理
这种发散，很自然地要把体积分限制在一有限区域．这一方法可以就熵修正获得许
多有趣的结果，即使对高于 ２ 维的空间内的有质量场和非零自旋的共形场也能做
到这一点．

在某种意义上，体积截断法很像砖墙法．但它们肯定是不同的．因为体积截断
法不需要在 Σ矯上满足任何边界条件．它还和比 Σ矯更接近视界的区域内的量子场

行为无关．
离壳黑洞解上的拉格朗日 L１ 的计算可以通过到顶角空间的共形变换进行，

由（５畅１１畅９）式有
L１ ＝ｅ－２σL１ （Cα） － １

２４π
　 ×［Rσ－（Δσ） ２ ＋（２kσ＋３σ，μnμ）δ（ r，rB）］． （５畅８畅４）

式中 L１ （Cα）是单位锥 Cα上的拉格朗日，只对视界外的区域适用．δ（ r，rB ）是不变
δ函数，可以在外边界处产生表面项．因子 σ见（５畅３畅１４）式．注意（５畅１１畅９）式中由
共形因子 σ在顶角处的值决定的项对 WVC１ ［（５畅８畅４）式中］无贡献．

为找到 L１ （Cα），可采用顶角空间（５畅６畅３）上拉普拉斯算符的热核 Kα（ x，x′）
＝枙x｜esΔ｜x′枛的索末菲表象：

Kα（x，x′，珘τ－珘τ′） ＝K（x，x′，珘τ－珘τ′） ＋ ｉ
４πα

　 ×∫T ｃｏｔ w２αK（x，x′，珘τ－珘τ′＋w）ｄw， （５畅８畅５）
式中热核 K（x，x′，珘τ－珘τ′）是对单位盘 D２

的．积分路径 Γ位于复平面上，包括两条
曲线，从碢π－（珘τ－珘τ′） ±ｉ∞到碢π＋（珘τ－珘τ′） ±ｉ∞，与实轴的交点位于被积函数的
极点（ －２πα，０）和（２πα）之间．锥上的拉格朗日很容易计算，只要代入（５畅８畅５）和
（５畅８畅３）式．结果很简单：

L１ （Cα） ＝L１ （D２ ） － １
２４πx２

１
α２ －１ ． （５畅８畅６）

式中 L１ （D２ ）是单位盘 D２
上的拉格朗日密度．由于它在 WVC１ 中导致一无关紧要的

常数项，下面将略去它．第二项产生于（５畅８畅５）式中的积分，而且当 α＝１ 时为零．
在这一计算中，先对 S 积分，然后再用下面的公式：

ｉ
８πα∫Γ ｃｏｔ（w／２α）ｓｉｎ２w／２ ｄw ＝ １

６
１
α２ －１ ． （５畅８畅７）
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　　令 WVC１ ［Cα］为锥 Cα上的有效作用量，可由（５畅８畅６）式积分（到点 x＝矯x）得到．
和前面类似，矯x 与到视界的距离 矯的关系由（５畅５畅３）给出．这一泛函为

WVC１ ［Ca］ ＝ １
１２（α－１

α） ｌｎ矯－１
x ． （５畅８畅８）

于是，由（５畅８畅６）和（５畅８畅３）式得到体积截断法中的完全有效作用量．
WVC１ （β，rB，r＋，矯） ＝WVC１ ［Cα］

　 － １
２４π∫MB，矯［Rσ－（Δσ） ２ ］ ＋∫ΣB（２Kσ＋３σ，μnμ） ．　　　　（５畅８畅９）

所以最后我们得到

WVC１ （β，rB，r＋，矯） ＝珟WVC１ （β，α（β，rB，r＋），y（ rB，r＋），矯），
珟WVC１ （β，α，y，矯） ＝ １

１２ α－１
α ｌｎ μ

矯－ｌｎ ２πμαβ －１
２ ｌｎy －

１
２ ＋１

２y
　 ＋ α

４８π －２
y ＋２ｌｎy －２y －１３y２ ＋１７ ＋８ｌｎ ２πμαβ ＋o（矯）．

（５畅８畅１０）
即壳时（α＝１），发散项 ｌｎ矯为零，珟WVC１ 和规则空间上的作用量（５畅３畅１７）相同：

珟WVC１ （β，α＝１，y，矯） ＝珟W１ （β，y）． （５畅８畅１１）
由作用量（５畅８畅１０）得到的熵为

SVC１ （β，α，y，矯） ＝ １
１２α２ｌｎ μ

矯＋２ｌｎ β
２πα－ｌｎy －１ ＋１

y ． （５畅８畅１２）
即壳时，SVC１ 与顶角奇异性熵 SCS１ 只差一含 矯的奇异项：

SVC１ （β，α＝１，y，矯） ＝SCS１ （β，α＝１，y） ＋１
６ ｌｎ

μ
矯． （５畅８畅１３）

熵 SVC１ 也可以写为

SVC１ （β，α，y，矯） ＝ １
６αｌｎ矯

－１
x ． （５畅８畅１４）

故此量与从作用量 WVC１ （Cα）得到的熵相合．这种吻合的原因是用来区分 WVC１ （β，α，
y，矯）和 WVC１ （Cα）的反常项正比于 β，且对 SVC１ 没有贡献．

另外，SVC１ 与尺度为 ｌｎ矯－１
x 的体积内的量子气体的热熵相同．砖墙熵 SBW１ 中的
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ｌｎｌｎ矯－１
项在体积截断熵中不出现，因为 Σ矯处量子场边界条件不必满足，而场可以

自由地在边界上涨落，见 ５畅１３ 节．

５畅９　离壳与即壳计算结果的比较
1畅离壳与即壳的有效作用量

本节我们讨论、比较表明黑洞热力学特征的离壳与即壳计算的结果．先讨论有
效作用量的已得结果．为了表述方便，引入记号

U（β，α，y） ＝－１
６ ｌｎ β

２πμ
　 ＋１

４８ －２
y ＋２ｌｎy ＋１７ －２y －１３y２

　 ＋α－１
４８α ２

y －２ｌｎy －２ ＋１５α－２αy －１３αy２

　 －（α－１） ２

１２α ｌｎ β
２πμ＋ α＋１

α ｌｎα． （５畅９畅１）
各种离壳方法得到的有效作用量单圈贡献可写为

珟WCS１ （β，α，y） ＝U（β，α，y） ＋C（α）， （５畅９畅２）
珟WBW１ （β，α，y，矯） ＝U（β，α，y） ＋１

１２ α＋１
α ｌｎ

矯
μ

　 －１
２ ｌｎ

πα
ｌｎ（β／２πα矯）， （５畅９畅３）

珟WBC１ （β，α，y，η） ＝U（β，α，y） ＋（α－１） ２

１２α ｌｎ ηβ
２παμ

　 ＋α－１
２４ ｌｎα－α－５

４ ＋C， （５畅９畅４）
珟WVC１ （β，α，y，矯） ＝U（β，α，y） －１

１２ α－１
α ｌｎ

矯
μ． （５畅９畅５）

式中，
y ＝r＋ ／rB，
α（β，rB ，r＋） ＝β／（４πr＋ １ －r＋ ／rB ）．

常数 C 和 C（α）分别是单位盘 D２
和单位锥 Cα上的有效作用量

W１ ＝ １
２ ｌｎ ｄｅｔ（ －μ２Δ）．

　　用同样的记号，即壳单圈有效作用量表示为
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珟W１ （β，y） ＝U（β，α＝１，y） ＋C． （５畅９畅６）
比较（５畅９畅２）， （５畅９畅４）和（５畅９畅６），得到

珟WCS１ （β，α＝１，y） ＝珟WBC１ （β，α＝１，y，η）
＝珟WVC１ （β，α＝１，y，矯） ＝珟W１ （β，y）． （５畅９畅７）

［忽略（５畅９畅４）和（５畅９畅５）式中不重要的常数］这就是说，用顶角奇异性、钝锥、体积
截断方法计算得到的单圈有效作用量的即壳值和即壳单圈有效作用量 珟W１ （β，y）
相同．珟WCS１ 总是有限的，而 珟WBC１ 和 珟WVC１ 仅在即壳（α＝１）时才是有限的（即不含 ｌｎη
或 ｌｎ矯发散项）．惟一发散的即壳值是砖墙有效作用量 珟WBW１ ．

（５畅９畅３）式可以这样解释．回忆有效作用量 WCS１ 的计算过程，先是共形映射到
锥 Cα上［见（５畅６畅３）式］，故 WCS１ 可以附加一作用量 W１ ［Cα］ ＝C［α］．也可以映射
到尺度为 矯的锥 Cα，矯上．这样两种计算结果是可以比较的，只要采用 W１ ［Cα］和 W１
［Cα，矯］的差．而这个差值容易得，因为这两个锥互为平凡伸缩：

ｄs２ （Cα） ＝ μ
矯

２ ｄs２ （Cα，矯）． （５畅９畅８）
由（５畅１１畅９）式得到

W１ ［Cα］ ＝W１ ［Cα，矯］ ＋１
１２ １

α＋α ｌｎ 矯
μ． （５畅９畅９）

于是可以把（５畅９畅３）写为
WBW１ （β，α，y，矯） ＝WCS１ （β，α，y） －W１ ［Cα，矯］ ＋WＣａｓ１ （β，α，矯）．（５畅９畅１０）

式中

WCas１ （β，α，矯） ＝－１
２ ｌｎ

πα
ｌｎ（β／２πα矯） （５畅９畅１１）

是 Ｃａｓｉｍｉｒ 效应的贡献．关于这一项以及它与砖墙边界条件的关系见 ５畅１３ 节．
2畅为什么熵的即壳和离壳单圈贡献会不同

在（５畅９畅７）式中，所有（除砖墙）离壳有效作用量等于即壳有效作用量并不能
保证相应的熵也相等．而且正如下面我们将看到的，所有离壳计算给出的熵都与即
壳熵不同．在给出具体关系式之前，先看看这为什么会发生．

离壳计算的出发点是作为参数 β，rB 和 r ＋的函数的单圈作用量 W１．在砖墙和
体积截断方法中，W１ 还含有矯；在钝锥方法中，还含有矯和η．量β和 rB 是确定这个
问题的外参数．r ＋由下面的即壳条件给出：

α（β，rB，r＋） ＝ β
４πr＋ １ －r＋ ／rB ＝１． （５畅９畅１２）

先考虑顶角奇异性方法、钝锥和体积截断方法．它们的作用量当即壳（５畅９畅１２）时，
与（５畅３畅１６）和（５畅３畅１７）式给出的热力学作用量 W１ （β，rB）相同：
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W倡
１ （β，rB，r＋） ｜a ＝１ ＝W１（β，rB）． （５畅９畅１３）

式中星号代表 CS， BC 和 VC．热力学熵 STD１ 由（５畅３畅１９）式给出：
STD１ ＝β抄W１ （β，rB）

抄β r B

－W１ （β，rB）， （５畅９畅１４）
而即壳熵由（５畅４畅１）式给出：

S倡
１ ＝β抄W倡

１ （β，rB，r＋）
抄β rB，r＋

－W倡
１ （β，rB，r＋）．

注意计算 S倡
１ 时 r ＋是固定的．由此可得两个熵之差：
ΔS倡 ＝STD１ －S倡

１ ＝β 抄
抄βW１ （β，rB） － 抄

抄βW
倡
１ （β，rB，r＋）

a ＝１
．（５畅９畅１５）

显然，ΔS倡
不为零．这说明为什么在一般情况下由离壳方法得到的黑洞熵单圈贡献

和由即壳作用量经热力学计算得到的贡献不同．
3畅离壳熵与即壳熵的关系

现在我们给出各种离壳熵的显式．和前面类似，假定在做完熵的计算后令 α＝
１．得到的熵总认为是表征系统的参数 β和 rB 的函数．为了简化，我们以后略去这
些说明．也要注意，有效作用量包含任意常数，记为 C 和 C（α）．类似的常数当然也
出现在熵中．这些常数已出现在前面熵的表达式中．它们可能对讨论与热力学第三
定律有关的问题很重要，但对我们现在讨论的问题并不重要，因此我们将不再提及
它们．我们也略去当其他参数取极限值（矯＝１，η＝０）时等于零的项．

比较方便的是从顶角奇异性方法得到的熵开始讨论．由（５畅９畅２）式给出的有
效作用量 WCS１ （C（α＝１） ＝０），或者由（５畅９畅１）式给出的 U，得到

SCS１ ＝ １
１２ １
y －１ －ｌｎy ＋２ｌｎ β

２πμ． （５畅９畅１６）
　　令　　　ST１ （矯） ＝１

６ ｌｎ
μ
矯，SＣａｓ１ （矯） ＝１

２ ｌｎ
π

ｌｎ β
２π矯

， （５畅９畅１７）

则前面所得各结果可表示为

SBW１ ＝SCS１ ＋ST１ ＋SＣａｓ１ ， （５畅９畅１８）
SVC１ ＝SCS１ ＋ST１ ， （５畅９畅１９）
SBC１ ＝SCS１ ． （５畅９畅２０）

这样，钝锥方法和顶角奇异性方法给出相同的熵（有限的）．砖墙方法和体积截断
方法给出的表达式含发散项 ｌｎ矯．SBW１ 和 SVC１ 之差 SＣａｓ１ 来源于两种方法边界条件的

不同．以上所有离壳熵都和（５畅３畅２２）式给出的热力学熵单圈贡献 STD１ 不同．后者可
写为
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STD１ ＝SCS１ ＋ΔS． （５畅９畅２１）
式中

ΔS≡ β抄r＋
抄β

抄WCS１
抄r＋ β，r B α＝１

＝ １
４８（２ －３y）（ －１４ ＋２６y －２８y２ ＋１３y３） ＋１

２４ｌｎy． （５畅９畅２２）
　　（５畅９畅１８）式可以写成另一种便于解释的形式．由 （５畅５畅１６）， （５畅５畅１７）和
（５畅５畅２１）式可得

SBW１ ＝－ｔｒ［ ρ^H矯（β） ｌｎ ρ^H矯（β）］． （５畅９畅２３）
另一方面，

ST１ ＋SＣａｓ１ ＝SR矯（２πμ） ＝－ｔｒ［ ρ^R矯（２πμ） ｌｎ ρ^RE（２πμ）］． （５畅９畅２４）
此式就是 Ｒｉｎｄｌｅｒ 空间中距视界（固有距离）矯和 μ的二镜面间无质量热辐射的熵．
距视界 μ处测得的辐射温度为（２πμ） －１．故有

SCS１ ＝－｛ ｔｒ［ ρ^H矯（β） ｌｎ ρ^H矯（β）］
　 －ｔｒ［ ρ^R矯（２πμ） ｌｎ ρ^R矯（２πμ）］｝． （５畅９畅２５）

容易证明，在内镜边界（矯处）存在时，只要等式右边的量是用体积截断法计算的，
同样的表达式仍然成立．对于砖墙法和体积截断法，（５畅９畅２５）式右边的每一项当 矯
→０ 时都发散，但其差有限．若形式地定义黑洞和 Ｒｉｎｄｌｅｒ 度规背景中的密度矩阵

ρ^H （β） ＝ｌｉｍ矯→０ ρ^H矯（β），ρ^R（２πμ） ＝ｌｉｍ矯→０ ρR矯（２πμ）， （５畅９畅２６）
则对于体积截断法和砖墙法，有

SCS１ （β，α＝１，y） ＝－｛ ｔｒ［ ρ^H （β） ｌｎ ρ^H （β）］
－ｔｒ［ ρ^R（２πμ） ｌｎ ρ^R（２πμ）］｝． （５畅９畅２７）

采用（５畅９畅２１）式，我们最后得到
STD１ ＝－｛ｔｒ［ρ^H（β）ｌｎ ρ^H（β）］ －ｔｒ［ρ^R（２πμ）ｌｎ ρ^R（２πμ）］｝ ＋ΔS． （５畅９畅２８）

这一关系式表明，热力学熵单圈修正可由统计力学熵用下面的方法得到：先减去
Ｒｉｎｄｌｅｒ 熵以消除发散性，再加上一有限的修正项 ΔS．在后一部分我们将证明，第
二项 ΔS 就是由于背景时空的量子修正引起的经典 Ｂ桘Ｈ 熵的变化．

这里应提到，为得到进入黑洞的熵流的正确表达式，Ｔｈｏｒｎｅ 和 Ｚｕｒｅｋ 提出从统
计力学熵中减去黑洞热气的熵．后者在视界附近和 SSMＲｉｎ相同．（５畅９畅２８）式可以用来
证明这个假设．但是，Ｔｈｏｒｎｅ 和 Ｚｕｒｅｋ 并未考虑我们这里讨论的熵的量子修正．
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（５畅９畅２８）式不仅解释了 S SM中的无限大体积是如何分割的，还给出了熵的量子修
正依赖于物理特性的精确表达式．
4畅熵和反作用效应

含量子单圈修正的黑洞热力学熵为

STD ＝SBH （ r＋） ＋STD１ ． （５畅９畅２９）
式中

SBH （ r＋） ＝πr２＋
是 Ｂｅｋｅｎｓｔｅｉｎ唱Ｈａｗｋｉｎｇ 熵．由于量子效应，含量子修正的“真实解（珔γ，珋r）与经典史瓦
希解（γ，r）不同．特别是，ｄｉｌａｔｏｎ 场在 珔γ的视界处取值 r－ ＋与其经典值 r ＋不同．现在
我们证明（５畅９畅２９）式可以写成”

STD ＝π珋r２＋＋SCS１ ． （５畅９畅３０）
　　证明的第一步是得到决定 珋r ＋的方程．对于给定的边界条件（β，rB ），欧氏有效
作用量的极值点确定一规则量子解，这个解可由解场方程

δW
δγ＝δW

δ珋r ＝０
得到，解中的任意常数可由视界规则条件确定，这样决定了 珋r ＋是（β，r ＋）的函数．对
于常数的其他选择，此解有类顶角奇异性．我们称这解为量子奇异瞬子，它遵从局
域场方程，但能给出 W 的整体极值点．量子奇异瞬子由（β，rB）和任意参数珋r ＋确定．
我们将此解记为［珔γ（珋r ＋），珋r（珋r ＋）］．在量子奇异瞬子上，计算得到有效作用量为
W（β，rB，珋r＋）≡ W［β，rB，珔γ（珋r＋），珋r（珋r＋）］

＝I［β，rB，珔γ（珋r＋），珋r（ r＋＋）］ ＋WCS１ ［β，rB ，珔γ（珋r＋），珋r（珋r－）］．　　　（５畅９畅３１）
W 的整体极值条件：

抄W（β，rB，r＋）
抄r＋ ＝０， （５畅９畅３２）

给出规则量子瞬子的视界半径 珋r ＋ ＝珋r ＋（β，rB ）．在这些计算中，我们只保留到 珔h 的
一阶项．因此，可以把 （５畅９畅３１）式中右边的第二项换成由经典奇异瞬子得到
的 WCS１ ：

WCS１ ［β，rB，珔γ（珋r＋），珋r（珋r＋）］ → WCS１ ［β，rB，γ（珋r＋），r（珋r＋）］．
也可以把（５畅９畅３１）中经典作用量 I 中的［珔γ（珋r ＋），r（珋r ＋）］替换成经典奇异瞬子解
［γ（珋r ＋），r（珋r ＋）］，只要保持 ｄｉｌａｔｏｎ 场在视界处的值 珋r ＋不变．为了证明这一点，考虑
经典作用量（５畅３畅１）的一般变分，固定 rB 和 β，得到

I［β，rB，珔γ，珋r］ ＝I［β，rB，γ，r］
＋∫δI

δγab γab
（珔γab －γab） ＋δI

δrδr ＋r，μnμ｜r ＝r＋δr＋
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－２π（１ －α） r＋ δr＋＋o（珔h２ ）． （５畅９畅３３）
假设 ｄｉｌａｔｏｎ 场在顶角处的值为 r ＋，相应地由（γ，r）在 r ＋处确定的角亏损记为 ２π
（１ －α）．（５畅９畅３３）式表明，若 γ和 珔γ的 r ＋值相同，且（γ，r）为经典方程 δI／δγab ＝０
和 δI／δr＝０ 的解，则由（珔γ，r）得到的经典作用量的值与经典值 I［β，rB，γ，r］只差一
量级为 o（珔h２ ）的项．这就是为什么我们可以把（５畅９畅３１）式中的 I［β，rB，珔γ（珋r ＋），珋r
（珋r ＋）］换成由经典奇异瞬子所得的值 I（β，rB，r ＋）．后者容易计算，其表达式为

I（β，rB，r＋） ＝βE（ rB，r＋） －πr２＋， （５畅９畅３４）
　　E（ rB，r＋） ≡ rB ［１ －（１ －r＋ ／rB） １ ／２ ］．

式中 E 为准局域能量．
定义量子视界“位置”珋r ＋的（５畅９畅３２）可写为

抄WCS１ （β，rB，r＋）
抄r＋ ＝－２π珋r＋ （珔α－１）． （５畅９畅３５）

式中

α＝α（β，rB，r＋） ＝β［４πr＋ １ －r＋ ／rB ］ －１ ，
珔α为与 r ＋ ＝珋r ＋对应的经典离壳参数 α的值．对于经典规则瞬子，α＝１．这表明精确
到 珔h２ ，我们可以得到

２π珋r＋ （珔α－１） ＝２πr＋ 抄α
抄r＋ a ＝１

Δr＋． （５畅９畅３６）
式中 Δr ＋ ＝珋r ＋ －r ＋，是量子修正引起的黑洞视界“位置”的改变．由 α的显式易得

抄α
抄r＋ α＝１

＝－ β抄r＋
抄β

－１

α＝１
． （５畅９畅３７）

因此有　２πr ＋Δr ＋ ＝β抄r ＋
抄β

抄WCS１
抄r ＋ α＝１

， （５畅９畅３８）
且由（５畅９畅２２）式得到

ΔS ＝２πr＋ Δr＋． （５畅９畅３９）
于是，精确到 o（珔h２ ），量 ΔS 可以写成

ΔS ＝SBH（珋r＋） －SBH （ r＋）．
另一方面，考虑到（５畅９畅２１），热力学熵（５畅９畅２９）可以写为

STD ＝SBH （ r＋） ＋ΔS ＋SCS１ ．
这些式子便证明了（５畅９畅３１）式．

５畅１０　小　　结
现在讨论把即壳结果和各种离壳结果进行比较所得到的结果．首先，直接计算

证明了，由自由能对温度变分得到的黑洞热力学熵 STD和由 SSM ＝－ｔｒ（ ρ^H ｌｎ ρ^H ）（ ρ^H
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为黑洞内部自由度的密度矩阵）确定的统计力学熵 SSM是不同的．热力学熵包括主
体部分SBH ＝A／４ 和有限单圈修正 STD１ ．而 STD１ 可以由即壳有效作用量得到．统计力
学熵 SSM定义为一单圈量，且其计算要用离壳方法．SSM可等同于体积截断熵 SVC１ ．于
是包含发散项 ｌｎ矯，其中 矯是使体积分有限而引入的固有距离截断．S SM中主要对
数项也出现于砖墙模型中，但一般地，由于 Ｃａｓｉｍｉｒ 效应，S BM１ 中有另一发散

项 ｌｎ｜ｌｎ矯｜．
STD和 SSM不同的物理原因与作为热力学系统的黑洞的特殊性质有关．黑洞的

内部自由度由在黑洞几何内传播的激发来确定，而这一几何又由质量参数惟一确
定．在热平衡态中，质量是外部温度的函数．因此，要得到 STD１ 须改变温度．这导致
描述这些内部激发的哈密顿的改变．另一方面，在计算 SSM时，黑洞质量和哈密顿
是固定的．

我们已经证明，黑洞的热力学熵可以表示为下面的形式：
STD ＝SBH（珋r＋） ＋［SSM －SSMＲｉｎ］． （５畅１０畅１）

式中 SBH（珋r ＋） ＝π珋r２＋是 Ｂ桘Ｈ 黑洞的熵，珋r ＋是“量子”黑洞视界的“半径”．第二项是黑
洞和 Ｒｉｎｄｌｅｒ 空间的统计力学熵之差．二者的表达式分别为

SSM ＝－ｔｒ［ρ^H（β） ｌｎ ρ^H （β）］
和　　　SSMＲｉｎ ＝－ｔｒ［ ρ^R（２πμ） ｌｎ ρ^R（２πμ）］．
删减法则自动去掉 SSM中的发散项．

我们曾在 ２ 维情况下用直接计算证明了（９畅１０畅１）式，但这似乎是普遍性质，
它（或其推广）对 ４ 维情况肯定成立．这是因为即壳重整化量 STD总是有限的，故
（５畅１０畅１）式中的差项总会导致 SSM中体积发散的消除．在 ４ 维情况下导出类似于
（５畅１０畅１）式的关系的一种可行方法是利用光学度规，使得所需的差项可由高温展
开得到．因此，差项中奇异项 矯的不同阶的系数必须与 Ｓｃｈｗｉｎｇｅｒ唱Ｄｅ Ｗｉｔｔ 系数相
联系．

顶角奇异性方法的一个显著特点是（至少在 ２ 维情况下）可以立即给出有限
的结果：

SCS１ ＝SSM －SCSＲｉｎ． （５畅１０畅２）
SCS１ 有限而 SVC１ 含有体积发散的数学原因与用来计算相应的有效作用量的流形拓扑
不同有关．对于 SVC１ ，标准流形有柱面（或环）的拓扑；而对于 SCS１ ，拓扑为 D２ ，与 Ｇ桘Ｈ
瞬子的拓扑相同．当从标准单位盘 D２

上切下一半径为 矯的小盘而变成环时，其数
学操作可解释为减去缠绕熵 SSMＲｉｎ ＝－ｔｒ（ ρ^R ｌｎρR）．

再次强调，在我们所采用的方法中，一开始就已经完成了重整，故只有可观测
的有限耦合常数出现于结果中．我们论证了某些离壳方法需要附加一截断参数 矯．
它与紫外截断 δ完全无关，见（５畅３畅９）式和（５畅６畅１）式．而且参数 矯只出现在中间
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运算过程中，不含于最后的可观测结果中．我们证明了物理可观测量的量子修正总
可由即壳量得到．于是，对于质量远大于普朗克质量的黑洞而言，可观测量的量子
修正很小，与普朗克尺度的物理无关．这就区分了即壳量和离壳量，如 SSM．

还有一个更一般的问题要说明．既然表征热平衡黑洞或表征黑洞从一平衡态
到另一平衡态的跃迁的可观测量可以只由即壳量得到，那么为什么在黑洞热力学
中还要用离壳方法呢？ 我们已经看到，原因之一是建立统计力学熵和热力学熵之
间关系的需要，在这个意义上，离壳方法可以看作计算和解释即壳量的有用工具．
但我们相信，除了这个简单的理由以外，一定还有更深层次的原因．离壳方法对描
述含黑洞系统的非平衡过程也会是有用的．在这种情况下，热力学系统的量子涨落
和热涨落可由随机噪声来描述，这相当于系统离壳情况．因此，可以想到，由视界附
近能量激增而激发的黑洞向平衡态过渡的过程，会用到某些上述的离壳特性．

下面三节相当于前面推导过程的附录．为了使前几节的内容更集中，把它们抽
出来放在后面．

５畅１１　二维有效作用量的共形变换
为了完整，本节推导下面有效作用量的共形变换：

W１ ［γ］ ＝ １
２ ｌｎ ｄｅｔ［ －Δ］ ＝－１

２∫∞

０
ｄs
s ｔｒ（ｅ

sΔ）， （５畅１１畅１）
它定义在 ２ 维欧氏流形 Mα上，其边界为抄Mα，Mα在点 x s 处有顶角奇异性，亏损角
为 ２π（１ －α）．我们考虑 d 维空间共形不变算符 D ＝Δ－（d －２）［４（d －１）］ －１R 的
有效作用量 W１．它的发散部分 Wｄｉｖ１ 可由渐近热核展开得到

ｔｒ（ｅSD） ＝ １
（４πs） d／２ ∑∞

n ＝０，１ ／２，…
a （ d）
n sn． （５畅１１畅２）

在 ２ 维情况下，对维数规则
Wｄｉｖ１ ＝ １

d －２
a（ d）

１
４π． （５畅１１畅３）

式中对于任意 α有
a（ d）

１ ＝ １
６ － d －２

４（d －１） ∫M aR ＋π
３ １

α－α∫Σ ＋１
３∫抄Mα

k． （５畅１１畅４）
这里，奇点 x s 被维数为 d －２ 的奇异面 Σ代替，标曲率 R 的积分沿着 Mα的规则部

分，k是类空边界抄Mα的第二基本形式，定义为 k＝Δμnμ．
重整化作用量由非重整化（裸）作用量 Wｂａｒｅ１ 和它的发散部分 Wｄｉｖ１ 之差确定：

W１ ＝Wｂａｒｅ１ －Wｄｉｖ１ ． （５畅１１畅５）
　　在 Mα上度规共形变换（珓rμv ＝ｅ －２σγμv）下，重整化作用量变为
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W１（珔γ） －W１ （γ） ＝ １
４πｌｉｍd→２

１
２ －d［a

（ d）
１ （珔γ） －a（ d）

１ （γ）］． （５畅１１畅６）
我们只考虑不“挤压”顶角奇异性的那些变换．于是利用关系式：

珘R ＝ｅ２σ｛R ＋（d －１）［２Δσ＋（２ －d）σ，ασ，α］｝， （５畅１１畅７）
珓k ＝ｅσ［k －（d －１）σ，μnμ］． （５畅１１畅８）

由（５畅１１畅６）式得到
W（珘γ） －W（γ） ＝ １

２４π∫Mα
ｄx［Rσ－（Δσ）２］

＋∫抄Mα
ｄx（２kσ＋３σ，μnμ） ＋１

１２ １
α－ασ（xs）， （５畅１１畅９）

这就是期望的有效作用量的共形变换；如果流形在几个点 x s 处有顶角奇异性，角
亏损为 ２π（１ －αs），则（５畅１１畅９）式中最后一项应换成对所有 x s 求和．若流形无顶
角奇异性，此项为零（α＝１），（５畅１１畅９）式可以写成另一等价形式：

W（珘γ） －W（γ） ＝ １
４８π∫Mα

ｄ２ xσ（珔γ１ ／２ 珘R ＋γ１ ／２R）
＋ １
２４π∫抄Mα

ｄxσ（珘h１ ／２ 珓k ＋h１ ／２ k）
－ １
８π∫抄Mα

ｄx（珘h１ ／２珓k －h１ ／２ k） ＋１
１２ １

α－ασ（x s）．　　　（５畅１１畅１０）
式中

h１ ／２ k －珘h１ ／２ 珓k ＝h１ ／２ nα抄ασ，
共形因子 σ应理解为方程

－２γ１ ／２ σ＝γ１ ／２R －珘γ１ ／２ 珘R
的解．

５畅１２　二维标量场的有效作用量和自由能
考虑 ２ 维流形上的共形无质量标量场 矱．设度规不含欧氏时间，可写为

ｄs２ ＝ｅｘｐ［２σ（x）］｛ｄτ２ ＋ｄx２ ｝，０ ≤ τ≤ β，x０ ≤ x≤ x１． （５畅１２畅１）
共形标量场满足

Δ矱＝ｅｘｐ［ －２σ（x）］ 抄２

抄r２ ＋抄２

抄x２ 矱＝０． （５畅１２畅２）
为了简单，我们考虑具有狄里赫利边界条件 矱（x０ ） ＝矱（x１ ） ＝０ 的问题．

利用有效作用量的共形变换（见 ５畅１１ 节），可以把流形（５畅１２畅１）式上的有效
作用量计算简化为柱面 Q 上的计算．Q在欧氏时间上有周期 β，长为 L ＝x１ －x０．柱
面的单圈有效作用量 WQ１ （β，L）可写成
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WQ１ （β，L） ＝ １
２ ｌｎ ｄｅｔ（ －μ２Δ）

＝－１
２ ζ′（０） ＋１

２ ζ（０） ｌｎμ２

＝－１
２ 抄

抄z∑λ
（μ２λ） －z

z ＝０
．

式中μ为一任意参数，量纲为长度，广义函数ζ（ z） ＝Σλ［μ２λ］ －z
表示对算符Δ的所

有本征值 λ求和．虽然有效作用量中 μ有伸缩不确定性，但所有物理量都是有确
定定义的．对于狄里赫利边界条件，把柱面拉普拉斯算符的本征值

λmn ＝（２π／β） ２ n２ ＋（π／L） ２m２

代入，得到
WQ１ （β，L） ＝－１

２
抄
抄z∑

∞

m ＝１ ∑
∞

n ＝－∞
μ２ ４π２

β２ n
２ ＋π２

L２
m２ －z

z ＝０

＝－１
２

抄
抄z Π∞

m ＝１ Π∞
n ＝－∞

２πμ
β n

－２ z × １ ＋β２

４L２
m２

n２
－z

z ＝０
．（５畅１２畅３）

应用式

Π∞
n ＝１ １ ＋a２

n２
＝ｓｉｎhπαπα ， （５畅１２畅４）

并把其余的无限和与积用黎曼 ζ函数的项表示，最后得到
WQ１ （β，L） ＝βF －πβ

２４L， （５畅１２畅５）
式中

βF ＝∑∞
n ＝１
ｌｎ １ －ｅｘｐ －βπ

L n ． （５畅１２畅６）
现在证明 F 就是体积 L 中标量粒子气体的热力学自由能．在统计力学中，系统的
自由能定义为

ｅｘｐ［ －βF ］ ＝ｔｒ ｅｘｐ［ －β：H^：］． （５畅１２畅７）
若选取哈密顿H^ ＝ －抄２

x的本征函数为基函数，自由能可写为对所有动力学自由
度求和：

βF ＝∑
n
ｌｎ（１ －ｅ－βωn）． （５畅１２畅８）

式中 β为温度倒数，ωn 为量子系统的能级．这样，只要知道系统的能谱，便可以计
算自由能．（５畅１２畅２）式容易解出，并得到系统的能级：

ωn ＝π
L n，　L ＝x１ －x０．

注意 n ＝０ 的模式应从（５畅１２畅８）式的求和中去掉，因为其幅由狄里赫利边界条件
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确定，因而不是可重整化的，不是一个动力学自由度（对于 Ｎｅｗｍａｎｎ 边界条件，零
模式将会对自由能有贡献）．

所以，对于狄里赫利边界条件，自由能为
F ＝ １

β∑∞
n ＝１
ｌｎ １ －ｅｘｐ －βπ

L n ，
与（５畅１２畅６）式相同．

现在我们考虑高温极限，即柱长 L 远大于 β．在这一极限条件下，能级之间的
距离远小于温度：π／L虫１／β，对于 n 的求和可以用欧拉 －麦克劳林公式计算：

∑∞
n ＝１
f（n） ＝∫∞

０ ｄxf（x） －∫１０ ｄxf（x） ＋１
２ f（１） ＋∑∞

n ＝１
ck f（ k） （１）．

式中系数 ck 可用伯努利数

ck ＝（－１） k B k＋１
（k ＋１）！

表示，并假设函数 f（x）连同它的所有导数在无限远处减小．把函数式
f（x） ＝ｌｎ［１ －ｅｘｐ（ －sx）］

代入，考虑到关系式
ｌｎΓ（ z） ＝ z －１

２ ｌｎ（ z） －z ＋１
２ ｌｎ（２π） ＋∑∞

m ＝１
B２m

（２m）（２m －１） z２m－１ ，
｜ａｒｇｚ｜＜π，

可以证明

∑∞
n ＝１
ｌｎ（１ －ｅｘｐ［ －sn］） ＝－π２

６s －１
２ ｌｎ s

２π ＋１
２４s ＋o（ s）． （５畅１２畅９）

对于自由能，可得
βF ＝－πL

６β－１
２ ｌｎ

β
２L ＋πβ

２４L ＋o β
L

． （５畅１２畅１０）
有效作用量为

WQ１ ＝－πL
６β－１

２ ｌｎ
β
２L ＋o β

L
． （５畅１２畅１１）

可以证明，表达式 o（β／L）不是解析的，且当 β≤L 时很快趋于零．
注意，就构成而言，共形场的 βF 是共形不变的，因为能谱是共形不变的．这一

性质把它和欧氏有效作用量 W１ 区别开．重整化的有效作用量 WQ１ （β，L）和βF 只差
－β的线性项．

·１８·５畅１２　二维标量场的有效作用量和自由能



５畅１３　砖墙边界附近的 Ｃａｓｉｍｉｒ效应和场涨落
本节我们详细讨论视界附近边界处的场涨落及其和砖墙方法中出现的 Ｃａ唱

ｓｉｍｉｒ 效应之间的关系．这里不考虑黑洞背景，而考虑 Ｒｉｎｄｌｅｒ空间中的量子场，在 x
＝１ 处测得温度的倒数为 ２πα，且令 μ＝１．这一简化是可行的，因为我们只对视界
附近［空间类似一个锥（５畅６畅３）］发生的效应感兴趣．

假设砖墙位于点 x＝矯处，于是砖墙有效作用量就是 Cα的 Kα，矯部分上的作用

量，如图 ２０．

图 ２０

这样，由（５畅５畅６）， （５畅５畅７）和（５畅９畅９）式，对圆锥而言，与（５畅９畅１０）式对应的
式子为

WBW１ （α，矯） ＝W１ ［Kα，矯］
　　　　 ＝W１［Cα］ －W１［Cα，矯］ ＋WＣａｓ１ （２πα，α，矯），
WＣａｓ１ （２πα，α，矯） ＝－１

２ ｌｎ
πα
ｌｎ矯－１． （５畅１３畅１）

现在我们的任务是分析 Ｃａｓｉｍｉｒ项 WＣａｓ１ （２πα，α，矯）是如何与 x ＝矯附近的量子涨落
相联系的．故首先分析 Cα上配分函数的路径积分表示：

Z１ ［Cα］ ＝ｅ－W １［ Cα］ ＝∫［D矱］ｅ－I［矱］

＝∫［D矱］ｅｘｐ －１
２∫矱，μ矱，μ ． （５畅１３畅２）

我们可以把所有的变量分成三组：
Z１［Cα］ ＝∫［D矱１ ］［Dψ］［D矱２ ］ｅ－I［矱］ ． （５畅１３畅３）

式中 矱１ 和 矱２ 分别为区域 x ＜矯和 x ＞矯内的场，而 ψ＝矱（x＝矯）．在每一组，可以作
变换
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矱k ＝矱′k ＋χk， （５畅１３畅４）
Δχk ＝０，　χk（x ＝矯） ＝ψ，　k ＝１，２，　χ２ （x ＝１） ＝０． （５畅１３畅５）

新变量 矱′k 满足狄里赫利边界条件．由此并考虑到场 χk 是谐和的，可以把经典作
用量表示为

I［矱１ ＋矱２ ］ ＝I［矱′１ ］ ＋I［矱′２ ］ ＋W［ψ］． （５畅１３畅６）
式中

W［ψ］ ＝I［χ１ ］ ＋I［χ２ ］，

当

χ１ （x ＝矯） ＝χ２（x ＝矯） ＝ψ，
现在，配分函数表示成乘积形式：

Z１ ［Cα］ ＝∫［D矱′１ ］ｅ－I［矱′１］∫［Dψ］ｅ∫W［ψ］∫［D矱′２ ］ｅ－I［矱′２］

＝Z［Cα，矯］Z［Kα，矯］∫［Dψ］ｅ－∫W［ψ］ ． （５畅１３畅７）
（５．１３．７）式中第一个因子是半径为 矯（很小）的锥上的配分函数，第二个因子是空
间 Kα，矯上的配分函数，由砖墙模型作用量 WBW１ （α，矯）决定：

Z［Kα，矯］ ＝ｅ－W １［ Kα，矯］ ＝ｅ－WBW１ （α，矯） ． （５畅１３畅８）
　　对 ψ的积分描述点 x＝矯处场的量子涨落．我们证明，正是这一积分产生了有
效作用量中的 Ｃａｓｉｍｉｒ 项．实际上，（５畅１３畅５）式具有如下解：

χ１ （x，τ） ＝ １
πα∑

∞

n ＝１
ψ（ １）
n ｃｏｓ nτα＋ψ（２）

n ｓｉｎ nτα
x
矯

n／α， （５畅１３畅９）

χ２ （x，τ） ＝ １
πα∑

∞

n ＝１
ψ（ １）
n ｃｏｓ nτα＋ψ（２）

n ｓｉｎ nτα
× 矯
x

n／α１ －x２n／α
１ －矯２n／α ＋ ψ０

２παｌｎx／矯． （５畅１３畅１０）
式中 ψ（ k）

n ，ψ０ 是边界上场 ψ的傅里叶系数：
ψ（τ） ＝ １

πα∑
∞

n ＝１
ψ（１）
n ｃｏｓ nτα＋ψ（２）

n ｓｉｎ nτα ＋ ψ０

２πα， （５畅１３畅１１）
它们由圆 ０≤R≤２πα上的正交基确定．精确到 o（矯）项，上式给出作用量，形式为

W［ψ］ ＝I［χ１ ］ ＋I［χ２］
＝１

α∑∞
n ＝１

［（ψ（１）
n ） ２ ＋（ψ（ ２）

n ） ２ ］ ＋ ２ｌｎ １
矯

－１ψ２
０ ＋o（矯）．　　　（５畅１３畅１２）

对 ψ的积分具有高斯形式，可以精确求值．积分测度（差一归一化数字系数）可
写为
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［Dψ］ ＝矯１ ／２ ｄψ０ Π∞
n ＝１矯１ ／２ ｄψ（ １）

n Π∞
n ＝１矯１ ／２ ｄψ（ １）

n ． （５畅１３畅１３）
式中乘数矯１ ／２

的出现是由于含有因子 g１ ／４（在 x＝矯处）的协变测度．这样，对场ψ的
积分结果是

∫［Dψ］ｅ－∫W ［ψ］ ＝N 矯ｌｎ １
矯

１ ／２ ｅｘｐ ∑∞
n ＝１
ｌｎ（α矯） ． （５畅１３畅１４）

式中 N 为数字常数．用黎曼 ｚｅｔａ 函数
∑∞
n ＝１

＝ｌｉｍ
z→０ ∑

∞

n ＝１
n－z ＝ζR（０） ＝－１

２
把（５畅１３畅１４）式中的无穷和规则化以后，给出 Ｃａｓｉｍｉｒ项

∫［Dψ］ｅ－∫W［ψ］ ＝N ｌｎ矯－１

α
１ ／２ ＝NｅW １Ｃａｓ（α，矯） ． （５畅１３畅１５）

由（５畅３畅７）和（５畅３畅１５）式得到
ｅ－W １［ C a］ ＝Z１ ［Cα，矯］Z［Kα，矯］ｅW １Ｃａｓ（α，矯）

＝ｅｘｐ｛ －（W［Cα，矯］ ＋W［Kα，矯］ －WＣａｓ１ ［α，矯］）｝． （５畅１３畅１６）
此式显然给出了砖墙模型作用量 WBW１ 和锥上作用量 W１ ［Cα］之间的关系［（５畅９畅１）
式］，我们在前面曾经用共形变换得到过．

本章的后一部分讨论荷电黑洞的量子修正．
首先从 ４ 维爱因斯坦 －麦克斯韦理论出发，通过球对称退化，得到荷电黑洞的

２ 维模型，并讨论其量子修正．考虑任意温度的系统，用离壳方法重新表述了经典
热力学．考虑视界处存在顶角奇异性，引力作用量也应有一定义在视界处的修正
项．作用量泛函的变分程序得到自洽表述．我们发现对于规则流形（T ＝TH ）自由能
取极值．还重新审查了对作用量的单圈贡献（Ｌｉｏｕｖｉｌｌｅ唱Ｐｏｌｙａｋｏｖ 形式），从而建立 Ｌ唱
Ｐ项对量子场状态的依赖关系，得到有顶角亏损的 ２ 维时空对 Ｌ唱Ｐ 项的修正．还要
讨论 Ｈａｗｋｉｎｇ 辐射（详见下一章）对时空几何的反作用，并用微扰方法计算量子修
正的黑洞度规．在离壳框架下，得到单圈热力学能量和熵．揭示它们都包含两部分：
一部分来自黑洞周围的热气体，一部分来自黑洞本身．而且热气体的贡献可以通过
适当选择参考几何（一般是非平直的）来消除．对量子修正的黑洞，得到熵与视界
面积关系对经典定理的偏离，还将讨论其可能产生的物理效应．

在黑洞物理中，量子效应有双重作用．半经典地看，可认为黑洞被 Ｈａｗｋｉｎｇ 辐
射所包围，此辐射在远处变成热态的［热澡（ｈｅａｔ ｂａｔｈ）］．由于辐射具有能 －动张
量，其反作用导致黑洞几何的改变．另一方面，量子修正将改变有效作用量，这又将
导致计算黑洞能量和熵的公式的改变．几何的量子修正会影响黑洞参量，如视界半
径；因而会带来数量级为 ｌｎM 的修正，这是不能忽略的．因此，当考虑黑洞量子热
力学时，必须包括反作用效应．

２ 维物理研究得不少，上述问题也可以精确求解．２ 维非定域的 Ｌ唱Ｐ 作用量把
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Ｈａｗｋｉｎｇ 辐射及其对几何的反作用都可以包括进来．因此，在经典引力作用量中加
入 Ｌ唱Ｐ项将给出黑洞的完全半经典描述．有一点应该强调，即 Ｌ唱Ｐ作用量有某些不
确定性，除非具体说明量子场的状态．在黑洞和热辐射平衡的情况下，则要说明远
处的热澡．结果有效作用量依赖于量子场的热态．原则上，这个态可以由一温度
（非霍金温度）所表征．一个由来已久的明显事实是，这样的态可以有效地用奇异
瞬子上的量子场来描述．这可能解决了为什么欧氏奇异性方法（见前节）给出了黑
洞热力学的合理表述．

我们下面将从含边界项的 ４ 维爱因斯坦唱麦克斯韦理论开始．接着考虑球对称
度规，令此模型退化为一个有效的 ２ 维模型（ｄｉｌａｔｏｎ 类）．其经典解描述著名的 Ｒ唱Ｎ
荷电黑洞．

５畅１４　四维爱因斯坦－麦克斯韦
理论的球对称退化

　　考虑与麦克斯韦场耦合的 ４ 维爱因斯坦引力．其作用量为（取欧氏号差）
W c１ ＝－ １

１６πG∫M ４R
（ ４） gｄ４ x ＋ １

１６πG∫M ４F
２
μν gｄ４ x

－ １
８πG∫抄M ４K

（ ４） hｄ３ x． （５畅１４畅１）
式中 R（４）

是 ４ 维标曲率．我们加入了边界项．K（４）
是边界抄M４

的外曲率的迹．若 nμ

是垂直于抄M４
的外单位矢，我们有

K（４） ＝Δμnμ． （５畅１４畅２）
当边界抄M 趋于无穷远时，作用量（５畅１４畅１）发散．单圈有效作用量也同样．因此需
要某种删除法则．一般地，可以把这个发散量和定义在特定背景时空中的同一个量
进行比较；若 g０μv为背景度规，我们定义删减后的表达式为

W ｓｕｂ ＝W［gμv］ －W［g０μv］． （５畅１４畅３）
式中 W 包括经典项（５畅１４畅１）和单圈引力作用量．在量子的情况下，必须考虑减掉
渐近非平直参考度规．因此我们讨论任意的参考系（背景）．

第一个目标是在球对称时空的情况下约化作用量（５畅１４畅１）．球对称度规为
ｄs２ ＝γαβ（ z）ｄzαｄzβ ＋r２ （ z）（ｄθ２ ＋ｓｉｎ２ θｄφ２ ）． （５畅１４畅４）

式中 α，β，… ＝０，１；γαβ（ z）是有效 ２ 维空间 M２
上的度规；zα ＝（τ，x）和 r２ （ z）是 M２

上的标量场．对于度规（５畅１４畅４），曲率标量为
R（４） ＝R（２） ＋２

r２
（Δ r） ２ －２

r２
□ r２ ＋２

r２
． （５畅１４畅５）

式中所有的几何量都是由 ２ 维度规定义的．
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对于球对称情况，M４
的边界抄M４

是一直积抄M４ ＝抄M２ ×S２ ，其中抄M２
是 ２ 维空

间 M２
的边界，S２ 是 ２ 维球．法矢 nμ

只在与 M２
相切的方向上才有非零分量，nμ ＝

（nα，０，０）．因此，对边界的外曲率之迹（５畅１４畅２），我们有
K（ ４） ＝k ＋２nα 抄αr

r ，
k ≡Δαnα ≡ １

γ抄α（ γnα） ＝抄αnα ＋１
２γ抄αγnα． （５畅１４畅６）

式中 γ＝ｄｅｔγαβ．如果度规又是静态的，则可写成史瓦希形式：
ｄs２ ＝g（x）ｄτ２ ＋g－１ （x）ｄx２ ＋r２ （x）（ｄθ２ ＋ｓｉｎ２ θｄφ２ ）． （５畅１４畅７）

于是 nα＝（０，g１ ／２ ），且有
K（４） ＝k ＋２

r r′g
１ ／２ ，　k ＝（g１ ／２ ）′．

　　和我们的球对称假设一致，麦克斯韦场与 M２
相切，即规范曲率的惟一非零分

量为 Fτr≠０．
由于方程（５畅１４畅１）中对 θ，φ积分导致

∫gｄθｄφ＝４πr２ γ，
我们最终得到

W c１ ＝－１
４G∫M ２［ r２R ＋２（Δ r） ２ ＋２］ γｄ２ z

＋１
４G∫M ２ r

２F２
αβ γｄ２ z －１

２G∫抄M ２ r
２ kｄ２ z． （５畅１４畅８）

２ 维情况下，Fαβ只有一个分量

Fαβ ＝矯αβF． （５畅１４畅９）
式中 矯αβ为勒维 －西维塔张量．故从麦克斯韦方程得到

Δα（ r２Fαβ） ＝０，　F ＝ Q
r２
，　Q ＝ｃｏｎｓｔ．． （５畅１４畅１０）

式中 Q 为电荷．
把（５畅１４畅９）和（５畅１４畅１０）式代入作用量（５畅１４畅８），我们发现整个理论退化为

２ 维 ｄｉｌａｔｏｎ 引力：
W c１ ＝－１

４C∫M ２［ r２R ＋２（Δ r） ２ ＋２U（ r）］ γｄ２ z

－１
２G∫抄M ２ r

２ k． （５畅１４畅１１）
式中场 r２ （ z）起 ｄｉｌａｔｏｎ 场的作用，ｄｉｌａｔｏｎ 势为
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U（ r） ＝１ －Q２

r２
． （５畅１４畅１２）

到欧氏度规的 Ｗｉｃｋ 转动伴随着相应的电荷复化 Q→ｉQ，只要假设最后又回到实的
Q即可．记住这些，我们就可以使用表达式（５畅１４畅１１）和（５畅１４畅１２），其中 Q 已经是
实数．把作用量（５畅１４畅１１）对 ｄｉｌａｔｏｎ r２ 变分，得到 ｄｉｌａｔｏｎ 运动方程

rR －２□r ＋U′r ＝０， （５畅１４畅１３）
对度规 γαβ取变分则给出

Gαβ≡－２rΔαΔβr ＋γαβ［□ r２ －（Δr） ２ －U］ ＝０． （５畅１４畅１４）
（５．１４．１４）式表明矢量 ξα＝矯β

α抄βr是一 Ｋｉｌｌｉｎｇ 矢量．在（Δr） ２ ≠０ 的区域，Ｋｉｌｌｉｎｇ 时
间 t（ξα抄α＝抄 t）和 r 可作为 M２

的坐标．方程 Gτ
τ－G rr ＝０ 意味着其度规为

ｄs２ ＝g（ r）ｄτ２ ＋ １
g（ r）ｄr

２． （５畅１４畅１５）
　　方程（５畅１４畅１４）的迹为

□ r２ ＝２U（ r）． （５畅１４畅１６）
这一关系式给出

g（ r） ＝gcl（ r） ＝ １
r∫rU（ r′）ｄr′

＝１ －２MG
r ＋Q２

r２
＝（ r －r＋）（ r －r－）

r２
． （５畅１４畅１７）

式中 M 是 积 分 常 数， 恰 为 ＡＤＭ （ Ａｒｎｏｗｉｔｔ唱ｄｅｓｅｒ唱ｍｉｓｎｅｒ ） 质 量， r ± ＝MG ±
M２G２ －Q２

是外内视界半径．

５畅１５　Ｔｒｅｅ唱Ｌｅｖｅｌ黑洞热力学
欧氏作用量（５畅１４畅１１）是表述经典黑洞热力学的出发点．描述场系统热力学

性质的标准程序是通过 Ｗｉｃｋ 转动变到欧氏空间，闭合 τ使具有周期 ２πβ＝T －１ ，T
是系统温度．假设系统处在长 L 的盒子里．原则上场位形不需满足任何场方程．只
有在要求适当边界条件下的自由能泛函取极值时，场才满足场方程．

类似地，黑洞热力学可以用离壳的方式表述．考虑一般形式的欧氏静态度规
ｄs２ ＝g（x）ｄτ２ ＋ｅ

－２λ（ x）

g（x） ｄx
２． （５畅１５畅１）

式中 ０≤τ≤２π珔β；x ＋≤x≤L．下面我们假设外边界位于 x＝L，而 x＝x ＋是视界位置．
系统的温度在边界处是固定的，可写成与坐标无关的形式：T －１ ＝∫ｄτ

g ００ ｜x ＝L．系统也由 ｄｉｌａｔｏｎ 场在边界处的取值 rB ＝r｜x ＝L来表征．由于系统包含非极
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端黑洞，故在某些点 x＝x ＋（视界）函数 g（ x）有单纯零点：g（ x ＋） ＝０．在这种情况
下，（５畅１５畅１）描述的空间的欧拉示性数固定为 x ＝１，因此，系统由以下量表征：①
固定外边界处的 T和 γB ；②固定黑洞拓扑．这一统计系综包括所有满足这些条件
的函数（g，γ，r）．这种形式的任意度规，βH≡（２ｅ －λ／g′） x ＝x ＋是度规的泛函而不被上
述条件确定．一般情况下，这样的度规描述在视界 x ＝x ＋处具有顶角奇异性的欧氏

空间，其角亏损为 δ ＝（１ －α）２π，式中 α＝珔β／βH．这意味着曲率标量中有来自顶角
的类 δ项：

R（ ２） ＝２ １ －α
α δ（x －x＋） ＋珔R（２） ，　α＝ 珔β

βH． （５畅１５畅２）
式中 珔R（２）

是曲率标量的规则部分．当 α＝１ 时，顶角奇异性消失．注意，仅 α＝珔β／βH
有不变的意义，而 βH 和珔β是和坐标有关的．

我们这里所用的方法与已有的工作不同，由条件（１）和（２）确定的统计系统既
包括规则度规又包含有顶角奇异性的度规．对于一般的度规（具有任意的α），由方
程（５畅１５畅２），可将经典作用量（５畅１４畅１１）改写为

W c１ ＝－１
４G∫珚M ［ r２ 珔R ＋２（Δr） ２ ＋２U（ r）］ γｄ２ z

－１
２G∫抄珚M r２ k（ ２） －πr２＋

G （１ －α）． （５畅１５畅３）
代入静态度规（５畅１５畅１），得到作用量（５畅１５畅３）的表达式

W c１ ＝－（２π珔β）
４G ∫Lx＋［（ r２ ）′ｅλg′＋２gｅλ（ r′x） ２

＋２Uｅ－λ］ｄx －πr２＋
G ． （５畅１５畅４）

　　于是，可以定义自由能 F，熵 S 和能量 E：
F ＝（２πβ） －１W cl，　S ＝（β抄β －１）W cl，　E ＝ １

２π抄βW cl． （５畅１５畅５）
式中 ２πβ＝T －１ ，β＝珔β gB．将这些式子应用到（５畅１５畅４），我们得到能量的表达式

E ＝－ １
４Gg１ ／２

B
∫Lx＋［（ r２ ）′ｅλg′＋２gｅλ（ r′x） ２ ＋２Uｅ－λ］ｄx， （５畅１５畅６）

熵的表达式

SBH ＝πr２＋
G ． （５畅１５畅７）

正是标准的 Ｂｅｋｅｎｓｔｅｉｎ唱Ｈａｗｋｉｎｇ 形式．在计算过程中没有假定 α＝１，因此这些计算
是离壳的．现在，我们固定温度 T＝（２πβ） －１ ，并考虑自由能 F ＝E －TS 的极值，或
等效地，考虑作用量 W cl的极值．显然，这样的平衡态位形自动满足热力学第二
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定律：
δE ＝TδS． （５畅１５畅８）

　　这里须注意，仅 x＝L 处的 T 和 rB 以及视界处的条件 g（ x ＋） ＝０ 是固定的．函
数（x），g′（x），r（x）以及视界处 r ＋ ＝r（x ＋）、g′（ x ＋） （或 βH ）的值都是可变的．作用
量 W cl的全变分为

δW cl ＝δ rW cl ＋δRW cl ＋δλW cl．
其中，

δ rW cl ＝－２πr（x＋）
G （１ －α）δr（x＋） －（２π珔β）

４G
×∫Lx＋δr［ －２r（ｅλg′）′－４（gｅλr′）′＋２U′rｅ－λ］ｄx． （５畅１５畅９）

δδW cl ＝－（２π珔β）
４G ∫Lx＋δg［ －（ｅλ（ r２ ）′）′＋２ｅλr′２x］ｄx． （５畅１５畅１０）

δλW cl ＝－（２π珔β）
４G ∫Lx＋δλ［ｅλ（ r２）′g′＋２ｅλg（ r′x） ２ －２Uｅ－λ］ｄx．（５畅１５畅１１）

对函数（ r，g，λ）的变分（在区域 x ＋≤x≤L），得到运动方程
２r（ｅλg′）′－４（gｅλr′）′＋２U′rｅ－λ ＝０，
－（ｅλ（ r２）′）′＋２ｅλr′２x ＝０，
ｅλ（ r２ ）′g′＋２ｅλg（ r′x） ２ －２Uｅ－λ ＝０． （５畅１５畅１２）

当然，它们和（５畅１４畅１３） ～（５．１４．１４）式一致．在边界（ x ＋，L）处，方程（５畅１５畅９） ～
（５．１５．１１）中的变分 δg′（x ＋）和 δg′（L）已抵消；这是因为方程（５畅１５畅３）中存在外
边界和奇异点（顶角）的“表面”项．

在某种意义上，顶角 Σ可以看做抄M 外空间 M 的某种边界．正是引力作用量
（５畅１５畅３）中有定义在 Σ处的附加项，才使得有顶角的空间上的变分有很好的定
义．与顶角相关的项补偿了度规导数在 Σ处的变分，正如标准 Ｇ桘Ｈ 项在外边界抄M
上的行为一样．作用量的变分也包含与 δr ＋成正比的一项．条件 δrW cl ＝０ 给出 α＝
１．这正是所需要的结果．它意味着在规则流形（无顶角奇异性的 Ｇ桘Ｈ 瞬子）上达到
平衡态．

方程（５畅１５畅１２）表明可取 r ＝x．度规函数 g（ r）取（５畅１４畅１７）的形式：
g（ r） ＝ １

r∫rr＋U（ρ）ｄρ． （５畅１５畅１３）
特别是，我们有

g（L） ＝ １
L∫Lr＋U（ r）ｄr，　g′r（L） ＝L－１U（L） －L－１ g（L）． （５畅１５畅１４）

另一方面，在视界处，
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２
βH ≡ g′r（ r＋） ≡ U（ r＋）r＋ ． （５畅１５畅１５）

　　能量泛函 E（５畅１５畅６）式可写为
E ＝ １

２Gg１ ／２
B
∫Lx＋G０

０ ｅ－λｄx ＋E ｓｕｒｆ，

E ｓｕｒｆ ＝－１
２G（ｅ

λ（ r２ ）′g１ ／２ ） x ＝L． （５畅１５畅１６）
由于 G０

０ ＝０，E 只有表面项．等价地，我们得到能量（５畅１５畅１６）式的坐标无关的表
达式：

E ＝－ １
２πβ

１
G∫抄M rnα抄αr． （５畅１５畅１７）

当抄M 趋于无限远时，量（５畅１５畅１７）发散，由前面讲到的删除法则得到
E ＝E（g） －E（g０ ）
＝１
G

１
２πβ０∫抄M rnα

０ 抄αr － １
２πβ∫抄M rnα抄αr

＝１
G ［ r（g

１ ／２
０ －g１ ／２ ）］ r ＝L． （５畅１５畅１８）

这里对于背景度规，取 r０ ＝r．应注意，对背景的自然要求是当L→∞时背景温度 T
＝（２πβ０ ） －１

与无限远处的黑洞温度相合．即 g０ ＝ｌｉｍ
L→∞g（L）．对于渐近平直度规，

g（L） ＝１ －２MG
L ＋o １

L
，

我们有 g０ ＝１．所以
E ＝ １

G ［１ － g（L）］． （５畅１５畅１９）
当 L→∞时，

E ＝M． （５畅１５畅２０）
为了表述荷电度规的变分过程，固定于边界处的量还应包括表征麦克斯韦部分的
电量 Q 或势 A０．对 Aμ的变分将给出麦克斯韦方程组．但这里我们不这样做．我们
先精确解出麦克斯韦部分，从而所有信息都包含在 ｄｉｌａｔｏｎ 势 U（ r）中，就只要对引
力部分变分了．这两种方法显然导致相同的结果．

以上方法对任意势 U（ r）都适用，只要其形式固定．对于改变其形式的变分，从
（５畅１５畅１９）式得到

δE ＝δM －１
２G∫Lr＋δU（ r）ｄr． （５畅１５畅２１）

由（５畅１４畅１２）式定义的势 U（ r），我们得到荷电黑洞的第二定律：
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δM ＝TδS ＋ QGr＋δQ． （５畅１５畅２２）
但是特殊形式的势 U（ r）对于上述方法是不重要的．可以证明，量子修正会改变势
的形式，并导致黑洞度规（５畅１５畅１３）的改变．

极端黑洞值得注意．这时有
U（ r＋） ＝０，　g′（ r＋） ＝０． （５畅１５畅２３）

极端黑洞瞬子的几何与非极端情况大不一样，在度规
ｄs２ ＝g（ r）ｄτ２ ＋g－１ （ r）ｄr２ （５畅１５畅２４）

中，τ可以具有任意周期 ２πβ而不会形成任何奇异性．现在视界与瞬子流形上的其
他任何点的固有距离都是无限大．视界附近，极端瞬子像一个常曲率空间，其度
规为

ｄs２ ＝ r
２
＋
z２
（ｄτ２ ＋ｄz２ ）． （５畅１５畅２５）

当 r→r ＋时，z→ －∞．极端黑洞瞬子可以看成与平直圆柱形空间共形的空间．
这些极端几何的特点对于极端黑洞热力学的表述是很重要的．由于视界处无

顶角奇异性，作用量中无附加项：
W ＝２πβE． （５畅１５畅２６）

式中能量 E 具有形式（５畅１５畅１９）．由（５畅１５畅２６）式可以得到系统的自由能 F ＝E．因
此，极端黑洞的熵为零：

Sｅｘ ｔ ＝０． （５畅１５畅２７）
而且由于自由能不依赖于温度 β－１ ，β固定时自由能取极值的要求不会给出非极端
情况下 r ＋和 β的关系．这意味着极端黑洞可以在任何温度下处于平衡态．这种形
式结果的物理意义还不清楚．量子效应肯定会改变这个结论．

５畅１６　Ｌ桘Ｐ作用量及量子场热态的选择
为了在分析中包括单圈量子效应，我们考虑 ２ 维量子共形无质量标量场．对配

分函数的贡献为

Z ＝ｅ－Γ，　Γ ＝ １
２ ｌｎ ｄｅｔ□． （５畅１６畅１）

式中□ ＝ΔμΔμ，是 ２ 维拉普拉斯算符．有效作用量 Γ的计算常用到对共形反常
的积分．计算结果得到

ΓPL（g） ＝ １
９６π∫R□ －１R． （５畅１６畅２）

应用上式时至少会遇到两个问题．第一，这个作用量在常数（整体的）共形变换 gμv
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→Λgμv下不能很好地变换．第二，当把它应用到平直空间（R ＝０）时，由（５畅１６畅２）式
变分得到的能－动张量的平均值枙Tμv枛恒为零．这对真空态成立，而对其他可能态就
不成立．所以，把有效作用量写成这一形式就会失去量子场的态的具体信息．我们
要给（５畅１６畅２）式加入边界项，并证明关于量子场的态的信息与边界项直接相关．
因此，为了考虑单圈量子效应，我们将仔细处理 Ｌ桘Ｐ 作用量，考虑到所有边界项．

应强调指出，导出（５畅１６畅２）式所需要的对共形反常的积分并不给出有效作用
量 Γ（g）的绝对值，只给出两个共形相关（gμv ＝ｅ２σgμv）流形的有效作用量之差：

Γ［g］ ＝Γ［ g^］ － １
２４π∫M（Δσ^） ２ ＋∫M R^σ＋２∫抄M ｄ s^ k^σ

－１
８π∫抄M ｄ s^ n^μ抄μσ． （５畅１６畅３）

式中n^μ
和k^ ＝Δμ^ n^μ

分别为 nμ
和 k 的对应量．

Γ［g］可以写成仅由度规 gμv确定的形式，只要引入一满足方程
□Ψ ＝R （５畅１６畅４）

的附加场 Ψ．对共形相关度规 gμv ＝ｅ２σgμv，各个量的关系为
R ＝ｅ－２σ（R －２□σ），　ψ＝ψ^－２σ，
k ＝ｅ－σ（ k^ ＋n^μ抄μσ），　nμ ＝ｅ－σn^μ． （５畅１６畅５）

由这些关系可以证明，（５畅１６畅１）式的有效作用量具有形式
Γ（g） ＝ １

４８π∫M １
２ （Δψ） ２ ＋ψR

＋ １
２４π∫抄M kψｄs ＋ １

１６π∫抄M nμψ，μｄs ＋Γ０ ， （５畅１６畅６）
式中所有量都由 gμv定义，而“积分常数”Γ０ 是一个共形不变泛函．

现在我们考虑共形无质量场 φ，它在有视界的时空中以温度 T处于一热态．相
关的欧氏静态度规为

ｄs２ ＝g（x）ｄτ２ ＋ １
g（x）ｄx

２ （５畅１６畅７）
或

ｄs２ ＝g（ρ）ｄτ２ ＋ｄρ２． （５畅１６畅８）
式中， ０≤τ≤２π珔β，０≤ρ≤L ρ，假设 g（x）在 x ＝x ＋处有一阶零点，这是 Ｋｉｌｌｉｎｇ 视界．
在视界附近有

g（ρ） ＝ρ２

β２
H
，　βH ＝ ２

g′x（ r＋）．
对于珔β＝βH，（５畅１６畅８）式描述规则黑洞瞬子．如果 珔β≠βH，此度规在 ρ ＝０ 处有顶角
奇异性，角亏损为 δ ＝２π（１ －α），α＝珔β／βH．度规（５畅１６畅８）可以写成共形的形式：
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５畅１７　量子修正的黑洞几何
在半经典近似（度规不量子化）下，要得到单圈量子效应，可以在经典引力作

用量中加上积分物质场得到的量子部分：
W ＝W cl ＋Γ． （５畅１７畅１）

对于球对称考虑，我们取 W cl为（５畅１４畅１１）式的形式（还要减去参考度规的贡献，见
５畅１５ 节），而单圈贡献 Γ取为 Ｌ桘Ｐ作用量（５畅１６畅２４）．当然，在自洽的处理中，量子
有效作用量 Γ也应该由 ４ 维物质场经过球对称退化得到，就像得到引力部分 W cl
那样．但是有效作用量非常复杂而使得分析很困难．因此，这里只考虑最简单的情
况：有效 ２ 维物质场是共形的，且 Γ为非定域的 Ｌ桘Ｐ泛函．

为了考虑黑洞的单圈量子效应，先研究作用量的量子修正（５畅１７畅１）式所引起
的黑洞经典几何的修正．此式对度规取变分，得到

Gαβ＝－Tαβ， （５畅１７畅２）
Tαβ＝ G２４π ２ΔαΔβψ－抄αψ抄βψ－γαβ２R －１

２ （Δψ） ２ ． （５畅１７畅３）
式中 Gαβ由（５畅１４畅１４）式给出．对 ｄｉｌａｔｏｎ 场 r２ （ x）的变分给出与经典情况相同的
方程：

γR －２□ r ＋U′r ＝０． （５畅１７畅４）
方程（５畅１７畅２）和（５畅１７畅４）的一个重要结果是时空奇点现在位于有限半径（ｄｉｌａｔｏｎ
值） r２ ＝r２cr≡G／１２π上．这是引力的 ２ 维模型的典型行为．对于这个 ｄｉｌａｔｏｎ 值，
（５畅１７畅１）式的动力学项发散．另一方面，取（５畅１７畅２）式的迹，得到

□r２ －２U（ r） ＝ G
１２πR． （５畅１７畅５）

再考虑到（５畅１７畅４）式，得
R ＝２U －rU′－２（Δr） ２

r２ －r２cr ． （５畅１７畅６）
此式表明在 r ＝r cr 处有奇异性．这里我们不研究此点附近方程 （ ５畅１７畅２） 和
（５畅１７畅４）的解的行为，而是假定外视界 r ＋冲rcr．于是，在区域 r≥r ＋内，我们可以用
微扰法（对 rcr ／r ＋）解方程（５畅１７畅２）和（５畅１７畅４），把方程（５畅１７畅２）的右端看成微
扰．这样可以给出黑洞的一级修正（正比于 珔h）．

和前面类似，我们考虑静态解．定义函数 f和 M：
f ＝（Δr） ２ ，　M ＝ １

２ r［１ －（Δr） ２ ］ ＋Q２

２r ， （５畅１７畅７）
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并选择 r 为一个坐标，Ｋｉｌｌｉｎｇ 时间 t为另一坐标．于是有
ｄs２ ＝f（ r）ｅ２Φ（ r） ｄt２ ＋ １

f（ r）ｄr
２ ， （５畅１７畅８）

f（ r） ＝１ －２M（ r）
r ＋Q

２

r２
． （５畅１７畅９）

方程（５畅１７畅２）可改写为
２rΔαΔβγ＝γαβ

２M
r －２Q２

r２
－γαβT ＋Tαβ，

T＝γαβTαβ． （５畅１７畅１０）
微分（５畅１７畅７）式，并利用（５畅１７畅１０）式，得到

２抄αM ＝抄βr（δβ
αT －Tβ

α）． （５畅１７畅１１）
取 α＝０，此式恒成立；取 α＝１，此式给出

抄rM ＝ １
２ T

t
t． （５畅１７畅１２）

取（５畅１７畅１０）式的迹，得到关于函数 Φ（ r）的方程：
抄rΦ ＝ １

２rf（T
t
t －T rr）． （５畅１７畅１３）

把（５畅１７畅１２）和（５畅１７畅１３）式的右端看作微扰，并在经典背景中计算它们．我们有
Φ（ r） ＝０，M ＝ｃｏｎｓｔ；对于度规（５畅１７畅８），能－动张量［（５畅１７畅３）式］为

T tt ＝k ２f″－１
２f f′

２ －４
β２
H

，

T rr ＝k １
２f f′

２ －４
β２
H

． （５畅１７畅１４）
式中 k＝G／２４π，βH ＝２／f′（ r ＋）．我们必须把经典度规（５畅１４畅１７）代入（５畅１７畅１４）
式，其中

f ＝g cl（ r） ＝r－２ （ r －r＋）（ r －r－），
r± ＝MG ± （MG） ２ －Q２．

　　须注意，（５畅１７畅１４）式给出的 Tαβ在内视界 r ＝r －处发散．这个众所周知的发散
使得微扰方案在 r ＝r －附近失效．为了得到微扰方案适用的条件，先考虑外视界 r
＝r ＋处的 Tα

β，现令 r － ～r ＋．这时我们发现（５畅１７畅１４）式定义在 T tt 和 T rr 在此极限下
有限，而（５畅１７畅１３）式中的 f －１ （T tt －T rr）则以 k［（ r ＋ －r －） r ＋］ －１

的形式发散．要使
微扰方案成立．必须消去这一令人不愉快的一项．即要满足 k［（ r ＋ －r －） r ＋］ －１ 虫
１，或者 kr －２

＋ 虫１ －r －／r ＋．这样，只要令 r ＋足够大，我们总能任意接近极端情况 r － ～
r ＋．这个重要条件使我们可以把此方法运用到 Q ～M 的荷电黑洞，保证外边界“半
径” rB 任意大的热力学系统的稳定性．
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（５畅１７畅１２）和（５畅１７畅１３）式很容易积分，令
m（ r） ＝２k－１ ［M －M（ r）］． （５畅１７畅１５）

积分（５畅１７畅１２）式，得到
m（ r） ＝－１

k∫rT tt（ r）ｄr ＝C（ r）

＋Aｌｎ （ r －r－）l ＋Bｌｎ rl ，

C（ r） ＝－２
β２
H
r －（ r＋－r－） ２

２r＋ r－ r －２（ r＋＋r－）
r２

＋１０r＋ r－
３r３ ，

A＝－（ r＋－r－） ２ （ r＋＋r－）（ r２＋＋r２－）
２r４＋ r２－

B＝（ r＋－r－） ２ （ r＋＋r－）
２r２＋ r２－ ． （５畅１７畅１６）

和前面类似，r ±表示经典内外视界的“半径”．常数 A和 B 之间的恒等式 A ＋B ＝－
４MGβ－２

H 是很有用的．在（５畅１７畅１６）式中，我们引入了一个距离 l，为了使对数的自
变量量纲为一．下一节计算的能量和熵的最后结果和此参量无关．可以自然地假设
l具有普朗克长度的量级 l～r cr．但这一点对于下面的讨论并不重要．

类似地，积分（５畅１７畅１３），得到
Φ（ r） ＝ １

２∫Lr １
rf （T

r
r －T tt）ｄr， （５畅１７畅１７）

对于 f＝g cl（ r），再加上条件 Φ（L） ＝０，得到
Φ（ r） ＝１

２ k［F（L） －F（ r）］，

F（ r） ＝－ （ r４＋－r４－）
r４＋ r－ （ r －r－） ＋４

r２
＋４（ r＋＋r－）
r＋ r－ r

＋Dｌｎ［（ r －r－） ／l］ ＋Eｌｎ（ r／l），
D ＝ １
r４＋ r２－

（３r４＋＋２r３＋ r－＋２r２＋ r２－＋２r＋ r３－－r４－），

E ＝ １
r２＋ r２－

（ －３r２＋－２r＋ r－－３r２－）． （５畅１７畅１８）
　　现在考虑特殊情况：不带电黑洞（Q ＝０）．其经典度规函数为

g cl（ r） ＝１ －r＋ ／r，　r＋ ＝２MG，　βH ＝２r＋．
对于量子修正度规，我们得到

f（ r） ＝１ －２MG
r ＋km（ r）r ， （５畅１７畅１９）
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m（ r） ＝－７r＋
４r２ ＋１

２r －
２r
β２
H
－ １
２r＋ｌｎ

r
l （５畅１７畅２０）

和

Φ（ r） ＝ １
２ k［F（L） －F（ r）］，

F（ r） ＝ ３
２r２ ＋ ２

r＋ r
－１
r２＋
ｌｎ rl ． （５畅１７畅２１）

当盒子的线度 L 很大时，有
ｅｘｐ（２Φ（ r）） ＝ r

L
k／r２＋ｅｘｐ －k ３

２r２ ＋ ２
r＋ r

． （５畅１７畅２２）
　　黑洞的一个重要特征是其视界半径．在我们模型中，它由视界处的 ｄｉｌａｔｏｎ 值
珋r ＋表示．对于量子修正解（５畅１７畅１５），它与经典值 r ＋不同．为明确起见，令 f（珋r ＋） ＝
０，得到解

珋r＋ ＝M（珋r＋）G ＋ （M珋r＋ G） ２ －Q２．
　　将上式按 k展开，最后得到

珋r＋ ＝r＋－kβHm（ r＋） ／（２r＋）．
式中的 r ＋和 βH 是由 M 和 Q 算得的经典值．由此得到

珋r２＋ ＝r２＋－kβHm（ r＋）． （５畅１７畅２３）
这一式子可以解释为由于量子修正引起的“视界面积”的变化．

５畅１８　热力学量的量子修正
由作用量 W ［（５畅１７畅１）式］所描述的单圈热力学本质上和 ５畅１５ 节的初级

（ ｔｒｅｅ唱ｌｅｖｅｒ）近似相同．我们固定边界 x ＝L 处的 rB 和温度 T ＝（２πβ） －１ ，以及时空
几何的黑洞拓扑，并用下式定义离壳熵和能量：

S ＝（β抄β －１）W，　E ＝ １
２π抄βW． （５畅１８畅１）

然后，采用（５畅１５畅１）式给出的欧氏度规，其中任意函数 g（ x），λ（ x）满足上述条件
［g（x）在 x＝L 处有单零点］；我们发现，系统的平衡态由泛函 W［ g（ x），r（ x），λ
（x）］的极值描述：

δW ≡ δ rW ＋δgW ＋δλW ＝０． （５畅１８畅２）
在选择量子场作用量的时候，单圈部分 Γ不含 ｄｉｌａｔｏｎ 场 r（ x）．因此有 δ rW ＝δ rW cl
［见（５畅１５畅９）式］，其中 r（x ＋） ＝珋r ＋是视界处 ｄｉｌａｔｏｎ 场的量子值．这意味着极值位
形满足

２
g′（x＋） ≡ βH ＝珔β， （５畅１８畅３）
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h ＝ １
７２０πM， （５畅２３畅３４）

再代入史瓦希黑洞的

β＝ １
T ＝２π

K ＝８πM， （５畅２３畅３５）
可把熵写成

S ＝ ７
２ ４πM２ ＝ ７

２
AH
４ ． （５畅２３畅３６）

５畅２４　共形场论方法
如前所述，黑洞 Ｂｅｋｅｎｓｔｅｉｎ唱Ｈａｗｋｉｎｇ 熵的统计力学起源的研究是人们极为关

注的问题．最近，弦理论、量子几何和诱导引力理论在稳态黑洞熵的统计力学起源
的研究中取得了一些进展．Ｂｒｏｗｎ ａｎｄ Ｈｅｎｎｅａｕｘ 指出：“ＡｄＳ３ 的渐近对称群由 Ｖｉｒａ唱
ｓｏｒｏ 代数生成．因此，在 ＡｄＳ３ 中的任何引力量子理论都是共形场理论．”由此，
Ｓｔｒｏｍｉｎｇｅｒ发现，对于视界邻域几何为局部 ＡｄＳ３ 的黑洞，用共形场的渐近态密度可
得到统计力学熵．其结果与黑洞的 Ｂｅｋｅｎｓｔｅｉｎ唱Ｈａｗｋｉｎｇ 熵相同．这表明，通过在 ＡｄＳ
时空边界上建立起共形场论，我们就可对黑洞熵进行统计力学解释．Ｓｔｒｏｍｉｎｇｅｒ 方
法有两个明显的局限性．其一，它只适用于（２ ＋１）维 ＡｄＳ 时空．此时，相关的 Ｖｉｒａ唱
ｓｏｒｏ 代数具有自然的几何意义：它们是三维 ＡｄＳ 时空中二维边界的对称性．尽管弦
理论中有些黑洞的视界几何与（２ ＋１）维ＡｄＳ 时空类似，但许多其他的黑洞 （如
Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞、Ｋｅｒｒ 黑洞、Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞、Ｄｉｌａｔｏｎ 黑洞、 Ｅｉｎｓｔｅｉｎ唱Ｍａｘｗｅｌｌ
Ｄｉｌａｔｏｎ唱Ａｘｉｏｎ 黑洞等）没有这种性质．其二，由于 Ｖｉｒａｓｏｒｏ 代数建立于空间无限远
处，它不能检测时空内部几何．例如，多黑洞解每个视界有自己的熵，但无限远处的
渐近代数只能确定该系统的总熵．事实上，无限远处的中心荷不能区别所得的熵是
由黑洞或恒星引起的．因此，我们需要找到把 Ｓｔｒｏｍｉｎｇｅｒ 方法推广到高维时空及单
个黑洞视界面为边界．很自然，人们首先想到的是把 Ｃａｒｄｙ 公式推广到高维时空．
不幸的是，至今仍未得到推广的高维 Ｃａｒｄｙ 公式．

由 Ｓｔｒｏｍｉｎｇｅｒ 讨论中我们知道，在二维共形场理论中，从对称性可以得到态密
度．如果我们能找出（n ＋１）维时空（n ＞２）中对黑洞热力学起特殊作用的二维子流
形，我们就能得到二维共形场理论与（n ＋１）引力的联系．当用半经典方法研究（ n
＋１）维黑洞热力学时，所有有趣的物理现象都发生在“ r桘t 平面”．黑洞熵的半经典
计算也仅取决于“ r桘t平面”附近的几何．这一现象提示我们，对黑洞熵的统计力学
计算有可能的两种方案．一种是在黑洞视界附近把广义相对论的维数降为二维，再
由等效二维作用量找出相应的共形场和中心荷．另一种是找出微分同胚生成元的
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Ｐｏｉｓｓｏｎ代数，并得到在“ r桘t 平面”上具有中心荷的子代数．Ｓｏｌｏｄｕｋｈｉｎ 用第一种方
案讨论了球对称黑洞（无物质场），他证明：在球对称黑洞视界附近的维数降低到
二维可导致有合适中心荷的 Ｌｉｏｕｖｌｌｅ 理论．从而由对称性可以得到黑洞的 Ｂｅｋｅｎ唱
ｓｙｅｉｎ唱Ｈａｗｋｉｎｇ 熵．这一方法有两个缺点：降维过程中有可能导致信息丢失；对于由
其他物质场得到的非球对称黑洞，降维过程十分复杂，甚至是不可能的．

对于第二种方案，我们得考虑具有边界的流形，加上一些边界条件使得我们要
取的边界就为黑洞视界．而后研究该流形中微分同胚生成元的 Ｐｏｉｓｓｏｎ 代数，特别
是在“ r桘t平面”中微分同胚子代数．我们期望该子代数可作经典的中心展开，具有
中心荷和 L０ 的本征值Δ．再用 Ｃａｒｄｙ 公式，看中心荷 c和Δ是否能正确地给出态密
度的渐近行为．如果能行，我们就证明了黑洞 Ｂｅｋｅｎｓｔｅｉｎ唱Ｈａｗｋｉｎｇ 熵确实可由对称
性决定．为此，我们得先找出合适的边界条件．一种可能的方法是观察某坐标系中
黑洞视界附近的度规函数形式，并要求在边界附近度规必须趋近这种形式．实际上
这是把 Ｂｒｏｗｎ唱Ｈｅｎｎｅａｕｘ 选取边界条件的方法推广到黑洞视界面及高维时空．利用
这种方法选取边界条件，Ｃａｒｌｉｐ 在（n ＋１）维类 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 时空中建立起了 Ｖｉｒａ唱
ｓｏｒｏ 子代数，并由 Ｃａｒｄｙ 公式得到了与黑洞 Ｂｅｋｅｎｓｔｅｉｎ唱Ｈａｗｋｉｎｇ 熵一致的统计力学
熵．Ｓｏｌｏｖｉｅｖ 和 Ｄａｓ，Ｇｈｏｓｈ，Ｍｉｔｒａ 也用此方法对黑弦和黑洞熵进行了研究．这种边界
条件的建立似乎很直接，但是它过分依赖于坐标的选取，而且度规如何趋于边界值
的要求也不清楚．

另一种选取边界条件的方法是 Ｃａｒｌｉｐ 提出的，就是在（局部）Ｋｉｌｌｉｎｇ 视界附近
选取一组合适的边界条件．Ｃａｒｌｉｐ 发现，对于由真空引力场方程得到的高维黑洞，
当采用协变相空间技术，由一组自然的边界条件可在视界上建立起具有中心荷的
Ｖｉｒａｓｏｒｏ 子代数．而后，利用共形场理论，Ｃａｒｌｉｐ 计算了 Ｒｉｎｄｌｅｒ 时空、静态 ｄｅ Ｓｉｔｔｅｒ
时空，Ｔａｕｂ唱ＮＵＴ和 Ｔａｕｂ唱Ｂｏｌｔ时空，以及二维 ｄｉｌａｔｏｎ 引力的统计力学熵．由于协变
相空间技术要用到 Ｌａｇｒａｎｇｅ 函数，即研究过程与物质场有关，因此，Ｃａｒｌｉｐ 的方法
能否用于其他黑洞（如由 Ｅｉｎｓｔｅｉｎ唱Ｍａｘｗｅｌｌ 场方程描述的 Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞、Ｋｅｒｒ唱
Ｎｅｗｍａｎ唱ＡｄＳ 黑洞、由 Ｄｉｌａｔｏｎ 引力描述的静态和稳态 Ｄｉｌａｔｏｎ 黑洞、Ｅｉｎｓｔｅｉｎ唱Ｍａｘｗｅｌｌ
Ｄｉｌａｔｏｎ唱Ａｘｉｏｎ 黑洞、由弦理论得到的黑洞和黑弦等等）需进一步讨论．本章对一般
稳态轴对称荷电黑洞和静态和稳态 Ｄｉｌａｔｏｎ 黑洞进行研究．

另一方面，Ｋａｕｌ 和 Ｍａｊｕｍｄａｒ 利用量子几何方法计算了黑洞的 Ｂｅｋｅｎｓｔｅｉｎ唱
Ｈａｗｋｉｎｇ 的一级修正．他们发现主要修正项具有对数形式，此时的熵为

S ～AH４ －３
２ ｌｎ
AH
４ ＋ｃｏｎｓｔ．＋… （５畅２４畅１）

式中 AH 是黑洞的面积．Ｃａｒｌｉｐ 也利用共形场论方法计算了黑洞统计力学熵量子修
正，其结果为

S ～S０ －３
２ ｌｎS０ ＋ｌｎc ＋ｃｏｎｓｔ．＋…， （５畅２４畅２）
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式中 S０ 是标准的 Ｂｅｋｅｎｓｔｅｉｎ唱Ｈａｗｋｉｎｇ 熵，即 S０ ＝AH４ ，c是 Ｖｉｒａｓｏｒｏ 子代数的中心荷．
Ｃａｒｌｉｐ 认为，如果中心荷是与黑洞面积无关的量（Ｃａｒｌｉｐ 认为这可通过调节周期 β
而实现），则对数项的系数 －３／２ 可能为一普适因子．我们也将探讨 －３／２ 是否为
普适因子这一有趣课题．

下面用协变相空间方法构造一般四维稳态轴对称荷电黑洞和静态、稳态 ｄｉｌａｔｏｎ
黑洞的约束代数．在 Ｃａｒｌｉｐ 边界条件和稳态条件下，在 Ｋｉｌｌｉｎｇ 视界面上构造具有中
心荷的标准 Ｖｉｒａｓｏｒｏ 子代数．对于 Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞、Ｋｅｒｒ唱Ｎｅｗｍａｎ唱ＡｄＳ 黑洞，静态
Ｇａｒｆｉｎｋｅｌ唱Ｈｏｒｏｗｉｔｚ唱Ｓｔｒｏｍｉｎｇｅｒ Ｄｉｌａｔｏｎｉ 黑洞、Ｇａｒｆｉｎｋｌｅ唱Ｍａｅｄａ 黑洞以及稳态 Ｋａｌｕｚａ唱
Ｋｌｅｉｎ 黑洞，利用由共形场理论得到的态密度研究它们的统计力学熵．我们还将用
共形场论方法考虑统计力学熵的一级修正．

首先，我们列出由协变相空间技术得到的一些有用的结果．然后，利用协变相
空间技术的结果，我们把 Ｃａｒｌｉｐ 对真空情况 La１a２… a n ＝ １

１６πG矯a１a２… anR 的研究推广到
含宇宙项和电磁场的时空，即，此时的 Ｌａｇｒａｎｇｅ 函数的 n －形式由 La１a２… a n ＝ １

１６π
矯a１a２… a n １

G （R－２Λ） ＋FabFab 给出．作为例子，我们采用 Ｃａｒｌｉｐ 边界条件研究了稳
态荷电的 Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞和 Ｋｅｒｒ唱Ｎｅｗｍａｎ唱ＡｄＳ 黑洞，在其视界邻域中建立具有
中心荷的 Ｖｉｒａｓｏｒｏ 子代数，并由 Ｃａｒｄｙ 公式得到了它们的统计力学熵．接下来，我们
研究具有电磁场和 Ｄｉｌａｔｏｎ 场的时空，即 Ｉａｇｒａｎｇｅ 函数的n －形式为 La１a２… a n ＝矯a１a２… a n
R －２（Δ矱） ２ －ｅ －２α矱F２ ．计算了静态 Ｇａｒｆｉｎｋｌｅ唱Ｈｏｒｏｗｉｔｚ唱Ｓｔｒｏｍｉｎｇｅｒｄｉｌａｔｏｎ 黑洞、Ｇｉｂ唱
ｂｏｎｓ唱Ｍａｅｄａ ｄｉｌａｔｏｎ 黑洞和稳态 Ｋａｌｕｚａ唱Ｋｌｅｉｎ 黑洞的统计力学熵．最后我们研究统
计力学熵的一级修正．

２０ 世纪 ９０ 年代初期，Ｌｅｅ，Ｗａｌｄ，ａｎｄ Ｉｙｅｒ 发现，由 Ｌａｇｒａｎｇｅ 函数的变分，即 δL
＝Eδ矱＋dΘ，我们可以定义运动方程的 n －形式 E 和 Ｓｙｍｐｌｅｃｔｉｃ 势（n －１） －形式
Θ，其中，L 是 n －形式，Eδ矱＝Eabg δgab ＋Eψδψ，矱＝（gab，ψ）表示任意的动力学场的
集合．运动场方程为 Eabg ＝０ 和 Eψ ＝０．当取 ξa 为时空流形 M 中的任意光滑矢量
场，即 ξa 是微分同胚的无限小生成元，我们可定义 Ｎｏｅｔｈｅｒ 流（n －１） －形式为

J［ξ］ ＝Θ［矱，Lξ矱］ －ξ· L， （５畅２４畅３）
这里“· ”表示矢量场ξa 与相应的微分形式的第一个指标缩并．用运动方程可以证
明，对于任意的 ξa，J是封闭的，即 ｄJ＝０．于是，我们得到

J ＝ｄQ， （５畅２４畅４）
式中 Q 是 Ｎｏｅｔｈｅｒ 荷（n －２） －形式．由 Ｎｏｅｔｈｅｒ 流（n －１） －形式的变分，我们知道
Ｓｙｍｐｌｃｔｉｃ 流（n －１） －形式
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ω［矱，δ１矱，δ２矱］ ＝δ２Θ［矱，δ１矱］ －δ１Θ［矱，δ２矱］ （５畅２４畅５）
可表示为

ω［矱，δ矱，Lξ矱］ ＝δJ［ξ］ －ｄ（ξ· Θ［矱，δ矱］）， （５畅２４畅６）
Ｈａｍｉｌｔｏｎ 量运动方程为

δH［ξ］ ＝∫Cω［矱，δ矱，Lξ矱］ ＝∫C［δJ［ξ］ －ｄ（ξ· Θ［矱，δ矱］）］．（５畅２４畅７）
　　利用方程（５畅２４畅４）、Ｃａｒｌｉｐ 边界条件以及由（５．２４．８）式定义的（n －１） －B

δ∫抄Cξ· B［矱］ ＝∫抄Cξ· Θ［矱，δ矱］， （５畅２４畅８）
可把 Ｈａｍｉｌｔｏｎ 量写为

H［ξ］ ＝∫抄C（Q［ξ］ －ξ· B［矱］）． （５畅２４畅９）
从绪论中我们知道，由 Ｐｏｉｓｓｏｎ 括号可得到标准的“表面形变代数”

｛H［ξ１ ］，H［ξ２］｝ ＝H［｛ξ１，ξ２ ｝］ ＋K［ξ１ ，２ξ］， （５畅２４畅１０）
式中 K［ξ１ ，ξ２ ］仅通过边界值与动力学场相联系．

现在，我们利用前面的结果，从含宇宙项和电磁场的 Ｌａｒｇｒａｎｇｅ 函数的 n^桘形式
出发，采用 Ｃａｒｌｉｐ 边界条件及稳态时空条件，建立一般稳态轴对称荷电黑洞时空中
的微分同胚代数．然后作为例子，在稳态轴对称荷电 Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞和 Ｋｅｒｒ唱
Ｎｅｗｍａｎ唱ＡｄＳ 黑洞的视界邻域中建立起具有中心荷的 Ｖｉｒａｓｏｒｏ 子代数，并用 Ｃａｒｄｙ
公式计算它们的统计力学熵．

５畅２５　稳态轴对称荷电黑洞
时空中的微分同胚代数

　　这里，我们主要讨论一般稳态轴对称荷电黑洞．为此，把 Ｌａｇｒａｎｇｅ 函数 n桘形式
取为

La１a２… a n ＝ １
１６π矯a１a２… an １

G （R －２Λ） ＋FabFab ， （５畅２５畅１）
式中 矯a１a２… an是体积元（连续非零的 n －形式），Λ是宇宙常数，Fab是电磁场张量．利
用无限小微分同胚生成元 ξ，可把 Ｓｙｍｐｌｅｃｔｉｃ 势（n －１）桘形式写为
Θa１a２an－１［g，Lξg］ ＝ １

４π矯ca１a２… a n－１ １
２G（ΔeΔ［ eξc］ ＋R ceξe） ＋Fdc［F edξe ＋（ξeAe） ；d］ ．

（５畅２５畅２）
由方程（５畅２４畅３）和（５畅２５畅２）得

Ja１a２… a n－１ ＝ １
８πG矯ca１a２… an－１［ΔeΔ［ eξc］ ＋（R ce －１

２ δceR ＋δceΛ）ξe］

·３２１·５畅２５　稳态轴对称荷电黑洞时空中的微分同胚代数



　 －１
４π矯ca１a２… a n－１ １

４ F
bdF bdδce －F cdF ed ξe ＋１

４π矯ca１a２… a n－１F
ec（ξdAd） ；e

＝ １
４π矯ca１a２… an－１ １

２GΔeΔ［ eξc］ ＋Δe（Δ［ eAc］ Adξd） ， （５畅２５畅３）

以上计算中，我们用了能动张量为 １
４π

１
４ F

bcF bcδde －FdcF ec 的 Ｅｉｎｓｔｅｉｎ唱Ｍａｘｗｅｌｌ
方程．

比较方程（５畅２４畅４）与（５畅２５畅３）得到
Qa１a２… an－２ ＝－１

４π矯bca１… a n－２ １
４GΔ

bξc ＋（ΔbAc）Aeξe ． （５畅２５畅４）
　　对于一般稳态轴对称荷电黑洞（如 Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞和 Ｋｅｒｒ唱Ｎｅｗｍａｎ ＡｄＳ／ｄＳ
黑洞），电磁势 Aa、电磁场张量 F０３

及 Ｋｉｌｌｉｎｇ 矢量分别具有如下形式
Aa ＝（A０ （ r，θ），A１ （ r，θ），A２ （ r，θ），A３ （ r，θ））
F０３ ＝－F３０ ＝０． （５畅２５畅５）
χaH ＝χ（ t）

H ＋χ（φ）
H ＝（１，０，０，ΩH）， （５畅２５畅６）

式中矢量 χ（ t）
H 对应于时间平移对称，χ（φ）

H 对应于旋转对称，ΩH ＝－（g tφ／gφφ） H 是黑
洞的角速度．

利用方程（５畅２５畅５）， （５畅２５畅６）可证明
１
４π∫抄C矯bca１… an－２（ΔbAc）Aeξe → ０．　 在视界上 （５畅２５畅７）

于是，由方程（５畅２５畅４）得

∫抄CQa１a２… an－２ ＝－ １
１６πG∫抄C矯bca１a２… a n－２Δbξc． （５畅２５畅８）

　　用 δξ表示关于微分同胚生成元 ξ的变分，对 Ｎｏｅｔｈｅｒ流 J［ξ］的变分可表示为
δξ２J［ξ１ ］ ＝ξ２ ｄJ［ξ１ ］ ＋ｄ［ξ２ · J［ξ１ ］］ ＝ｄ［ξ２ （Θ［矱，Lξ１矱］ －ξ１ · L）］．

（５畅２５畅９）
把方程（５畅２５畅９）代入（５畅２４畅７）式，并利用方程（５畅２５畅２），我们得到
δξ２H［ξ１ ］ ＝∫C （δξ２J［ξ１ ］ －ｄ（ξ１Θ［矱，δξ２矱］））

＝∫抄C（ξ２Θ［矱，Lξ１矱］ －ξ１Θ［矱，Lξ２矱］ －ξ２ξ１ L）
＝ １

１６πG∫抄C矯bca１… a n－２ ξb２Δd（Δdξc１ －Δcξd１ ） －ξb１Δd（Δdξc２ －Δcξd２ ）
　 ＋ １

８π∫抄C矯bca１…an－２ ξb２Fdc Fedξ２
１ ＋（ξe１Ae） ；d －ξb１Fdc Fedξe２ ＋（ξe２Ae）；d
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　 － １
１６πG∫抄C矯bca１… an－２ ２R cd（ξb１ξd２ －ξb２ξd１ ） ＋ξb２ξc１ L ． （５畅２５畅１０）

在视界上，利用方程（５畅２５畅５）和（５畅２５畅６），我们得到
　∫抄C矯bca１… an－２ξb２ξc１ L
＝∫抄C 矯^a１…an－２L ｜χ｜

ρ T２ρc ＋ ρ
｜χ｜＋t· ρ R２χc （T１χc ＋R１ρc）

＝∫抄C 矯^a１… an－２L ｜χ｜
ρ T２R１ ρ２ ＋ ρ

｜χ｜＋t· ρ R２T１χ２

＝０， （５畅２５畅１１）
　∫抄C矯bca１… an－２２R cd（ξb１ξd２ －ξb２ξd１ ）
＝∫抄C 矯^a１… an－２R cd １

κ
χ２

ρ２
｜χ｜
ρ ρcρd － ρ

｜χ｜＋t· ρ χcχd （T１DT２ －T２DT１ ）
＝０， （５畅２５畅１２）
　∫抄Cξb矯bca１a２… an－２Fdc［F edξe ＋（ξeAe） ；d］
＝∫抄Cξb矯bca１a２… a n－２FdcδξAd

＝∫抄C 矯^a１a２… an－２ ｜χ｜
ρ Tρc ＋ ρ

｜χ｜＋t· ρ Rχc FdcδξAd

＝０． （５畅２５畅１３）
因此，可把（５畅２５畅１０）式表示为

δξ２H［ξ１］ ＝ １
１６πG∫抄C矯bca１… an－２［ξb２Δd（Δdξc１ －Δcξd１ ）

　 －ξb１Δd（Δdξc２ －Δcξd２ ）］． （５畅２５畅１４）
在即壳（ｏｎ ｓｈｅｌｌ）情况下，生成元 H［ξ１ ］的“ｂｕｌｋ”部分为零，因此，我们可以认为方
程（５畅２５畅１４）的左边就是对表面项 J 的变分，即为 δξ２J［ξ１ ］．另一方面，由表面形变
生成元 J［ξ２ ］引起的 J［ξ１ ］的变化可以精确地用 Ｄｉｒａｃ 括号｛ J［ξ１ ］， j［ξ２ ］｝倡

表

示，即
δξ２J［ξ１ ］ ＝｛J［ξ１ ］，J［ξ２ ］｝倡． （５畅２５畅１５）

于是得到

｛J［ξ１ ］，J［ξ２］｝倡 ＝ １
１６πG∫抄C矯bca１… an－２［ξb２Δd（Δdξc１

　 －Δcξd１ ） －ξb１Δd（Δdξc２ －Δcξd２ ）］． （５畅２５畅１６）
于是，由以上的讨论及（５畅２４畅１０）式我们得到如下关系
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｛J［ξ１ ］，J［ξ２ ］｝倡 ＝J［｛ξ１ ，ξ２｝］ ＋K［ξ１ ，ξ２ ］， （５畅２５畅１７）
把方程（C５）， （C６）和（C１０）代入到（５畅２５畅１６）式，我们发现
｛J［ξ１ ］，J［ξ２ ］｝倡 ＝－ １

１６πG∫抄C 矯^a１… a n－２
　 １

κ（T１D３T２ －T２D３T１ ） －２κ（T１DT２ －T２DT１ ） ．　　　　（５畅２５畅１８）
容易证明

｛ξ１ ，ξ２ ｝ a ＝（T１DT２ －T２DT１ ）χa ＋１
κ

χ２

ρ２ D（T１DT２ －T２DT１ ）ρa．
（５畅２５畅１９）

另一方面，方程（３畅８）右边为
∫抄CξbΘba１… an－２ ＝ １

４π∫抄Cξb矯bca１… an－２ １
２G（ΔeΔ［ eξc］ ＋Rceξe） ＋Fdc［Fedξe ＋（ξeAe） ；d］ ．

（５畅２５畅２０）
式中右边的前两项完全可以用 Ｃａｒｌｉｐ 讨论进行处理．由方程（５畅２５畅１３）我们知道
（５畅２５畅２０）式中的后两项不会对中心项 K［ξ１，ξ２ ］产生影响．利用方程（５畅２４畅４）和
（５畅２５畅８），并把 J中的 ξa 用｛ξ１ ，ξ２｝ a 代替，我们得到

J［｛ξ１ ，ξ２ ｝］ ＝ １
１６πG∫抄C 矯^a１a２… a n－２ ２κ（T１DT２ －T２DT１ ） 　

　
　 －１

κD（T１D２T２ －T２D２T１ ） ． （５畅２５畅２１）
从方程（５畅２５畅１７）， （５畅２５畅１８）和（５畅２５畅２１）得到中心项

K［ξ１ ，ξ２ ］ ＝ １
１６πG∫抄C 矯^a１a２… a n－２ １

κ（DT１D２T２ －DT２D２T１ ）． （５畅２５畅２２）
以上所得的约束代数对一般稳态轴对称黑洞都成立．下面，我们用所得到的约束代
数以及共形场理论研究一些稳态轴对称黑洞的统计力学熵．

５畅２６　Ｋｅｒｒ唱Ｎｅｗｍａｎ黑洞的统计力学熵
在 Ｂｏｙｅｒ唱Ｌｉｎｄｑｕｉｓｔ坐标中，稳态轴对称荷电 Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞时空的度规为
ｄs２ ＝－Δ

ρ２ ［ｄt －aｓｉｎ２ θｄ矱］ ２ ＋ρ２

Δｄr
２ ＋ρ２ ｄθ２ ＋ｓｉｎ２θρ２ ［aｄt －（ r２ ＋a２）ｄφ］ ２ ，

（５畅２６畅１）
其中

ρ２ ＝r２ ＋a２ ｃｏｓ２ θ，
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Δ＝（ r －r＋）（ r －r－）， （５畅２６畅２）
r ＋ ＝rH ＝M ＋ M２ －Q２ －a２ ，r － ＝M － M２ －Q２ －a２ ，参数 a 是比角动量，M 和 Q
分别表示黑洞的质量和电荷．度规（３畅３３）是电磁矢势为

A ＝－Qrρ２ （ｄt －aｓｉｎ２ θｄ矱）， （５畅２６畅３）
电磁场张量为

F ＝－Qρ４ （ r２ －a２ ｃｏｓ２θ）e０ e１ ＋Qρ４ （ r２ －a２ ｃｏｓ２ θ） e２ e３． （５畅２６畅４）
的 Ｅｉｎｓｔｅｉｎ唱Ｍａｘｗｅｌｌ 方程的解．Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞具有 Ｋｉｌｌｉｎｇ 矢量

χaH ＝（１，０，０，ΩH）， （５畅２６畅５）
式中 ΩH ＝－ g tφ

gφφ H
＝ a
r２ ＋a２是黑洞的角速度．当引入周期为 T ＝２π

κ的函数 u 的积
分，我们发现，满足方程（C８）和（５畅２５畅１９）的单参数微分同胚群可取为

Tn ＝ １
κｅｘｐ｛ ｉｎ［κu ＋Cα（φ－ΩH u）］｝， （５畅２６畅６）

式中 Cα为任意常数．把方程 （５畅２６畅６）代入中心项 （５畅２６畅２２）式，再利用条件
（C８），我们得到

K［Tm ，Tn］ ＝－ ｉAH８πGm
３ δm＋n，０ ， （５畅２６畅７）

式中 AH ＝∫抄C 矯^a１a２… an－２ ＝４π（ r２＋ ＋a２ ）是黑洞视界面积．以上的讨论表明，方程
（５畅２５畅１７）变成标准的 Ｖｉｒａｓｏｒｏ 代数

ｉ｛ J［Tm ］，J［Tn］｝ ＝（m －n）J［Tm＋n］ ＋ c１２m
３ δm＋n，０ ， （５畅２６畅８）

其中心荷为

c
１２ ＝ AH

８πG． （５畅２６畅９）
用方程（５畅２４畅４）， （５畅２５畅４）和（５畅２６畅６）可容易得到边界项 J［T０ ］ ＝ AH８πG．当给定
了 J［T０］的本征值 Δ，对于很大的 Δ，由 Ｃａｒｄｙ 公式知，态密度可渐近地由下式给出

ρ（Δ） ～ｅｘｐ ２π c
６ Δ－ c２４ ＝ｅｘｐ AH４G ． （５畅２６畅１０）

于是，我们得到 Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞的统计力学熵
ｌｏｇρ（Δ） ～AH４G． （５畅２６畅１１）

该结果与 Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞的 Ｂｅｋｅｎｓｔｅｉｎ唱Ｈａｗｋｉｎｇ 熵相等．
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５畅２７　Ｋｅｒｒ唱Ｎｅｗｍａｎ唱ＡｄＳ黑洞的统计力学熵
早在 １９６８ 年，Ｃａｒｔｅｒ 就得到了四维时空中的 Ｋｅｒｒ唱Ｎｅｗｍａｎ唱ＡｄＳ 黑洞度规

ｄs２ ＝－Δr
ρ２ ｄt － aΞｓｉｎ

２θｄφ
２
＋ρ２

Δr ｄr
２ ＋ρ２

Δθ
ｄθ２ ＋ｓｉｎ

２ θΔθ
ρ２ aｄt －（ r２ ＋a２ ）

Ξ ｄφ
２
，

（５畅２７畅１）
其中

ρ２ ＝r２ ＋a２ ｃｏｓ２ θ，
Δr ＝（ r２ ＋a２）（１ ＋l２ r２ ） －２Mr ＋q２ ＋p２ ，
Δθ ＝１ －l２ a２ ｃｏｓ２ θ，
Ξ ＝１ －l２ a２ ，

参数 M 是黑洞质量，a 是比角动量，q 为电荷，p 为磁荷， l２ ＝－Λ／３（Λ是引力常
数）．黑洞的事件视界位于 r ＝r ＋，即为 Δr 的最大的根．度规（５畅２７畅１）是 Ｅｉｎｓｔｅｉｎ唱
Ｍａｘｗｅｌｌ 方程的解，其相应的电磁矢势是

A ＝－ qr
ρ２Ξ（ｄt －aｓｉｎ２ θｄφ） －pｃｏｓθρ２Ξ［aｄt －（ r２ ＋a２ ）ｄφ］， （５畅２７畅２）

相应的电磁张量为

F ＝－１
ρ４ ［q（ r２ －a２ ｃｏｓ２ θ） ＋２praｃｏｓθ］e０ e１

　 ＋１
ρ４ ［q（ r２ －a２ ｃｏｓ２ θ） －２praｃｏｓθ］ e２ e３． （５畅２７畅３）

Ｋｅｒｒ唱Ｎｅｗｍａｎ唱ＡｄＳ 黑洞的 Ｋｉｌｌｉｎｇ 矢量可表示为
χaH ＝抄 t ＋ΩH 抄φ， （５畅２７畅４）

式中 ΩH ＝－ g tφ
gφφ H

＝ Ξa

r２＋ ＋a２是黑洞的角动量．类似前一节的讨论，我们得到统计
力学熵

S ＝AH４G ＝π
G
r２＋＋a２
Ξ ， （５畅２７畅５）

该结果也与 Ｋｅｒｒ唱Ｎｅｗｍａｎ唱ＡｄＳ 黑洞的 Ｂｅｋｅｎｓｔｅｉｎ唱Ｈａｗｋｉｎｇ 熵一致．
下面，我们由弦理论得到的四维低能有效理论的含有 Ｄｉｌａｔｏｎ 标量场和电磁场

的 Ｌａｇｒａｎｇｅ 函数出发，构造一般静态及稳态 Ｄｉｌａｔｏｎ 黑洞时空中的微分同胚代数和
具有中心荷的 Ｖｉｒａｓｏｒｏ 子代数．作为例子，再用共形场方法计算静态 Ｇａｒｆｉｎｋｌｅ唱
Ｈｏｒｏｗｉｔｚ唱Ｓｔｒｏｍｉｎｇｅｒ Ｄｉｌａｔｏｎ 黑洞、Ｇａｒｆｉｎｋｌｅ唱Ｍａｅｄａ 黑洞以及稳态 Ｋａｌｕｚａ唱Ｋｌｅｉｎ 黑洞

·８２１· 第 ５章　黑洞热力学的量子理论



的统计力学熵．

５畅２８　静态和稳态 Ｄｉｌａｔｏｎ
黑洞时空中的微分同胚代数

　　由弦理论得到的四维低能等效理论的 Ｌａｇｒａｎｇｅ 函数为
Labcd ＝ １

１６π矯abcd １
G R －２（Δ矱） ２ －ｅ－２α矱F２ ， （５畅２８畅１）

式中 矱是 Ｄｉｌａｔｏｎ 标量场，Fab是与 E８ ×E８ 或 Ｓｐｉｎ（ ）３２／Z２ 的子群 U（１）相关的
Ｍａｘｗｅｌｌ 场，α是反映 Ｄｉｌａｔｏｎ 场与 Ｍａｘｗｅｌｌ 场耦合强度的参数．我们取其他的规范
场和反对称张量场 Hμνρ为零，这是因为我们将要研究的静态和稳态 Ｄｉｌａｔｏｎ 黑洞都
是由 Ｌａｇｒａｎｇｅ 函数（５畅２８畅１）得到的．从 Ｌａｇｒａｎｇｅ 函数（５畅２８畅１）可导出关于动力学
场 Aμ， 矱和 gμν的运动方程

Δμ（ｅ－２α矱Fμν） ＝０， （５畅２８畅２）

Δ２矱＋１
２ ｅ

－２α矱FμνFμν ＝０， （５畅２８畅３）
Rμν －１

２ gμνR ＝２Δμ矱Δμ矱－gμν（Δ矱） ２

　　　　　　 ＋２ｅ－２α矱FβνFβ
μ －１

２ gμνｅ－２α矱FμνFμν． （５畅２８畅４）
以及 Ｓｙｍｐｌｅｃｔｉｃ 势（n －１） －形式

Θbcd［g，Lξg］ ＝矯abcd
４π １

２G（ΔeΔ［ eξα］ ＋Raeξe） －ξeΔe矱Δa矱

　 －ｅ－２α矱Faf［F efξe ＋（ξeAe） ； f］ ． （５畅２８畅５）
由方程（５畅２８畅３）和（５畅２８畅５）可得

Jbcd ＝ １
８πG矯abcdΔeΔ［ eξa］ －２Gｅ２α矱Faf（ξeAe） ； f ＋ Rae －１

２ δae R
　 －２GΔe矱Δa矱＋Gδae （Δ矱） ２ －２Gｅ－２α矱FafF ef ＋G２ δae ｅ－２α矱F２ ξ２

＝ １
８π矯abcd １

GΔeΔ［ eξa］ －２ｅ－２α矱Faf（ξeAe） ； f

＝ １
８π矯abcd １

GΔeΔ［ eξa］ ＋４Δf（ｅ－２α矱Δ［ f Aa］ Aeξe） ， （５畅２８畅６）
在上式第二和第三行推导中，我们用到了运动方程 （ ５畅２８畅４） 和 （ ５畅２８畅２），
（５畅２４畅４）和（５畅２８畅６）式表明
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Q cd ＝－ １
１６π矯abcd １

GΔ

aξb ＋４ｅ－２α矱AeξeΔaAb ． （５畅２８畅７）
　　对于一般静态和稳态的 Ｄｉｌａｔｏｎ 黑洞，其 Ｄｉｌａｔｏｎ 标量场、电磁势 Aa 以及 Ｋｉｌｌｉｎｇ
矢量可写成如下的一般形式

矱＝矱（ r，θ）， （５畅２８畅８）
Aa ＝（A０ （ r，θ），A１ （ r，θ），A２ （ r，θ），A３ （ r，θ））， （５畅２８畅９）
χaH ＝（１，０，０，ΩH）． （５畅２８畅１０）

　　方程（５畅２４畅８）右边为
∫抄CξbΘbcd ＝ １

４π∫抄C矯abcdξa １
２G（ΔeΔ［ eξb］ ＋Rbeξe）

　 －ξeΔe矱Δb矱－ｅ－２α矱F fb［F efξe ＋（ξeAe） ； f］ ， （５畅２８畅１１）
前两项可用 Ｃａｒｌｉｐ 的处理结果．在视界上，利用方程 （５畅２８畅８）， （ ５畅２８畅９）和
（５畅２８畅１０），我们得到

　∫抄C矯abcdξa２ξe１Δb矱Δe矱＝０， （５畅２８畅１２）
　∫抄C矯abcd ｅ－２α矱ξaF bf［F efξe ＋（ξeAe） ； f］
＝∫抄C矯abcd ｅ－２α矱ξaF bfδξA f

＝∫抄C 矯^cd ｅ－２α矱 ｜χ｜
ρ Tρb ＋ ρ

｜χ｜＋t· ρ Rχb F
bfδξA f

＝０ （５畅２８畅１３）
因此（５畅２８畅１１）式的后三项对 K［ξ１ ，ξ２ ］没有贡献．

利用方程（５畅２８畅９）和（５畅２８畅１０），我们可以证明，在视界上
∫抄C矯abcd ｅ－２α矱AeξeΔaAb → ０． （５畅２８畅１４）

于是，（５畅２８畅７）式变成
∫抄CQ cd ＝－ １

１６πG∫抄C矯abcdΔaξb． （５畅２８畅１５）
对 Ｎｏｅｔｈｅｒ 流变分得 δξ２J［ξ１ ］ ＝ｄ［ξ２ （Θ［矱，Lξ１矱］ －ξ１ · L）］．我们从方程（５畅２４畅７）
和（５畅２８畅５）知

δξ２H［ξ１］ ＝∫抄C（ξ２Θ［矱，Lξ１矱］ －ξ１Θ［矱，Lξ２矱］ －ξ２ξ１ L）
＝ １
１６πG∫抄C矯abcd［ξa２Δe（Δeξb１ －Δbξe１ ） －ξa１Δe（Δeξb２ －Δbξe２ ）］

　 － １
４π∫抄C矯abcd ｅ－２α矱 ξa２F fb［F efξe１ ＋（ξe１Ae） ； f］ 　
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　 －ξa１F fb［F efξe２ ＋（ξe２Ae） ； f］
　 － １

１６πG∫抄C矯abcd［４R be （ξa１ξe２ －ξa２ξe１） ＋ξa２ξb１ L］
　 － １

４π∫抄C矯abcd（ξa２ξe１ －ξa１ξe２ ）Δb矱Δe矱． （５畅２８畅１６）
利用方程（５畅２８畅８） ～（５畅２８畅１０）以及，我们发现在视界上有如下关系式
∫抄C矯abcd（ξa２ξe１ －ξa１ξe２ ）Δb矱Δe矱＝∫抄C 矯^cd １

κ
χ２

ρ２
｜χ｜
ρ ρbρe

　 － ρ
｜χ｜＋t· ρ χbχe （T２DT１ －T１DT２ ）Δb矱Δe矱

＝０， （５畅２８畅１７）
把方程（５畅２８畅１３）， （５畅２８畅１７）， （５畅２５畅１１）和（５畅２５畅１２）代入（５畅２８畅１６）式，得到

δξ２H［ξ１ ］ ＝ １
１６πG∫抄C矯abcd［ξa２Δe（Δeξb１ －Δbξe１ ）

　 －ξa１Δe（Δeξb２ －Δbξe２ ）］． （５畅２８畅１８）
对于即壳情况，我们知 δξ２H［ξ１ ］ ＝δξ２J［ξ１］ ＝｛J［ξ１ ］，j［ξ２ ］｝倡．于是

｛J［ξ１ ］，J［ξ２ ］｝倡 ＝ １
１６πG∫抄C矯abcd［ξa２Δe（Δeξb１ －Δbξe１ ）

　 －ξa１Δe（Δeξb２ －Δbξe２ ）］， （５畅２８畅１９）
｛J［ξ１ ］，J［ξ２ ］｝倡 ＝－ １

１６πG∫抄C 矯^cd １
κ（T１D３T２ －T２D３T１ ）

　 －２κ（T１DT２ －T２DT１ ） ． （５畅２８畅２０）
对于满足条件（Ｃ５）和（Ｃ６）的单参数微分同胚群，容易证明

｛ξ１ ，ξ２ ｝ a ＝（T１DT２ －T２DT１ ）χa ＋１
κ

χ２

ρ２ D（T１DT２ －T２DT１ ）ρa．
（５畅２８畅２１）

Ｈａｍｉｌｔｏｎ 量（５畅２４畅９）式由两项组成，但是由方程（５畅２８畅１２）和（５畅２８畅１３），以及关
于 ξ· Θ的讨论，我们得到
J［｛ξ１ ，ξ２ ｝］ ＝ １

１６πG∫抄C 矯^cd ２κ（T１DT２ －T２DT１ ） －１
κD（T１D２T２ －T２D２T１ ） ．

（５畅２８畅２２）
对于即壳情况，（５畅２４畅１０）式可写为

｛J［ξ１ ］，J［ξ２ ］｝倡 ＝J［｛ξ１ ，ξ２｝］ ＋K［ξ１ ，ξ２ ］． （５畅２８畅２３）
其中心项为

K［ξ１ ，ξ２ ］ ＝ １
１６πG∫抄C 矯^cd １

κ（DT１D２T２ －DT２D２T１ ）． （５畅２８畅２４）
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有趣的是，代数（５畅２８畅２３）式以及有关方程（５畅２８畅２０）， （５畅２８畅２２）和（５畅２８畅２４）适
用于一般稳态轴对称黑洞，它与前一节相应的结果具有相同的形式．我们将用这些
结果计算一些静态和稳态 Ｄｉｌａｔｏｎ 黑洞的统计力学熵．

５畅２９　Ｇａｒｆｉｎｋｌｅ唱Ｈｏｒｏｗｉｔｚ唱Ｓｔｒｏｍｉｎｇｅｒ
Ｄｉｌａｔｏｎｉｃ黑洞的统计力学熵

　 　 Ｇａｒｆｉｎｋｌｅ唱Ｈｏｒｏｗｉｔｚ唱Ｓｔｒｏｍｉｎｇｅｒ （ ＧＨＳ ） Ｄｉｌａｔｏｎｉｃ 黑 洞 由 方 程 （ ５畅２８畅２ ），
（５畅２８畅３）和（５畅２８畅４）的解描述，其具体形式如下

ｄs２ ＝－ １ －２M
r ｄt

２ ＋ ｄr２
１ －２M

r

＋r（ r －a）（ｄθ２ ＋ｓｉｎ２ θｄφ２ ）， （５畅２９畅１）

其中，
ｅ－２矱 ＝ｅ－２矱０ －Q２

Mr，　F ＝Qｓｉｎθｄθ ｄφ，　a ＝Q２

２Mｅ
２矱０ （５畅２９畅２）

Q 是磁荷．考虑以 T为周期的函数 u，则满足条件（C８）和（５畅２８畅２１）式的单参数微
分同胚群为

Tn ＝ T
２πｅｘｐ ２πnｉ

T u
． （５畅２９畅３）

从方程（５畅２９畅３）和（５畅２８畅２４）得到中心项
K［Tm，Tn］ ＝ ｉAH８πG

２π
κTm

３ δm＋n，０ ， （５畅２９畅４）
式中 AH ＝∫抄C 矯^cd ＝４πr ＋（ r ＋ －a）黑洞视界面积．于是，方程（５畅２８畅２３）变成

ｉ｛ J［Tm ］，J［Tn］｝ ＝（m －n）J［Tm＋n］ ＋ c１２m
３ δm＋n，０ ， （５畅２９畅５）

相应的中心荷是

c
１２ ＝ AH

８πG
２π
κT ． （５畅２９畅６）

用方程（５畅２４畅４）， （５畅２８畅７）和（５畅２９畅３）可得到 J［T０ ］
J［T０ ］ ＝Δ＝ AH

８πG
κT
２π． （５畅２９畅７）

因此，由标准的 Ｃａｒｄｙ 公式得态密度
ρ（Δ） ～ｅｘｐ AH４G ２ － ２π

κT
２ ． （５畅２９畅８）

当且仅当把 T取为 Ｅｕｃｌｉｄｅａｎ 黑洞的周期时，即
T ＝２π

κ， （５畅２９畅９）
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所得的黑洞的统计力学熵

S０ ～ｌｎρ（Δ） ＝AH４G ＝π
G r＋ （ r＋－a）， （５畅２９畅１０）

与其 Ｂｅｋｅｎｓｔｅｉｎ唱Ｈａｗｋｉｎｇ 熵一致．

５畅３０　Ｇａｒｆｉｎｋｌｅ唱Ｍａｅｄａ Ｄｉｌａｔｏｎ
黑洞的统计力学熵

　　从弦理论的低能有效 Ｌａｒｇｒａｎｇｉａｎ（５畅２８畅１）式得到的 Ｇａｒｆｉｎｋｌｅ唱Ｍａｅｄａ（ＧＭ）
Ｄｉｌａｔｏｎ 黑洞为

ｄs２ ＝－ １ －r＋r １ －r－r
１－α２
１＋α２ｄt２ ＋ １ －r＋r

－１
１ －r－r

α２－１
１＋α２ｄr２

　 ＋r２ １ －r－r
２α２
１＋α２（ｄθ２ ＋ｓｉｎ２ θｄφ２ ）， （５畅３０畅１）

相应的 Ｄｉｌａｔｏｎ 标量场为
ｅ２Φ ＝ １ －r－r

２α
１＋α２ｅ－２Ф０， （５畅３０畅２）

Ｍａｘｗｅｌｌ 场是
F ＝ Qr２ ｄt ｄr， （５畅３０畅３）

式中 r＝r ＋是黑洞的事件视界．当α＝０，r＝r －内部 Ｃａｕｃｈｙ 视界；然而，当α＞０ 时，r
＝r －是奇点．黑洞的质量 M 和电荷 Q 与参数 r ＋和 r －的关系为 ２M ＝r ＋ ＋
１ －α２

１ ＋α２ r －和 Q２ ＝r ＋r －１ ＋α２ ｅ２aΦ０．

该黑洞的 Ｋｉｌｌｉｎｇ 矢量是 χa 抄
抄xa ＝抄t．单参数微分同胚群为

Tn ＝ T
２πｅｘｐ ２πnｉ

T u ． （５畅３０畅４）

利用标准的 Ｃａｒｄｙ 公式，与前节类似的分析得到统计力学熵
S０ ＝AH４G ＝πr２＋

G １ －r－r＋
２α２／（１ ＋α２） ． （５畅３０畅５）
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它完全与其 Ｂｅｋｅｎｓｔｅｉｎ桘Ｈａｗｋｉｎｇ 熵一致．

５畅３１　稳态 Ｋａｌｕｚａ桘Ｋｌｅｉｎ黑洞的统计力学熵
　　当取运动方程（５畅２８畅２）， （５畅２８畅３）和（５畅２８畅４）中的 α＝ ３时，所得解就是
Ｋａｌｕｚａ桘Ｋｌｅｉｎ 黑洞度规

ｄs２ ＝－１ －Z
B ｄt２ － ２aZｓｉｎ２θ

B １ －v２ ｄtｄφ＋ B（ r２ ＋a２ ） ＋a２ ｓｉｎ２ θ ZB ｓｉｎ
２ θｄφ２

　 ＋BΣΔr ｄr
２ ＋BΣｄθ２ ， （５畅３１畅１）

式中，
Z ＝２mr

Σ，　B ＝ １ ＋ v２Z
１ －v２

１ ／２ ，
Σ＝r２ ＋a２ ｃｏｓ２θ，Δr ＝r２ ＋a２ －２mr， （５畅３１畅２）

a 和 v分别为旋转参数和速度．黑洞的质量 M、电荷 Q 以及角动量 Jm 由下列关系
给出 M ＝m １ ＋ v２

２（１ －v２ ） ，Q ＝ mv
１ －v２ ，Jm ＝ ma

１ －v２ ．Ｄｉｌａｔｏｎ 标量场、矢量势和 Ｋｉｌｌ唱
ｉｎｇ 矢量分别为

矱＝－ ３
２ ｌｎB，

A t ＝ v
２（１ －v２ ）

Z
B２ ，　A r ＝Aθ ＝０，　Aφ ＝－ avｓｉｎ２ θ

２ １ －v２
Z
B２ ，

χaH ＝（１，０，０，ΩH）． （５畅３１畅３）
因此知单参数微分同胚群可取为

Tn ＝ T２πｅｘｐ ｉｎ ２π
T u ＋la（φ－ΩH u） ， （５畅３１畅４）

式中 la 是任意常数．由方程（５畅３１畅４）得到中心荷
c
１２ ＝ AH

８πG
２π
κT， （５畅３１畅５）

式中 AH ＝∫抄C 矯^cd ＝８π m２

１ －v２ ＋
m４

１ －v２ －J
２
m ，即黑洞的面积．边界项 J［T０ ］可容

易从（５畅２４畅４）， （５畅２８畅７）和（５畅３１畅４）式求得
J［T０ ］ ＝Δ＝ AH

８πG
κT
２π． （５畅３１畅６）

用标准的 Ｃａｒｄｙ 公式得态密度
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ρ（Δ） ≈ ｅｘｐ ２π c
６ （Δ－ c２４） ＝ｅｘｐ AH４G ２ － ２π

κT
２ ． （５畅３１畅７）

当我们取 T＝２πκ时，得到与 Ｂｅｋｅｎｓｔｅｉｎ桘Ｈａｗｋｉｎｇ 熵相等的统计力学熵

S０ ～ｌｎρ（Δ） ＝AH４G ＝２π
G

m２

１ －v２ ＋ m４

１ －v２ －J２m ． （５畅３１畅８）

５畅３２　黑洞统计力学熵的对数修正及新熵界
Ｃａｒｌｉｐ 证明态密度为

ρ（Δ） ＝∫ｄTe－２πｉΔr e－２πｉΔ０ １T e２πｉc２４ １
T珘Z（ －１／T ）． （５畅３２畅１）

对于很大的 T，珟Z （ －１ ／T ）趋于常数 ρ（Δ０ ）．因此，只要 T 的虚部在鞍点足够
大，（５．３２．１）式的积分可用最陡下降法计算．

以上积分具有如下形式

I［a，b］ ＝∫ｄT ｅ２πｉar＋２πｉbτ f（T ）． （５畅３２畅２）

其指数存在极值点 T０ ＝ b
a ．在 T０ 附近作函数展开，得到

I［a，b］ ≈∫dT ｅ４πｉa ab＋２πｉb
r３０

（ r－r０） ２ f（T０ ） ＝ － b
４a３

１ ／４ ｅ４πｉ ab f（T０ ）．（５畅３２畅３）
把方程（５畅３２畅１）与（５畅３２畅２）比较，我们得到

a ＝ c２４ －Δ，　b ＝ c２４ －Δ０． （５畅３２畅４）
因此，如果令 cｅ ｆｆ ＝c－２４Δ０ ，则含修正项的 Ｃａｒｄｙ 公式为

ρcq（Δ） ≈
cｅ ｆｆ

９６（Δ－ c２４）
３

１ ／４

ｅｘｐ ２π cｅ ｆｆ
６ Δ－ c２４ ρ（Δ０ ）． （５畅３２畅５）

　　当我们考虑统计力学熵的一级量子修正时，应采用新的 Ｃａｒｄｙ 公式（５畅３２畅５）．
根据前面的讨论得知，为了使不含修正的统计力学熵与黑洞 Ｂｅｋｅｎｓｔｅｉｎ桘Ｈａｗｋｉｎｇ
熵一致，我们必须把 T取为 Ｅｕｃｌｉｄｅａｎ 黑洞的周期 T＝２πκ．因此，对于各种黑洞都有

c
１２ ＝ AH

８πC， （５畅３２畅６）
Δ＝ AH

８πG． （５畅３２畅７）
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把该结果代入公式（５畅３２畅５），我们得到含修正的黑洞统计力学熵
S ＝AH４ －３

２ ｌｎ
AH
４ ＋ｌｎc ＋ｃｏｎｓｔ．

＝AH４ －１
２ ｌｎ
AH
４ ＋ｃｏｎｓｔ．， （５畅３２畅８）

式中的第一行中的第二、第三项具有对数形式且与 Ｃａｒｌｉｐ 结果（５畅２４畅２）式一致．然
而，以上推导表明：为了得到与黑洞 Ｂｅｋｅｎｓｔｅｉｎ －Ｈａｗｋｉｎｇ 熵一致的结果，我们必须
把 T取为 Ｅｕｃｌｉｄｅａｎ 黑洞的周期，即 T ＝２π

κ，因此我们不能像 Ｃａｒｌｉｐ 所预期的那样
通过调节周期使中心荷变成与黑洞面积无关的量．注意到这一点，我们发现对数项
的系数是 －１

２ ．由此我们得到新的熵界表达式
Sｍａｘ ＝ｌｎ ｅｘｐ（SBH）

S１ ／２
BH

． （５畅３２畅９）

式中 SBH ＝AH４ ．这是比 Ｂｅｋｅｎｓｔｅｉｎ 熵界更严的新熵界．应该注意的是，我们得到的对
数项系数与 Ｋａｕｌ桘Ｍａｊｕｍｄａｒ 从量子几何方法得到的结果 －３

２ 不同．这两种结果为
什么出现差异值得进一步探究．

５畅３３　熵，哈密顿和 Ｎｏｅｔｈｅｒ荷
为了阐明 Ｎｏｅｔｈｅｒ荷 Q 的含义，我们考虑一个静态背景下，具有作用量

I［矱，g］ ＝－１
２∫（矱＇μ矱，μ ＋m２矱２ ＋ξR矱２ ） －gｄ４ x （５畅３３畅１）

的实标量场 矱．这个场在 ３ 维区域 B 中的能量 E 由能动张量确定：
E ＝∫BTμνξμｄσν， （５畅３３畅２）

其中 ｄσν
是体元 B 上的未来方向矢量，ξμ

是类时 Ｋｉｌｌｉｎｇ 矢量．能动张量由
（５畅３３畅１）经变分得

Tμν ＝ ２
－g

δI［g］
δgμν （５畅３３畅３）

在静态时空中，能量 E 关于场 矱的运动方程是守恒的．除了能动张量（５畅３３畅３）以
外，我们还可以定义一个正则能动张量

（TC）μν ＝矱，μ
矪L
矪矱，ν －gμνL， （５畅３３畅４）

·６３１· 第 ５章　黑洞热力学的量子理论



式中 L是该理论关于作用量 I ＝∫ －gｄ４ xL的拉格朗日．
对于静态时空，（TC）μν给出另一个守恒量，即系统的哈密顿

H ＝∫BTCμνξμσν． （５畅３３畅５）
在正则形式中，H 起着系统沿 Ｋｉｌｌｉｎｇ 时间演化的生成元的作用．一般地，张量 Tμν和

（TC）μν是不相同的，它们的差给出 Ｎｏｅｔｈｅｒ流
Jμ ＝２π

κ（（TC）μν －Tμν）ξν， （５畅３３畅６）
式中 κ是表面引力．根据 Ｎｏｅｔｈｅｒ 定理，这个流关于运动方程是守恒的（Δ μJμ＝
０）．和由（５畅３３畅２） ， （５畅３３畅５）式得到的过程一样，能量 E 和哈密顿 H 之差即
为与流 Jμ对应的 Ｎｏｅｔｈｅｒ 荷．

Tμν和（TC）μν不相同的最简单的例子是 ξ≠０ 的标量场．在这种情况下有
Jμ ＝－ξ２πκ（Rμν矱２ ＋gμν（矱２ ） ，ρ

，ρ －（矱２） ；μν）ξν， （５畅３３畅７）
H －E ＝ξ∫矪Βｄsκ｜g００ ｜１ ／２ ［（矱２ ） ，κ －矱２ωκ］． （５畅３３畅８）

式中 ｄSκ
是 Β中的 ３ 维矢量，沿边界 矪Β的外法线．这样，两个能量的差便可以超

曲面 Β的边界面 矪Β上给出．显然，当我们考虑一个复柯西面的时候，（５畅３３畅８）式
中的边界项只含有空间无限远或者外部空间边界的贡献．对于一个场，在无限远处
减小，或者在边界面上满足适当的条件，可使 E ＝H．尽管这是定性的，但如果 E 中
的积分区域被 Ｋｉｌｌｉｎｇ 视界的分叉面 Σ所限定，则此处场 矱可以取任意的有限值．
如果空间无限远或者外边界的贡献只是不含Σ上的 Ｎｏｅｔｈｅｒ荷，则这贡献给出差 H
－E：

H －E ＝ κ
２πQ， （５畅３３畅９）

Q ＝２πξ∫Σ σｄ２ θ矱２． （５畅３３畅１０）
用一个类似的方法，我们可以应用另外一些定理来计算荷 Q．自旋为 １／２ 的场，分
析表明，能量和哈密顿是恒等的，Q ＝０．可以推测，在含有高自旋场的理论中 Q 应
该不为零．

５畅３４　量子激发和黑洞的熵
黑洞热力学和黑洞统计力学是黑洞物理学中最激动人心和发展最快的领域．

我们已熟习黑洞具有热力学系统的类似性质．根据这一类比，黑洞应具有熵 SBH ＝
１
４GA，式中 A为视界面积，G 为牛顿常数（我们取 砽＝c ＝kB ＝１）．人们把 SBH的上述
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表达式称为 Ｂｅｋｅｎｓｔｅｉｎ唱Ｈａｗｋｉｎｇ 熵．黑洞具有温度 TH ＝κ
２π，其中κ为视界的表面引

力加速度．
在爱因斯坦的广义相对论中，黑洞熵是一个纯几何量．这时仅用经典爱因斯坦

场方程和微分几何的知识便可导出热力学定律．如果把黑洞和普通的热力学系统
进行比较，就很容易发现一个重要区别：黑洞是一个具有强引力场的虚空，而普通
物体则由原子分子组成．普通物体的微观结构使人们可以用其微观成分的统计力
学来解释物体的热力学性质．但是黑洞是否具有和黑洞熵对应的内部自由度，这是
黑洞物理的关键问题．

用统计力学方法得到黑洞熵是对量子引力基本理论的非常有效的检验．最近
在超弦理论中就极端黑洞和近极端黑洞对黑洞熵所进行的成功计算就清楚地表明

了这一点．除了超弦方案之外，还可以沿其他方向来处理黑洞熵的问题，如 Ｃａｒｌｉｐ
等对 ３ 维黑洞熵的解释和在圈量子引力的框架内的处理．

我们下面讨论的主要是关于用量子激发解释黑洞熵的方案．
物理真空的性质，尤其在有引力存在时，是不平凡的．在真空态中总存在物理

场的零点涨落．对于静止于视界附近的观测者，这种零点涨落以黑洞的热大气的形
式被探测到．ｔ′Ｈｏｏｆｔ假定红移后的大气温度为 TH．由此表明黑洞熵正比于视界面
积 Ａ，为避免发散，ｔ′Ｈｏｏｆｔ又假定场在离视界一定距离时变为零．如果这个距离是
Ｐｌａｎｃｋ 长度的量级，那么熵就与 SBH可比较了．

黑洞附近静止观测者把真空看成混合态的原因是因为与视界内部量子系统有

关的信息的丢失．可以证明，即使在平直空间中，当真空的测量限制在系统的一部
分时，所得到的熵也不会为零，且会正比于所限区域 Ω的表面积．对于非零自旋场
和不同于真空的纯态所得的熵也有类似结果．非零熵的出现是因为“可观测的”和
“不可观测的”真空涨落在 Ω的边界上相互缠绕（关联）．

Ｆｒｏｌｏｖ 等建议把黑洞熵与黑洞内部量子态所对应的自由度联系起来．这些自
由度的密度矩阵可以通过把完整系统的量子态对黑洞外的场的态求平均而得到．
对于视界附近的模，此密度矩阵是热的．粒子成对产生，而只有一个能产生于视界
外．黑洞内的粒子对处于纯态中，对熵没有贡献．因此，统计力学熵与缠绕相关，可
以写成对黑洞外部模求和的形式．换言之，此方案保留了较早方案的主要性质．

黑洞的一个显著性质是其缠绕熵和与热大气相关的熵是一致的．以下我们将
称此量为统计力学熵．

在黑洞背景中传播的场（包括引力场）的小涨落与黑洞几何的小改变有关．用
黑洞的无边界波函数就可证明这一点．因此，量子场的态就与黑洞量子激发的态
相关．

在一般情况下，黑洞的统计力学熵与其“可观测的”热力学熵之间的关系是很
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有意义的．黑洞附近的量子场具有一个重要性质，即场的哈密顿量的能级密度在视
界附近发散．这导致统计力学熵的发散．这种发散与理论的紫外原圈发散有关，且
可以通过对牛顿耦合常数进行重整化而去掉．他们表明标准的 Ｐａｕｌｉ唱Ｖｉｌｌａｉｓ 方法能
去掉 RN 背景中统计力学熵的发散性．而且在这种规则化中，最小耦合标量场的熵
发散性用标准的紫外重整化就可以完全消除．

把 SBH与黑洞的量子激发联系起来的思想和首创性的文献引发了对存在 Ｋｉｌｌ唱
ｉｎｇ 视界时量子场的统计力学的研究．这方面的文章已超过百篇．这里，我们对这些
工作的讨论有两个主要目的：

１畅描述有 Ｋｉｌｌｉｎｇ 视界时量子场的统计力学及其方法和已得结果；
２畅讨论统计力学熵与可观测的黑洞熵 SBH之间的关系．
作为这些结果的应用，我们将给出诱导引力模型中黑洞熵的统计力学推导．

５畅３５　无视界静态引力场中量子场的统计力学
1畅系统的描述

我们先讨论无视界引力场量子场的统计力学．这个理论是在 ２０ 世纪 ７０ 年代
初由 Ｇｉｂｂｏｎｓ，Ｇｉｂｂｏｎｓ ＆ Ｐｅｒｒｙ 和 Ｄｏｗｋｅｒ ＆ Ｋｅｎｎｅｄｙ 给出的．一个典型例子是静态
非旋转恒星引力场具有有限温度的量子场．此引力场可由度规

ｄs２ ＝g００ ｄt２ ＋g abｄxaｄxb， a，b ＝１，２，３ ， （５畅３５畅１）
描述，其中 g００ （x） ＜０．度规（５畅３５畅１）只依赖于空间坐标 xa，故存在 Ｋｉｌｌｉｎｇ 场ξ＝矪／
矪t．在空间无限远处，背景是渐近平直的，且按假定，度规的时间分量 g００趋于 －１．
由于度规（５畅３５畅１）不依赖于时间，在这个背景中很容易定义不同场的统计力学系
综．我们将处理由温度 T＝β－１ （在渐近无限远处测得）所表征的正则系综①．观测者
在点 xa 测得的局域 Ｔｏｌｍａｎ 温度为 T loc ＝｜g００ ｜－１ ／２β－１．

为探究玻色和费米统计，我们将考虑自由标量场 矱和 Ｄｉｒａｃ 场 Ψ．二者分别满
足 Ｋｌｅｉｎ唱Ｇｏｒｃｄｏｎ 方程和 Ｄｉｒａｃ 方程

（ －Δ μΔ μ ＋m２ ＋ξR）矱＝０， （５畅３５畅２）
（γμΔ μ ＋m）ψ＝０， （５畅３５畅３）

这里，R 为标曲率，ξ为非最小耦合参数．协变导数Δμ按场的自旋定义．Ｄｉｒａｃ 矩阵
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在．我们的主题是视界存在时量子场系综的性质，外边界的存在在此处并不重要．因此我们不再详细说明．



γμ＝（γ０ ，γα）满足标准关系｛γμ，γν｝ ＝２gμν．注意 γ０
是反厄米矩阵．我们定义旋量

导数为Δμ＝矪μ＋Γμ，其中 Γμ＝１
８ ｛γλ，γρ｝倡V lρΔμ， V lλ为联络，V lν 为标架．

对于方程（５畅３５畅２）和（５畅３５畅３）的解，可确定标积
＜矱１ ，矱２ ＞＝ｉ∫βｄ３ x （ ３） g ｜g００ ｜－１ （矱倡

１ 矪t矱２ －矱２ 矪t矱倡
１ ）， （５畅３５畅４）

＜ψ１ ，ψ２ ＞＝∫βｄ３ x　（３） gψ＋
１ ψ２ ， （５畅３５畅５）

其中
（３） g ＝ｄｅｔ gab．以上标积与整体柯西面 B 的选择无关．

2畅正则方案与单粒子谱
温度为 β－１

时的正则系综由配分函数

ZC（β） ＝Ｔｒ ｅ－β∶H^∶ （５畅３５畅６）
决定．算符 H^∶是二次量子化的场的哈密顿．它确定了量子场关于 Ｋｉｌｌｉｎｇ 时间 t
的么正演化．跟以前一样，我们把场算符分解为关于时间 t 的正频和负频部分，从
而定义产生和湮没算符．（５畅３５畅６）中的正规顺序正是对这些算符而言．在这种情
况下，零温态（真空）的能量为零．如果真空能不为零，定义式（５畅３５畅６）很容易修
改．这点我们后面会谈到．系统的正则自由能为

FC（β） ＝－β－１ ｌｎZC（β）． （５畅３５畅７）
　　为计算 FC（β），先把方程（５畅３５畅７）写成基于单粒子谱的另一等价形式．令 ω
为一个场模关于 Ｋｉｌｌｉｎｇ 时间 t的频率．我们称这一系列频率为单粒子谱．ω谱由统
的边界条件惟一确定．如果系统在一有限区域内，且符合狄里赫利边界条件或其他
边界条件，这个谱是离散的．此时，有些频率相同，故可引入相应的简并因子 ｄ
（ω）．这样，（５畅２８畅７）式可等效地写成

FC［β］ ＝ηβ－１∑ω
d（ω） ｌｎ（１ －ηｅ－βω） （５畅３５畅８）

因子 η与统计有关，玻色场 η＝１，费米场 η＝－１．虽然 ３ 维椭圆算符的简并因子 d
（ω）对于大的 ω趋于 ω２ ，但由于指数截断，级数（５畅３５畅８）收敛．

当系统尺度无限大时，ω谱由合适当的渐近条件确定．一个常规要求是在趋于
空间无限远时场的大小降得足够快．此时谱是连续的，（５畅３５畅８）式中的求和须换
成积分

FC［β］ ＝ηβ－１∫∞

０ ｄωｄn（ω）ｄω ｌｎ（１ －ηｅ－βω） （５畅３５畅９）
量
ｄn（ω）
ｄω ｄω是区间（ω，ω＋ｄω）内的能级数．（５．３５．９）式也可以从（５畅３５畅８）中取
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能级间隔为零而得到．
3畅单粒子哈密顿

单粒子谱可从场的波函数（５畅３５畅２）和（５畅３５畅３）中得到．在静态空间（５畅３５畅１）
中，这些方程可改写成（３ ＋１）的形式：

（矪２
t ＋H２

s ）矱＝０ ， 　（ ｉ矪t －Hd）ψ＝０ ， （５畅３５畅１０）
其中下标 s和 d 分别指标量场和 Ｄｉｒａｃ 的旋量．H２

s 和 Hd 是 ３ 维微分算符：
H２
s ＝｜g００ ｜（－ΔaΔa －waΔa ＋m２ ＋ξR） ， （５畅３５畅１１）
Hd ＝－ｉγ０ ［γa（Δa ＋１

２ wa） ＋m］． （５畅３５畅１２）
３ 维协变导数Δa 由常时（ t＝ｃｏｎｓｔ．）超曲面上的度规 gab决定．我们记此常时曲面为
B．含指标 a 的操作与 B 上的 ３ 维度规 gab对应，且 wa ＝１

２Δa ｌｎ｜g００ ｜为 Ｋｉｌｌｉｎｇ 观测
者加速度矢量 wμ＝（０，wa）的 ３ 维部分．

算符 H s 和 Hd 是量子的单粒子哈密顿量，因为它们的本征值确定了单粒子谱．
把具有固定能量的波函数 矱（ t，x） ＝ｅ －ｉωt矱ω（x），ψ（ t，x） ＝ｅ －ｉωtψω（x）
代入（５畅３５畅１０）式中，可得到本征值方程：

H２
s矱ω（x） ＝ω２矱ω（x）， H２

dψω（x） ＝ω２ψω（x）． （５畅３５畅１３）
容易证明，H s 和 Hd 关于内积

（矱１ ，矱２ ） ＝∫βｄ３ x （３） g ｜g００ ｜－１矱倡
１ （x）矱２ （x）， （５畅３５畅１４）

（ψ１ ，ψ２ ） ＝∫βｄ３ x （３） gψ＋
１ （x）ψ２（x）， （５畅３５畅１５）

是厄米算符，其中 ψ＋
为厄米共轭旋量．关系式（５畅３５畅１４）和（５畅３５畅１５）是从 ４ 维场

的内积（５畅３５畅４）和（５畅３５畅５）式中得到的，可用来使模归一化．
为简化计算，我们还要使用 H２

s 和 Hd 的另一表示．做函数和算符变换：
珚矱＝ｅ－σ矱，珔ψ＝e－３２ σψ， （５畅３５畅１６）
珚H２
s ＝ｅ－σH２

s eσ， 珚Hd ＝e－３２ σHd e
３２ σ， （５畅３５畅１７）

其中 σ＝－１
２ ｌｎ｜g００ ｜．变换后的函数的内积可从（５畅３５畅１４）和（５畅３５畅１５）式中得

到，并具有普适形式．
（珡Φ１ ，珡Φ２ ） ＝∫β （３） 珔gｄ３ x（珡Φ１ ） ＋珡Φ２． （５畅３５畅１８）

这里，珡Φ可表示标量或旋量场，　（ ３）珔g ＝ｄｅｔ珔gab，珔gab ＝gab ／｜g００ ｜＝ｅ２σgab．强调一下，变
换（５畅３５畅１６）和（５畅３５畅１７）式并不改变（５畅３５畅１３）式所确定的谱．因此，算得 珚H i 与
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H i（ i＝s，d）是等价的．
从（５畅３５畅１７）中可得到旋量哈密顿

珚Hd ＝ｉ珔γ０ （珔γaΔ－
a ＋e－σm）， （５畅３５畅１９）

式中｛珔γμ，珔γν｝ ＝２珔gμν，珔gμν ＝gμν ／｜g００ ｜．故对于标量和旋量算符的平方，我们有
珚H２
i ＝－Δ－

aΔ－
a ＋ｅ－２σm２ ＋V i，i ＝s，d． （５畅３５畅２０）

导数Δ－
a是由 ３ 维超曲面 珔B 上的度规 珔gab定义的．势 V i 由背景空间几何及 Ｋｉｌｌｉｎｇ 观

测者的加速度 wμ
决定：
V s ＝ξ珔R ＋ｅ－２σ（１ －６ξ）（Δ μwμ －wμwμ）， （５畅３５畅２１）
Vｄ ＝ １

４ 珔R ＋ｅ－２σmγμwμ， （５畅３５畅２２）
珔R ＝ｅ－２σ［R ＋６（Δ μwμ －wμwμ）］． （５畅３５畅２３）

　　注意，把场的变换（５畅３５畅１６）运用到波函数（５畅３５畅２），（５畅３５畅３）上可得到算符
珚H i，如此得到的新方程可表述为超静态时空

ｄ珋s２ ＝－ｄt２ ＋珔gabｄx２ ｄxb， （５畅３５畅２４）
中的场方程，此度规与物理度规通过共形变换 珔gμν ＝gμν ／｜g００ ｜相联系．此度规的标
曲率 珔R 见（５畅３５畅２３）式．由（３ ＋１）方案可得到单粒子哈密顿（５畅３５畅２０）式．以下与
超静态度规珔gμν相关的量都用一横标示．共形相关的两理论中的单粒子谱与正则方
案是等价的．须指出，在一般情况下（有质量 m 和非最小耦合 ξ≠ １

６ 出现），理论不
是共形不变的．对于标量场，共形不变性只存在于 m ＝０ 且 ξ＝１

６ 的情况．

4畅协变欧氏方案
统计力学的正则方案符合系统沿 Ｋｉｌｌｉｎｇ 时间的么正演化．它明显与（３ ＋１）分

解相关，故不是明显协变的．稳态背景中处理有限温度量子场的协变欧氏方案由
Ｇｉｂｂｏｎｓ和 Ｈａｗｋｉｎｇ 指出．此方案已证明对黑洞热力学非常有用．

考虑一个流形 Mβ，其欧氏度规为
ｄs２ ＝gττｄτ２ ＋gαβｄxαｄxβ，　０ ≤ τ≤ β， （５畅３５畅２５）

此度规由静态洛伦兹度规（５畅３５畅１）通过 Ｗｉｃｋ 转动 t→τ＝ｉt 而得到．其中 gττ

＝｜g ００ ｜，且对虚时间 τ加上了周期条件．我们假定空间是渐近平直的，且具有拓扑
R３ ，则 Mβ的拓扑为 R３ ×S１．

根据 Ｇｉｂｂｏｎｓ和 Ｈａｗｋｉｎｇ 的处理，对于静态引力背景中场 Φ的正则系综，配分
函数 ZE 和有效作用量 W 由路径积分确定：
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ZE（β） ＝ｅ－W ［ g，β］ ＝∫［DΦ］ｅ－I［ g，Φ］ ． （５畅３５畅２６）
其中 I［g，Φ］为流形 Mβ上的经典欧氏作用量．由于在空间无限远处 gττ＝１，参数 β
为 S１ 的长度，故 β的意义是空间无限远处所测得的温度的倒数．场 Φ可以具有玻
色和费米统计．玻色变量假定对欧氏时间 τ具有周期 β，而费米场则是反周期性
的．［DΦ］是协变积分测度．对于自由标量场和 Ｄｉｒａｃ 场，（５畅３５畅２６）中的积分给出

W［g，β］ ＝W s［g，β］ ＋Wd［g，β］， （５畅３５畅２７）
W s［g，β］ ＝ １

２ ｌｏｇｄｅｔρ
－２ L s，　Wd［g，β］ ＝－ｌｏｇｄｅｔρ－１ Ld． （５畅３５畅２８）

泛函 W i［g，β］是紫外发散的，故假定其发散性已规则化了．ρ为任意重整化参数，
有长度量纲，且不依赖于背景度规．以下我们为简单起见取 ρ ＝１．只要需要，有效
作用量对 ρ的依赖关系容易恢复．与（５畅３５畅２）， （５畅３５畅３）式相对应的算符 L i 为

L s ＝－Δ μΔμ ＋ξR ＋m２ ，Ld ＝γ５ （γμΔμ ＋m）． （５畅３５畅２９）
注意，经过了从洛伦兹号差到欧氏号差的 Ｗｉｃｋ 转动，矩阵 γ０ 应换成 ｉγ０ ，矩阵 γ５

与其他的 γ反对易，且归一化为 γ２
５ ＝１．（５畅３５畅２９）中的两个算符关于标准内积

（Φ１ ，Φ２ ） ＝∫ｄ４ x gΦ＋
１ Φ２． （５畅３５畅３０）

都是厄米的．
欧氏自由能 FEi ［g，β］由系统的有效作用量确定：

FEi ［g，β］ ＝β－１W i［g，β］ －E０
i ［g］． （５畅３５畅３１）

与 FCi ［g，β］类似，如此定义的欧氏自由能 FEi ［g，β］在零温度时为零．这使得两个自
由能的比较更为简单．

真空能

E０
i ［g］ ＝ ｌｉｍβ→∞（β－１W i［g，β］） （５畅３５畅３２）

对熵没有贡献．由于自由能 EEi 和真空能 E０
i 由协变欧氏作用量 W i［g，β］定义，故此

方案称为协变欧氏方案．
5畅正则方案与协变欧氏方案的关系

无视界时两种方案的关系已被许多人讨论．
要比较两种方案，关键一点是把正则自由能用超静态空间（珚Mβ）

ｄ珋s２ ＝ｄτ２ ＋珔gαβｄxαｄxβ，０ ≤ τ≤ β． （５畅３５畅３３）
中的有效作用量表示．此空间与 Mβ共形相关，为积 S１ ×珔B．

先定义 Mβ上与算得 L i（５畅３５畅２９）式共形相关的算符珔L i：
珔L i ＝ｅ－３σL sｅσ，珔Lｄ ＝ｅ－５２ σLｄ ｅ ３２ σ． （５畅３５畅３４）

易证
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珔L s ＝珚H２
s －矪２

τ， （５畅３５畅３５）
珔Ld ＝γ５珔γτ（珚Hd ＋矪τ），珔L２d ＝珚H２

d －矪２
τ． （５畅３５畅３６）

对于这些算符，可定义有效作用量
珚W s［g，β］ ＝ １

２ ｌｏｇｄｅｔ珔L s，珚Wd［g，β］ ＝－ｌｏｇｄｅｔ珔Ld． （５畅３５畅３７）
（为简单见，我们把 珚Wd 看成物理度规 gμν的泛函）

对于具有离散谱的系统．由（５畅３５畅３５）和（５畅３５畅３６）式可得正则自由能与超静
态空间中的有效作用量之间的关系

FCi ［g，β］ ＝β－１ 珚W i［g，β］ －珔E０
i ［g］． （５畅３５畅３８）

其中 珔E０
i 为超静态空间场的真空能

珔E０
i ［g］ ＝ηi∑ω

ｄ i（ω） ω
２ ． （５畅３５畅３９）

（５畅３５畅３８）和（５畅３５畅３９）式等推广到连续谱的情况．此时只要取能级间距为零并把
对 ω的求和换成积分就行了．（５畅３５畅３８）和（５畅３５畅３９）式的推导见 Ａｌｌｅｎ．

须注意，珔E０
i 包括了泛函 珚W i 的所有紫外发散项．故泛函 FCi 是紫外有限的．此发

散性的几何结构不依赖于系统的温度．这是量子场论一个更一般性质的结果，即其
紫外奇异性不依赖于系统的量子态．珚W i 的重整化等价于 珔E０

i 的重整化．
方程（５畅３５畅３４）对找到正则和欧氏自由能之间的关系至为重要．与算符 L i 和

珔L i 相应的经典作用量为

IEi ［g，φi］ ＝∫Mβ
ｄ４ x gφ＋

i L iφi，ICi ［珔g，珔φi］ ＝∫珚mβ
ｄ４ x 珔g珔φ＋

i 珔L i珔φi．（５畅３５畅４０）
其中 φi 指 矱或 ψ．故由（５畅３５畅３４），对于珚矱＝ｅ －σ矱和 珔ψ＝ｅ －３２ σψ，有

IEi ［g，φi］ ＝ICi ［珔g，珔φi］． （５畅３５畅４１）
在 ξ＝１

６ 的无质量标量场或无质量旋量场的情况下，L i 和珔L i 具有相同的形式，这意
味着经典理论是共形不变的．在一般情况下，这种不变性不存在．但是仍有可能在
经典作用量中引入辅助的共形荷，并用赝共形不变性解释（５畅３５畅４１）式．

在量子理论中，经典对称性由于一些反常而破坏畅因此，二重整化作用量之间
的关系为

W i［g，β］ ＝珚W i［g，β］ ＋βΩi［g］． （５畅３５畅４２）
反常正比于 β，故仅对真空能有贡献：

E０
i ［g］ ＝珔E０

i ［g］ ＋Ωi［g］． （５畅３５畅４３）
于是，自由能 FEi 和 FCi 一致：

FEi ［g，β］ ＝FCi ［g，β］． （５畅３５畅４４）
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因此，在无视界的静态时空中，量子场的统计力学的协变欧氏方案和正则方案是等
价的．

（５畅３５畅４２）式中反常项的出现可归因于积分测度对于共形变换的非不变性．
泛函 W i 的路径积分定义（５畅３５畅２６）式中所用的协变测度对标量场为 g１ ／４ ｄ矱，对旋
量场为 g －rｄ／２ ｄψ＋ｄψ，其中 g ＝ｄｅｔgμν，rｄ 为旋量表示的阶数．两测度中第一个因子
的区别在于玻色变量和费米变量的不同积分规则．作用量 珚W i 的积分测度也不一
样．它们分别为 珔g１ ／４ ｄ矱和 珔g －rｄ／２ ｄψ＋ｄψ，且对超静态背景而言是协变的．此测度形
式可通过把理论正则量子化而得到．

５畅３６　与视界有关的性质
黑洞热大气的统计力学熵的计算有许多方面直接与视界的存在相关．考虑一

般的静态时空，其 Ｋｉｌｌｉｎｇ 矢量 ξ＝矪t，Ｋｉｌｌｉｎｇ 视界在 ξ２ ＝０ 处．暂时我们并不要求度
规满足爱因斯坦场方程．

如果表面引力

κ＝ －１
２ （ξμ；νξμ；ν） ｜ξ２ ＝０

１ ／２ （５畅３６畅１）
不为零，视界附近的度规可写成

ｄs２ ≈－κ２ ρ２ ｄt２ ＋ｄρ２ ＋ｄΩ２ ， （５畅３６畅２）
这里，ｄΩ２

为视界的 ２ 维分支面上的度规．我们把此面记为 Σ．在坐标（５畅３６畅２）中，
视界位于 ρ ＝０ 处．这种度规形式对非极端黑洞是普适的．

存在视界时，量子场关于 Ｋｉｌｌｉｎｇ 时间的谱有许多重要的新性质：
（１） 单粒子谱即使在系统大小有限时也是连续的，有限是指在离视界有限距

离处对系统加有边界条件．
（２） 尽管场有自旋和质量，ω谱也会减为零．
（３） 分叉面 Σ在时间演化下是不变的．
谱的连续性很容易从单粒子哈密顿（５畅３５畅２０）式中看出．算符 珚H i 在超静态空

间（５畅３５畅２４）式的空间部分 珡B 中给出，空间 珡B 总是非紧致的，因为共形变换在事
件视界处是奇异的，它把 Σ上的点变成 珡B 中的空间无限远．

算符珚H i 质量隙为零有以下原因．（５畅３５畅２０）式表明，由于因子 ｅ －２σ ＝｜g００ ｜的
存在，场的质量 m i 在视界附近无任何效应．算符 －Δ－

aΔ－
a具有一个质量隙，这是由于

纯几何原因：空间 珡B在视界附近具有渐近的常曲率．但在视界处 V s ＝－κ２ ，Vd ＝－
３
２ κ２．故这些势就像快子质量一样正好抵消 珡B 的曲率所引起的质量隙．
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因此，我们所处理的系统在视界附近的行为类似于非紧致空间中的无质量量
子场．众所周知，此时会碰到红外发散困难．由于这种发散，量子哈密顿 珚H i 的本征
值密度在视界附近趋于无穷大．结果，正则程式中的自由能（５畅３５畅９）式在任意温
度下都发散．

存在视界时，协变欧氏方案也呈现出新的性质．此时，黑洞解的欧氏流形 Mβ
（５畅３５畅２５）式不会对任意的 β值都规则．在 Ｋｉｌｌｉｎｇ 矢量 ξ＝矪τ为零的面 Σ（欧氏视
界）附近，由（５畅３６畅２）式度规可写为

ｄs２ ≈ κ２ ρ２ ｄτ２ ＋ｄρ２ ＋ｄΩ２，　０ ≤ τ≤ β， （５畅３６畅３）
故在此面附近，Mβ就像是 Cβ×Σ，其中 Cβ是具有顶角的空间．显然，仅当 β取特殊
值 β＝βH ＝２πκ－１

时，顶角奇异性才消失，Mβ才为规则空间．此时的温度 TH ＝β－１
H

即 Ｈｏｗｋｉｎｇ 温度，而相应的量子态则称为 Ｈａｒｔｌｅ唱Ｈａｗｋｉｎｇ 真空．TH 的物理意义是：
它恰为蒸发黑洞所辐射的 Ｈａｗｋｉｎｇ 量子的温度．TH 也是量子辐射与黑洞处于热平
衡时的温度．

对于 β≠βH，顶角奇异性导致 Mβ的有效作用量中的附加紫外发散．因此，存在
视界时，正则方案与协变欧氏方案都出现新的发散性．但二者来源不同：正则方案
中是红外的，而协变欧氏程式中为紫外的．

５畅３７　视界存在时的正则方案
1畅能级密度及其性质

视界存在时统计力学量的发散性直接与哈密顿态密度的无限增加有关．这个
与早期方案类似的思想是把 ｄn i（ω）／ｄω与算符 珚H２

i 的热核联系起来．后者为一椭
圆算符，其热核人们都很熟习．对于连续谱，我们有

ｔｒｅ－珚H２i t ＝∫∞

０ ｄω
ｄn i（ω）
ｄω ｅ－ω２t． （５畅３７畅１）

密度 ｄn i（ω） ／ｄω可以用逆 ｄａｐｌａｕ 变换从（４畅１）式中得到．对角矩阵元
枙x｜ｅｘｐ（ －珚H２

i t） ｜x枛 ≡ ［ｅｘｐ（ －珚H２
i t）］ ｄｉａｇ

行为规则并有限．但相应的迹却因涉及非紧致空间 珡B 上的积分而发散．为看出这
一点，我们只要研究［ｅｘｐ（ －珚H２

i t）］ ｄｉａｇ在视界附近的行为．为估计主要的渐近项，我
们可以忽略视界 ２ 维面的曲率，并把黑洞度规（５畅３７畅２）用 Ｒｉｎｄｌｅｒ空间度规近似写
出：

ｄs２ ＝－κ２ ρ２ ｄt２ ＋ｄρ２ ＋ｄz２１ ＋ｄz２２ ， －∞ ＜z１ ，z２ ＜∞，ρ ＞０．（５畅３７畅２）
于是，共形空间 珡B 上的度规

ｄl２ ＝κ－２ ρ－２（ｄρ２ ＋ｄz２１ ＋ｄz２２ ） （５畅３７畅３）
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就与具有原常曲率 珔R ＝－６κ２
的双曲流形 H３

上的度规相同．H －２
i 的本征函数只要

在无限远处（ρ→∞时）有正确的衰减性质，它们就是完全确定的．因此，在视界 ρ ＝
０ 处不需要附加条件．当 ρ→０ 时，场可等效为无质量场，而 H３

上的标量的旋量热

核的对角元已精确得到

［ｅ－t珚H２s ］ ｄｉａｇ ＝ １
（４πt） ３ ／２ ，［ｅ－t珚H２ｄ］ ｄｉａｇ ＝ rd

（４πt） ３ ／２ １ ＋１
２ κ２ t ． （５畅３７畅４）

这里假定了对旋量指标求和，因而出现因子 rd．此时的几何与 Ｒｉｎｄｌｅｓ 几何在远离
视界处完全不同，质量项也变得很重要．因此，一般地，（５畅３７畅４）式存在正比于 ρ２

的修正．这些项的结构可以用 珡B上热核的渐近性质来分析．
因此，从（５畅３７畅１）和（５畅３７畅４）式中可看出，算符的迹及其态密度按 珡B 的体积

而增加．
有几种方法使这些发散性规则化．例如，我们可以限制系统的空间尺寸．此时，

到视界的固有距离小于某长度 矯的物理时空区域被排除在考虑之外．为此，ｔ′Ｈｏｏｆｔ
建议在离视界的固有距离为 矯的面上加上场的狄里赫利边界条件．ｔ′Ｈｏｏｆｔ 的这个
方案称为“砖墙”模型．一个类似但更简单的方案———体积截断方法则由 Ｆｒｏｌｏｖ 和
Ｎｏｖｉｋｏｖ 提出．在此方法中，所有的空间积分都在固有距离 矯处截断而并不加边界
条件．

在体积截断方法中，可等效地在视界附近截出一区域使得时空不完整．但也存
在一些在完整时空背景中的规则化方法．这里，密度 ｄn／ｄω即使在 矯→０ 时也有
限，但它依赖于规则化质量 μ：当 μ→∞时，它趋于 μ２．另一选择是维数规则化．此
方法源于 Σg（５畅３７畅５），（５畅３７畅６）式中主要发散项的次数依赖时空维数．在 D 维时
空间中，珡B 的体积的主要发散项为 矯２ －D （D≠２）．于是，可以将 D 视为规则化参数，
并在 ReD ＜２ 时取极限 矯→０．于是密度 ｄn／ｄω在 D ＝４ 处有一极点．

在体积截断方法中，ｄn／ｄω是红外发散的．在 PV和维数规则化方法中，ｄn／ｄω
是紫外发散的．因此，根据规则化方法的不同我们可以讨论红外和紫外极限．
2畅红外极限和体积截断

我们记体积截断方法中的规则化密度为
ｄn i／（ω／矯）
ｄω ，并探讨 矯→０ 时其渐近性

质．把热核对区域 ρ≥矯积分，并运用（５畅３７畅１）中的逆拉普拉斯变换，便可得到态实
度发散部分的规则化表达式：

ｄn s ／（ω／矯）
ｄω ｄｉｖ

＝ １
４π２κ３∫Σ ω２ １

矯２ －１
４ Pｌｎ

矯２

l２

　 －κ２

２ ｌｎ
矯２

l２
１
６ －ξ R －m２ ， （５畅３７畅５）
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ｄnd ／（ω／矯）
ｄω ｄｉｖ

＝rd １
４π２κ３∫Σ ω２ １

矯２ －１
４ Pｌｎ

矯２

l２

　 ＋κ２

４矯２ －κ２

２ ｌｎ
矯２

l２
１
８ Q －１

２ R －m２ ， （５畅３７畅６）

其中∫Σ假定了积分在视界分叉面Σ上进行，故：∫Σl ＝A，A 为Σ的面积．此外，我们
还在大距离处加上了附加的截断 l．量 rd 是旋量表示的维数．故对 ４ 维狄拉克旋量面
言，rｄ ＝４，令 nμi （ i＝１， ２）为正交于Σ又相互正交的两个单位矢量，则 Pμν ＝∑２

i ＝１
nμ
i nν
i

为到垂直于 Σ的 ２ 维面上的投影子．（５畅３７畅５）和（５畅３７畅６）式中的 P 和 Q 为
P ＝２R －Q，　Q ＝PμνRμν，R ＝PμνPλρRμλνρ． （５畅３７畅７）

注意， （５畅３７畅５）， （５畅３７畅６）式中的主要发散项 矯－２
已出现在 Ｒｉｎｄｌｅｒ 近似式

（５畅３７畅４）中．质量和非零曲率源于附加的对数发散项 ｌｎ（矯２ ／l２ ）．
把（５畅３７畅５）和（５畅３７畅６）式代入正则自由能（５畅３５畅９）中，解得
FCs，ｄｉｖ［g，β，矯］ ＝－１

κ３∫Σ π２

１８０β４矯２ － π２

７２０β４P

　 ＋ κ２

４８β２
１
６ －ξ R －m２ ｌｎ 矯２

l２
， （５畅３７畅８）

FCｄ，ｄｉｖ［g，β，矯］ ＝－rｄ １
κ３∫Σ ７π２

１４４０β４ ＋ κ２

１９２β２
１
矯２

　 － ７π２

５７６０β４P ＋ κ２

９６β２
１
８ Q －１

１２R －m２ ｌｎ 矯２

l２
．　　　（５畅３７畅９）

由此可以计算正则系综的其他性质，尤其对于统计力学熵
SCi，ｄｉｖ［g，β，矯］ ＝β２ 矪FCi，ｄｉｖ［g，β，矯］

矪β ． （５畅３７畅１０）
在 Ｈａｗｋｉｎｇ 温度 β－１ ＝β－１

H ≡κ／２π，得到
SCs，ｄｉｖ［g，βH，矯］ ＝ １

π∫Σ １
３６０矯２

　 － １
１４４０ ２R －Q ＋３０ １

６ －ξ R －３０m２ ｌｎ 矯２

l２
，　　　　（５畅３７畅１１）

SCｄ，ｄｉｖ［g，βH，矯］ ＝rｄ １
π∫Σ １１

１４４０矯２ － １
５７６０

　 ７R ＋４Q －５R －６０m２ ｌｎ 矯２

l２
． （５畅３７畅１２）

如前所述，（５畅３５畅６）式中省略的真空能对熵没有贡献．对于标量场，熵的主要发散
项矯－２

由自由能（５畅３７畅８）式中的β－４
项决定．但旋量场不一样．为得到熵的矯－２

发散
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项，自由能（５畅３７畅９）中的主级项 β－４
和次主级项 β－２

都必须知道．
为确定自由能和熵的发散性，只要知道热核算符的渐近性质即可．但如果还想

计算这些量本身，这就不够了．ｄn／ｄω， FC 和 SC 能精确计算的例子所考虑的情况
是时空的空间部分形如 B ＝R ＋ ×Σ，其中 Σ为常曲率流形．特别地，对于 Ｒｉｎｄｌｅｒ 时
空，Σ为 ２ 维平面，而有质量标量场的态密度为

ｄn s（ω／矯）
ｄω ＝ A

４π２κ３
ω２

矯２ ＋m２κ２

２ ｌｎ 矯２m２

４ －m２κ２

２ （１ ＋２Ｒｅψ（ ｉω／κ）） ．
（５畅３７畅１３）

这里，ψ为 Γ函数的对数导数．矯→０ 时会消失的项这里已省略．从（５畅３７畅１３）式可
看出，（５畅３７畅５）和（５畅３７畅６）式中附加截断 l的作用在这里被 m －１

代替．
3畅紫外极限

（１）维数规则化
维数规则化是在完整时空中定义 ｄn／ｄω的最简单方案．在此方案中，可以一

开始就取 矯＝０．量 ｄn／ｄω依赖于与时空维数相差的变参数 D，并在 D ＝４ 处存在
极点：

ｄn s（ω／D）
ｄω ｄｉｖ

＝
Γ（１ －D２ ）
（４π） D／２

mD－４

κ∫Σ ２ m２ － １
６ －ξ R －ω２

κ２ P ，（５畅３７畅１４）

ｄnd（ω｜D）
ｄω ｄｉｖ

＝rd
Γ（１ －D２ ）
（４π）D／２

mD－４
κ∫Σ ２ m２ ＋R１２ －Q８ －ω２

κ２P ．（５畅３７畅１５）
由此可得到标量场和旋量场的正则自由能发散项：

FCｄｉｖ［g，β，D］ ＝－η
Γ（１ －D２ ）
（４π） D／２

π２mD－４

３κβ２ ∫Σ f１m２ － p１ ４π２

κ２β２P ＋p２R ＋p３Q） ．
（５畅３７畅１６）

相应的熵发散项为

SCi，ｄｉｖ［g，β，D］ ＝β２ 矪FCi，ｄｉｖ［g，β，D］
矪β ，

SCi，ｄｉｖ［g，β，D］ ＝η
Γ １ －D２
（４π） D／２

２π２mD－４

３κβ ∫Σ f１m２ － p１ ８π２

κ２β２P ＋p２R ＋p３Q） ．
（５畅３７畅１７）

常数 f１ 和 pk 依赖于自旋，见附表．此表也包括我们将碰到的类似常数．

·９４１·５畅３７　视界存在时的正则方案



附表

ｓｐｉｎ ｄ１ f１ q１ q２ q３ p１ p２ p３

０ １
６ －ξ １ １ －１ ５

２ （１ －６ξ）２ １
６０

１
６ －ξ ０

１
２ －１

１２ rｄ －１
２ rｄ －７

８ rｄ －rｄ ５
８ rｄ －７

４８０rｄ
１
２４ rｄ －１

１６ rｄ

（２） Ｐａｕｌｉ唱Ｖｉｌｌａｖｓ规则化
维数规则化只产生对数发散项．因此，用另一种更完全的规则化来研究 FCｄ ｉｖ是

有价值的，此即 Pauli唱Villars方法．在此方法中，对于每一种物理场都引入 ５ 个附
加辅助场：其中两个场质量为 Mκ，统计与前相同，三个场质量为 M′r，统计与前相
反．为消除发散，辅助场的质量应满足

f（１） ＝f（２） ＝０， （５畅３７畅１８）
其中

f（p） ＝m２p ＋∑κ
M２p

κ －∑
r
（M tr） ２ p ＝０． （５畅３７畅１９）

取 M１，２ ＝ ３μ２ ＋m２ ，M′１，２ ＝ μ２ ＋m２ ，M′３ ＝ ４μ２ ＋m２
就可满足条件（５畅３７畅１８）．

规则化的态密度则为

ｄni（ω｜μ）
ｄω ≡ ｄni（ω，m）ｄω ＋∑κ

ｄni（ω，Mκ）
ｄω －∑

r

ｄni（ω，M′r）
ｄω ．（５畅３７畅２０）

量 ｄn i（ω，Mκ） ／ｄω和 ｄn i（ω，M′r） ／ｄω为辅助场的态密度．统计相反的场在比式中
给出负的项．由于这种场的数目等于统计相同场的数目（５畅３７畅５），（５畅３７畅６）式中
主要的 矯发散项相互抵消．对数发散项 ｌｎ矯２

也因条件 f（p＝１） ＝０ 而相消．结果，规
则化的态密度（５畅３７畅２０）不含矯→０ 时发散项，并可在完整的背景中定义．由于存在
辅助场时 ｄn i （ω｜μ）／ｄω有限，故结果与维数规则化时一样．由 （５畅３７畅１４）和
（５畅３７畅１５）式，考虑到（５畅３７畅１８）式，可得

ｄns（ω｜μ）
ｄω ｄｉｖ

＝ １
（４π）２κ∫Σ ２b ＋a ω２

κ２ P ＋２ １
６ －ξ R ， （５畅３７畅２１）

ｄnｄ（ω｜μ）
ｄω ｄｉｖ

＝rｄ １
（４π） ２κ∫Σ ２b ＋a ω２

κ２ P －R６ ＋Q４ ．（５畅３７畅２２）
其中，函数 a 和 b依赖于 m 和 μ：

a ≡－ｄfｄp p ＝０
＝－ｌｎm２ －∑κ

ｌｎM２
κ ＋∑

r
ｌｎ（M′r） ２ ， （５畅３７畅２３）

b ≡－ｄfｄp p ＝１
＝m２ ｌｎm２ ＋∑κ

M２
κｌｎM２

κ －∑
r
（M′r） ２ ｌｎ（M′r） ２．（５畅３７畅２４）
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在 Ｐａｕｌｉ唱Ｖｉｌｌａｒｓ方法中，μ２
起到了紫外截断的作用．在μ→∞时，ｄn i（ω｜μ）／ｄω是紫

外发散的．此时
a ≈ ｌｎ μ２

m２ ，b≈ μ２ ｌｎ ７２９２５６ －m２ ｌｎ μ２

m２ ， （５畅３７畅２５）
因此，一般地，ｄn／ｄω包括了平方和对数发数项．

从方程（５畅３７畅２１）和（５畅３７畅２２），可以得到统计力学自由能的发数项：
FCｄｉｖ［g，β，μ］ ＝－ η

４８κβ２∫Σ bf１ ＋a p１ ４π２

κ２β２P ＋p２R ＋p３Q ． （５畅３７畅２６）
对于 RN 黑洞背景中的标量场，由 （５畅３７畅２６）式可得 Ｈａｗｋｉｎｇ 温度下熵的发散
部分：

SCｄｉｖ［g，βH，μ］ ＝ η
４８π∫Σ［bf１ ＋a（２p１P ＋p２R ＋p３Q）］． （５畅３７畅２７）

考虑到（５畅３７畅２５）式，对于大的 μ，此式可写成
SCｄｉｖ［g，βH，μ］ ＝ η

４８π∫Σ cμ２ f１ ＋（２p１P ＋p２R ＋p３Q －f１m２）ｌｎ μ
２

m２ ， （５畅３７畅２８）

其中 c＝ｌｎ ７２９２５６．表达式（５畅３７畅２８）与体积截断规则化中的（５畅３７畅１１）和（５畅３７畅１２）
式有相同的结构．易见矯与μ－１

对应，即 Ｐａｕｌｉ唱Ｖｉｌｌａｒｓ规则化导致积分在视界附近的
截断，此处距规界的固有距离约为场的质量的倒数．这可作如下解释：在视界附近，
当局域温度大于 μ时，有质量的辅助场被激发，又由约束条件（５畅３７畅１８），它们的
贡献刚好抵消物理场的贡献．

有趣的是，对于每一个场都可找到 矯与 μ－１
之间的关系，只要令主级发散项相

等即可．由此就可能找出 l与 m －１
的联系，这使得对数发散项也相等．但是要注意，

在这种等同中，矯与 μ的关系对不同自旋的场不一样，见（５畅３７畅１１）， （５畅３７畅１２）和
（５畅３７畅２８）式．
4畅WKB 近似和砖墙模型

统计力学量中的发散性也可用 ＷＫＢ 方法得到．这种计算方法由 ｔ′Ｈｏｏｆｔ 提出，
并被许多人运用．作为例子，我们考虑渐近平直且球对称的黑洞背景

ｄs２ ＝－g（ r）ｄt２ ＋g－１ （ r）ｄr２ ＋r２ （ｄθ２ ＋ｓｉｎ２ θｄφ２ ）． （５畅３７畅２９）
中的标量场．这里 r≥rh，而 rh 为视界半径，满足 g（ rh ） ＝０．史瓦希黑洞和 RN 黑洞
均由此类度规描述．我们感兴趣的是模珚矱ω， l（x），其能量为 ω，角动量为 l．这些模是
本征值问题

珚H２
s珚矱ω， l ＝ω２珚矱ω， l． （５畅３７畅３０）

的解．此方程可退化为具有势
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V lｅｆｆ（ r） ＝－１
４ （g′） ２ ＋g（ r）［m２ ＋r－２ l（ l ＋１）］ （５畅３７畅３１）

的一维问题

－g２
r２
矪r（ r２ 矪r） ＋V lｅ ｆｆ（ r） －ω２ 珚矱ω， l ＝０． （５畅３７畅３２）

在视界附近，此势为负，V lｅ ｆｆ（ rh） ＝－κ２ ，但当 r冲rh 时为正，V lｅ ｆｆ（ r＝∞） ＝m２．
现在考虑砖墙模型．我们假定砖墙这个狄里赫利条件加在离视界的固有距离

为 矯处，且 r（矯）为坐标（５畅３７畅２９）式中砖墙的位置．由（５畅３７畅３２）式，可用准经典近
似估计能量小于 ω时的能级数 n s（ω｜矯）：

n s（ω｜矯） ＝ １
π∑

l（ω）

l ＝０
（２l ＋１）∫rBr（ 矯） ｄr

g（ r） ω２ －V lｅ ｆｆ（ r）． （５畅３７畅３３）
这里，l（ω）为最大角动量，此时（５畅３７畅３３）式中的平方根为零，rB冲rh 为附加的红
外截断．

为估计 矯→０ 时 n s（ω｜矯）的渐近行为，我们假定 ω２
大到可与背景的曲率相比

较．于是，只有大角动量的贡献才是重要的，而对 l的求和可代之以积分：
n s（ω｜矯） ≈ ２

３π∫rBr（矯） r２ ｄrg２ （ω２ －gm２ ） ３ ／２ ≈ A
１２π２κ３

ω３

矯２ ＋３
２ κ２m２ωｌｎ 矯２

l２
．

（５畅３７畅３４）
在最后一步中，我们令 A ＝４πr２h，ｄρ ＝g －１ ／２ ｄr，并对视界附近的度规（５畅３７畅２９）用
到了 Ｒｉｎｄｌｅｒ 近似（５畅３７畅２）．易见，（５畅３７畅３４）式与 P ＝R ＝０ 时标量场的表达式
（５畅３７畅５）给出同样的能级密度．

因此，至少对主级发散项而言，体积截断视则化与 ＷＫＢ 砖墙模型是一致的．
如果换成 Ｎｅｗｍａｎ 边界条件，这种一致性仍然存在．不同条件下的 n s（ω｜矯）只相差
一个常数．应注意，对于物理场，视界并非真实边界．从数学上看，这意味着
（５畅３７畅３０）式中满足 ω＜m的波函数只要在 r冲矯及时衰减得足够快就可以完全确
定，且在截断长度 矯处不需任何边界条件．因此，体积截断方法似乎比砖墙方法更
合适．

ＷＫＢ 方法也可用于研究紫外发散．

５畅３８　协变欧氏方案
1畅体积截断与高温展开

在协变欧氏方案中，视界处发散问题的处理与正则方案一样，可引入体积截断
或紫外规则化．显然，欧氏方案和正则方案的比较只对等价的规则化才有意义．
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在体积截断规则化中，可等效地在视界附近截去一区域，这使得时空不完整．
结果就得到无视界静态时空中的理论．如前所述，此时协变欧氏方案与正则方案是
等价的．

视界附近的欧氏作用量可由高温渐近得到．这种渐近能给出很好的近似，因为
局域温度在接近视界时趋于无穷．有效作用量的高温展开由 Ｄｏｗｋｅｎ 等得

W i［g，β］ ＝β∫ｄ３ xg１ ／２ ［b i（ x，β） ＋h i（x）］ ＋W（３）
i ［g］ －ΔW i．（５畅３８畅１）

对于旋量，W（ ３）
i ［g］ ＝０，但对于标量，W（ ３）

s ［g］ ＝－１
２ ξ′（０）珚H２

i 由算符 珚H２
s 的 ξ函数

确定，量 b i 和 h i 为
bs（x，β） ＝－ π２

９０β４
l
－ １
２４β２

l

１
６ －ξ R －m２ －a s，２ （x）１６π２ ｌｎ μβl２π， （５畅３８畅２）

bd（x，β） ＝－７π２ rd
７２０β４

l
＋ rd
４８β２

l

１
１２R ＋１

２ （Δω－ω２ ） ＋m２ ＋ad，２ （x）１６π２ ｌｎ μβl２π，
（５畅３８畅３）

h s ＝ １
２８８０π２ ５ω２ （ω２ －２Δω） －３（Δω） ２

　 ＋Rμνωμων －３０ （ξ－１
１５）R ＋m２ ω２ ， （５畅３８畅４）

h d ＝ rd
１４４０π２ ７ω２ （ω２ －２Δω） －１８（Δω） ２

　 ＋２２Rμνωμων －５（R ＋６m２ ）ω２ ． （５畅３８畅５）
其中，ω２ ＝ωμωμ，Δω＝Δ μωμ，βl（ x） ＝｜g００ ｜１ ／２ β为局域 Ｔｏｌｍａｎ 温度的倒数，a i，２ （ x）
为 ４ 维算符 L i（５畅３５畅２９）式的第二个热系数．ad，２ （x）中对对旋量指标求迹已假定．

（５畅３８畅１）式中的 ΔW i 为
ΔW i ＝ β

１６π５ ／２∑∞
n ＝３
c i，nΓ（n －３

２ ）ξR（２n －３）珔a i，n β
２π

２n－４．
这里 cs，n ＝１，cｄ，n ＝１ －２２n －３ ，ξR （ z）为 Ｒｉｅｍａｎｎζ函数．珔a i，n为算得 珚H２

i 的热核渐近展

开的系数．量 ΔW i 也可用物理度规和局域温度写出．须强调，除了 WBi 外，有效作用
量的高温展开（５畅３８畅１）式具有局域形式．对有限温度的有效作用量的非局域贡
献见．

在体积截断方法中，（５畅３８畅１）式中的积分范围到距视界 矯处为止．作用量 W i
和自由能 FEi 当矯→０ 时发散．发散仅由函数 b i（x，β）中的β－４

和β－２
项产生．函数 h i

则对真空能的发散有贡献．正如所期望的，欧氏和正则自由能中的发散项一致．
FCi，ｄ ｉｖ［g，β，矯］ ＝FEi，ｄｉｖ［g，β，矯］． （５畅３８畅６）
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这里，FCi，ｄｉｖ由（５畅３７畅８）和（５畅３７畅９）式决定，而 FEi，ｄｉｖ则可由作用量（５畅３８畅１）减去真
空能得到．
2畅顶角奇异性与紫外发散

现在考虑完整流形 Mβ———具有顶角奇异性的流形上的协变欧氏有效作用量
（已有一些对含顶角奇异性空间的有效作用量的计算，如 ２ 维，３ 维的和 ４ 维的．值
得注意的是，顶角奇异性也出现于许多其他的物理应用中，如宇宙弦和 H e３ 超流相
中的拓扑缺陷．）这种情况下的一个重要性质是，顶角奇异性导致依赖于 β的附加
紫外发散．

引入作用于标量的旋量上的波算符 Δi ＝－ΔμΔμ ＋X i，其中Δ为相应的协变导
数．我们有

L s ＝Δs ＋m２ ，L２d ＝Δd ＋m２ ， （５畅３８畅７）
其中 X s ＝（１／６ －ξ）R，Xd ＝１

４ RI．
一般地，单圈有效作用量可由 Ｓｃｈｗｉｎｇｅｒ唱ＤｅＷｉｔｔ表示确定：

W［g，β］ ＝ η
２ ｌｏｇ ｄｅｔ（Δ＋m２ ） ＝－η

２∫∞

δ２
ｄs
s ｅ

－m２s ｔｒｅ－sΔ， （５畅３８畅８）
其中，δ２

为紫外截断．（为简单起见，我们省略了表示场的种类的指标 i．）紫外发散
的几何结构由热核在小 s 处的渐近展开式中的第一项决定．在无边界流形中，它具
有形式

ｔｒｅ－sΔ ≈ １
（４πs） D／２ （B０ ＋sB１ ＋s２B２ ＋－）， （５畅３８畅９）

其中 D 为 Mβ的维数．热系数（HMDS 系数）Bk（k≥１）可表为两项之和：
Bκ ＝Aκ ＋Aβ，κ． （５畅３８畅１０）

这里，Aκ是 Mβ的规则区域上的标准系数， Aβ， κ为由顶角奇异性引起的附加项．
此项为 Σ上的泛函，依赖于此面附近 Mβ的几何特征．Aκ和 Aβ，κ的前两项为

A１ ＝ｄ１∫Mβ－ΣR，Aβ，１ ＝π
３γf１ （γ

２ －１）A， （５畅３８畅１１）
A２ ＝ １

１８０∫Mβ－Σ
（q１RμνλρRμνλρ ＋q２RμνRμν ＋q３R２ ）， （５畅３８畅１２）

Aβ，２ ＝π
３γ∫Σ （γ４ －１）p１P ＋（γ２ －１）（p２R ＋p３Q） ， （５畅３８畅１３）

其中 γ＝βH
β．

Mβ上有效作用量的发散部分 Wｄｉｖ［g，β］可用不同的规则化方法写出．方便的
是从维数规则化开始．对于 D≠４，从（５畅３８畅８）和（５畅３８畅９）式可得
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Wｄｉｖ［g，β，D］ ＝－η
２∫∞

０
ｄs
s ｅ

－m２s １
（４πs） D／２ （B０ ＋sB１ ＋s２B２ ）．（５畅３８畅１４）

从作用量中减去真空能即得欧氏自由能（见（２畅３１）式）．在规则欧氏流形上，
发散性仅由系数 A０ ， A１ ， A２ 决定，且正比于周期 β，故它们对自由能和熵没有
贡献．当存在顶角奇异性时，发散项就由于附加项 Aβ，κ而具有关于 β－１

级数的

各项式形式．这些项不能通过减去真空部分而消除．因此，欧氏自由能是发散
的．发散部分 F Eｄ ｉｖ （ g，β，D）可很容易从 （５畅３８畅１１） ，（５畅３８畅１３）和 （ ５畅３８畅１４ ）
式中得到．

由（４畅１６）式，正则和欧氏自由能的紫外发散部分（不管是标量场还是旋量场）
在维数规则化中是相同的，这种同一性也出现在 PV 规则化中，故有

FEi，ｄｉｖ［g，β，δ］ ＝FCi，ｄｉｖ［g，β，δ］，　i ＝s，d． （５畅３８畅１５）
其中 δ为规则化参数（对于维数规则化，δ ＝D －４；对于 PV 规则化，δ ＝μ－１ ）．作为
（５畅３８畅１５）式的重要结果，不同方案中的熵发散项是相同的：

SEi，ｄｉｖ［g，β，δ］ ＝SCi，ｄｉｖ［g，β，δ］，　i ＝s，d． （５畅３８畅１６）
3畅视界存在时正则方案与欧氏方案之间的关系

到现在为止，我们讨论和比较了视界存在时正则方案和协变欧氏方案中自由
能的发散部分．本节讨论两方案中自由能有限部分的关系．

如前所述，正则和欧氏方案对于无视界静态时空是完全等价的．这是因为 Mβ
和 珚Mβ上的有效作用量 W 和 珚W 由共形变换联系．从 W 和 珚W 中减去零温度部分而
得到的欧氏和正则自由能无发散性．它们也不存在由重整化导致的反常，故 FE 与
FC 在无视界时一致．

整个泛函 FC［g，β，矯］和 FE［g，β，矯］（包括矯发散项和规则部分）在有视界的背
景中也一致，只要使用体积截断方法就行．在此方法中，联系两自由能的共形变换
也是行为规则的．

困难出现于含视界的完整背景中，此时，Mβ与 珚Mβ具有不同的拓扑，分别是 R２

×Σ和 S１ ×珔β，而 Mβ到 珚Mβ上的共形变换在分叉面上是奇异的．因此，此时两种方
案的关系需进一步探讨．

我们已表明，存在对协变欧氏自由能和正则自由能部适用的紫外规则化方法．
现在我们考虑体积截断和 PV规则化同时运用的情形．此时，自由能依赖于 矯和 PV
参数 μ．由于视界被排除，故

FEi ［g，β，μ，矯］ ＝FCi ［g，β，μ，矯］． （５畅３８畅１７）
如前所述，等式两边当去掉 矯截断时仍保持有限．由（５畅３８畅１７）式得

FEi ［g，β，μ］ ＝ｌｉｍ矯→０ F
E
i ［g，β，μ，矯］ ＝ｌｉｍ矯→０ F

C
i ［g，β，μ，矯］ ＝FCi ［g，β，μ］．

（５畅３８畅１８）
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在极限 矯→０ 下，FEi 变成 Mβ上的泛函，而 FCi 则为 珚Mβ上的泛函．由（５畅３８畅１８）式可
得出，当使用紫外规则化时，对于协变欧氏程式和正则程式的自由能，不仅其发散
部分相同，而且整个裸自由能也相同．

有几个计算例子可以证实等式（５畅３８畅１８）．例如，把 Ｒｉｎｄｌｅｒ 时空中有质量标
量场的能级密度（５畅３７畅１３）重新在 PV 规则化中写出，则可得到其正则自由能，从
而证实（５畅３８畅１８）式．也可在 ２ 维情况下导出（５畅３８畅１８）式．

关系式（５畅３８畅１８）表明，由欧氏路径积分定义的配分函数 ZE （５畅３５畅２６）式与
正则配分函数 ZC（５畅３５畅６）式相同，这也包括时空有视界的情况．这个事实很重要，
它使得黑洞情况下 Ｇ桘Ｈ 路径积分方法的统计力学解释成为合理．

须注意，（５畅３８畅１８）式仅对标量场和旋量场分析过．对于更高自旋的场需要其
他考虑．
4畅关于旋转黑洞和极端黑洞

研究表明，具有 Ｋｉｌｌｉｎｇ 视界的稳态几何通过 Ｗｉｃｋ 转动后得到的欧氏流形具
有一个类似于静态情况的顶角奇异性．这种奇异性来源于形如（５畅３７畅２６）式的单
圈发散项．

关于极端黑洞，其视界具有零表面引力，这意味着此黑洞的温度为零．在欧氏
理论中，极端黑洞具有环状拓扑，故对任意周期 β都无顶角奇异性．极端黑洞背景
中量子场的统计力学具有不同于非极端情况的重要性质．尤其是，量子场能级密度
ｄn
ｄω的主级发散项正比于 ｅ

L／M ，其中 M 为黑洞质量，L 为空间边界处与视界附近截断
位置之间的固有距离．然而，紫外型规则化仍可用来消除态密度和正则自由能中的
发散性．有趣的是， ｄnｄω与 F

C
在这些规则化中的发散项具有类似 （５畅３７畅１４） ～

（５畅３７畅１６）和（５畅３７畅２１） ～（５畅３７畅２２），（５畅３７畅２６）式的形式．对极端黑洞情况下统
计力学的两种方案尚未有比较结果．

５畅３９　黑洞的热力学和统计力学
我们已分析了黑洞周围量子场统计力学熵的性质．在一般情况下，此熵是发散

的，而黑洞熵是有限的，黑洞量子激发的统计力学熵与其热力学熵有何关系呢？
在量子场论中，量子修正是紫外发散量，其发散性由裸耦合常数的重整化而消

去．如前所述，统计力学熵的发散部分 SCｄｉｖ具有紫外形式．研究指出，SCｄｉｖ可由牛顿常
数的标准重整化所吸收．
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现在我们详细讨论这一重整化．对于边界处温度倒数β给定的黑洞正则系综，
其全部信息包含于由欧氏路径积分给出的配分函数 Z（β）中

Z（β） ＝∫［DΦ］ｅｘｐ（ －I［Φ］）． （５畅３９畅１）
这里，积分对所有的场进行，包括引力场．

量 Φ代表描述这些场的所有变量，包括引力场变量．［DΦ］为场 Φ空间的测
度，I为场位形的欧氏作用量．作用量 I包括了欧氏爱因斯坦作用量．系统的态由度
规的边界条件决定．对温度为 T，半径为 r０ 的球状盒内的引力场正则系综，积分必
须遍及盒内的所有度规，其周期 β等同为 T －１．这样的配分函数一定能描述黑洞的
热系综．Z 与有效作用量Γ的关系为Γ＝－ｌｎZ，自由能 F 定义为 F＝β－１Γ＝－β－１

ｌｎZ．由稳相近似可得
βF ≡ Γ ＝I［Φ０］ ＋W ＋… （５畅３９畅２）

这里 Φ０（一般为复的）为作用量 I［Φ］的经典场方程的解，满足周期性条件和边界
条件．除了主级项 I［Φ０ ］，（５畅３９畅２）还包括单圈修正项 W．它来源于对背景 Φ０ 的

场微拢的贡献．（５畅３９畅２）式中还有更高阶的圈展开项，用（……）表示．对于自由
场，W 为在协变欧氏程式中计算出的单圈有效作用量，见（５畅３５畅２８）式．

W 中出现的单圈发散性可由最初经典作用量 I 中的耦合常数的重整化吸收．
为此，取 I 形如

I（GB，ΛB，c iB） ＝∫ｄ４ x gL， （５畅３９畅３）
L ＝ － ΛB

８πGB － R
１６πGB ＋c１BR２ ＋c２BRμνRμν ＋c３BRαβμνRαβμν ． （５畅３９畅４）

　　在单圈发散性存在时，稳相近拟方法须做如下改动．记单圈有效作用量 W 的
紫外发散部分为 Wｄｉｖ，则重整化量可定义为

I ｒｅｎ≡ I（G ｒｅｎ，Λｒｅｎ，c iｒｅｎ） ＝I（GB，ΛB，c iB） ＋Wｄｉｖ，W ｒｅｎ
＝W －Wｄｉｖ． （５畅３９畅５）

现在，半径典近似的起点是找到重整化作用量 I ｒｅｎ的极值点．由于对此背景 W ｒｅｎ有
限且正比于 砽，此部分作用量描述小的量子修正．

在重整化中关键的一点是，Wｄｉｖ具有与（５畅３９畅３）， （５畅３９畅４）式相同的结构，故
可通过对 I（GB，ΛB，c iB）中的耦合常数重新定义而吸收掉．换言之，在最初的经典作
用量中把裸系数ΛB， GB 和 c iB 换成重整化系数Λｒｅｎ， G ｒｅｎ， 和 c iｒｅｎ即得 I ｒｅｎ．由关系式
（５畅３８畅９）和相应拉普拉斯算得 （在规则背景中 ） 的热核系数 （ ５畅３８畅１０ ） ～
（５畅３８畅１２）式可以得到 Wｄｉｖ裸耦合常数与重整化耦合常数之间的关系与规则化方
法有关．例如，在 PV规则化中，对于非最小耦合标量场，牛顿常数的重整化为

１
G ｒｅｎ

＝ １
GＢ

＋ c２π １
６ －ξμ２ ， （５畅３９畅６）
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其中 c＝ｌｎ（７２９／２５６）， μ为 PV截断．
用重整化常数表示的自由能 F（β） ＝β－１ Γ是有限的．在黑洞瞬子上计算 F

（β）可以得到黑洞的单圈自由能．“可观测的”黑洞热力学熵 STD具有标准形式 STD
＝β２ｄF／ｄβ．如果暂时忽略对数发散并令 Λｒｅｎ ＝０，则得

STD ＝SBH （G ｒｅｎ） ＋ο（砽） （５畅３９畅７）
这里，SBH （G ｒｅｎ）为广义相对论中具有牛顿常数 G ｒｅｎ的黑洞熵．ο（砽）表示 E 比于砽的
有限量子修政．（５畅３９畅６）和（５畅３９畅７）式可以与量子场的统计力学熵 SC 比较．对于
标量场，由（５畅３７畅２８）式可得 SC 的主要发散项．

SCｄｉｖ ＝ C
４８πμ２A． （５畅３９畅８）

故由（５畅３９畅６）式得
SBH（G ｒｅｎ） ＝SBH（GB） ＋SCｄｉｖ －Qｄｉｖ， （５畅３９畅９）

其中 Qｄｉｖ ＝ξcμ２A／（２π）出现在标量场与曲率非最小耦合时．在下一节我们将证
明，当非主要发散项也包括进来时，（５畅３９畅９）式的形式仍保持不变．

（５畅３９畅７）式明显表明，“可观测的”黑洞熵包括了黑洞量子激发的统计力学
熵，但一般并不等于它．对于非最小耦合，还有一项 Q 存在．即使 Q ＝０，裸的纯几何
贡献 SBH（GB）的存在也明显排除了把 SBH（G ｒｅｎ）与具有明显统计力学意义的 SCｄ ｉｖ等
同起来的可能性．而且，为得到 SBH （G ｒｅｎ）的有限值，必须假定纯几何“熵”SBH （GB ）
无限且为负．因此，把 SBH与量子激发联系起的想法不行，至少在标准重整化方案
中如此．此问题的出路在于只考虑特殊情况 SBH （GB ） ＝０．这当 G －１

B ＝０ 时成立，故
从一开始引力就是非动力学的．引力场的动力学只能作为量子效应的结果而出现．
诱导引力即是这种理论．

５畅４０　广义重整化和 Ｎｏｅｔｈｅｒ荷
在讨论诱导引力模型前，我们先考虑（５畅３９畅９）式的推广．考虑曲率平方项保

留在重整化作用量中的情况．此时，经典黑洞熵为
SBH（G ｒｅｎ，c iｒｅｎ） ＝ １

４G ｒｅｎA －∫Σ σｄ２ θ（８πc１ｒｅｎR ＋４πC２
ｒｅｎL ＋８πC３

ｒｅｎR）．
（５畅４０畅１）

其中积分在视界分叉面上进行．（５畅４０畅１）式右边的第一项为黑洞熵，其他项的出
现是由于作用量中的高阶曲率项．

在标量和旋量场模型中，对于 PV和维数规则化，（５畅３９畅９）式具有如下形式：
SBH（G ｒｅｎ，c iｒｅｎ） ＝SBH （GB，c iB） ＋SCｄｉｖ －Qｄｉｖ． （５畅４０畅２）

在 PV规则化中，SCｄｉｖ由（５畅３７畅２８）决定．量 Qｄｉｖ出现于非最小耦合标量场时，
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Qｄｉｖ ＝ξ１
８π∫Σ b ＋a １

６ －ξ R ． （５畅４０畅３）
系数 a，b 依赖于 PV截断 μ并由（５畅３７畅２３）， （５畅３７畅２４）式给出．当 Qｄｉｖ ＝０ 时．

对于非最小耦合的标量场，Qｄｉｖ（５畅４０畅３）式可写成
Qｄｉｖ ＝２πξ∫Σ枙矱２^ 枛 ｄｉｖ， （５畅４０畅４）

这里已假定标量场的涨落枙矱^２ 枛是在 PV规则化中进行的．
量（５畅４０畅４）出现于（５畅４０畅２）式中的原因如下．当标量场非最小耦合时，黑洞

熵包括了附加项 Q ＝２πξ∫Σ矱２ ，其中 矱为经典场．在量子理论中，Q 变成算得，其平
均值的发散部分与 Qｄｉｖ一致．在单圈近似中，由于有非最小耦合，Qｄｉｖ决定了 SBH的
量子修正．

在引力的微分同胚不变性理论中，经典黑洞熵可解释为 Ｎｅｏｔｈｅｒ荷．在 ５畅３３ 节
中我们证明，对于在固定弯曲背景中传播的非最小耦合物质场，Q 与其 Ｎｏｅｔｈｅｒ 荷
一致．我们还构造出了相的 Ｎｏｅｔｈｅｒ 流．我们也证明，

Q ＝２π
κ（H －E）， （５畅４０畅５）

其中，κ为表面引力，H 为场的 E 则哈密顿量 E 为从能动张量中得到的场的能量，
见定义（５畅３３畅２）， （５畅３３畅５）式．此关系在诱导引力模型中起重要作用．

５畅４１　诱导引力中的黑洞熵
诱导引力理论由 Ｓａｋｈａｒｒｏｖ 提出．此理论中的低能引力有效作用量 Γ［g］定义

为在给定的引力背景 g 中传播的场矱的量子平均：
ｅｘｐ（ －Γ［g］） ＝∫［DΦ］ｅｘｐ（ －I［g，Φ］） （５畅４１畅１）

Ｓａｋｈａｒｏｖ 的基本假定是，引力仅在作为成分场量子效应的结果时是动力学的，因
此，我们所处理的特殊情况是［g］ ＝０．此图象中的引力子类似于低温极限理论中
描述晶体晶格的集体激发的光子场．在一般情况下，（５畅４１畅１）式中每一个成分场
都会对．有效作用量 Γ［g］产生发散项．在原圈近似中，这些项是局域的，且为曲率
的零次方、一次方和二次方．在诱导引力中，各成分满足附加条件，使得其发散性相
消．该理论又假定其中某些场的质量与普朗克质量可比较，且所选择的条件使得诱
导出的宇宙常数为零．于是，有效作用量 Γ［ g］是有限的，且在低能近似下具有
Ｅｉｎｓｔｅｉｎ桘Ｈｉｌｂｅｒｔ作用量的形式

Γ［g］ ＝－ １
１６πG ∫M ｄVR ＋２∫矪M ｄυK ＋…， （５畅４１畅２）

其中，牛顿常数 G 由重质量决定．（５畅４１畅２）式中的点表示对 W（g）的可能高阶曲率
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修正．当曲率很小时，这些项都小于幂因子 m －２
i ．真空引力场方程 δW／δgμν ＝０ 相当

要求各成分的总能动张量真空平均值为零：
枙T＾μν枛 ＝０． （５畅４１畅３）

在 Ｇ桘Ｈ 瞬子上计算出的 Ｅ桘Ｈ 作用量（５畅４１畅２）的值决定了黑洞的经典自由能，故可
给出黑洞熵 SBH．

考虑一个诱导引力模型，包括许多质量为 m s 的标量场和质量为 md 的狄拉克
费米子．标量场可以具有非最小耦合 ξs．我们引入两个函数：

p（ z） ＝∑
s
m２ z
s －４∑

d
m２ z
d ，q（ z）

＝∑
s
m２ z
s （１ －６ξs） ＋２∑

d
m２ z
d （５．４１．４）

直接计算表明，当
p（０） ＝p（１） ＝p（２） ＝p′（２） ＝０ （５．４１．５）

时，诱导宇宙常数为零．如果满足
q（０） ＝q（１） ＝０， （５．４１．６）

则诱导引力耦合常数 G 有限．关系（５畅４１畅５）对满足 p（ z） ＝０ 的超对称，有质量多
重态理论成立．（５畅４１畅６）式则形成定义 ξs 的线性系统．

非最小耦合成分的存在很重要．此时，关于参数 m s， md 和 ξs 的约束条件可能
成立，从而保证诱导引力作用量 Γ［g］中的主要紫外发散项相互抵消．此模型中的
诱导牛顿常数为

１
G ＝ １

１２π＝ ∑
S
（１ －６ξs）m２

s ｌｎm２
s ＋２∑

d
m２
d ｌｎm２

ｒｅｎd ． （５．４１．７）
　　现在分析诱导引力中史瓦希黑洞的熵．如果条件（５畅４１畅５）和（５畅４１畅６）满足，
诱导作用量中就只有对数发散项．但这些项以平方关系依赖于曲率，且在史瓦希背
景中因不依赖于几何而可忽略．考虑差 SC －Q，其中 SC 是有质量的标量，旋量场的
统计力学熵，Q 为因标量场的非最小耦合而出现的 Ｎｅｏｔｈｅｒ荷．假定 SC 和 Q 已按同
种方法规则化，如 PV 方法．在低温极限下，可以计算出这些量的主要项 m２

i．在此近
似下，SC 与 PV 规则化中的 SCｄｉｖ （ ５畅３７畅２７） 相同．类似地，Ｎｏｅｔｈｅｒ 荷近似等于
（５畅４０畅３）式中的 Qｄｉｖ．容易检验，对于史瓦希黑洞，SC 和 Q 中的主要发散项相消，
且由（５畅３７畅２７）和（５畅４０畅３）式可得

SC －Q≈ SCｄｉｖ －Qｄｉｖ ＝ １
４GA ＋C （５畅４１畅８）

这里，C 为一个发散的常数．在我们的考虑中，C 可忽略，因为它不依赖于黑洞几
何．因此，SC －Q 与诱导黑洞熵 SBH ＝１

４GA 一致．结果（５畅４１畅８）式也可用维数规则
化得到．
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由（５畅４１畅８）式，黑洞熵由重线分场统计力学熵合主要部分决定．SCｄｉｖ源于视界
附近一窄层上的积分，大小约为各成分的康普顿波长的量级，与普朗克长度可比
较．因此，黑洞熵只依赖于视界的局部性质．此结论意味着关系式（５畅４１畅８）必然对
一般静态或稳态黑洞也成立．

由（５畅４１畅８）式可以得到另一结论：黑洞熵 SBH与统计力学熵 SC 并不相同．实
际上，SBH为有限量，而 SC 则由于各成分给出 E 的发散项而发散．在（５畅４１畅８）式中，
SC 的发散性通过减去 Q 而消除．可以证明，在此模型中，Q 具有 E 的发散项．因此，
非最小耦合场的存在不仅对理论紫外有限是必需的，它也使 SC 的发散性能通过减
法而消除．

对于 Ｎｏｅｔｈｅｒ荷 Q 出现于关系（５畅４１畅８）式中，是否有统计力学解释呢？ 一种
可能的机制．诱导引力把黑洞熵与成分场的统计力学熵联系起来．由于反作用效
应，黑洞几何会因这些场的量子涨落而发生变化．结果之一是场的能量 E 在平均
值 E ＝０ 附近的涨落引起黑洞质量在其平均值 M 附近的涨落．黑洞熵 SBH确定了间
隔（M，M ＋ΔM）内的态数密度，故 ｅｘｐ（SBH ）与黑洞质量谱的简并度 ν（M）一致．现
在，用微分质量公式易证，精确到普朗克常数的最高阶时，黑洞质量的改变 ΔM 与
成分场的能量改变 ΔE 相同．因此，寻找黑洞质量谱的简并度就简化成寻找成分场
的能量谱．特别地，黑洞熵与 E 的数密度 ν（E）的关系为 ｅS BH ＝ν｜E ＝０．

与 SBH不同，统计力学熵 SC 与使系统沿 Ｋｉｌｌｉｎｇ 时间平移的哈密顿量 H 的谱相
关．H 与 E 相差一个 Ｎｏｅｔｈｅｒ 荷 Q．这就是 SBH与 SC 不同且由（５畅４１畅８）式联系的
原因．

为什么具有能量 E 的态数密度有限，而 H 的态数即使在等外有限理论中也发
散？ 这与存在 Ｋｉｌｌｉｎｇ 视界时量子系统的特殊性质有关．我们已指出，此时单粒子
激发的频率谱没有质量隙．换言之，存在频率小到可忽略的模，称为软模．任意多的
软模可加进这样的系统而不会影响 E 则能 H．E 是软模导致 H 谱的附加无限简并．
然而，软模对能量 E 的贡献并非零，且 E 谱没有过多的简并度．

软模对 E 有贡献的原因是 E 与 H 差 Ｎｏｅｔｈｅｒ 荷 Q．实际上，Q 仅由软模决定．
为看出这一点，把视界附近的黑洞几何用 Ｒｉｎｄｌｅ 空间近似（４畅２）式就足够了．由
（７畅４）式，Q 由分叉面 Σ上标量关联平均值枙矱^２ 枛决定．在 Ｒｉｎｄｌｅ 近似下，此关联为

枙矱^（x）矱^（x′）枛 ＝ｔｒ［ρ^矱^（x）矱^（x′）］
＝∫∞

０ ｄω∫ｄ２κ［nω矱倡
ω ，κ（x）矱ω，κ（ x′）

　 ＋（nω ＋１）矱ω，κ（x′）矱倡
ω ，κ（x′）］ （５．４１．９）

这里，nω ＝［ ｅｘｐ（２πω／κ） －１］ －１
为在 Ｈａｗｋｉｎｇ 温度下具有能量 ω的粒子数．函数

矱ω，κ（x）是由（５畅３５畅１１）式确定的单粒子哈密顿 HS 的本征函数．在 Ｒｉｎｄｌｅｒ 空间
（５畅３７畅２）式中，
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矱ω，κ（x） ＝ １
４π３κ１ ／２ （ ｓｉｎｈ（πω／κ）） １ ／２Kｉω／κ［ρ（m２ ＋κ２

j ） １ ／２ ］ｅ－ｉωtｅ－ｉκj zj

（５畅４１畅１０）
其中 κi 和 z i 为沿视界的动量和坐标．K ｉω／κ为修正后的贝赛尔函数．当到视界的
固有距离 ρ 超于零时，Kｉω／κ（ρ（m２ ＋κ２

j ） １ ／２
趋于 δ 函数 δ（ω）．因此，当关联

（５畅４１畅９）式的一个变量在视界上时，只有软模的贡献能存在．运用 PV 规则代并在
（５畅４１畅９）式中取极限 ρ→０，就可得到 Qｄｉｖ在 R ＝０ 时的形式（５畅４０畅３）．

诱导引力提出了下列对黑洞熵公式（５畅４１畅８）的统计力学解释．SBH由对应于给
定黑洞质量 M 的物理态数密度决定．物理态与黑洞外成分场的激发态相关，而后
者导致黑洞质量的涨落．物理态空间可以通过所有热激发的空间对软模子空间的
分解而得到．这就去掉了附加的简并，使得物理态的数密度有限．这种对软模的分
解等价于从 SC 中减去 Ｎｏｅｔｈｅｒ 荷而得到 SBH．这种机制类似于规范理论，软模起着
纯规范自由度的作用．

５畅４２　小　　结
我们主要讨论了黑洞时空中量子场热系综的描述．这个工作源于黑洞物理的

核心问题———找出黑洞熵的统计力学解释．
黑洞附近量子场统计力学的主要困难与附加的热（红外）发散有关．当这些发

散性存在时，正则方案和协变欧氏方案之间的关系需要重新考虑．在前几节中，我
们着重分析了其规则化方法和发散性．我们证明了正则和协变欧氏方案是等价的，
且以同一规则化中两方案发散性相同．此问题的一个重要性质是一种规则化中的
热发散具有另一规则化中的紫外发散的形式．这种对偶性对黑洞熵的讨论至关重
要．对黑洞熵有贡献的热发散与使引力耦合常数重整化的紫外单圈发散有关．

我们分析了黑洞熵问题，并证明此问题不能在引力理论中用标准的重整化方
案解决．重整化需要最初的裸熵，它有纯几何起源，且（在无非最小耦合时）为负的
无穷大量．但是，如果裸的经典（主级）引力不存在，黑洞熵 SBH可直接与黑洞量子
激发的统计力学熵 SC 相关．新的重要性质是这个关系必须包括非最小耦合场的
Ｎｏｅｔｈｅｒ荷．在无裸引力的单圈紫外有限理论中，SBH与 SC 的关系为

SBH ＝SC －Q （５畅４２畅１）
这种理论属于所谓的诱导引力理论．在这些理论中，引力作为具有普朗克质量的重
要成分场的集体量子激发的结果而诱导出来．产生低能引力的同样成分场导致了
黑洞的熵 SBH．

对具体模型的分析表明，关系式（９畅１）是理论上自洽的结果，Ｎｏｅｔｈｅｒ 荷 Q 决
定了系统能量 E 与哈密顿 H 值之差．熵 SBH描述黑洞态关于其质量的简并．它可与
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成分场系统关于其能量 E 的简并联系起来．后者与哈密顿 H 的简并不同．
在此方案中，对熵有贡献的场（成分）被认为是基本的．可以预见，这些场可产

生于基本的量子引力理论如弦论中．这种机制现在还未存在．但它的可能存在也许
解释了黑洞熵的普适性．

附录 Ａ　曲率在与黑洞视界面
正交的子空间中的投影

　　我们定义一对正交矢量
nμ

１ ＝（０， g rr，０，０），
nμ

２ ＝ １
－（g tt ＋２珟Ωg tφ ＋珟Ω２ gφφ），０，０，

珟Ω
－（g tt ＋２珟Ωg tφ ＋珟Ω２gφφ） ， （Ａ１）

n１μ＝ ０， １
g rr

，０，０ ，

n２μ＝ －（g tt ＋２珟Ωg tφ ＋珟Ω２ gφφ）
１ －珟ΩF ，０，０， －F －（g tt ＋２珟Ωg tφ ＋珟Ω２gφφ）

１ －珟ΩF ．　（Ａ２）

通过冗长的计算，得知曲率在与视界面正交的子空间的投影
Raa ＝∑２

a ＝１
Rμνnμ

a nμ
a ，

Rabab ＝∑２

a ＝１
Rμνλρnμ

a nν
bnλa n ρ

b， （Ａ３）
可表示为

Raa（ rH ，θ） ＝ g２tφ
fg３φφ

抄gφφ
抄r

２ －２g tφ
fg２φφ

抄gφφ
抄r

抄g tφ
抄r ＋ １

fgφφ
抄g tφ
抄r

２

　 －３
２

抄ｌｎf
抄r

抄g rr
抄r － １

２gθθ

抄gθθ
抄r

抄g rr
抄r － １

２gφφ

抄gφφ
抄r

抄g rr
抄r －抄２ g rr

抄r２ rH

．（Ａ４）

Rabab（ rH ，θ） ＝ １
f ［ ３g２tφ２g３φφ

抄gφφ
抄r

２ －３g tφ
g２φφ

抄gφφ
抄r

抄g tφ
抄r

　 ＋ ３
２gφφ

抄g tφ
抄r

２ －３
２

抄f
抄r

抄g rr
抄r －f 抄２ g rr

抄r２ ］ rH． （Ａ５）
方程（Ａ４）和（Ａ５）给出
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Rnn（ rH ，θ） －２Rmnmn（ rH，θ） ＝ 抄２g rr

抄r２ ＋３
２

抄g rr
抄r

抄ｌｎf
抄r －１

２
抄g rr
抄r １
gθθ

抄gθθ
抄r ＋ １

gφφ

抄gφφ
抄r

　－２gφφ
f

抄
抄r
g tφ
gφφ

２

rH

． （Ａ６）

附录 Ｂ　视界的外曲率几何
利用由（Ａ１）和（Ａ２）式定义的矢量 n１ 和 n２ ，我们引入诱导度规

γμν ＝gμν －n１μn１ν －n２μn２ν． （Ｂ１）
其非零分量为

γtt ＝g
２
tφ
gφφ

－fg rr ＋ fHg rr

１ ＋ 珟Ω（g tφ ＋gφφ珟Ω）
g２tφ／gφφ －fg rr ＋g tφ珟Ω

２ ，

γtφ ＝g tφ ＋（ fgφφHg rr（g tφ ＋gφφ珟Ω）（－g２tφ ＋fgφφg rr －gφφg tφ珟Ω））
－g２tφ ＋fgφφg rr －２gφφg tφ珟Ω－g２φφ珟Ω２ ） ２ ，

γθθ ＝gθθ，
γφφ ＝gφφ ＋ fg２φφHg rr（g tφ ＋gφφ珟Ω） ２

（ －g２tφ ＋fgφφg rr －２gφφg tφ珟Ω－g２φφ珟Ω２ ） ２． （Ｂ２）
式中，

H ＝ １ ＋gφφ（Ω－珟Ω） ２

g ttgφφ －g２tφ ， （Ｂ３）

Ω＝－g tφgφφ． （Ｂ４）
由正交矢量 naμ，（a ＝１，２），我们定义的外曲率

Kaμν ＝－γα
μγβ

νΔαnα
β． （Ｂ５）

在黑洞外部，其非零的分量为
K１
tt ＝－珟Ω２ （g２tφ －fgφφg rr ＋gφφg tφ珟Ω） ２

２f２ g２φφH２ （g rr） ３ ／２
抄gφφ
抄r

　 ＋珟Ω（－g２tφ ＋fgφφg rr －gφφg tφ珟Ω）（g２tφ －fgφφg rr ＋fgφφHg rr ＋gφφg tφ珟Ω）
f２ g２φφH２ （g rr） ３ ／２

抄g tφ
抄r
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　 ＋（g２tφ －fgφφg rr ＋fgφφHg rr ＋gφφg tφ珟Ω） ２

２f２ g４φφH２（g rr） ３ ／２

　 × g２φφg rr 抄f抄r ＋g
２
tφ
抄gφφ
抄r －２gφφg tφ

抄g tφ
抄r ＋fg２φφ 抄g rr

抄r ，

K１
tφ ＝－珟Ω（g２tφ －fgφφg rr ＋gφφg tφ珟Ω）（ fHg rr ＋g tφ珟Ω＋gφφ珟Ω２ ）

２f２ gφφH２ （g rr） ３ ／２
抄gφφ
抄r

　 －珟Ω（g tφ ＋gφφ珟Ω）（g２tφ －fgφφg rr ＋gφφg tφ珟Ω）
２f２ gφφH２ （g rr） ３ ／２

抄g tφ
抄r

　 ＋（－g２tφ ＋fgφφg rr －fgφφHg rr －gφφg tφ珟Ω）（ fHg rr ＋g tφ珟Ω＋gφφ珟Ω２ ）
２f２ gφφH２ （g rr） ３ ／２

抄g tφ
抄r

　 ＋（g tφ ＋gφφ珟Ω）（g２tφ －fgφφg rr ＋fgφφHg rr ＋gφφg tφ珟Ω）
２f２ g３φφH２ （g rr） ３ ／２

　 × g２φφg rr 抄f抄r ＋g
２
tφ
抄gφφ
抄r －２gφφg tφ

抄g tφ
抄r ＋fg２φφ 抄g rr

抄r ，

K１
θθ ＝－ g rr

２
抄gθθ
抄r ，

K１
φφ ＝－（ fHg rr ＋g tφ珟Ω＋gφφ珟Ω２ ） ２

f２H２ （g rr） ３ ／２
１
２

抄gφφ
抄r ＋ （g tφ ＋gφφ珟Ω）

（ fHg rr ＋g tφ珟Ω＋gφφ珟Ω２ ）
抄g tφ
抄r

　 ＋（g tφ ＋gφφ珟Ω） ２ g rr 抄f抄r ＋
g２tφ
g２φφ

抄gφφ
抄r － ２g tφ

gφφ
抄g tφ
抄r ＋f 抄g rr抄r

１
２f２H２ （g rr） ３ ／２ ，

（Ｂ６）
K２
tθ ＝ （－fHg rr） １ ／２珟Ω（－g２tφ ＋fgφφg rr －gφφg tφ珟Ω）

２fHg rr（ －g２tφ ＋fgφφg rr －２gφφg tφ珟Ω－g２φφ珟Ω２）（珟Ω抄gφφ
抄θ ＋抄g tφ

抄θ ）
　 ＋（（－fHg rr） １ ／２ （g２tφ －fgφφg rr ＋fgφφHg rr ＋gφφg tφ珟Ω）

　 ×
（g２φφg rr 抄f抄θ ＋g２tφ 抄gφφ

抄θ －２gφφg tφ 抄g tφ
抄θ －g２φφ珟Ω抄g tφ

抄θ ＋fg２φφ 抄g rr
抄θ

２fg２φφHg rr（ －g２tφ ＋fgφφg rr －２gφφg tφ珟Ω－g２φφ珟Ω２） ，

K２
φθ ＝ gφφ（ －fHg rr） １ ／２ （ fHg rr ＋g tφ珟Ω＋gφφ珟Ω２ ）

２fHg rr（g２tφ －fgφφg rr ＋２gφφg tφ珟Ω＋g２φφ珟Ω２ ） 珟Ω抄gφφ
抄θ ＋抄g tφ

抄θ
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　 － （ －fHg rr） １ ／２ （g tφ ＋gφφ珟Ω） g２φφg rr 抄f抄θ ＋g２tφ 抄gφφ
抄φ －２gφφg tφ

抄g tφ
抄θ

　 －g２φφ珟Ω抄g tφ
抄θ ＋fg２φφ 抄g rr

抄θ
１

２gφφ（ －g２tφ ＋fgφφg rr －２gφφg tφ珟Ω－g２φφ珟Ω２ ）．

（Ｂ７）
相应的逆变分量为

K tt１ ＝（g２φφg rr 抄f抄r －２g２φφHg rr 抄f抄r ＋g
２
φφH２ g rr 抄f抄r ＋g

２
tφ
抄gφφ
抄r －２g２tφH 抄gφφ

抄r
　 －２gφφg tφH珟Ω抄gφφ

抄r －g２φφ珟Ω２ 抄gφφ
抄r －２gφφg tφ

抄g tφ
抄r （１ －H） －２g２φφ珟Ω抄g tφ

抄r
　 ＋２g２φφH珟Ω抄g tφ

抄r ＋fg２φφ 抄g rr
抄r （１ －H） ２ ） ／（２f２ g２φφH２ （g rr） ３ ／２ ），

K tφ１ ＝ g２φφg tφHg rr 抄f抄r －g
２
φφg tφH２ g rr 抄f抄r ＋g

３
φφg rr珟Ω抄f

抄r（１ －H） ＋g３tφH 抄gφφ
抄r

　 －fgφφg tφH２ g rr 抄gφφ抄r ＋gφφg２tφ珟Ω抄gφφ
抄r －fg２φφHg rr珟Ω抄gφφ

抄r －g２φφg tφH珟Ω２ 抄gφφ
抄r

　 －g３φφ珟Ω３ 抄gφφ
抄r －gφφg２tφH 抄g tφ

抄r －fg２φφHg rr 抄g tφ抄r ＋fg２φφH２ g rr 抄g tφ抄r
　 －２g２φφg tφ珟Ω抄g tφ

抄r －２g３φφ珟Ω２ 抄g tφ
抄r ＋g３φφH珟Ω２ 抄g tφ

抄r ＋fg２φφg tφH 抄g rr
抄r （１ －H）

　 ＋fg３φφ珟Ω抄g rr
抄r －fg３φφH珟Ω抄g rr

抄r ／（２f２g３φφH２ （g rr） ３ ／２ ），
Kθθ

１ ＝－ （g rr） １ ／２ 抄gθθ
抄r ／（２g２θθ），

Kφφ
１ ＝（gφφg２tφH２ g rr 抄f抄r ＋２g２φφg tφHg rr珟Ω抄f

抄r ＋g
３
φφg rr珟Ω２ 抄f

抄r ＋２fg２tφH２ g rr 抄gφφ
抄r

　 －f２ gφφH２ （g rr） ２ 抄gφφ
抄r ＋２g３tφH珟Ω抄gφφ

抄r ＋gφφg２tφ珟Ω２ 抄gφφ
抄r ＋２gφφg２tφH珟Ω２ 抄gφφ

抄r
　 －２fg２φφHg rr珟Ω２ 抄gφφ

抄r －g３φφ珟Ω４ 抄gφφ
抄r －２fgφφg tφH２ g rr 抄g tφ抄r －２gφφg２tφH珟Ω抄g tφ

抄r
　 －２fg２φφHg rr珟Ω抄g tφ

抄r －２g２φφg tφ珟Ω２ 抄g tφ
抄r －２g２φφg tφH珟Ω２ 抄g tφ

抄r －２g３φφ珟Ω３ 抄g tφ
抄r

　 ＋fgφφg２tφH２ 抄g rr
抄r ＋２fg２φφg tφH珟Ω抄g rr

抄r ＋fg３φφ珟Ω２ 抄g rr
抄r ） ／（２f

２ g３φφH２ （g rr） ３ ／２）．
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K tθ２ ＝ （－fHg rr） １ ／２ （２g２φφg２tφg rr 抄f抄θ －２g２φφg２tφHg rr 抄f抄θ －fg３φφ（g rr） ２ 抄f
抄θ

　 ＋fg３φφH（g rr） ２ 抄f
抄θ ＋２g３φφg tφg rr珟Ω抄f

抄θ －２g３φφg tφHg rr珟Ω抄f
抄θ ＋２g４tφ 抄gφφ

抄θ
　 －fgφφg２tφg rr

抄gφφ
抄θ －fgφφg２tφHg rr

抄gφφ
抄θ ＋４gφφg３tφ珟Ω抄gφφ

抄θ
　 －（２ ＋H） fg２φφg tφg rr珟Ω抄gφφ

抄θ ＋２g２φφg２tφ珟Ω２ 抄gφφ
抄θ －fg３φφg rr珟Ω２ 抄gφφ

抄θ
　 －２gφφg３tφ

抄g tφ
抄θ ＋fg２φφg tφHg rr 抄g tφ抄θ －４g２φφg２tφ珟Ω抄g tφ

抄θ ＋fg３φφHg rr珟Ω抄g tφ
抄θ

　 －２g３φφg tφ珟Ω２ 抄g tφ
抄θ ＋２fg２φφg２tφ 抄g rr

抄θ －２fg２φφg２tφH 抄g rr
抄θ －f２g３φφg rr 抄g

rr

抄θ
　 ＋f２ g３φφHg rr 抄g

rr

抄θ ＋２（１ －H） fg３φφg tφ珟Ω抄g rr
抄θ ／２f２ gθθg２φφH（g rr） ２ （g２tφ

　 －fgφφg rr ＋gφφg tφ珟Ω＋gφφg tφ珟Ω＋g２φφ珟Ω珟Ω） ，
Kφθ

２ ＝ （－fHg rr） １ ／２ －２gφφg３tφHg rr 抄f抄θ ＋fg２φφg tφH（g rr） ２ 抄f
抄θ －２g２φφg２tφg rr珟Ω抄f

抄θ
　 －２g２φφg２tφHg rr珟Ω抄f

抄θ ＋fg３φφ（g rr） ２珟Ω抄f
抄θ －２g３φφg tφg rr珟Ω２ 抄f

抄θ －３fg３tφHg rr 抄gφφ
抄θ

　 ＋２f２ gφφg tφH（g rr） ２ 抄gφφ
抄θ －２g４tφ珟Ω抄gφφ

抄θ ＋f（１ －３H）gφφg２tφg rr珟Ω抄gφφ
抄θ

　 ＋f２ g２φφH（g rr） ２珟Ω抄gφφ
抄θ －４gφφg３tφ珟Ω２ 抄gφφ

抄θ ＋２fg２φφg tφg rr珟Ω２ 抄gφφ
抄θ

　 ＋fg３φφg rr珟Ω３ 抄gφφ
抄θ ＋３fgφφg２tφHg rr 抄g tφ抄θ －f２ g２φφH（g rr） ２ 抄g tφ

抄θ ＋２gφφg３tφ珟Ω抄g tφ
抄θ

　 ＋３fg２φφg tφHg rr珟Ω抄g tφ
抄θ ＋４g２φφg２tφ珟Ω２ 抄g tφ

抄θ ＋２g３φφg tφ珟Ω３ 抄g tφ
抄θ －２fgφφg３tφH 抄g rr

抄θ
　 ＋f２ g２φφg tφHg rr 抄g

rr

抄θ －２fg２φφg２tφ珟Ω抄g rr
抄θ －２fg２φφg２tφH珟Ω抄g rr

抄θ ＋f２ g３φφg rr珟Ω抄g rr
抄θ

　 －２fg３φφg tφ珟Ω２ 抄g rr
抄θ －２g２φφg２tφ珟Ω３ 抄gφφ

抄θ ／２f２ gθθg２φφH（g rr） ２（ －g２tφ －g２φφ珟Ω２

　 －gφφg tφ珟Ω＋fgφφg rr ． （Ｂ８）
外曲率的迹 Ka ＝gμνKaμν是

K１ ＝ １
２f２ gθθg３φφH２ （g rr） ３ ／２ gθθg２φφg２tφg rr 抄f抄r －f（１ －H） ２ gθθg３φφ（g rr） ２ 抄f

抄r
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　 ＋２gθθg３φφg tφg rr珟Ω抄f
抄r ＋gθθg４φφg rr珟Ω２ 抄f

抄r －f
２ g３φφH２ （g rr） ２ 抄gθθ

抄r
　 ＋gθθg４tφ

抄gφφ
抄r －f（１ －２H）gθθgφφg２tφg rr

抄gφφ
抄r －f２ gθθg２φφH２ （g rr） ２ 抄gφφ

抄r
　 ＋２gθθgφφg３tφ珟Ω抄gφφ

抄r ＋f（１ －２H）g θθg３φφg rr珟Ω２ 抄gφφ
抄r －２g θθg３φφg tφ珟Ω３ 抄gφφ

抄r
　 －gθθg４φφ珟Ω４ 抄gφφ

抄r －２gθθgφφg３tφ
抄g tφ
抄r ＋２f（１ －２H）gθθg２φφg tφg rr

抄g tφ
抄r

　 －６gθθg２φφ珟Ω抄g tφ
抄r ＋２f（１ －２H）gθθg３φφg rr珟Ω抄g tφ

抄r －６gθθg３φφg tφ珟Ω２ 抄g tφ
抄r

　 －２gθθg４φφ珟Ω３ 抄g tφ
抄r ＋fgθθg２φφg２tφ 抄g rr

抄r －f２ gθθg３φφg rr 抄g
rr

抄r ＋２f２ gθθg３φφHg rr 抄g
rr

抄r
　 －f２ gθθg３φφH２ g rr 抄g rr抄r ＋２fgθθg３φφg tφ珟Ω抄g rr

抄r ＋fgθθg４φφ珟Ω２ 抄g rr
抄r ，

K２ ＝０ （Ｂ９）
由方程（Ｂ６）， （Ｂ７）， （Ｂ８）和（Ｂ９）给出的量在视界面上都为零（在邻近视界处各
量都与 g rr成比例）．由以上的讨论我们得到，在视界面上

KaKa ＝０，
ｔｒ（K．K） ＝KaμνKμν

a ＝０． （Ｂ１０）

附录 Ｃ　Ｃａｒｌｉｐ边界条件
为了完整和方便起见，我们列出 Ｃａｒｌｉｐ 边界条件．
要用协变相空间技术在黑洞的 Ｋｉｌｌｉｎｇ 视界上建立起 Ｖｉｒａｓｏｒｏ 代数，就得考虑

各量在视界邻域中的变分．为此，Ｃａｒｌｉｐ 定义了一个“延伸视界”
χ２ ＝矯． （Ｃ１）

式中 χ２ ＝gabχaχb，χa 是 Ｋｉｌｌｉｎｇ 矢量，矯为小量．所有计算结果都通过取 矯趋于零而
定值于黑洞的事件视界．在“延伸视界”附近，引入与 χa 的轨道正交的矢量 ρa．

Δ aχ２ ＝－２κρa． （Ｃ２）
式中 κ是表面引力．矢量 ρa 满足如下关系

χaρa ＝－１
κχaχbΔ aχb ＝０，　（任意处）

ρa → χa，　（视界上） （Ｃ３）
为了保持视界处的“渐近”结构，我们引入以下边界条件

δχ２ ＝０，
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χa tbδgab ＝０，
δρa ＝－１

２κΔ a（δχ２ ） ＝０， 在χ２ ＝０， （Ｃ４）
式中 ta 是与时空 M 的边界抄M 相切的任意类空单位矢量．表面形变矢量取为

ξa ＝Rρa ＋T χa， （Ｃ５）
式中函数 R 和 T满足条件

R ＝ １
κ

χ２

ρ２ χaΔ aT，
　　ρaΔ aT ＝０，　 （Ｃ６）

珘κ的平均值（珘κ＝－a
２

χ２ ，aa ＝χbΔbχa 是χa 的轨道加速度）可通过（Ｃ７）式求出
δ∫抄C 矯^珘κ－ ρ

｜κ｜κ ＝０， （Ｃ７）
式中矯^是H 上的诱导体积元（H 为 Ｃａｕｃｈｙ 曲面 C 与 Ｋｉｌｌｉｎｇ 视界面 χ２ ＝０ 相交的
（n －２） －维截面）．条件（Ｃ７）的作用是保证存在生成元 H［ξ］．对于满足条件 DTα

＝λαTα（D≡χa抄a）的微分同胚单参数群，方程（Ｃ７）变成正交条件
∫抄C 矯^TαTβ ～δα＋β． （Ｃ８）

利用将来取向的零矢量

Na ＝κa －αχa －ta， （Ｃ９）
其中 κa ＝－１

χ２ χa －｜χ｜
ρ ρa ，以及条件 Naχa ＝－１，可以把体积元写为
矯bca１… an－２ ＝矯^a１… a n－２（χbN c －χcNb） ＋…， （Ｃ１０）

忽略的项对积分没有贡献．
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第 6 章　黑洞的量子效应
６畅１　粒子对的自发产生过程

Ｚｅｌｄｏｖｉｃｈ（１９７２），Ｓｔａｒｏｂｉｎｓｋｙ（１９７３）和 Ｕｎｒｕｈ（１９７４）研究了稳态时空中粒子对
的产生过程．

弯曲时空中自旋为零的荷电粒子的克莱因 －高登方程具有形式
１
－g

抄
抄xμ －ｉεAμ －ggμν 抄

抄xν －ｉεAν 矱（x） －μ２矱（x） ＝０． （６畅１畅１）
考虑稳态时空背景，将克尔－纽曼度规代入，上式可写为

抄rΔ抄r －１
Δ［（ r２ ＋a２ ）抄 t ＋a抄φ ＋ｉQεr］ ２ －μ２ r２ ＋ １

ｓｉｎθ抄θｓｉｎθ抄θ

＋ １
ｓｉｎθ抄φ ＋aｓｉｎθ抄 t

２ －μ２ a２ ｃｏｓ２ θ φ＝０． （６畅１畅２）
此方程可分离变量．令

φ＝ｅ ｉ（ mφ－ωt） χ（ θ） ψ（ r） ， （６畅１畅３）
得到

－ １
ｓｉｎθ

ｄ
ｄθｓｉｎθ

ｄ
ｄθ ＋ m

ｓｉｎθ －aωｓｉｎθ ２ ＋μ２ a２ ｃｏｓ２ θ χ＝Kχ， （６畅１畅４）
ｄ２ψ
ｄz２ ＝－Vψ． （６畅１畅５）

式中，
V ＝Δ（μ２ r２ ＋K） －［ω（ r２ ＋a２ ） －am －Qεr］ ２ ， （６畅１畅６）
ｄz ＝－ｄr／Δ． （６畅１畅７）

　　由（６畅１畅５）式知 V ＞０ 是禁区，我们有 V ＜０，或
［ω（ r２ ＋a２ ） －am －Qεr］ ２ －Δ（μ２ r２ ＋K） ≥ ０． （６畅１畅８）

在禁区内 V＞０，可把有效势 V看做势垒．为了看清这一点，可引入 Ｔｏｒｔｏｉｓｅ 坐标
ｄr倡
ｄr ＝r２ ＋a２

Δ ．
此时视界为

r倡 ＝－∞，　V→－（ω－mΩ） ２ ，
空间无限远处为

r倡 ＝∞，　V→－ω２ ，



中间为 V ＞０．所以 V 为具有一定宽度的势垒．
下面计算自真空中的粒子产生率．利用量子场论中入射态和出射态的概念，设

外场局限于时空范围 Ω内，入射态和出射态分别为 Ω的过去无限大和将来无限大
的态．分别以

P ini （x） 和 n ini （x） ≡ （P ini （x））倡

表示入射正能态和负能态，则它们组成一正交归一的完备集
（P ini ，P ink ） ＝δik ＝±（n ini ，n ink ），
（P ini ，n ink ） ＝０． （６畅１畅９）

式中正负号分别对应于费米子和玻色子．
任意场函数可以展开为

φ（x） ＝∑
i
［a ini P ini （x） ＋（a ini ） ＋ n ini （x）］， （６畅１畅１０）

其中 a ini 和（a ini ） ＋
分别是入射正能粒子的湮灭算符和产生算符．它们满足下述量子

条件：
［a ini ，（a ini ） ＋］ ± ＝δik． （６畅１畅１１）

　　我们定义入射真空态｜in ＞ｖａｃ为

a ini ｜in ＞ｖａｃ ＝０，橙i． （６畅１畅１２）
由此可得 a ＋

i a i ｜in ＞ｖａｃ ＝０，即 N ini ｜in ＞ｖａｃ ＝０，橙i．N ini 为入射正能粒子数算符．所
以，（８畅９畅１２）式意味着入射真空态不含入射正能粒子．

完全类似，我们也可以定义
P ou ti （x），nouti （x） 和 ｜out ＞ｖａｃ．

所谓真空中产生粒子，即入射真空态｜in ＞ｖａｃ中包含出射粒子，
或　　　　　　　　　n i ＝ｖａｃ ＜in｜（aouti ） ＋aouti ｜in ＞ｖａｃ≠０， （６畅１畅１３）
其中 n i 代表平均粒子数．
由

φ＝∑
i
［a ini p ini ＋（a ini ） ＋n ini ］ ＝∑

i
［aouti p outi ＋（aou ti ） ＋ nouti ）］，

两边同乘以（pouti ） ＋
并利用（８畅９畅９）式可得
aouti ＝∑

k
［（pouti ，p ink ）a ink ＋（pouti ，n ink ）（a ink ） ＋］， （６畅１畅１４）

（aouti ） ＋ ＝∑
k
［（pouti ，p ini ） ＋（a ink ） ＋ ＋（pouti ，n ink ） ＋a ink ］．
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引入

αik ≡ （pouti ，p ink ），　βik ≡ （p outi ，n ink ）， （６畅１畅１５）
（６．１．１４）和（６．１．１５）两式便简写为

aouti ＝∑
k
（αika ink ＋βika in＋k ），

（aouti ） ＋ ＝∑
k
［α倡

ik （a ink ） ＋ ＋β倡
ik a ink ］． （６畅１畅１６）

这就是 Ｂｏｇｏｌｉｕｂｏｖ 变换．
不难得出

pouti ＝∑
k
［αik p ink ＋βinn ink ］，

n ink ＝∑
i
［βik pouti ＋αiknouti ］． （６畅１畅１７）

式中 βik叫正负频混合系数．
由（６畅１畅１６）式知（６畅１畅１３）式中的 n i 为

n i ＝∑
k
β倡
ik · βik ＝∑

k
｜βik ｜２ ＝∑

k
｜（pouti ，n ink ） ｜２． （６畅１畅１８）

　　可见，自真空中产生粒子，或入射真空中包含出射粒子的关键是出现正负频的
混合．

在弯曲时空中，只要我们能定义正负频解，就能定义产生和湮灭算符，就能定
义真空，而只要两套不同的真空出现正负频混合，就可以自真空中产生粒子．

在目前所考虑的 Ｋｌｅｉｎ 机制中，正负频混合系数为
βik ＝（pouti ，n ink ），

正好就是透射率幅

T ik ＝（pouti ，n ink ）． （６畅１畅１９）
因此在 Ｋｌｅｉｎ 机制中，强静电场引起正负能级的交错是产生正负频混合的原因．

（８畅９畅１９）式中｜T ik ｜２ ＝｜βik ｜２与自真空中以“ k”标志的入射负能态 n ink 产生以
“ i”标志的出射正能态 pouti 的平均粒子数成正比，而所产生的平均总粒子数为

N ＝∑
i
n i ～∑

i，k
｜T ik ｜２ ， （６畅１畅２０）

式中“ i”，“k”等表示一组完备量子数集合．
考虑到守恒律的限制，

T ik ＝T iδik ＝Tωiαiδ（ωi －ωk）δαiαk，
其中 ω表示初态或末态的能量，α表示初态或末态的分立量子数，则

n i ～｜T ik ｜２ ＝｜T i ｜２ ＝｜Tωiαi ｜２ ［δ（ωi －ωk）］ ２ ，
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N ＝∑
i
n i ～∑

i，k
Tωiαi

２ δ（ωi －ωk） １
２π∫ｅ ｉ（ωi－ωk） tｄt

＝∑
i，k
Tωiαi

２ δ（ωi －ωk） １
２π∫ｄt，

故

　 ｄNｄt ～ V ２

（２π） ６∫ｄωi∫ｄωk ∑
ki
Tωiαi

２ δ（ωi －ωk） １
２π

＝ V２

（２π） ６∫ｄω∑
i

１
２π Tωiαi

２． （６畅１畅２１）
　　对于克尔－纽曼时空，作类似处理，可以得到黑洞外粒子对的产生率：

ｄN
ｄt ＝∫ｄω２π∑m，k T ２

ω，m，k
． （６畅１畅２２）

　　用 ＷＫＢ 近似法，可以计算
ξ＝２∫V１ ／２ ｄz． （６畅１畅２３）
｜T２ ｜＝ｅ－ξ，

式中积分沿势垒．引入局部正交标架 ωμ：
ｄωμ＝αμ

ν ｄxν，

（αμ
ν ） ＝

Δ１ ／２

ρ ０ ０ －（Δ１ ／２

ρ aｓｉｎ
２ θ）

０ ρ
Δ１ ／２ ０ ０

０ ０ ρ ０
－ｓｉｎθ aρ ０ ０ ｓｉｎθ r２ ＋a２

ρ

（６畅１畅２４）

此时克尔－纽曼度规具有形式
ｄs２ ＝－ｄω２

０ ＋ｄω２
１ ＋ｄω２

２ ＋ｄω２
３ ，

式中

ｄω０ ＝Δ１ ／２

ρ （ｄt －aｓｉｎ２ θｄφ），
ｄω１ ＝ ρ

Δ１ ／２ ｄr，
ｄω２ ＝ρｄθ，
ｄω３ ＝ｓｉｎθ· １

ρ ［（ r２ ＋a２ ）ｄφ－aｄt］． （６畅１畅２５）
由于
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a ＝ρ２ ｓｉｎθ，α＝｜αμ
ν ｜，

我们得到

（αμ
ν ） ＝

r２ ＋a２
Δ１ ／２ ρ ０ ０ aｓｉｎθ

ρ
０ Δ１ ／２

ρ ０ ０
０ ０ １

ρ ０
a

Δ１ ／２ ρ
１

ρｓｉｎθ

（６畅１畅２６）

于是在正交标架中有

Fμν ＝ατ
μ′ασ

ν′Fτσ． （６畅１畅２７）
电场和磁场的分量分别为

E１ ＝eρ－４ （ r２ －a２ ｃｏｓ２ θ），
B１ ＝eρ－４２arｃｏｓθ． （６畅１畅２８）
E０ ＝E２ ＝E３ ＝B０ ＝B２ ＝B３ ＝０．

此式表明，电场和磁场互相平行，这是引入上述局部标架的结果．
在局部时空范围内，我们采用平直时空近似和均匀电磁场近似．在这种近似条

件下，海森伯和欧勒早就指出，波函数可以由分离变量法求得．自旋为 １／２ 的解具
有形式

φ＝ｅ ｉ（ k xx－ωt） un［（εB） １ ／２ （y２ ＋kx ／εB）］ψ（ z）， （６畅１畅２９）
式中 un 为 n 阶谐振子的波函数，ψ（ z）满足方程

ｄ２ψ
ｄξ２ ＋（ξ２ －λ）ψ＝０， （６畅１畅３０）

ξ＝πμ ２
εE１

＋２π（n ＋１
２ ＋σ１） B１

E１
． （６畅１畅３１）

透射率

T２ ＝ｅ－ξ， （６畅１畅３２）
在 n ＝０，σ＝－１／２ 时最大，

un ＝NnHn（αξ） ｅｘｐ（ －１
２ α２ξ２ ）． （６畅１畅３３）

　 　 n ＝ ０ 时， 对 应 谐 振 子 的 基 态 或 粒 子 只 有 沿 ω１ 方 向 的 运

动，σ＝－１
２ 表示透射的费米子流是极化的，分支比

Γ２
－１ ／２

Γ２
１ ／２

＝ｅｘｐ（ －２πB１ ／E１ ）．
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自旋为 １／２ 的费米子，所产生的总粒子对数为
N ＝∫gｄ４ x １

４π
εE１
π

２ πB１ ／E１
ｔｈ（πB１ ／E１ ） ｅｘｐ（ －πμ２ ／εE１）， （６畅１畅３４）

式中

　g ＝ρ４ ｓｉｎ２ θ． （６畅１畅３５）

６畅２　霍 金 辐 射
霍金（１９７４）发现，黑洞像一个黑体一样，具有温度 TB ＝珔hκ

ck标志的热辐射．霍金
计算的是一颗坍缩的恒星正在形成黑洞时的量子效应．后来人们进一步研究发现，
完成坍缩后的永久黑洞以及任何一个具有未来世界的静态和稳态时空都具有完全

相同的霍金辐射．
下面就介绍霍金所做的推导．
图 ２１（ａ）所示为一已完成坍缩的史瓦希黑洞的 Ｐｅｎｒｏｓｅ 图，零无限远 J ＋

和 J －

是渐近闵可夫斯基区．对Ⅰ区来说，可以选择 J －∪I －∪H －
为 Ｃａｕｃｈｙ 面．图（ｂ）表

示坍缩中的黑洞（史瓦希黑洞），阴影部分为坍缩星体占据的部分．此时Ⅰ区的
Ｃａｕｃｈｙ 面是 I －∪J －，而 J ＋

和 J －
仍为渐近闵可夫斯基区．

　　　（ ａ）　　　　　　　　　　　　（ ｂ）
图 ２１

设 J －
处（ t＝－∞，r＝＋∞）的入射标量波的正、负频解为

fωlm （ r，θ，φ，t），f倡ωlm （ r，θ，φ，t）．
任一标量波函数可如下展开：

φ（x） ＝∑
l，m ∫ｄω（aωlm fωlm ＋a＋

ωlm f倡ωlm ）． （６畅２畅１）
入射真空｜０ ＞in的定义为

aωlm ｜０ ＞in ＝０
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橙ω，l，m， （６畅２畅２）
在 t＝＋∞时的出射标量波可在 J ＋（ t＝＋∞，r ＝＋∞）和 H ＋（ t＝＋∞，r＝２m）两
处出现，故 t＝＋∞时的正、负频解分别为

（pωlm ，p倡ωlm ）J ＋
处，（qωlm ，q倡ωlm ）H＋

处．
任一标量波函数可展开为

φ（x） ＝∑
l，m ∫ｄω bωlm pωlm ＋b＋

ωlm p倡ωlm ＋cωlm qωlm ＋c＋ωlm q倡ωlm ． （６畅２畅３）
　　现在我们感兴趣的是要去计算正负频混合系数

βωlm；ω′lm ＝（pωlm f倡ωlm ）， （６畅２畅４）
及入射真空中所含出射粒子数

＜
in
０ ｜Noutωln ｜０ ＞

in
＝ ＜

in
０ ｜b＋

ωlm bωlm ｜０ ＞
in

＝∫ｄω′｜βωlm；ω′lm ｜２． （６畅２畅５）
　　为了简单，我们讨论无质量标量粒子的产生．

坍缩星的终态对应的外部度规为史瓦希外部度规

ｄs２ ＝ １ －２m
r ｄt

２ － １ －２m
r

－１ ｄr２ －r２ ｄΩ２． （６畅２畅６）
在无质量标量场的情况下，可以用分离变量法解克莱因－高登方程

ΔμΔμ
φ ＝０． （６畅２畅７）

令

φ（ r，θ，φ，t） ～r－１Rωl（ r）Y lm （θ，φ）ｅ ｉωt， （６畅２畅８）
则得到径向方程

ｄ２
ｄr倡２Rωl ＋ ω２ －［ l（ l ＋１） r－２ ＋２mr－３］（１ －２m

r ） Rωl ＝０， （６畅２畅９）
式中

r倡 ≡ r ＋２mｌｎ ｜ r２m －１ ｜， （６畅２畅１０）
为 Ｔｏｒｔｏｉｓｅ 坐标．

引入有效势

V≡ ［ l（ l ＋１） r－２ ＋２mr－３ ］（１ －２mr－１ ），
H ≡ ω２，

则（６畅２畅９）式可写为
ｄ２
ｄr倡２Rωl ＋（H －V）Rωl ＝０． （６畅２畅１１）

当 r→∞（ r倡 →∞）时，V→０，于是得到解
Pωlm ＝r－１ ｅｘｐ（ －ｉωu）Y lm ，　 出射波； （６畅２畅１２）
fωlm ＝r－１ ｅｘｐ（ －ｉωv）Y lm ，　 入射波， （６畅２畅１３）
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式中

u ＝t －r倡 ，v ＝t ＋r倡 ，
为双零（类光）坐标．在这一坐标系中，史瓦希度规具有形式

ｄs２ ＝（１ －２mr－１ ）ｄuｄv －r２ ｄΩ２． （６畅２畅１４）
从 J －

来的入射波 fωlm沿着零短程线 v ＝ｃｏｎｓｔ．传播，经过坍缩星中心，然后“反
射”，沿着 u ＝ｃｏｎｓｔ．到达 J ＋，变成出射波 pωlm （如图 ２２）．

图 ２２

由于星体的塌缩将引起出射波有一甚大的红移，因此入射波 fω′lm应有一甚高

的频率 ω′，这样我们就可采用几何光学近似以讨论上述“反射”过程．
现在我们希望找出函数关系

u ＝u（ v），
　　令 v＝v０ 是投射在塌缩星上而变为 H ＋

的入射线路径，显然所有晚于 v０ （ v＞v０ ）
的入射线都不可能被“反射”出来，只有早于 v０ （ v ＜v０ ）的入射线才可能被“反射”
以形成出射线．在 H ＋

某点作一指向未来的零矢 nμ，设 －εnμ（ε 是一小正数）是联
结此点与一大 u 值的邻近世界线的矢量，划出完整的 Ｐｅｎｒｏｓｅ 图，把矢量 －εnμ

沿

H ＋
平行移位到 H ＋

与 H －
的交点处，此时矢量 －εnμ

整个在 H －，取 λ＝－cｅ －κu

c＞０，κ＝１
４m 为 H

－
上的母线的仿射参量，在交点引入该点的局部惯性系，则在交

点，λ＝０，ｄxμ／ｄλ＝nμ，
ｄ２ xμ
ｄλ２ ＝ｄnμｄλ ＝０．

这表明，在 λ＝０ 的领域，nμ
是一个常矢量，因而 H －

上矢量 －εnμ
的长度即
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－εnμ ＝∫λ

０
ｄxμ
ｄλｄλ＝nμ· λ＝xμ（λ） －xμ（０）．

由此得　ε ＝cｅ －κu．
现在把矢量 －εnμ

移回原位置，然后把它平移到 H ＋
与 v０ 的交点，再沿 v０ 平移

到极早时的大 r处，由于平移时矢量与短程线间的角度不变，所以矢量 －εnμ将如
图 ２２ 所示的把 v０ 与某个 v联结起来，即

v －v０ ＝－εnμ．
在 r＝＋∞，时空平直，光线的切矢 nμ＝ｄx

μ

ｄλ为一常数 D，即
v －v０ ＝－εD ＝－cDe－κu．

故

u ＝u（v） ＝－４mｌｎ v０ －v
cD

． （６畅２畅１５）
可把出射波

Pωlm ＝Nω－１ ／２ r－１ ｅｘｐ（ ｉωu）Y lm
改写为

Pωlm ＝Nω－１ ／２ r－１ ｅｘｐ ｉ４mωｌｎ v０ －v
cD

Y lm ，
N ＝２ －３ ／２ · π－１　（v ＜v０ ），
N ＝０　　（v ＞v０ ）．

由

Pωlm ＝∫ｄω′（αωlm；ω′lm fω′lm ＋βωlm；ω′lm f倡ω′lm ）
可得

１
２π∫＋∞

－∞ ｄvｅ ｉω′vPωlm ＝Nω′－１ ／２ r－１Y lmαωlm；ω′lm ，
１
２π∫＋∞

－∞ ｄvｅ－ｉω′vPωlm ＝Nω′－１ ／２ r－１Y lmβωlm；ω′lm ，
故

αωlm；ω′lm ＝ １
２π∫v０－∞

ｄv ω′
ω

１ ／２ ｅ ｉω′vｅｘｐ ｉ４mωｌｎ v０ －v
CD

， （６畅２畅１６）

βωlm；ω′lm ＝ １
２π∫v０－∞

ｄv ω′
ω

１ ／２ ｅ－ｉω′vｅｘｐ ｉ４mωｌｎ v０ －v
CD

， （６畅２畅１７）
显然

βωω′ ＝－ｉαω（ －ω′） （６畅２畅１８）
成立，αω（ －ω′）可看做是把 αωω′延拓到负 ω′轴上的结果，但
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αωω′＝ １
２π ω′

ω
１ ／２∫v０－∞ ｄvｅ ｉω′v v０ －v

CD

ｉωκ

＝ １
２π ω′

ω
１ ／２ v０
CD

ｉωκ∫v０－∞
ｄvｅ ｉω′v １ － vv０

ｉωκ

＝ １
２π ω′

ω
１ ／２ v０
CD

ｉωκ２π（ －ω′） －ｉωκ－１ · ｅω／Γ －ｉ ωκ ． （６畅２畅１９）
注意，为了使积分收敛，我们进行了代换

ω′→ ω′→ ｉ矯．
ω′＝０ 是一个奇点，为了把 ω′从正值解析延拓到负值，我们必须沿下半复 ω′平面
内的半圆周延拓过去（图 ２３），即

ω′→ ω′ｅ－ｉπ，

图 ２３

故

αω（ －ω′） ＝－ｉ（ｅ－ｉπ） －ｉωκ－１αωω′

＝ｉｅ－πωκαωω′， （６畅２畅２０）
β倡

ωω′βωω′＝ｅ－２πωκα倡
ωω′αωω′．

由

（pωpω） ＝１
得

∫ｄω′［（αα倡 ）ωω′－（β倡 β）ωω′］ ＝１．
即

枙Nωlm 枛 ＝∫ｄω′｜βωω′｜２ ＝ １
ｅ２πωκ －１ ＝ １

ｅ ωκT －１， （６畅２畅２１）
式中

T ＝ κ
２πk hκ

２πkc ．
此即著名的霍金辐射公式．
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在一般情况下，可以证明，任一具有未来视界的静态或稳态时空均具有霍金热
辐射．

霍金辐射的发现，不仅解决了黑洞热力学中存在的矛盾，而且揭示了引力理
论、热力学和量子理论之间的联系．

当黑洞温度总比周围环境的温度高时，黑洞将不断向外辐射，失去其质量，最
后可能“爆炸”消失．下面我们就来讨论黑洞的寿命．

由于霍金公式和普朗克公式相似，故可利用斯特藩－玻尔兹曼公式估算黑洞的
放能率和寿命．

根据斯特藩－玻尔兹曼定律，我们有
ｄE
ｄtｄA ＝σT４ ，　σ＝２π５ k４

１５珔h３ c２ ，
A＝１６πG２ c－４M２．

由此得到放能率

ｄE
ｄt ≈ １０４６M－２ · Γ（ｅｒｇ／ｓ）， （６畅２畅２２）

式中 Г为势垒穿透率，可近似地取为 １．
质量为 M 的黑洞，其寿命为

τ≈ １０ －２７M３ （ ｓ） ≈ １０１０ M
M⊙

３ （年）． （６畅２畅２３）
若设 M ＝M⊙ ，则 T≈１０ －６ （Ｋ），放能率为

ｄE
ｄt ≈ １０ －２０ （ｅｒｇ／ｓ），

寿命为

τ≈ １０６８ （年）．
如果按这样的速度减少质量，这样的恒星在宇宙诞生至今这么长时间里质量只减
少 １０ －２２ ｇ．这是完全可以忽略不计的．

如果设 M ＜１０１５ ｇ（微黑洞），比如设
M ＝３ ×１０９ ｇ ≈ ３０００（Ｔ），
T≈ １０１８ （Ｋ），

则放能率为

ｄE
ｄt ≈ １０２９ （ｅｒｇ／ｓ） ＝１０２２ （Ｗ），

寿命

τ≈ １０ －１ （ ｓ）．
　　对于 M≈１０１５ （ｇ）的所谓原初小黑洞，有

T≈ １０１２ （Ｋ），
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ｄE
ｄt≈ １０１６（ ｅｒｇ／ｓ） ＝１０９ （Ｗ），
T≈ １０１０ （年）． （６畅２畅２４）

　　由于宇宙极早期物质密度的涨落，有可能形成原初小黑洞和微黑洞．如果确有
许多这类小黑洞，由（６畅２畅２４）式可知，目前应能观测到它们的晚期爆炸（死亡）．

６畅３　静态和稳态黑洞的量子辐射
1畅静态黎曼时空中狄拉克粒子的辐射

在静态时空中有 g０ i ＝０，我们讨论已经通过适当坐标变换使度规对角化了的
情况：

ｄs２ ＝a２０ ｄt２ －a２１ ｄx２ －a２２ ｄy２ －a２３ ｄz２． （６畅３畅１）
由此我们构造零标架：

lμ＝ １
２（a０ ， －a１，０，０），nμ ＝ １

２（a０， －a１ ，０，０），

mμ＝ １
２（０，０，a２ ，ｉa３ ），珚mμ ＝ １

２（０，０，a２ ， －ｉa３ ）． （６畅３畅２）
从而得到 Ｎｅｗｍａｎ唱Ｐｅｎｒｏｓｅ 旋系数：

κ＝ １
２ ２

１
a０ a２

抄
抄ya０ － １

a１ a２
抄
抄ya１ ＋ ｉ

a０ a３
抄
抄za０ － ｉ

a１ a３
抄
抄za１ ，

π＝－ １
２ ２

１
a０ a２

抄
抄ya０ ＋ １

a１ a２
抄
抄ya１ － ｉ

a０ a３
抄
抄za０ － ｉ

a１ a３
抄
抄za１ ，

ε ＝－ １
２ ２

１
a０ a１

抄
抄xa０ ，

ρ ＝ １
２ ２

１
a１ a２

抄
抄xa２ ＋ １

a１ a３
抄
抄xa３ ，

λ＝ １
２ ２

１
a１ a２

抄
抄xa２ － １

a１ a３
抄
抄xa３ ，

α＝ １
２ ２

１
a２ a３

抄
抄xa３ － ｉ

a２ a３
抄
抄za２ ，

σ＝λ，　μ＝ρ，　β＝－珔α，　ν ＝－κ－，　τ＝－π－，　γ＝ε． （６畅３畅３）
旋坐标形式的狄拉克粒子场方程具有形式：

ΔA 痹BPA ＋１
２ ｉμ珚Q 痹B ＝０，
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ΔA 痹BQA ＋１
２ ｉμ珔P 痹B ＝０． （６畅３畅４）

　　由（６畅３畅２） ～（６畅３畅４）式可以得到
１
a０

抄
抄t －

１
a１

抄
抄x － １

２a１
抄
抄xｌｎa０a２ a３ F１ ＋ －１

a２
抄
抄y ＋ ｉa３

抄
抄z

－ １
２a２

抄
抄yｌｎa０ a１a３ ＋ ｉ

２a３
抄
抄z ｌｎa０ a１ a２ F２ －ｉμG１ ＝０，

１
a０

抄
抄t ＋

１
a１

抄
抄x ＋ １

２a１
抄
抄xｌｎa０a２ a３ F２ ＋ －１

a２
抄
抄y － ｉa３

抄
抄z

－ １
２a２

抄
抄yｌｎa０ a１a３ － ｉ

２a３
抄
抄z ｌｎa０ a１ a２ F２ －ｉμG２ ＝０，

１
a０

抄
抄t ＋

１
a１

抄
抄x ＋ １

２a１
抄
抄xｌｎa０a２ a３ G１ ＋ １

a２
抄
抄y － ｉa３

抄
抄z

＋ １
２a２

抄
抄yｌｎa０ a１a３ － ｉ

２a３
抄
抄z ｌｎa０ a１ a２ G２ －ｉμF１ ＝０，

１
a０

抄
抄t －

１
a１

抄
抄x － １

２a１
抄
抄xｌｎa０a２ a３ G２ ＋ １

a２
抄
抄y ＋ ｉa３

抄
抄z

＋ １
２a２

抄
抄yｌｎa０ a１a３ ＋ ｉ

２a３
抄
抄z ｌｎa０ a１ a２ G１ －ｉμF２ ＝０， （６畅３畅５）

这一方程可以写成矩阵形式：
γ０ 抄

抄t ＋γ１ 抄
抄x ＋１

２ 抄
抄xｌｎa０ a２ a３ ＋γ２ 抄

抄y ＋１
２ 抄

抄yｌｎa０a１ a３

＋γ３ 抄
抄z ＋

１
２ 抄

抄z ｌｎa０a１ a２ －ｉμI ψ＝０， （６畅３畅６）

γ０ ≡ １
a０

０ ０ １ ０
０ ０ ０ １
１ ０ ０ ０
０ １ ０ ０

≡ １
a０

γ^０ ，

γ１ ≡ １
a１

０ ０ １ ０
０ ０ ０ －１
－１ ０ ０ ０
０ １ ０ ０

≡ １
a１

γ^１ ，
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γ２ ≡ １
a２

０ ０ ０ １
０ ０ １ ０
０ －１ ０ ０
－１ ０ ０ ０

≡ １
a２

γ^２ ，

γ３ ≡ １
a３

０ ０ ０ －ｉ
０ ０ ｉ ０
０ ｉ ０ ０
－ｉ ０ ０ ０

≡ １
a３

γ^３ ， （６畅３畅７）

γμγν ＋γνγμ ＝２gμν I， （６畅３畅８）
式中 I 为 ４ ×４ 单位矩阵．

在方程（６畅３畅６）中，令
ψ＝ １

（a０ a２ a３ ） １ ／２ ψ^，
可以得到

γ０ 抄
抄t ＋γ１ 抄

抄t ＋γ２ 抄
抄y ＋１

２ 抄
抄yｌｎ

a１
a２

＋γ３ 抄
抄z ＋

１
２ 抄

抄z ｌｎ
a１
a３

－ｉμI ψ^＝０，
（６畅３畅９）

选取坐标，使得 x 轴平行于视界面 F（x，y，z） ＝０ 的法矢量 nμ：
nμ ＝抄F

抄xμ ＝ ０，抄F抄x，０，０ ． （６畅３畅１０）
由于视界是零曲面

gμν 抄F
抄xμ

抄F
抄xν ＝０， （６畅３畅１１）

因而我们得到

g１１ 抄F
抄x

２ ＝０． （６畅３畅１２）
这一方向分解为两个方程：

g１１ ＝０ 或抄F
抄x ＝０，

我们考虑第一个方程．在视界面附近 g１１可以表示为
g１１ ＝－p２ （x，y，z）（x －ξ） m （６畅３畅１３ａ）

或

１
a１

＝p（x，y，z）（x －ξ） １２ m ， （６畅３畅１３ｂ）
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这里 x＝ξ是视界曲面方程．假定 p（x，y，z）是非零的有界实函数．由于 g１１在视界两
边变号，而且度规是实函数，所以 m 必须是正奇数．

进一步假定在视界内外时空坐标互换，g００也要变号，所以 g００可以写成
g００ ＝q２ （x，y，z）（x －ξ） n （６畅３畅１４ａ）

或

a０ ＝q（x，y，z）（x －ξ） １２ n． （６畅３畅１４ｂ）
表面引力加速度 κ具有形式：

κ＝ １
２ （ －g１１ ／g００ ） １２ 抄

抄xg００
＝ p２q（x －ξ） １２ （ m－n） 抄

抄x［q
２ （x －ξ） n］

＝ １
２ npq（x －ξ） １２ （ m＋n－２） １ ＋２

n
抄
抄xｌｎ ｜q ｜（x －ξ） ， （６畅３畅１５）

κ在视界面附近应为有界，非零，于是有
m ＋n ＝２，n ≠ ０，
κ＝ １

２ npq １ ＋２
n

抄
抄xｌｎ ｜q ｜（x －ξ） ． （６畅３畅１６）

在视界面上有

ｌｉｍ
x→ξκ＝ １

２ np（ξ）q（ξ＋）． （６畅３畅１７）
引入 Ｔｏｒｔｏｉｓｅ 坐标

ｄ x^ ＝２κ（x －ξ）ｄx （６畅３畅１８ａ）
或者

x^ ＝∫x ｄx
２κ（x －ξ） ＝ １

２κｌｎ（x －ξ）． （６畅３畅１８ｂ）
在视界面附近，狄拉克方程简化为

　 γ^０ １
q（x －ξ） １２ n

抄
抄t ＋γ^１ １

nq（x －ξ） １２ m－１ 抄
抄 x^ ＋γ^２ １

a２
抄
抄y

　 －γ^２ １
２a２

抄
抄yｌｎ ｜pa２ ｜＋γ^３ １

a３
抄
抄z －γ^３ １

２a３
抄
抄z ｌｎ ｜pa３ ｜－ｉμI ψ^

＝０， （６畅３畅１９）
每一项乘以 nq（x －ξ） １２ n，并代入条件

（x －ξ） 虫 １，m ＋n ＝２，
此方程进一步简化为

γ^０ n 抄
抄t ＋γ^１ 抄

抄 x^ ψ^＝０． （６畅３畅２０）
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令

ψ^＝ｅ－ｉωt矱（x）， （６畅３畅２１）
则（６畅３畅２０）式成为

－ｉ γ^０ nω矱（x） ＋γ^１ ｄ
ｄ x^矱（x） ＝０． （６畅３畅２２）

以 T表示转置，则此方程的 ４ 分量解
矱（x） ＝（ f１ ，f２ ，g１ ，g２ ） T （６畅３畅２３）

具有形式

f１ ＝ｅ－ｉnωx^，f２ ＝ｅ ｉnωx^，
g１ ＝ｅ ｉnωx^，g２ ＝ｅ－ｉnωx^． （６畅３畅２４）

进入视界的入射波和离开视界的出射波分别为

ψinω ～ｅ－ｉω（ t＋nx^） １
２（１，０，０，１）

T ＝ｅ－ｉωV １
２（１，０，０，１）

T． （６畅３畅２５）

ψoutω ～ｅ－ｉω（ t－nx^） １
２（０，１，１，０）

T ＝ｅ－ｉωV ｅ２ ｉωnx^ １
２（０，１，１，０）

T

＝ｅ－ｉωV（x －ξ） ｉnωk １
２（０，１，１，０）

T，　　　　　　（６畅３畅２６）
式中 V ＝t＋n x^为超前爱丁顿坐标．

度规行列式 g 在视界面上非零有界，则有 m －n ＝０，于是m ＝n ＝１．
视界面上每一点均为波函数的分支点，通过解析延拓，可以把视界外的波函数

延拓至视界内．视界内的出射波函数为
　ψ′outω （ξ－x） ～ｅ－ｉωV［（ξ－x）ｅ－ｉπ］ ｉωκ １

２（０，１，１，０）
T

＝ｅ－ｉωV（ξ－x） ｉωκ（ｅｘｐ πωκ） １
２（０，１，１，０）

T

＝ψoutω （ξ－x）ｅｘｐ πωκ，
总的出射波函数为

Φ′outω ＝Nω［y（ x －ξ）ψoutω （x －ξ） ＋y（ξ－x）ψoutω （ξ－x）ｅｘｐ πωκ］，
（６畅３畅２７）

式中 y（x）是阶跃函数，ψoutω （x －ξ），ψoutω （ξ－x）是归一化的 ４ 分量狄拉克波函数，我
们有

　枙ψoutω （x －ξ），ψoutω （x －ξ）枛
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＝∫t ＝ｃｏｎｓｔ．y（x －ξ）珔ψoutω （x －ξ）γ０ψoutω （x －ξ） －gｄ３ x ＝１， （６畅３畅２８ａ）
　枙ψoutω （ξ－x），ψoutω （ξ－x）枛
＝∫t ＝ｃｏｎｓｔ．y（ξ－x）珔ψoutω （ξ－x）γ０ψoutω （ξ－x） －gｄ３ x ＝１， （６畅３畅２８ｂ）

式中 Nω是出射波 Φout
ω 的归一化因子．在视界外，波函数（６畅３畅２７）表示离开视界，

向外传播的正能狄拉克粒子流．在视界内，（６畅３畅２７）式表示向奇点逆时传播的正
能狄拉克粒子流，这等效于向着奇点传播的负能反粒子流；在视界外部领域中有正
反粒子对产生．

由 Φout
ω 的归一化条件，我们得到

枙Φout
ω ，Φout

ω 枛 ≡ N２
ω ｅｘｐ（２πωκ ） ＋１ ＝１， （６畅３畅２９）

或者

N２
ω ＝ １

ｅｘｐ（２πωκ ） ＋１
＝ １
ｅｘｐ（ ω

kbT
） ＋１

， （６畅３畅３０）

式中 T≡ k
２πkb是视界的温度，kb 是玻尔兹曼常数，κ是视界面上的引力加速度．式

（６畅３畅３０）即为静态时空狄拉克粒子的霍金辐射热谱公式．
2畅克尔 －纽曼 －德西特时空中的霍金辐射

克尔 －纽曼 －德西特（Ｋｅｒｒ唱Ｎｅｗｍａｎ唱ｄｅ Ｓｉｔｔｅｒ）时空不是渐近平直的．这一时空
线元在 Ｂｏｙｅｒ唱Ｌｉｎｄｑｕｉｓｔ坐标中具有形式

ｄs２ ＝ １
ΣΞ２ ［Δr －Δθa２ ｓｉｎ２ θ］ｄt２ －Σ

Δr ｄr
２ －Σ

Δθ
ｄθ２

　 － １
ΣΞ２ ［Δθ（ r２ ＋a２ ） ２ －Δra２ ｓｉｎ２ θ］

　 ｓｉｎ２ θｄ矱２ ＋ ２a
ΣΞ２ ［Δθ （ r２ ＋a２ ） －Δr］· ｓｉｎ２ θｄtｄ矱， （６畅３畅３１）

式中

Σ＝r２ ＋a２ ｃｏｓ２ θ，
Δθ ＝１ ＋１

３ Λa２ ｃｏｓ２ θ，
Δr ＝（ r２ ＋a２ ）（１ －１

３ Λr２ ） －２Mr ＋Q２ ，
Ξ＝１ ＋１

３ Λa２． （６畅３畅３２）
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由度规（６畅３畅３１），可以得到
g ＝ｄｅｔ（gμν） ＝－ １

Ξ４Σ２ ｓｉｎ２ θ， （６畅３畅３３）
gμν的逆为

抄２

抄s２ ＝
Ξ２

ΣΔrΔθ
［Δθ（ r２ ＋a２ ） ２ －Δra２ ｓｉｎ２ θ］ 抄２

抄t２ －Δr
Σ

抄２

抄r２ －Δθ
Σ

　· 抄２

抄θ２ － Ξ２

ΔrΔθΣｓｉｎ２θ（Δr －Δθa２ ｓｉｎ２θ） 抄２

抄φ２ ＋２Ξ２ a
ΣΔrΔθ

　［Δθ（ r２ ＋a２ ） －Δr］ 抄２

抄t抄矱． （６畅３畅３４）
度规（６畅３畅３１）是含宇宙项的 Ｅｉｎｓｔｅｉｎ唱Ｍａｘｗｅｌｌ 复合场方程的解，其中电磁势为

Aμ ＝ １
ΣΞQr（１，０，０， －aｓｉｎ２ θ）． （６畅３畅３５）

　　（１） 标量粒子的辐射
将（６畅３畅３１） ～（６畅３畅３５）代入克莱因 －高登方程

１
－g

抄
抄xμ ＋ｉｅAμ －ggμν 抄

抄xν ＋ｉｅAν Φ ＋μ２Φ ＝０， （６畅３畅３６）
得到

　 Ξ２

Σｓｉｎθ 抄
抄t ＋ｉｅ

１
ΣΞQr

Σ
Ξ２ ｓｉｎθ Ξ２

ΔrΔθ
［Δθ（ r２ ＋a２ ）

　 －Δra２ ｓｉｎ２ θ］ 抄
抄t ＋ｉｅ

１
ΣΞQr ＋ 抄

抄t ＋ｉｅ
１
ΣΞQr

　 × Σ
Ξ２ ｓｉｎθ Ξ２a

ΣΔrΔθ
［Δθ（ r２ ＋a２ ） －Δr］ 抄

抄矱－ｉｅ １
ΣΞQraｓｉｎ

２ θ
　 ＋ 抄

抄矱－ｉｅ １
ΣΞQraｓｉｎ

２ θ Σ
Ξ２ ｓｉｎθ Ξ２ a

ΣΔrΔθ
［Δθ（ r２ ＋a２） －Δr］

　 × 抄
抄t ＋ｉｅ

１
ΣΞQr － 抄

抄矱－ｉｅ １
ΣΞQraｓｉｎ

２ θ
　 × Σ

Ξ２ ｓｉｎθ Ξ２

ΣΔrΔθｓｉｎ２ θ（Δr －Δθa２ ｓｉｎ２ θ） 抄
抄矱－ｉｅ １

ΣΞ
　 ×Qraｓｉｎ２ θ －抄

抄r Σ
Ξ２ ｓｉｎθ Δr

Σ
抄
抄r －抄

抄θ Σ
Ξ２ ｓｉｎθ Δθ

Σ
抄
抄θ Φ

　 ＋μ２Φ ＝０． （６畅３畅３７）
此方程可分离变量 t和（ r，θ），令

Φ（ t，r，θ，矱） ＝ｅ－ｉωtｅ ｉmφ Φ^（ r，θ）， （６畅３畅３８）
方程化为
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　 － Ξ２

ΣΔrΔθ
［Δθ（ r２ ＋a２ ） ２ －Δra２ ｓｉｎ２ θ］（ω－ １

ΣΞｅQr） ２

　 ＋２ Ξ２ a
ΣΔrΔθ

［Δθ（ r２ ＋a２ ） －Δr］（ω－ １
ΣΞｅQr）（m － １

ΣΞｅQraｓｉｎ
２ θ）

　 ＋ Ξ２

ΣΔrΔθｓｉｎ２ θ（Δr －Δθa２ ｓｉｎ２ θ）（m － １
ΣΞｅQraｓｉｎ

２ θ） ２ Φ^（ r，θ）

　 －１
Σ

抄
抄rΔr

抄
抄r Φ^（ r，θ） － １

Σｓｉｎθ
抄
抄θΔθｓｉｎθ 抄

抄θ Φ^（ r，θ）
　 ＋μ２ Φ^（ r，θ）
＝０． （６畅３畅３９）

引入 Ｔｏｒｔｏｉｓｅ 坐标r^，其微分形式为
ｄ r^ ＝ １

Δr （ r
２ ＋a２ ）ｄr （６畅３畅４０ａ）

或者

Δr ｄｄr ＝（ r２ ＋a２ ） ｄｄ r^． （６畅３畅４０ｂ）
将（６．３．４０）式代入（６畅３畅３９）式，得到

　 － Ξ２

ΣΔrΔθ
［Δθ（ r２ ＋a２ ） ２ －Δra２ ｓｉｎ２ θ］（ω－ １

ΣΞｅQr） ２

　 ＋２ Ξ２ a
ΣΔrΔθ

［Δθ（ r２ ＋a２ ） －Δr］（ω－ １
ΣΞｅQr）（m － １

ΣΞｅQraｓｉｎ
２ θ）

　 ＋ Ξ２

ΣΔrΔθｓｉｎ２ θ（Δr －Δθa２ ｓｉｎ２ θ） ×（m － １
ΣΞｅQraｓｉｎ

２ θ） ２ Φ^（ r，θ）
　 － １

ΣΔt（ r
２ ＋a２ ）） 抄

抄 r^（ r
２ ＋a２） 抄

抄 r^ Φ^（ r，θ）
　 － １

Σｓｉｎθ
抄
抄θΔθｓｉｎθ 抄

抄θ Φ^（ r，θ） ＋μ２ Φ^（ r，θ）
＝０． （６畅３畅４１）

　　该时空的视界面方程为
Δr ＝（ r２ ＋a２ ）（１ －１

３ Λr２ ） －２Mr ＋Q２

＝－１
３ Λ r４ －（ ３

Λ －a２ ） r２ ＋６M
Λr －

３
Λ（a２ ＋Q２ ）

＝－１
３ Λ（ r －r＋＋）（ r －r＋）（ r －r－）（ r －r－－）

＝０． （６畅３畅４２）
当

１
Λ冲M２ ＞a２ ＋Q２ ，方程 Δr ＝０ 有四个实根，r ＋＋，r ＋，r －和 r －－，其中 r ＋＋，r ＋，r －为
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正，r －－为负．r ＋＋，r －－与 ｄｅ Ｓｉｔｔｅｒ宇宙的视界对应，r ＋，r －与 Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞的视
界对应．换句话说，r ＋＋，r －－是受 Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞作用的 ｄｅ Ｓｉｔｔｅｒ 宇宙的视界，
r ＋，r －是受宇宙因子 Λ作用的 Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞的视界．下面只讨论视界 r ＋和
r ＋＋上的辐射．

在视界附近，Δr虫１，用 Δr 乘以（６畅３畅４１）各项，得到方程
　 －Ξ２

Σ（ r２ ＋a２ ） ２ （ω－ １
ΣΞｅQr） ２ －Ξ２

Σa
２ （m － １

ΣΞｅQraｓｉｎ
２ θ） ２

　 ＋２ Ξ２ a
Σ （ r２ ＋a２ ）（ω－ １

ΣΞｅQr）（m － １
ΣΞｅQraｓｉｎ

２ θ） Φ^（ r，θ）
　 －１

Σ（ r２ ＋a２ ） 抄
抄 r^（ r

２ ＋a２） 抄
抄 r^ Φ^（ r，θ）

＝０． （６畅３畅４３）
由于

ｄr
ｄ r^ ＝

Δr
r２ ＋a２虫１，再设Φ^（ r，θ） ＝R（ r）Θ（θ），可以得到
（ r２ ＋a２ ） ２ ｄ２

ｄ r^２R ＋｛Ξ［ω（ r２ ＋a２ ） －am］ －ｅQr｝ ２R ＝０． （６畅３畅４４）
令

π＝Ξ［ω（ r２＋＋a２） －am］ －ｅQr＋， （６畅３畅４５）
在 r ＋附近，（６畅３畅４４）式简化为

ｄ２
ｄ r^２R ＋ π２

（ r２＋＋a２ ）R ＝０． （６畅３畅４６）
解之得

　R ～ｅｘｐ［±ｉ π
（ r２＋＋a２ ） r^］ ＝ｅｘｐ［±ｉ（Ξω－ΞmΩ－ｅV） r^］

＝ｅｘｐ［ ±ｉΞ（ω－ω０ ） r^］ ＝ｅｘｐ［ ±ｉΞωr^′］， （６畅３畅４７），
式中 Ω＝ a

r２＋ ＋a２是视界 r ＋的角速度，V ＝A０ ＝ Qr ＋
r２＋ ＋a２是视界 r ＋上 θ ＝０ 处的静电

势．ω０≡mΩ＋１
ΞｅV，（ω－ω０ ） r^ ＝ωr^′．

计入时间因子，则自视界 r ＋向外的出射波
Ψout

ω ～ｅ－ｉω（ t－Ξ r^′） ， （６畅３畅４８）
进入视界 r ＋的入射波

Ψin
ω ～ｅ－ｉω（ t＋Ξ r^′） ． （６畅３畅４９）

　　引入超前爱丁顿坐标
V ＝t ＋Ξ r^′， （６畅３畅５０）
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则（６畅３畅４８）和（６畅３畅４９）式可以写为
Ψin

ω ～ｅ－ｉωV （６畅３畅５１）
Ψout

ω ｅ ～－ｉωV ｅ２ ｉωΞ r^′ ＝ｅ－ｉωV ｅ２ ｉΞ（ω－ω０） r^． （６畅３畅５２）
　　由于ｄrΔr ＝

ｄ r^
r２ ＋a２ ，所以在视界面 r ＋附近有
ｌｎ（ r －r＋） ＝－１

３ Λ １
r２＋＋a２ （ r＋－r＋＋）（ r＋－r－）（ r＋－r－－） r^

＝２κhΞ r^， （６畅３畅５３）
式中

κh ＝－ Λ
６Ξ

１
r２＋＋a２ （ r＋－r＋＋）（ r＋－r－）（ r＋－r－－）， （６畅３畅５４）

是视界面 r ＋上的引力加速度．
由（６畅３畅５３）式可以得到

（ r －r＋） ＝ｅｘｐ（２κhΞ r^），
于是出射波可改写为

Ψout
ω ～ｅ－ｉωV（ r －r＋） ｉκh（ω－ω０） ． （６畅３畅５５）

这一结果是在视界面外部得到的，用解析延拓的方法可以得到视界面内的波函数：
Ψout

ω ～ｅ－ｉωV（ r＋－r） ｉκh（ω－ω０） ｅ πκh（ω－ω０）

＝Ψout
ω （ r＋－r）ｅ πκh（ω－ω０） ． （６畅３畅５６）

这样，由视界面向外的出射波的波函数可以统一写为
Φout

ω ＝Nω y（ r －r＋）Ψout
ω （ r －r＋） ＋y（ r＋－r）Ψout

ω （ r＋－r）ｅｘｐ π
κh （ω－ω０ ） ，

（６畅３畅５７）
式中 y（x）是阶跃函数，Ψout

ω （ r －r ＋）和 Ψout
ω （ r ＋ －r）是已经归一化了的波函数．Nω

是 Ψout
ω 的归一化因子．
在视界外 r＞r ＋，（６．３．５７）式代表强度为 N２

ω或流密度为
１
２πN

２
ω从视界向外传

播的出射正能粒子流．在视界内 r＜r ＋，r为时间轴．上式代表在引力场中逆着时间
前进的正能粒子流，实际上就是在引力场中顺着时间离开视界传播的负能反粒子
流．这意味着在视界上有正反粒子对产生．

由 Φout
ω 的归一化条件

枙Φour
ω ，Φout

ω 枛 ＝N２
ω ｅｘｐ ２π（ω－ω０ ）

κh －１ ＝１ （６畅３畅５８）
得到
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N２
ω ＝ １

ｅｘｐ ２π（ω－ω０）
κh －１

＝ １
ｅｘｐ ω－ω０

kbTh
－１

， （６畅３畅５９）

式中 kb 是玻尔兹曼常数，
Th ＝ κh

２πkb， （６畅３畅６０）
是黑洞视界的温度．

对于宇宙视界 r ＋＋，用相似的方法经过相似的计算过程，可得视界表面引力加
速度

κc ＝ Λ
６Ξ

１
r２＋＋ ＋a２ （ r＋＋ －r＋）（ r＋＋ －r－）（ r＋＋ －r－－）， （６畅３畅６１）

视界 r ＋＋的温度为

Tc ＝ κc
２πkb． （６畅３畅６２）

　　当 １
Λ冲M２ ，由（６畅３畅５４）和（６畅３畅６１）式得

κh ～ １
２
r＋－r－
r２＋＋a２ ，r± ～M ± M２ －a２ －Q２ ， （６畅３畅６３）

κc ～ Λ
３

＋． （６畅３畅６４）
　　（２） 狄拉克粒子的辐射

由度规（６畅３畅３１），构造对称零标架
lμ ＝ １

２ΣΔr
１２ ［Ξ（ r２ ＋a２），Δr，０，Ξa］，

nμ ＝ １
２ΣΔr

１２ ［Ξ（ r２ ＋a２ ）， －Δr，０，Ξa］，
mμ ＝ １

２ΣΔθ

１２ ［ ｉΞaｓｉｎθ，０，Δθ， ｉΞｓｉｎθ］，
珚mμ ＝ １

２ΣΔθ

１２ ［－ｉΞaｓｉｎθ，０，Δθ， － ｉΞｓｉｎθ］． （６畅３畅６５）
由此可以得到零标架的协变分量．可以证明上述零标架满足伪正交条件和度规条
件．由这些零标架分量，可以得到 Ｎｅｗｍａｎ桘Ｐｅｎｒｏｓｅ 旋系数的表示式：

π＝－ Δθ
２Σ

１２ １
Σ（a２ ｓｉｎθｃｏｓθ －ｉraｓｉｎθ），

矯＝ １
２ １

２ΣΔr
１２ － rΣΔr ＋ １ －１

３ Λr２ r －１
３ Λr（ r２ ＋a２ ） －M －Δr

Σｉaｃｏｓθ ，
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ρ ＝－ １
２ΣΔr

１２ Δr
Σ（ r ＋ｉaｃｏｓθ），

α＝－１
２ １

２ΣΔθ

１２ １
Σ Δθ（r２ ＋a２ ） －１

３ ΛΣa２ ｓｉｎ２ θ ｃｏｔθ －Δθ
Σｉraｓｉｎθ ，

μ＝ρ，β＝－α，γ＝矯，τ＝－π． （６畅３畅６６）
各微分算符的表示式为

D ＝lμ 抄
抄xμ ＝ １

２ΣΔr
１２ Ξ（ r２ ＋a２ ） 抄

抄t ＋Δr 抄
抄r ＋Ξa 抄

抄矱 ，

Δ＝nμ 抄
抄xμ ＝ １

２ΣΔr
１２ Ξ（ r２ ＋a２ ） 抄

抄t －Δr 抄
抄r ＋Ξa 抄

抄矱 ，

δ ＝mμ 抄
抄xμ ＝ １

２ΣΔθ

１２ ｉΞaｓｉｎθ 抄
抄t ＋Δθ

抄
抄θ ＋ ｉΞｓｉｎθ

抄
抄矱 ，

珋δ ＝mμ 抄
抄xμ ＝ １

２ΣΔθ

１２ －ｉΞaｓｉｎθ 抄
抄t ＋Δθ

抄
抄θ － ｉΞｓｉｎθ

抄
抄矱． （６畅３畅６７）

电磁势的表示式为（６畅３畅３５）式，由（６畅３畅６５）和（６畅３畅３５）式可以得到
Aμlμ ＝Aμnμ ＝ １

２ΣΔr
１２
Qr， （６畅３畅６８）

Aμmμ ＝Aμ珚mμ ＝０． （６畅３畅６９）
由（６畅３畅６６）式可得

矯－ρ ＝－（μ－γ）
＝ １

２ １
２ΣΔr

１２ Δr
Σ（ r ＋ｉaｃｏｓθ） ＋（１ －１

３ Λr２ ） r －M －１
３ Λr（ r２ ＋a２ ） ，

π－α＝β－τ
＝－ １

２Σ
３２ Δ１２θ a２ ｓｉｎθｃｏｓθ －Σｃｏｔθ －ｉraｓｉｎθ ＋１

３
ΛΣ
Δθ
a２ ｓｉｎθｃｏｓθ ．

（６畅３畅７０）
　　将（６畅３畅６７） ～（６畅３畅７０）式代入狄拉克方程（６畅３畅４），得到

１
２ΣΔr

１２ Ξ（ r２ ＋a２ ） 抄
抄t ＋Δr 抄

抄r ＋Ξa 抄
抄矱＋１

２
Δr
Σ（ r ＋ｉaｃｏｓθ） ＋ １ －１

３ Λr２ r －M －１
３ Λr（ r２ ＋a２ ） ＋ｉｅQr F１

＋ １
２ΣΔθ

１２ －ｉΞaｓｉｎθ 抄
抄t ＋Δθ

抄
抄θ － ｉΞｓｉｎθ

抄
抄矱－ １

２Σ
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（a２ ｓｉｎθｃｏｓθ －Σｃｏｔθ －ｉraｓｉｎθ ＋１
３

ΛΣ
Δθ
a２ ｓｉｎθｃｏｓθ） F２ －１

２ ｉμG２ ＝０，

１
２ΣΔr

１２ Ξ（ r２ ＋a２ ） 抄
抄t －Δr 抄

抄r ＋Ξa 抄
抄矱

－１
２

Δr
Σ（ r ＋ｉaｃｏｓθ） ＋ （１ －１

３ Λ^２ r －M －１
３ Λr（ r２ ＋a２ ） ＋ｉｅQr F２

＋ １
２ΣΔθ

１２ ｉΞaｓｉｎθ 抄
抄t ＋Δθ

抄
抄θ ＋ ｉΞｓｉｎθ

抄
抄矱

－１
２Σ（a

２ ｓｉｎθｃｏｓθ －Σｃｏｔθ －ｉraｓｉｎθ ＋１
３

ΛΣ
Δθ
a２ ｓｉｎθｃｏｓθ） F１ －１

２ ｉμG２ ＝０，

１
２ΣΔr

１２ Ξ（ r２ ＋a２ ） 抄
抄t ＋Δr 抄

抄r ＋Ξa 抄
抄矱

＋１
２

Δr
Σ（ r －ｉaｃｏｓθ） ＋（１ －１

３ Λr２ ） r －M －１
３ Λr（ r２ ＋a２ ） ＋ｉｅQr G２

－ １
２ΣΔθ

１２ ｉΞaｓｉｎθ 抄
抄t ＋Δθ

抄
抄θ ＋ ｉΞｓｉｎθ

抄
抄矱

－１
２Σ（a

２ ｓｉｎθｃｏｓθ －Σｃｏｔθ ＋ｉraｓｉｎθ ＋１
３

ΛΣ
Δθ
a２ ｓｉｎθｃｏｓθ） G１ －１

２ ｉμF２ ＝０，
１

２ΣΔr
１２ Ξ（ r２ ＋a２ ） 抄

抄t －Δr 抄
抄r ＋Ξa 抄

抄矱
－１

２
Δr
Σ（ r －ｉaｃｏｓθ） ＋（１ －１

３ Λr２ ） r －M －１
３ Λr（ r２ ＋a２ ） ＋ｉｅQr G１

－ １
２ΣΔθ

１２ －ｉΞaｓｉｎθ 抄
抄t ＋Δθ

抄
抄θ － ｉΞｓｉｎθ

抄
抄矱

－１
２Σ（a

２ ｓｉｎθｃｏｓθ －Σｃｏｔθ ＋ｉraｓｉｎθ ＋１
３

ΛΣ
Δθ
a２ ｓｉｎθｃｏｓθ） G２ －１

２ ｉμF１ ＝０．　　
（６畅３畅７１）

Γ矩阵形式的狄拉克方程为
γμ 抄

抄xμ －Гμ －ｉμI ψ＝０． （６畅３畅７２）
比较（６畅３畅７１）和（６畅３畅７２）式，得到

γ０ ＝ １
ΣΔr

１２ （ r２ ＋a２ ） γ^０ ＋ １
ΣΔθ

１２ Ξaｓｉｎθ γ^３，
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γ１ ＝ １
ΣΔr

１２ Δr γ^１ ，

γ２ ＝ １
ΣΔθ

１２ Δθ γ^２ ，

γ３ ＝ １
ΣΔr

１２ Ξa γ^０ ＋ １
ΣΔθ

１２ Ξ
ｓｉｎθ γ^３． （６畅３畅７３）

式中右端的γ^μ
各分量分别为

γ^０ ＝
０ ０ １ ０
０ ０ ０ １
１ ０ ０ ０
０ １ ０ ０

，

γ^１ ＝
０ ０ －１ ０
０ ０ ０ １
１ ０ ０ ０
０ －１ ０ ０

，

γ^２ ＝
０ ０ ０ －１
０ ０ －１ ０
０ １ ０ ０
１ ０ ０ ０

，

γ^３ ＝
０ ０ ０ ｉ
０ ０ －ｉ ０
０ －ｉ ０ ０
ｉ ０ ０ ０

． （６畅３畅７４）

γμ
是克尔－纽曼－德西特时空的狄拉克矩阵，而γ^μ

是闵可夫斯基时空的狄拉克矩

阵．直接推导可以得到
｛γμ，γν｝ ＝２gμν I． （６畅３畅７５）

令

F i ＝Δ－１４
r F^ i，G i ＝Δ－１４ G^ i，i ＝１，２， （６畅３畅７６）

我们有

抄F１
抄r ＝－１

２ Δ－５４
r －１

３ Λr（ r２ ＋a２ ） ＋ １ －１
３ Λr２ －M F^１ ＋Δ－１４

r
抄
抄r F^１ ，…

（６畅３畅７７）
将（６畅３畅７６）和（６畅３畅７７）式代入（６畅３畅７１）式，得到
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１
ΣΔr

１２ Ξ（ r２ ＋a２ ） 抄
抄t ＋Δr 抄

抄r ＋Ξa 抄
抄矱＋Δr

２Σ（ r ＋ｉaｃｏｓθ） ＋ｉｅQr F^１

＋ １
ΣΔθ

１２ －ｉΞaｓｉｎθ 抄
抄t ＋Δθ

抄
抄θ－

ｉΞ
ｓｉｎθ

抄
抄矱

－ １
２Σ a２ ｓｉｎθｃｏｓθ －Σｃｏｔθ －ｉraｓｉｎθ ＋１

３
ΛΣ
Δθ
a２ ｓｉｎθｃｏｓθ F^２ －ｉμG^１ ＝０，

１
ΣΔr

１２ Ξ（ r２ ＋a２ ） 抄
抄t －Δr 抄

抄r ＋Ξa 抄
抄矱－Δr

２Σ（ r ＋ｉaｃｏｓθ） ＋ｉｅQr F^２

＋ １
ΣΔθ

１２ ｉΞaｓｉｎθ 抄
抄t ＋Δθ

抄
抄θ＋

ｉΞ
ｓｉｎθ

抄
抄矱

－ １
２Σ a２ ｓｉｎθｃｏｓθ －Σｃｏｔθ －ｉraｓｉｎθ ＋１

３
ΛΣ
Δθ
a２ ｓｉｎθｃｏｓθ F^１ －ｉμG^２ ＝０，

１
ΣΔr

１２ Ξ（ r２ ＋a２ ） 抄
抄t －Δr 抄

抄r ＋Ξa 抄
抄矱－Δr

２Σ（ r －ｉaｃｏｓθ） ＋ｉｅQr G^１

－ １
ΣΔθ

１２ －ｉΞaｓｉｎθ 抄
抄t ＋Δθ

抄
抄θ－

ｉΞ
ｓｉｎθ

抄
抄矱

－ １
２Σ a２ ｓｉｎθｃｏｓθ －Σｃｏｔθ ＋ｉraｓｉｎθ ＋１

３
ΛΣ
Δθ
a２ ｓｉｎθｃｏｓθ G^２ －ｉμF^１ ＝０，

１
ΣΔr

１２ Ξ（ r２ ＋a２ ） 抄
抄t ＋Δr 抄

抄r ＋Ξa 抄
抄矱＋Δr

２Σ（ r －ｉaｃｏｓθ） ＋ｉｅQr G^２

－ １
ΣΔθ

１２ ｉΞaｓｉｎθ 抄
抄t ＋Δθ

抄
抄θ＋

ｉΞ
ｓｉｎθ

抄
抄矱

－ １
２Σ a２ ｓｉｎθｃｏｓθ －Σｃｏｔθ ＋ｉraｓｉｎθ ＋１

３
ΛΣ
Δθ
a２ ｓｉｎθｃｏｓθ G^１ －ｉμF^２ ＝０．

（６畅３畅７８）
引入 Ｔｏｒｔｏｉｓｅ 坐标r^，

ｄ r^ ＝ １
Δr （ r

２ ＋a２ ）ｄr， （６畅３畅７９ａ）
或者

ｄ
ｄ r^ ＝ Δr

（ r２ ＋a２ ）
ｄ
ｄr． （６畅３畅７９ｂ）

将（６畅３畅７９ｂ）式代入（６畅３畅７８）式，得到
Ξ（ r２ ＋a２ ） 抄

抄t ＋（ r２ ＋a２ ） 抄
抄 r^ ＋Ξa 抄

抄矱＋Δr
２Σ（ r ＋ｉaｃｏｓθ） ＋ｉｅQr F^１
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＋ Δr
Δθ

１２ －ｉΞaｓｉｎθ 抄
抄t ＋Δθ

抄
抄θ －ｉΞｓｉｎθ

抄
抄矱

－１
２Σ a２ ｓｉｎθｃｏｓθ －Σｃｏｔθ －ｉraｓｉｎθ ＋１

３
ΛΣ
Δθ
a２ ｓｉｎθｃｏｓθ F^２ －ｉμ（ΣΔr） １２ G^１ ＝０，

Ξ（ r２ ＋a２ ） 抄
抄t －（ r２ ＋a２ ） 抄

抄 r^ ＋Ξa 抄
抄矱－Δr

２Σ（ r ＋ｉaｃｏｓθ） ＋ｉｅQr F^２

＋ Δr
Δθ

１２ ｉΞaｓｉｎθ 抄
抄t ＋Δθ

抄
抄θ ＋ｉΞｓｉｎθ

抄
抄矱

－１
２Σ a２ ｓｉｎθｃｏｓθ －Σｃｏｔθ －ｉraｓｉｎθ ＋１

３
ΛΣ
Δθ
a２ ｓｉｎθｃｏｓθ F^１ －ｉμ（ΣΔr） １２ G^２ ＝０，

Ξ（ r２ ＋a２ ） 抄
抄t －（ r２ ＋a２ ） 抄

抄 r^ ＋Ξa 抄
抄矱－Δr

２Σ（ r －ｉaｃｏｓθ） ＋ｉｅQr G^１

－ Δr
Δθ

１２ －ｉΞaｓｉｎθ 抄
抄t ＋Δθ

抄
抄θ －ｉΞｓｉｎθ

抄
抄矱

－１
２Σ a２ ｓｉｎθｃｏｓθ －Σｃｏｔθ ＋ｉraｓｉｎθ ＋１

３
ΛΣ
Δθ
a２ ｓｉｎθｃｏｓθ G^２ －ｉμ（ΣΔr） １２ F^１ ＝０，

Ξ（ r２ ＋a２ ） 抄
抄t ＋（ r２ ＋a２ ） 抄

抄 r^ ＋Ξa 抄
抄矱＋Δr

２Σ（ r －ｉaｃｏｓθ） ＋ｉｅQr G^２

－ Δr
Δθ

１２ ｉΞaｓｉｎθ 抄
抄t ＋Δθ

抄
抄θ ＋ｉΞｓｉｎθ

抄
抄矱

－１
２Σ a２ ｓｉｎθｃｏｓθ －Σｃｏｔθ ＋ｉraｓｉｎθ ＋１

３
ΛΣ
Δθ
a２ ｓｉｎθｃｏｓθ G^１ －ｉμ（ΣΔr） １２ F^２ ＝０．

（６畅３畅８０）
令

F^ i ＝ｅ－ｉωtｅ ｉm矱f i，
G^ i ＝ｅ－ｉωtｅ ｉm矱g i，

　i ＝１，２， （６畅３畅８１）
代入（６畅３畅８０）式，得到

－ｉΞω（ r２ ＋a２ ） ＋（ r２ ＋a２ ） 抄
抄 r^ ＋ｉΞma ＋Δr

２Σ（ r ＋ｉaｃｏｓθ） ＋ｉｅQr f１

＋ Δr
Δθ

１２ －Ξaωｓｉｎθ ＋Δθ
抄
抄θ ＋Ξm

ｓｉｎθ － １
２Σ（a

２ ｓｉｎθｃｏｓθ －ｉraｓｉｎθ）

＋１
２ ｃｏｔθ －１

６
Λ
Δθ
a２ ｓｉｎθｃｏｓθ） f２ －ｉμ（ΣΔr） １２ g１ ＝０，

·６９１· 第 ６章　黑洞的量子效应



－ｉΞω（ r２ ＋a２ ） －（ r２ ＋a２ ） 抄
抄 r^ ＋ｉΞma －Δr

２Σ（ r ＋ｉaｃｏｓθ） ＋ｉｅQr f２

＋ Δr
Δθ

１２ Ξaωｓｉｎθ ＋Δθ
抄
抄θ －Ξm

ｓｉｎθ － １
２Σ（a

２ ｓｉｎθｃｏｓθ －ｉraｓｉｎθ）

＋１
２ ｃｏｔθ －１

６
Λ
Δθ
a２ ｓｉｎθｃｏｓθ） f１ －ｉμ（ΣΔr） １２ g２ ＝０，

－ｉΞω（ r２ ＋a２ ） －（ r２ ＋a２ ） 抄
抄 r^ ＋ｉΞma －Δr

２Σ（ r －ｉaｃｏｓθ） ＋　
　ｉｅQr g１

－ Δr
Δθ

１２ －Ξaωｓｉｎθ ＋Δθ
抄
抄θ ＋Ξm

ｓｉｎθ － １
２Σ（a

２ ｓｉｎθｃｏｓθ ＋ｉraｓｉｎθ）

＋１
２ ｃｏｔθ －１

６
Λ
Δθ
a２ ｓｉｎθｃｏｓθ） g２ －ｉμ（ΣΔr） １２ f１ ＝０，

－ｉΞω（ r２ ＋a２ ） ＋（ r２ ＋a２ ） 抄
抄 r^ ＋ｉΞma ＋Δr

２Σ（ r －ｉaｃｏｓθ） ＋ｉｅQr g２

－ Δr
Δθ

１２ Ξaωｓｉｎθ ＋Δθ
抄
抄θ －Ξm

ｓｉｎθ － １
２Σ（a

２ ｓｉｎθｃｏｓθ ＋ｉraｓｉｎθ）

＋１
２ ｃｏｔθ －１

６
Λ
Δθ
a２ ｓｉｎθｃｏｓθ） g１ －ｉμ（ΣΔr） １２ f２ ＝０． （６畅３畅８２）

和在（１）中讨论视界面方程（６畅３畅４２）的情况一样，我们只讨论视界面 r ＋和 r ＋＋处

的霍金辐射．
在视界 r ＋附近，Δr→０，于是（６畅３畅８２）式简化为

－ｉΞω（ r２＋＋a２ ） ＋（ r２＋＋a２ ） ｄｄ r^ ＋ｉΞma ＋ｉeQr＋ f１ ＝０，
－ｉΞω（ r２＋＋a２ ） －（ r２＋＋a２ ） ｄｄ r^ ＋ｉΞma ＋ｉeQr＋ f２ ＝０，
－ｉΞω（ r２＋＋a２ ） －（ r２＋＋a２ ） ｄｄ r^ ＋ｉΞma ＋ｉeQr＋ g１ ＝０，
－ｉΞω（ r２＋＋a２ ） ＋（ r２＋＋a２ ） ｄｄ r^ ＋ｉΞma ＋ｉeQr＋ g２ ＝０． （６畅３畅８３）

解之得

f１ ＝ｅｘｐ ｉ Ξω－Ξma ＋eQr＋
r２＋＋a２ r^ ＝ｅｘｐ ｉΞ（ω－mΩ－eV） r^ ，

f２ ＝ｅｘｐ －ｉ Ξω－Ξma ＋eQr＋
r２＋＋a２ r^ ＝ｅｘｐ －ｉΞ（ω－mΩ－eV） r^ ，
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g１ ＝ｅｘｐ －ｉ Ξω－Ξma ＋eQr＋
r２＋＋a２ r^ ＝ｅｘｐ ｉΞ（ω－mΩ－eV） r^ ，

g２ ＝ｅｘｐ ｉ Ξω－Ξma ＋eQr＋
r２＋＋a２ r^ ＝ｅｘｐ ｉΞ（ω－mΩ－eV） r^ ．　（６畅３畅８４）

式中

Ω≡ a
r２＋＋a２ ， （６畅３畅８５）

为黑洞视界 r ＋的角速度；
V ＝A０ ＝ Qr＋

Ξ（ r２＋＋a２ ）， （６畅３畅８６）
为 r ＋上两极点处的静电势．

令

ω０ ＝mΩ＋eV （６畅３畅８７）
及

Ξ（ω－ω０ ） r^ ＝ωr^′， （６畅３畅８８）
在F^ i，G^ i 中省写因子 ｅｘｐ（ ｉm矱）则

F^１ ～ｅ－ｉω（ t－r^′） ，F^２ ～ｅ－ｉω（ t＋r^′） ，
G^１ ～ｅ－ｉω（ t＋r^′） ，G^２ ～ｅ－ｉω（ t－r^′） ． （６畅３畅８９）

由（６畅３畅８９）式可知，进入视界 r ＋的入射波为
ψinω ～ｅ－ｉω（ t＋r^′） １

２（０，１，１，０）
Ｔ， （６畅３畅９０）

由视界 r ＋向外的出射波为

ψoutω ～ｅ－ｉω（ t－r^′） １
２（１，０，０，１）

Ｔ， （６畅３畅９１）
式中 Ｔ 为转置算符．可见入射波和出射波正交．

引入超前爱丁顿坐标

V ＝t ＋r^′， （６畅３畅９２）
可将（６畅３畅９０）式和（６畅３畅９１）式写为

ψinω ～ｅ－ｉωV １
２（０，１，１，０）

Ｔ， （６畅３畅９３）

ψoutω ～ｅ－ｉωVｅ２ ｉωr^′ １
２（１，０，０，１）

Ｔ ＝ｅ－ｉωV ｅ２ ｉΞ（ω－ω０） r^ １
２（１，０，０，１）

Ｔ．（６畅３畅９４）
在视界面附近，（６畅３畅７９ａ）式可写为
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ｄ r^ ＝－３
Λ

（ r２＋＋a２ ）ｄr
（ r＋－r＋＋）（ r＋－r－）（ r＋－r－－）（ r －r＋）． （６畅３畅９５）

积分，得到
ｌｎ（ r －r＋） ＝－１

３
Λ

r２＋＋a２ （ r＋－r＋＋）（ r＋－r－）（ r＋－r－－） r^ ≡ ２κ＋ Ξr^
（６畅３畅９６）

式中

κ＋ ＝－ １
６Ξ

Λ
r２＋＋a２ （ r＋－r＋＋）（ r＋－r－）（ r＋－r－－） （６畅３畅９７）

为视界 r ＋上的引力加速度．
由（６畅３畅９）式，可以得到

（ r －r＋） ＝ｅｘｐ（２κ＋ Ξr^）， （６畅３畅９８）
代入（６畅３畅９４）式，可将出射波改写成

ψoutω ～ｅ－ｉωV（ r －r＋） ｉ／κk（ω－ω０） １
２（１，０，０，１）

Ｔ． （６畅３畅９９）
上面的出射波是在视界面外边得到的，视界面上任一点都是分支点，即波函数不确
定．可以如前一样地进行解析延拓，得到视界面内的出射波函数．

　ψoutω ～ｅ－ｉωV（ r＋－r） ｉκ＋（ω－ω０） ｅ πκ＋（ω－ω０） １
２（１，０，０，１）

Ｔ

＝ψoutω （ r＋－r）ｅ πκ＋（ω－ω０） ． （６畅３畅１００）
引入阶跃函数

y（x） ＝ １　　 当 x ＞０，
０　　 当 x ＜０， （６畅３畅１０１）

出射波函数可统一表示为

Φout
ω ＝Nω y（ r －r＋）ψoutω （ r －r＋） ＋y（ r＋－r）ψoutω （ r＋－r）ｅｘｐ π

κ＋
（ω－ω０ ） ，

（６畅３畅１０２）
式中 Nω是 Φout

ω 的归一化因子．
在视界面外，上式表示强度为 N２

ω的从视界向外传播的正能粒子流；在视界面
内，r为时间轴，（６．３．１０２）式表示逆时传播的正能粒子流，等效于顺时离开视界的
负能反粒子流．即在视界面上产生了正反狄拉克粒子对．

由 Φout
ω 的归一化条件

枙Φout
ω ，Φout

ω 枛 ＝N２
ω ｅｘｐ ２π（ω－ω０ ）

κ＋
＋１ ＝１， （６畅３畅１０３）

可以确定归一化常数
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N２
ω ＝ ｅｘｐ ２π（ω－ω０ ）

κ＋
＋１ －１ ＝ ｅｘｐ ω－ω０

kbT＋
＋１ －１ ， （６畅３畅１０４）

式中 kb 是玻尔兹曼常数，κ＋是外视界上的引力加速度，而温度
T＋≡ κ＋

２πkb． （６畅３畅１０５）
　　用类似的方法可以得到宇宙视界 r ＋＋上的引力加速度

κ＋＋ ＝ １
６Ξ

Λ
r２＋＋a２ （ r＋＋ －r＋）（ r＋＋ －r－）（ r＋＋ －r－－） （６畅３畅１０６）

和视界温度

T＋＋ ＝ κ＋＋
２πkb． （６畅３畅１０７）

　　当 １
Λ冲M２ ，有

κ＋ ～ １
２
r＋－r－
r２＋＋a２ ，r± ～M ± M２ －a２ －Q２ ，

κ＋＋ ～ Λ
３

１２ ． （６畅３畅１０８）
本节所得结果相当一般，可退化为克尔－纽曼黑洞等特殊情况．

６．４　黑洞的准正规模
通常认为，黑洞在受到外场扰动后的演化可以分为三个阶段：第一阶段是初始

波动阶段，这一阶段波的频率跟初始扰动的性质有关；第二阶段是衰减振荡阶段，

图 ２４　史瓦希（Ｓｃｈｗａｒｚｓｃｈｉｌｄ）黑洞时空中高斯引力波包的演化示意图
（左图采用对数坐标，右图采用通常的时空坐标）两图清晰描述了高斯引力波包演化过程

的准正模和幂律拖尾阶段
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即准正规模（ｑｕａｓｉｎｏｒｍａｌ ｍｏｄｅｓ）阶段，这一阶段的引力波谱是衰减振荡的，其振荡
频率和衰减时标仅仅取决于黑洞时空背景的结构，与初始扰动无关；最后的阶段是
晚期的幂律拖尾阶段，此时微扰场的衰减形式不再是指数衰减，而是幂律衰减．该
阶段是由于微扰场在渐近无限远处的逆向散射引起的．

准正规模的频率（ωQN）为复数，实部代表时空的振荡的快慢，而虚部代表该扰
动衰减的快慢．黑洞不会永远稳定地振荡下去，它会随时间发生指数衰减，这表明
黑洞在波的传播过程中会损失能量．其实，任何现实物体都存在能量的损失，不过，
在处理振荡问题时，人们通常为了方便假设没有能量损失，即不会有衰减的振荡．
然而，正因为黑洞跟时空的紧密联系，我们在处理黑洞问题时，不能把能量损失忽
略掉，因为任何时空的扰动代表引力波的产生，而引力波会携带能量向无穷远传
播，这就不可避免地会有能量损失．

现在，我们来定义什么是准正规模．黑洞时空中各种场源的微扰方程最终可转
化为一个二阶的偏微分方程：

矪２

矪x２ －矪２

矪t２ －V Ψ（x， t） ＝０． （６．４．１）
x 为一个空间变量，它的变化范围通常为 －∞ ＜x ＜＋∞．在黑洞视界处，它的值为
－∞．V为依赖 x 的势函数．为了定义什么是准正规模，我们通常假设波函数 Ψ
（x， t）可以如下进行分离变量：

Ψ（x， t） ＝ｅ－ｉω tψ（x）． （６．４．２）
把它代入（６．４．１）式中，我们可得到一个关于空间变量 x的微分方程

矪２ψ（x）
矪x２ ＋（ω２ －V）ψ（x） ＝０． （６．４．３）

对于渐近平直时空，势函数总为正数且满足
V→ ０，　x →±∞． （６．４．４）

因此，这种类型的势不允许有束缚态的存在，方程的解不可能是正规模的展开形
式．然而在边界 ±∞，方程的解具有平面波的形式：

ψ（x） ～ｅ±ｉω x，　 x → －∞， （６．４．５）
ψ（x） ～ｅ±ｉω x，　 x → ＋∞． （６．４．６）

我们通常定义准正规模的边界条件为：在无穷远处 x ＝＋∞，方程的解为 纯粹的
出射波，在黑洞视界处 x ＝ －∞，方程的解应为纯入射波，即

ψ（x） ～ｅ－ｉω x，　 x → －∞， （６．４．７）
ψ（x） ～ｅ＋ｉω x，　 x → ＋∞． （６．４．８）

研究表明只有波函数的频谱 ωQN为离散的复数值时才满足上述的边界条件．我们
把具有这样频谱的波函数称为准正规模．Ｖｉｓｈｖｅｓｈｗａｒａ 证明在 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞
时空， 频谱 ωQN必须有一个负的虚部．这个结论也可推广到其他黑洞时空中．这也
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意味着准正规模是随时间指数衰减的．其物理意义为波在黑洞时空中是释放能量
的．另一方面也表明时空是稳定的．此外，用解析的方法去求方程满足此类边界条
件的精确解是 不可能的．这意味着我们只能求救于数值计算．尽管虚部为负也可
以帮助我们在进行数值计算时对某些根的取舍，但是如何在计算出来的结果中鉴
别出正确的准正模仍然并不轻松，有时候这项工作十分繁重．１９７５ 年，Ｃｈａｎ唱
ｄｒａｓｅｋｈａｒ 和 Ｄｅｔｗｅｉｌｅｒ 用数值计算的方法成功地找到 了 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞时空的
准正规模频谱．此后，数值计算的技巧也在不断改进．像 Ｓｃｈｕｔｚ 和 Ｗｉｌｌ 设计的
ＷＫＢ 近似法，后来改善到三阶 ＷＫＢ 近似，近来还发展到六阶 ＷＫＢ 近似．此外还
有 Ｐ迸ｓｈｌ桘Ｔｅｌｌｅｒ 势近似法等．其中相当成功的是 Ｌｅａｖｅｒ 的连续分数法．

准正规模频谱只与黑洞的基本参量有关．例如对旋转的 Ｋｅｒｒ 黑洞来说，准正
规模频谱只与黑洞质量 M 和角动量 a 有关．因此，可以根据准正规模的振动频率
和衰减时间精确地确定黑洞的参数．考虑探测器探测到了某一黑洞的一个准正规
模（如 l ＝m ＝２），那么它显示的将是一条随时间做指数衰减的正弦曲线， 其表
达式为

h（ t） ＝V－１ ／３ ｅ－πf t－TQ ｓｉｎ ２πf（ t －T）． （６．４．９）
Q， f， V 和 T为它的四个特征参数．Q 为品质因子

Q ＝πfτ， （６．４．１０）
τ为衰减时间．V －１ ／３

为引力波的幅度，它与探测仪到波源的距离，微扰的大小以及
探测仪与波源的相对角度有关．T是微扰开始的时间．注意 Q 和 f都与准正规模的
实部和虚部有关．人们发现旋转黑洞的 f和 Q 可近似表示为

f ～ １
２πM １ －６３

１００（１ －a） ３ ／１０ ， （６．４．１１）
Q ＝πfτ＝２（１ －a） －９ ／２０． （６．４．１２）

因此，只要观测到了准正规模的振动频率和衰减因子，我们原则上可以根据上式确
定电中性旋转黑洞的参量．
准正规模与 AdS／CFT 对应

量子场论是目前大家比较认同的一个理论，因为它对世界从微观的角度上作
出了比较系统的阐述．它认为微观粒子可以当作点来处理，粒子只与附近的其他粒
子有相互作用．量子场论自建立以来，已经取得了许多可喜的成绩．它能很好地处
理电磁作用、弱相互作用和强相互作用．但是它不能解决引力作用．假如我们认为
粒子不是点状的，而是弦状的，那么我们有可能在统一的框架里对引力进行量子
化．所有的弦理论中都包含有质量为零、自旋为 二的粒子．由于质量为零、自旋为
二的粒子之间的相互作用就是引力作用，所以所有的弦理论都能够处理引力作用．
另外，量子色动力学是建立在规范群为 ＳＵ（３）的规范理论，它认为物质是由夸克、

·２０２· 第 ６章　黑洞的量子效应



胶子组成的．量子色动力学认为能量增加时，粒子之间 的有效耦合常数就会减小．
在低能条件下，由于耦合很强，使得计算很难进行．人们发现当色数 N 很大时，理
论计算可以简化．研究强烈地暗示大色数 N量子色动力学理论与弦耦合常数为 １／
N 的弦理论一致．当 N→∞的量子色动力学理论与弦理论之间的对应就是我们常
说的 ＡｄＳ／ＣＦＴ 对应．ＡｄＳ／ＣＦＴ 对应也表明 n 维 ＡｄＳ 时空中的物理完全可用 n －１
维的共形场论来描述．也就是说，物理信息保存在 n 维 ＡｄＳ 时空中的共形边界上．
由于弦理论能够处理引力相互作用，因此 ＡｄＳ／ＣＦＴ对应表明引力理论和场论之间
存在一种对应．于是 ＡｄＳ 黑洞时空中的准正规模频谱就有一个 非常直接的解释．
由 ＡｄＳ／ＣＦＴ对应，静态的大质量 ＡｄＳ 黑洞对应着共形场论中的一个热力学平衡
态，给黑洞时空一个微扰就是给这个平衡态一个微扰．微扰的衰减过程也是系统返
回平衡态的过程．通常，在 ＣＦＴ 中直接计算系统返回平衡态的时间标度是非常困
难的，甚至可以说是几乎不可能的．由于准正规模能够描述微扰的衰减．因此如果
我们计算出了 ＡｄＳ 黑洞时空的准正规模频谱，就可直接得到 ＣＦＴ 中系统返回平衡
态的时间标度．
准正规模与黑洞视界面积量子化

早在 ２０ 世纪 ４０ 年代，人们就已经认识到了有必要对引力场进行量子化．然
而，至今人们还没有建立完备的引力量子化理论．人们认为黑洞非常像量子力学建
立初期的氢原子，将在建立完备的引力量子化理论过程中起非常重要的作用．

黑洞的量子化是建立在非极端黑洞的视界面积是一个经典绝热不变量这一伟

大发现之上的．由 Ｅｈｒｅｎｆｅｓｔ原理，任何经典绝热不变量都对应着有分立谱的量子
体系．因此 Ｂｅｋｅｎｓｔｅｉｎ 猜想非极端黑洞的视界面积应该有一个分立的本征谱．Ｂｅｋ唱
ｅｎｓｔｅｉｎ 发现非极端黑洞吸收一个有限大小的中性粒子，必然导致黑洞面积的增
加，且黑洞面积的增加量有一个下限

（ΔA） ｍｉｎ ＝８πl２p ， （６．４．１３）
其中 lp ＝ G

c３
１ ／２砽１ ／２

为普朗克长度．同样，Ｈｏｄ 发现，当黑洞吸收一个有限大小的
带电粒子时，黑洞面积的增加量也有一个相似的下限

（ΔA） ｍｉｎ ＝４l２p． （６．４．１４）
因此人们猜测黑洞视界面积的量子化形式为

An ＝γl２p n，　n ＝１，２，３，… （６．４．１５）
γ为一量纲为一的常数．黑洞视界面积的量子化也表明黑洞视界是由面积为 γl２p 的
小块补丁拼凑而成的．（关于黑洞视界面积的量子化，我们在 ６．８ ～６．１１ 节中还要
讨论．）另外，我们认为无论这些补丁的形状和位置怎么样，每一块补丁都是等同
的．假设每一块补丁具有相同的量子态数 k，那么黑洞视界的总的量子态数为
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N ＝k Aγl２p． （６．４．１６）
因此，黑洞视界的 Ｂｏｌｔｚｍａｎｎ 统计熵为

S ＝ｌｇN ＝ A
γl２p ｌｇ k． （６．４．１７）

与黑洞的 Ｈａｗｋｉｎｇ唱Ｂｅｋｅｎｓｔｅｉｎ 熵公式 S ＝A４ 进行对比，我们发现
γ＝４ｌｇk． （６．４．１８）

这是统计力学对 γ的形式所作出的要求．然而 k 的值为多少一直不能确定．最近
Ｈｏｄ从 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞时空中的高度衰减的准正规模出发，利用 Ｂｏｈｒ 的对应原
理，确定了 k的值为 ３．不久，Ｍｏｔｌ和 Ｎｅｉｔｚｋｅ 利用解析的方法求出了 Ｓｃｈｗａｒｚｓｃｈｉｌｄ
黑洞时空中标量微扰和引力微扰场的高度衰减的准正规模频谱公式，发现它正好
满足 Ｈｏｄ 猜想！
Hod猜想

Ｎｏｌｌｅｒｔ 利用数值方法发现 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞时空中标量场快速衰减的准正规
模的频谱为

Mωn ＝０．０４３７１２３ － ｉ４ n ＋１
２ ＋O［（n ＋１）－１／２］　n→∞， （６．４．１９）

其中 M 为黑洞的质量．显然，它与场的角量子数 l没有关系．因此快速衰减的准正
规模只反映黑洞自身的特征．Ｈｏｄ 通过仔细地研究，天才般地猜测到与快速衰减
的准正规模频率的实部有关的 ０．０４３７１２３ 正好等于 ｌｎ３／（８π）．

另外，根据玻尔对应原理，在大量子数的情况下，系统的量子跃迁频率应该等
于经典的谐振频率．Ｈｏｄ 认为快速衰减的准正规模的虚部很大，说明黑洞返回静止
状态的驰豫时间很短．根据量子力学，量子跃迁是不需要时间的．因此快速衰减的
准正规模所对应的过程可看作 一种量子跃迁．而快速衰减的准正规模的实部可以
当作这一量子跃迁所辐射的频率．

当 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞辐射一个粒子时，它能量的改变量为 ΔM ＝E ＝砽ω＝砽Ｒｅ
（ωn）．又因为黑洞的视界面积为 A＝１６πM２ ，根据黑洞热力学，我们有

ΔA ＝３２πMΔM ＝４砽ｌｎ３． （６．４．２０）
Ｄｒｅｙｅｒ由此还确定了圈引力理论中的 Ｂａｒｂｅｒｏ桘Ｉｍｍｉｒｚｉ 参数 γ＝４砽ｌｎ３．从而也可得
出在圈量子引力理论中，基本的规范群应该为 SO（３）．因此，人们希望通过对准正
规模频谱的研究能找到通往引力场量子化的途径．

下面讨论准正规模的几种主要研究方法．
P迸shl桘Teller势近似法

黑洞时空中许多微扰场的有效势为一势垒．从量子力学的观点来看，一束入
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射波经过势垒时，一部分波会被反射回去，一部分波会透过势垒．而且对频率为任
一 实数的波而言，它的反射系数 R 是有限的．如果把这个问题延拓到复数域来进
行考虑的话，我们发现准正规模对应着反射系数的奇点，而且这些奇点的分布在复
平面上是沿虚轴对称的．研究表明，如果有效势为一势阱的话，则反射系数的奇点
对应着这一势阱的束缚态．在这里，我们发现有效势为势垒的准正规模与它的倒置
势的束缚态之间有一个对应．令 p为与有效势 有关的参数．我们将有效势表示为 V
（x；p），波函数 ψ（x；p）和准正规模频谱 ω（x；p）也都是参数 p的函数．现在做一个
变换：x→ －ｉx，p→p＇＝Π（p）．假设有效势在这种变换下保持不变：

U（ －ｉx； p＇） ＝U（x；p）． （６．４．２１）
令

矱（x；p） ＝ψ（ －ｉx；p＇），　Ω（p） ＝ω（p＇）． （６．４．２２）
我们发现波函数 矱满足薛定谔方程：

ｄ２矱
ｄx２ ＋（ －Ω２ ＋V）矱＝０． （６．４．２３）

且准正规模的边界条件也变为

矱（x；p） ～ｅ碢 Ω x，　x→±∞． （６．４．２４）
显然当 p 为正实数时，方程（６．４．２３）和方程（６．４．２４）分别对应着势为 －V 的薛定
谔方程和束缚态的边界条件．一旦 Ω的值确定了，我们通过一个逆变换就可以确
定 准正规模的频谱了．然而，我们很难找到 Ω的解析表达式．以 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑
洞时空为例，微扰场的有效势可参数化为

V（x） ＝λ １ －２M
r

l（ l ＋１）
r２ ＋２σM

r３ ． （６．４．２５）
我们对该有效势进行如下操作

x →－ｉx，　 p ＝（M，λ） → （ －ｉM， －λ）， （６．４．２６）
才能保持有效势的形式不变．令 Ω（M，λ）为倒置势所对应的束缚态的频率，则
Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞时空中准正规模的频谱为

ωR ＋ｉωI ＝Ω（ ｉM， －１）． （６．４．２７）
由于很难找到 Ω的解析表达式，我们只能采用一些形式较简单的势来近似地估算
Ω的形式．

所谓 Ｐ迸ｓｈｌ桘Ｔｅｌｌｅｒ 势近似法，就是采用 Ｐ迸ｓｈｌ桘Ｔｅｌｌｅｒ 势的倒置势的束缚态来
近似黑洞时空中微扰场的准正规模，从而求出能谱的方法．我们知道 Ｐ迸ｓｈｌ桘
Ｔｅｌｌｅｒ 势为

VPT ＝V０ ／ｃｏｓｈ２α（x －x０）． （６．４．２８）
其中 α２ ＝－１

２V０
ｄ２V
ｄx２ x ＝x０

，V０ 为势垒的最大值．把 VPT代入方程（６．４．２３），我们得到
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满足边界条件（６．４．２４）的束缚态波函数为
矱＝［ξ（１ －ξ）］ ｉω／（２α） F １ ＋β＋ｉωα， －β＋ｉωα；１ ＋ｉωα；ξ ． （６．４．２９）

其中

ξ－１ ＝１ ＋ｅ－２α（ x－x０） ， （６．４．３０）

β＝－１
２ ＋ １

４ －V０
α２

１ ／２． （６．４．３１）
当 x→ ＋∞时，ξ→１．此时波函数为

矱＝ RT ｅ
－ｉω x ＋１

T ｅ
ｉω x． （６．４．３２）

其中反射系数 R 和透射系数 T分别为

R ＝Γ（－ｉω／α）Γ（１ ＋β＋ｉω／α）Γ（－β＋ｉω／α）
Γ（ ｉω／α）Γ（１ ＋β）Γ（－β） ，

T ＝Γ（１ ＋β＋ｉω／α）Γ（ －β＋ｉω／α）
Γ（１ ＋ｉω／α）Γ（ ｉω／α） ． （６．４．３３）

根据 Γ函数的性质，我们知道反射系数 R 和透射系数 T 的奇点位于 １ ＋β＋ｉω／α
＝－n 或者 －β＋ｉω／α＝－n 处．黑洞的准正规模频谱为

ωR ＝（V０ －α２ ／４） １ ／２ ，　ωI ＝α n ＋１
２ ． （６．４．３４）

因此，采用 Ｐ迸ｓｈｌ桘Ｔｅｌｌｅｒ势近似法，只要找出有效势的最大值 V０ ，以及它在峰值位置
时对 x 的二阶导数，就可利用上式计算出黑洞的准正规模频谱．由此可见，当有效
势的形状与 Ｐ迸ｓｈｌ桘Ｔｅｌｌｅｒ 势的吻合程度较高时，我们计算准正规模频谱的精度就越
高．尽管这种方法计算非常简单，但是并不是所有黑洞中的微扰场的有效势都与
Ｐ迸ｓｈｌ桘Ｔｅｌｌｅｒ势吻合得很好．
WKB近似法

在量子力学中，我们常常用 ＷＫＢ 近似来处理粒子穿透势垒的问题．由于黑洞
时空中微扰场的有效势为一势垒，且微扰方程的形式与薛定谔方程相似，因此，我
们也可以采用 ＷＫＢ 近似来估算黑洞时空中的准正规模频谱．

引入微扰参数 矯，黑洞时空中微扰场的主方程为
矯２ ｄ２ψ（x）

ｄx２ ＋Q（x）ψ（x） ＝０． （６．４．３５）
其中 Q（x） ＝ω２ －V（x）．令波函数

ψ（x） ＝ｅS（ x） ／矯． （６．４．３６）
ＷＫＢ 近似的主要思想为：把 S（x）按 矯作幂级数渐近展开，然后逐级近似求解．
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令

S（x） ＝∑∞
n ＝０

矯n Sn（x）， （６．４．３７）
把它代入主方程（６．４．３５），然后比较 矯的同幂次项，可求得

S０ （x） ＝±ｉ∫xQ（η） １ ／２ ｄη，　S１ （x） ＝－１
４ ｌｎQ（x）． （６．４．３８）

在Ⅰ区，当 x→ ＋∞时，有 S０→ ±ｉωx，正号表示朝向 ＋∞出射波，负号表示来自 ＋
∞的入射波．在Ⅲ区， 当 x→ －∞时，有 S０→ ±ｉk～ x，此时正号表示来自 －∞的入射
波，负号表示朝向 －∞的出射波．因此，Ⅰ区和Ⅲ区中的通解分别为

ψ～ZⅠ
in ψⅠ

＿ ＋ZⅠ
outψⅠ

＋，　 ψ～ZⅢ
in ψⅢ

＋ ＋ZⅢ
outψⅠ

－． （６．４．３９）
我们假设 ZⅠ

in ， ZⅠ
out和 ZⅢ

in ， ZⅢ
ou t之间存在线性关系

ZⅢ
out

ZⅢ
in

＝ M１１　M１２

M２１　M２２

ZⅠ
out

ZⅠ
in

． （６．４．４０）
下一步工作就是要确定上述线性方程中的系数．为此，我们必须考虑方程在Ⅱ区
中的解．在量子力学中，我们通常的做法为：尽管在拐点附近 ＷＫＢ 近似解失效，但
我们在拐点的邻域内找出方程的严格解，然后找出它在离拐点较远处的渐近行为，
让它与 ＷＫＢ 近似解衔接起来再确定我们所要求的系数．然而在讨论黑洞的准正
规模时，标准的 ＷＫＢ 衔接就会失效．在量子力学中，通常反射波的幅度和入射波
的幅度基本差不多，而透射波的幅度很小．也就是说，反射系数很大而透射系数很
小．应用 ＷＫＢ 近似所得到的透射系数为 ｅ －B，B 为势垒穿透因子，它的大小取决于
［ －Q（x）］ １ ／２

在两个拐点之间的积分．在黑洞的准正规模中，由于它的边界条件不
一样，因而反射波和透射波的幅度在同一数量级上．即它不满足反射系数很大而透
射系数很小这一条件．此时，我们不得不对标准的 ＷＫＢ 衔接做一些简单的改进．
在Ⅱ区我们将 －Q（x）做一个二阶的泰勒展开．然后把Ⅱ区求得的解做渐近近似，
再与两个 ＷＫＢ 解衔接，利用边界条件，求出准正规模的频谱．

我们将 －Q（x）做一个关于 x０ （有效势的最大值所对应的 x 的值）的二阶泰勒
展开

Q（x） ＝Q０ ＋１
２ Q″０ z

２ ， （６．４．４１）
这里 z ＝x－x０．此时微扰主方程（６．４．３５）为

矯２ ｄ２ψ
ｄz２ ＋k（ －z２０ ＋z２ ）ψ＝０． （６．４．４２）

其中 k＝１
２ Q″０ ，z

２
０ ＝－２Q０ ／Q″０．

在Ⅱ区内，有｜z｜＜z０≈ 矯１ ／２．为了能够找到Ⅱ区内解的渐近形式， 我们定义一
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个新的变量

t ＝（４k） １ ／４ ｅ－ｉπ４ z／矯１ ／２． （６．４．４３）
令

υ＋１
２ ＝－ｉk１ ／２ z２０ ／（２矯）， （６．４．４４）

则方程（６．４．４２）变为
ｄ２ψ
ｄt２ ＋ υ＋１

２ －１
４ t

２ ψ＝０． （６．４．４５）
求出方程（６．４．４５）的解，然后求出 S０ ，S１ 在 z ＝±z０ 附近的表达式．经过一番冗长
而繁琐地计算，我们最终得到

ZⅢ
out

ZⅢ
in

＝ ｅ ｉπυ　　　　　　　　　ｉR２ e ｉπυ（２π） １ ／２ ／Γ（υ＋１）
R－２ （２π） １ ／２ ／Γ（－υ）　　　　　　ｅ－ｉπυ

ZⅠ
out

ZⅡ
in

．
（６．４．４６）

对于量子力学中粒子穿过势垒的行为，Q（ x）为实数，υ＋１
２ 为复数．如果粒子从Ⅰ

区穿过势垒到达Ⅲ区，此时边界条件为 ZⅢ
in ＝０．透射系数和反射系数分别为

T ＝ １ ＋ｅ２ ｉπ υ＋１２
－１　　　R ＝ １ ＋ｅ－２ ｉπ υ＋１２

－１． （６．４．４７）
对于黑洞的准正规模，由于在黑洞视界为纯入射波，在无限远处为纯出射波，因此
边界条件可写为 ZⅢ

in ＝０ 和 ZⅠ
in ＝０．只有当 Γ（ －υ） ＝∞时，即 υ为非负整数时，上

述边界条件才能满足．所以我们有
n ＋１

２ ＝－ｉk１ ／２ z２０ ／（２矯）． （６．４．４８）
令 矯＝１，则黑洞时空中的准正规模频谱公式为

ω２ ＝V０ －ｉ n ＋１
２ （ －２V″０） １ ／２． （６．４．４９）

与 Ｐ迸ｓｈｌ桘Ｔｅｌｌｅｒ 势近似法相似，一阶 ＷＫＢ 近似的精度也比较低．为了提高结果的精
度，人们还采用了高阶 ＷＫＢ 近似，如三阶 ＷＫＢ 近似和六阶 ＷＫＢ 近似等等．至于
三阶 ＷＫＢ 近似，我们在后面的准正规模频谱的估算中将做进一步的讨论．
连续分数法

前面的这些方法尽管能给出黑洞准正规模频谱，但是计算的精度不是很高．
１９８５ 年，Ｌｅａｖｅｒ 发现原先用于确定氢离子能谱的连续分数法，可以推广用来求解
黑洞的准正规模频谱．而且他进一步发现用这种所谓的连续分数法能求出非常精
确的黑洞准正规模频谱．它对旋转黑洞也是成立的．它是目前为止惟一 能够用来
研究旋转黑洞准正规模频谱的方法．因此，连续分数法在研究黑洞准正规模的频谱
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中占有非常重要的位置．下面我们讨论这种数值方法．
在 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞时空中，令视界半径 ２M ＝１，微扰场的径向方程可写为

r（ r －１） ｄ
２ψl
ｄr２ ＋ｄψlｄr ＋ ω２ r３

r －１ －l（ l ＋１） ＋s２ －１
r ψl ＝０， （６．４．５０）

其中 s 为物质场的自旋．s 取 ０， ±１ 和 ±２ 表示微扰场分别是标量场、电磁场和引
力场．

方程（６．４．５０）具有两个规则奇点和一个不规则奇点．两个规则奇点分别位于
原点（ r ＝０）和黑洞视界（ r＝１）处，不规则奇点位于 r→∞的地方．令 ρ ＝－ｉω，方程
（６．４．５０）可变形为

r（ r －１） ｄ
２ψl
ｄr２ ＋ｄψlｄr － ρ２ r３

r －１ ＋l（ l ＋１） －s２ －１
r ψl ＝０． （６．４．５１）

该方程的边界条件为

ψl → （ r －１） ρ，　 r→ １；　ψl → r－ρｅ－ρr，　r→ ∞． （６．４．５２）
构造满足视界处边界条件的波函数级数解：

ψl ＝（ r －１） ρ r－２ρｅ－ρ（ r－１）∑∞
n ＝０
an r －１

r

n

． （６．４．５３）

其中展开系数 an（n ＝０，１，２，…）由下面的三项递推关系确定：
α０ a１ ＋β０ a０ ＝０， （６．４．５４）
αnan＋１ ＋βnan ＋γnan－１ ＝０（n ≥ １）， （６．４．５５）

其中：a０ ＝１．递推系数 αn，βn 和 γn 为微分方程系数和 n 的函数：
αn ＝n２ ＋２（ρ ＋１）n ＋２ρ ＋１，
βn ＝－［２n２ ＋（８ρ ＋２）n ＋８ρ２ ＋４ρ ＋l（ l ＋１） －s２ ＋１］，
γn ＝n２ ＋４ρn ＋４ρ２ ＋s２． （６．４．５６）

只要准正频率 ω＝ωn 之值能使级数（６．４．５３）收敛，即∑∞
n ＝０
an 存在且有限，则无穷远

处的边界条件（６．４．５２）得以满足．Ｂａｂｅｒ 和 Ｈａｓｓé研究了展开系数 an 在 n→∞时
的渐进行为

an＋１
an

→ １ ±（２ρ） １ ／２

n１ ／２ ＋２ρ－３ ／４

n ＋…， （６．４．５７）
发现只要（６．４．５７）式取负号，级数（６．４．５３）就一定收敛，且此时本征值 ρ恰好对
应准正规模的频谱．根据（６．４．５５）式，我们可以获得 an 连续两项之比是一个无穷
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连续分数：
an＋１
an

＝ －γn＋１
βn＋１ － αn＋１γn＋２

βn＋２ －αn＋２γn＋３
βn＋３ －…

（６．４．５８）

通常，我们采取如下的记号：
an＋１
a n

＝－γn＋１
βn＋１ －

αn＋１γn＋２
βn＋２ －

αn＋２γn＋３
βn＋３ －

… （６．４．５９）
方程（６．４．５９）可以认为是当 n→∞时 an 的边界条件．如果取 n ＝０，我们得到：

a１
a０

＝－γ１
β１ －

α１γ２
β２ －

α２γ３
β３ －

… （６．４．６０）
根据方程（６．４．５４）有

a１
a０

＝β０
α０

． （６．４．６１）
显然两者相等，于是我们得到一个隐含准正规模频谱的特征方程：

０ ＝β０ －α０γ１
β１ －

α１γ２
β２ －

α２γ３
β３ －

…， （６．４．６２）
其中的αn，βn 和γn 是频率 ρ ＝－ｉω的显函数，它们由（６．４．５６）式给出．当然，该方
程可以变形为

βn － αn－１γn
βn－１ －

αn－２γn－１
βn－２ －

… －α０γ１
β０

＝αnγn＋１
βn＋１ －

αn＋１γn＋２
βn＋２ －

αn＋２γn＋３
βn＋３ －

…（６．４．６３）
这里 n ＝１，２， …．通过对连续分数方程（６．４．６２）或（６．４．６３）的求解，我们就可得
到所求黑洞时空中的准正规模频谱．该方程可通过计算机编程来求解．

这种连续分数法在推导中未作任何的近似．这就是为什么众多学者在用其他
方法求得准正模后还要用 Ｌｅａｖｅｒ的连续分数法来进行验证的原因．
单值法

导致单值法产生的直接原因有以下两个：一是 Ｈｏｄ 猜想是建立在一个假设之
上的，即快速衰减的准正规模的频率的实部为 ｌｎ３／（８π）．能否用解析方法把它推
导出来关系到 Ｂａｒｂｅｒｏ桘Ｉｍｍｉｒｉｚ参数的确定，也关系到快速衰减的准正规模是否真
的与量子引力有关．因此，人们对此充满了期待．二是前面所介绍的求准正规模的
方法只适应于缓慢衰减的准正规模（n 较小）频谱．连续分数法从理论上来讲，可计
算到 n→∞的情形．但在实际中，当 n 取到 ２０ ～５０ 时，计算机运行得非常缓慢，甚
至会发生死机．因此，人们也期望能找到一种能够计算高度衰减的准正规模频谱的
方法．２００３ 年， Ｌ．Ｍｏｔｌ和 Ａｎｄｅｒｓｓｏｎ 提出了一种能够直接计算静态黑洞时空中高
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度衰减的准正规模频谱的方法，即所谓的单值法．它不需用计算机进行繁琐的
数值计算，而且能够给出高度衰减的准正规模频谱的解析表达式．下面我们以
Ｓｃｈｗａｒｚｓｃｈｉｌｄ 和 Ｒｅｉｓｓｎｅｒ桘Ｎｏｒｄｓｔｒ迸ｍ 黑洞为例，讨论单值法及其相关的研究
结果．
Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞

在四维的 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞时空中，描述微扰场在黑洞背景中演化的方程可
化为

ｄ２ψ（ r）
ｄx２ ＋［ω２ －V（ r）］ψ（ r） ＝０， （６．４．６４）

其中， x＝r ＋１
２κｌｎ（ r－２M），

V（ r） ＝ １ －２M
r

l（ l ＋１）
r２

＋２（１ －j２ ）M
r３

． （６．４．６５）
j 为微扰场的自旋．当 j为 ０， １，２，１／２ 时，则表示微扰场分别为标量场、电磁场、引
力场和 Ｄｉｒａｃ 场．在通常的方法中，对 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞，我们所研究的区域为 ２M
≤r ＜∞．在单值法中，我们要把研究区域解析延拓到 r 的整个复平面．显然，在整
个复平面上，方程（６．４．６４）有两个规则奇点 r ＝０，r ＝２M 和一个不规则奇点 r ＝
∞．因此，方程（６．４．６４）的解在 r 的复平面在绕奇点 r ＝０ 和 r ＝２M 的过程中具有
多值性．为了避免在复平面上处理多值函数，我们在 r ＝０ 和 r ＝２M 之间引入一个
截线，并且要求波函数 ψ（ r） 除了在截线之外，都满足方程（６．４．６４）．当波函数跨
越截线时，相位就增加 ２π．然后我们必修选择一个围道，再比较波函数 ψ（ r）绕围
道的整体单值性和局部单值性，我们就可求出快速衰减的准正规模的频谱公式．

在选择围道之前，我们必须找到准正规模在复平面上满足的边界条件．我们知
道，在物理区域 ２M≤r ＜∞上，准正规模满足下面的边界条件

ψ（ r） ～ｅ－ｉωx，　x →＋∞，　　ψ（ r） ～ｅ ｉωx， 　x→－∞． （６．４．６６）
这里，我们假设 Ｉｍω ＞０．

在复平面上，我们很容易确定它在视界 r ＝２M 处所满足的边界条件．因为在
视界附近，波函数可写为 ｅ ±ｉω x，而且我们要求波函数沿逆时针方向绕奇点 r ＝２M
一周具有单值 ｅπω／κ．因此，在边界视界处，我们有

ψ（ r） ～ｅ ｉωx，　x→－∞． （６．４．６７）
在视界 r ＝∞处，我们必须通过一个“Ｗｉｃｋ 旋转”把波函数解析延拓到曲线 Ｉｍ ωx
＝０ 上．由于快速衰减的准正规模的频率 ω可看作一个纯虚数（因为它的实部太小
了），曲线 Ｉｍωx＝０ 与曲线 Ｒｅ x ＝０ 基本重合，因此在无穷远处，波函数满足的边
界条件为
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ψ（ r） ～ｅ－ｉωx， 　ωx→ ∞． （６．４．６８）
　　现在我们通过曲线 Ｒｅ x ＝０ 的形状来选择正确的围道．在四维的 Ｓｃｈｗａｒｚｓｃｈｉｌｄ
黑洞时空中，曲线 Ｒｅ x ＝０ 为下图所示，划斜线的区域为 Ｒｅ x ＜０．所选的围道为
途中的 L．对比局部单值性和整体单值性，我们可得到四维的 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞时
空中各类微扰场的快速衰减的准正规模的频谱公式

e
２πωκ ＝－（１ ＋２ｃｏｓjπ）， （６．４．６９）

图 ２５　Ｓｃｈｗａｒｚｓｃｈｉｌｄ黑洞时空中的曲线
Ｒｅ x＝０的形状和所选的围道 L

即

２πω
κ ＝Ｉｎ（１ ＋２ｃｏｓ jπ） ±ｉ（２n ＋１）π， 　n → ∞． （６．４．７０）

　　对标量场和引力场（ j＝０，２）来说，我们发现其快速衰减的准正规模的频谱公
式为

２πω
κ ＝Ｉｎ３ ±ｉ（２n ＋１）π， 　n → ∞． （６．４．７１）

不难发现它与 Ｈｏｄ 猜想的完全一致．
Reissner桘Nordstr迸m 黑洞

Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞只有一个参数———黑洞质量 M，而 Ｒｅｉｓｓｎｅｒ桘Ｎｏｒｄｓｔｒ迸ｍ 黑洞
除了质量参数 M 外，它还带有电量 Q．电量 Q 的出现使黑洞拥有内、外两个视界，
从而使我们的研究更加复杂．在 Ｒｅｉｓｓｎｅｒ桘Ｎｏｒｄｓｔｒ迸ｍ 黑洞度规中， 由于

f ＝１ －２M
r ＋Q

２

r２ ＝（ r －r＋）（ r －r－）
r２ ， （６．４．７２）

其中 r ＋， r －为内、外视界的半径，乌龟坐标变为
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x ＝r ＋ １
２κ＋
Ｉｎ（ r －r＋） － １

２κ－
Ｉｎ（ r －r－）， （６．４．７３）

κ±为黑洞内、外视界的表面引力常数．它比 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞时空中的乌龟坐标
多了一项，因此在复 r 平面上，曲线 Ｒｅ x ＝０ 的形状比 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞时空中要
复杂得多（见图 ２６）．同样对比波函数 ψ（ z）的整体单值性和局域单值性，我们得到
Ｒｅｉｓｓｎｅｒ桘Ｎｏｒｄｓｔｒ迸ｍ 黑洞时空中微扰场的快速衰减的准正规模的频谱公式

ｅβω ＝－（１ ＋２ｃｏｓ jπ） －ｅ－βIω（２ ＋２ｃｏｓ jπ）， （６．４．７４）

图 ２６　Ｒｅｉｓｓｎｅｒ桘Ｎｏｒｄｓｔｒ迸ｍ黑洞时空中的曲线 Ｒｅ x
＝０的形状和所选的围道 L

这里 βI 和 β分别为 Ｒｅｉｓｓｎｅｒ桘Ｎｏｒｄｓｔｒ迸ｍ 黑洞内、外视界的 Ｈａｗｋｉｎｇ 温度的倒数．注
意：这里 j不是微扰场的自旋．对标量场， j为 １／３ 时，对引力场， j为 ５／３．把 j＝１／３
和 ５／３ 代入上式，我们发现标量场和引力场快速衰减的准正规模频谱公式均可
写为

ｅβω ＝－２ －３ｅ－βIω． （６．４．７５）

静态 Gibbons桘Maeda dilaton 黑洞

从弦理论的低能有效 Ｌａｇｒａｎｇｅ 作用量所得到的 Ｇｉｂｂｏｎｓ桘Ｍａｅｄａ ｄｉｌａｔｏｎ 黑洞度
规为

ｄs２ ＝－（ r′－r′＋）（ r′－r′－）
r′２ －D２ ｄt２ ＋ r′２ －D２

（ r′－r′＋）（ r′－r′－）ｄr′
２

　 ＋（ r′２ －D２ ）（ｄθ２ ＋ｓｉｎ２ θｄφ２ ）． （６．４．７６）
ｄｉｌａｔｏｎ 荷 D ＝（P２ －Q２ ） ／２M，黑洞视界位于 r′± ＝M ± M２ ＋D２ －P２ －Q２．其中，
参数 P 和 Q 分别表示黑洞的磁荷和电荷．当 ｄｉｌａｔｏｎ 荷 D 为零， Ｇｉｂｂｏｎｓ桘Ｍａｅｄａ
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ｄｉｌａｔｏｎ 黑洞退化为 Ｒｅｉｓｓｎｅｒ桘Ｎｏｒｄｓｔｒ迸ｍ 黑洞．
我们先引进一个坐标变换

r２ ＝r′２ －D２ ， （６．４．７７）
黑洞度规变为

ｄs２ ＝－（ r２ ＋D２ －r′＋）（ r２ ＋D２ －r′－）
r２

ｄt２ ＋ r２

（ r２ ＋D２）
　 × r２

（ r２ ＋D２ －r′＋）（ r２ ＋D２ －r′－）ｄr
２ ＋r２ （ｄθ２ ＋ｓｉｎ２ θｄφ２ ）．

（６．４．７８）
黑洞的内外视界分别位于 r ± ＝ r′２± －D２．

Ｇｉｂｂｏｎｓ桘Ｍａｅｄａ ｄｉｌａｔｏｎ 黑洞时空中的乌龟坐标为
x ＝ r２ ＋D２ －D ＋r′

２
＋－D２

r′＋－r′－Ｉｎ
r２ ＋D２ －r′＋
r′＋－D －r′

２
－－D２

r′＋－r′－Ｉｎ
r２ ＋D２ －r′－
r′－－D

（６．４．７９）
经过一系列代数计算，我们得到 Ｇｉｂｂｏｎｓ桘Ｍａｅｄａ ｄｉｌａｔｏｎ 黑洞时空的有效势：

V［ r（x）］ ＝（ r２ ＋D２ －r′＋）（ r２ ＋D２ －r′－）
r２

　 × l（ l ＋１）
r２

－３D２ （ r２ ＋D２ －r′＋）（ r２ ＋D２ －r′－）
r６

　 －r
２ ［ r２ ＋D２ （ r′＋＋r′－） －２r′＋ r′－］

r６
＋ξR ，

（６．４．８０）
Ｒｉｃｃｉ曲率标量 R 为

R ＝２D２ ［D２ ＋r２ － D２ ＋r２ （ r′＋＋r′－） ＋r′＋ r′－］
r６ ． （６．４．８１）

　　在 Ｇｉｂｂｏｎｓ桘Ｍａｅｄａ ｄｉｌａｔｏｎ 黑洞时空中，乌龟坐标 x的形式与 Ｒｅｉｓｓｎｅｒ桘Ｎｏｒｄｓｔｒ迸ｍ
黑洞的相似．因此我们所选的围道也与 Ｒｅｉｓｓｎｅｒ桘Ｎｏｒｄｓｔｒ迸ｍ 黑洞的相似．在原点 r
＝０ 附近， 乌龟坐标可近似为

z ～ r４
４D（ r′＋－D）（ r′－－D）， （６．４．８２）

·４１２· 第 ６章　黑洞的量子效应



图 ２７　Ｇｉｂｂｏｎｓ桘Ｍａｅｄａ ｄｉｌａｔｏｎ黑洞时空中的曲线 Ｒｅx＝
０的形状和所选的围道 L

时空的 Ｒｉｃｃｉ曲率标量和有效势的渐进形式分别为
R ～２D２ （ r′＋－D）（ r′－－D）

r６ ， （６．４．８３）
和

V［ r（ z）］ ～－３ －２ξ
１６z２ ． （６．４．８４）

令 j＝ ２ξ＋１
２ ， 在原点 r ＝０ 附近的径向方程则近似为

ｄ２
ｄz２ ＋ω２ ＋１ －j２

４z２ ψ（ z） ＝０． （６．４．８５）
但是，由于 Ｇｉｂｂｏｎｓ桘Ｍａｅｄａ ｄｉｌａｔｏｎ 黑洞中存在内、外两个视界，因此，我们所选的围
道 L 与前面的有一点不同．如图所示， 它有一个圆形突出部位．这样选的目的是我
们让围道所围的区域只包含外视界 r ＝r ＋．因为我们只知道准正规模在外视界 r＝
r ＋的边界条件．选好了围道之后，我们就可以分析波函数的整体单值性和局部单
值性了．

在 A 点，波函数满足边界条件
A＋ ｅ－ｉα＋ ＋A－ ｅ－ｉα－ ＝０． （６．４．８６）

因此，波函数 ψ（ z） 在 A点渐进形式为
ψ（ z） ～（A＋ ｅ ｉα＋ ＋A－ ｅ ｉα－）ｅ－ｉω z． （６．４．８７）

如图所示，要从 A 点沿着围道到达 B 点的话，我们首先要在复 r 平面上绕原点转
π／２ 的角度，也就是说在复 z 平面上绕点 z ＝０ 转 ２π的角度．根据 Ｂｅｓｓｅｌ函数在原
点附近的性质，我们发现 转 ２π之后，波函数的渐进形式变为
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ψ（ z） ～（A＋ ｅ５ ｉα＋ ＋A－ ｅ５ ｉα－）ｅ－ｉωz ＋（A＋ ｅ３ ｉα＋ ＋A－ ｅ３ ｉα－）ｅ ｉωz．（６．４．８８）
然后，我们必须沿着圆形突出部位前进．在这个过程中，波函数可当作平面波来处
理．走完了整个圆形突出部位之后，我们再一次进入 Ｂｅｓｓｅｌ 区域．但是，这一次，
对 z来说， 必须增加一个附加距离

δ ＝－πｉ
κ－

． （６．４．８９）
此时，演化方程的通解变为

ψ（ z） ＝B＋ c＋ ω（ z －δ）J＋ j２ （ω（ z －δ）） ＋B－ c－ ω（ z －δ）J－ j２ （ω（ z －δ））
（６．４．９０）

根据波函数的连续性和渐进性质，我们得到下列约束条件：
A＋ ｅ３ ｉα＋ ＋A－ ｅ３ ｉα－ ＝（B＋ ｅ ｉα＋ ＋B－ ｅ ｉα－）ｅ－ｉωδ，
A＋ ｅ５ ｉα＋ ＋A－ ｅ５ ｉα－ ＝（B＋ ｅ－ｉα＋ ＋B－ ｅ－ｉα－）ｅ ｉωδ （６．４．９１）

为了到达 B 点，我们还必须绕点 z ＝δ转一个 ２π的角．波函数 ψ（ z）在 B 点附近的
渐进形式也变为

ψ（ z） ～（B＋ ｅ３ ｉα＋ ＋B－ ｅ３ ｉα－）ｅ ｉωδｅ－ｉωz ＋（B＋ ｅ５ ｉα＋ ＋B－ ｅ５ ｉα－）ｅ－ｉωδｅ ｉωz．
（６．４．９２）

最后，我们沿着右半平面上的大半个圆圈回到 A点，发现函数 ｅ －ｉω z
必须乘上因子

（B＋ ｅ３ｉα＋ ＋B－ ｅ３ｉα－）ｅｉωδ
A＋ ｅｉα ＋A－ ｅｉα－ ＝－（１ ＋２ｃｏｓπj） －ｅ２ｉωδ（２ ＋２ｃｏｓ πj）． （６．４．９３）

　　对于整体单值性的分析，因为围道里面只包含外视界 r ＝r ＋， 所以我们发现函
数 ｅ －ｉω z

必须乘上的因子为 ｅ２πω／κ＋．
通过对比波函数绕围道的整体单值性和局域单值性，我们可以直接得到

Ｇｉｂｂｏｎｓ桘Ｍａｅｄａ ｄｉｌａｔｏｎ 黑洞时空中非最小耦合标量场的快速衰减的准正规模
频谱公式

ｅβω ＝－［１ ＋２ｃｏｓ（ ２ξ＋１
２ π）］ －ｅ－βIω［２ ＋２ｃｏｓ（ ２ξ＋１

２ π）］． （６．４．９４）
　　Ｇｉｂｂｏｎｓ桘Ｍａｅｄａ ｄｉｌａｔｏｎ 黑洞时空中非最小耦合标量场的快速衰减的准正规模
频谱不仅取决于背景时空的参数，也取决于微扰标量场与时空的耦合常数 ξ．事实
再一次表明物质场与引力场的相互作用会对其快速衰减的准正规模频谱产生影

响．通过对比，我们发现 Ｇｉｂｂｏｎｓ桘Ｍａｅｄａ ｄｉｌａｔｏｎ 黑洞时空中非最小耦合标量场的快
速衰减的准正规模频谱与 Ｒｅｉｓｓｎｅｒ桘Ｎｏｒｄｓｔｒ迸ｍ 黑洞时空中的快速衰减的准正规模
频谱相似．两者都有一个来自相移 δ的修正项．像 Ｒｅｉｓｓｎｅｒ桘Ｎｏｒｄｓｔｒ迸ｍ 黑洞时空中
的快速衰减的准正规模频谱在 Q 趋向于零时不能返回 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞时空的
准正规模频谱一样，它在 ｄｉｌａｔｏｎ 荷 D 为零时，也不能返回到 Ｒｅｉｓｓｎｅｒ桘Ｎｏｒｄｓｔｒ迸ｍ 黑
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洞的情况．数学上的理由是变量 ｚ 和有效势 Ｖ严重地依赖参数 Ｄ 和 Ｐ．然而，当耦
合因子 ξ和磁荷 P 均为零时，我们发现 Ｇｉｂｂｏｎｓ桘Ｍａｅｄａ 黑洞时空中的耦合标量场
的快速衰减的准正规模频谱的实部为 TH ｌｎ３，这与 ＧＨＳ ｄｉｌａｔｏｎ 黑洞时空中的最小
耦合标量场准正规模频谱一致．更令人感兴趣的是当耦合因子 ξ＝９１

１８时，公式
（６．４．９４） 变为 ｅβω ＋２ ＋３ｅ －βIω＝０， 它的形式与 Ｒｅｉｓｓｎｅｒ桘Ｎｏｒｄｓｔｒ迸ｍ 黑洞时空的完
全一致．这也表明物质场与引力场的相互作用对其快速衰减的准正规模频谱有着
十分重要的作用．

６．５　黑洞时空中衰减缓慢的准正规模
由于黑洞时空中的准正规模携带有黑洞的特征信息，因而被誉为黑洞的“特

征声音”．这就意味着黑洞时空中的准正规模能为我们提供一种直接鉴定黑洞是
否存在的方法．根据前面的讨论，我们知道黑洞的准正规模频谱为复数，并且虚部
为负．这就意味着黑洞时空中的准正规模是随时间做指数衰减的．因此，距黑洞非
常遥远的天文观测仪器只能接收到那些衰减得比较缓慢的准正规模频谱．本节我
们将以某些特殊的黑洞时空为例，来讨论影响缓慢衰减的准正规模频谱的因素以
及它们之间的变化关系．
球对称黑洞 Quintessence的准正规模

目前大多数科学家认为我们现在所处的宇宙正在加速膨胀．对很多天文现象
的观测（如对 Ｉａ 类超新星、宇宙微波背景辐射的各项异性以及宇宙大尺度结构的
观测）结果都支持现在宇宙正在加速膨胀的观点．然而直到现在，我们还不知道导
致宇宙加速膨胀的 真正原因．在爱因斯坦的引力理论中，人们可以引入暗能量这
一理论模型来解释当今宇宙的这种加速膨胀现象．这一理论模型表明我们当今宇
宙中的大部分能量是暗能量．所谓暗能量，是指压力与能量密度之比为负的能量模
型．现在最主要的暗能量的模型有： 宇宙常数（真空能）模型、ｑｕｉｎｔｅｓｓｅｎｃｅ、ｋ桘ｅｓ唱
ｓｅｎｃｅ 和 ｐｈａｎｔｏｍ 等．不同的暗能量模型具有不同的状态参数 w（也就是压力与能
量密度之比）．例如，在宇宙常数模型中，w 恒为 －１；对 ｑｕｉｎｔｅｓｓｅｎｃｅ 模型，w 可以
为常数，也可以发生变化，但是它的取值范围为 －１≤w ＜０．显然， 宇宙常数模型
可当作一种特殊的 ｑｕｉｎｔｅｓｓｅｎｃｅ 模型．近来，由于这些理论模型在解释宇宙加速膨
胀方面拥有各自的优点，因而受到大家的青睐（详见 ６．７ 节）．

最近 Ｋｉｓｅｌｅｖ 考虑到一静态黑洞的周围充满了一种静态的、球对称的暗能量
（ｑｕｉｎｔｅｓｓｅｎｃｅ），且其状态参量为常数．假设 ｑｕｉｎｔｅｓｓｅｎｃｅ 的能动张量满足线性叠加
性，他最后得到了爱因斯坦场方程的一个依赖态参数 w 的严格解．在本节，我们将
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研究这个黑洞时空中标量场的准正规模，来探讨暗能量的状态参量对微扰场的准
正规模的影响．

我们先简单地回顾一下 Ｋｉｓｅｌｅｖ 的工作．一般球对称静态时空的度规为
ｄs２ ＝ｅυｄt２ －ｅλｄr２ －r２ （ｄθ２ ＋ｓｉｎθ２ ｄ矱２）， （６．５．１）

υ和 λ为径向参量 r 的函数．爱因斯坦的场方程为
２T tt ＝－ｅ－λ １

r２
－λ′
r ＋１

r２
， （６．５．２）

２T rr ＝－ｅ－λ １
r２

－ν′
r ＋１

r２
， （６．５．３）

２Tθ
θ ＝２T矱

矱 ＝－１
２ ｅ

－λ ν″＋ν′
２ －ν′－λ′

r －ν′λ′
２ ， （６．５．４）

其中撇号表示对 r 求导．假设 ｑｕｉｎｔｅｓｓｅｎｃｅ 的能动张量满足线性叠加条件，则它的
能动张量的分量满足

T tt ＝T rr ＝ρq，
Tθ

θ ＝T矱
θ ＝－１

２ ρq（２w ＋１）， （６．５．５）
w 是 ｑｕｉｎｔｅｓｓｅｎｃｅ 的状态参量．令 λ＝－ｌｎ（１ ＋f），于是我们发现变量 f 满足

r２ f″＋３（w ＋１） rf′＋（３w ＋１） f ＝０． （６．５．６）
这是一个二阶微分方程，我们发现它的通解为

f ＝１ －rgr － c
r３w＋１ ， （６．５．７）

c 和 rg 是归一化常数．令 rg ＝２M，我们可得到被 Ｑｕｉｎｔｅｓｓｅｎｃｅ 包围的黑洞度规为
ｄs２ ＝ １ －２M

r － c
r３w＋１

ｄt２ － １ －２M
r － c

r３w＋１
－１ ｄr２ －r２ （ｄθ２ ＋ｓｉｎθ２ ｄ矱２ ），

（６．５．８）
M 是黑洞质量．这个度规形式上与 ｄｅ Ｓｉｔｔｅｒ／ａｎｔｉ桘ｄｅ Ｓｉｔｔｅｒ 度规相似．此外， 我
们发现大家熟知的 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 度规和 Ｒｅｉｓｓｎｅｒ桘Ｎｏｒｄｓｔｒ迸ｍ 度规是它的特例．
这也是自然的，因为 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 度规和 Ｒｅｉｓｓｎｅｒ桘Ｎｏｒｄｓｔｒ迸ｍ 度规分别描述真
空（能量为零）和电磁场包围黑洞的情况，而且真空和电磁场的能动张量也满
足线性叠加条件．

把度规代入无质量标量场的微扰方程，我们得到径向微扰方程中的有效势为
V ＝ １ －２M

r － c
r３w＋１

l（ l ＋１）
r２

＋２M
r３

＋c（３w ＋１）
r３w＋３

． （６．５．９）
显然，有效势与微扰场的角量子数 l和 ｑｕｉｎｔｅｓｓｅｎｃｅ 的状态参量 w 有关．图 ２８ 描绘
了固定 l＝５ 和 c＝０．００１ 后有效势随态参量 w 的变化关系．当 w 的绝对值增加时，
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势垒的峰值减小，且峰值的位置向右移动．

图 ２８　l＝５， c＝０．００１ 时， w 分别取 －１／３，
－０．９， －１ 时， ｑｕｉｎｔｅｓｓｅｎｃｅ包围的黑洞时
空中无质量标量场的有效势 V随变量 r的变化

从（６．５．９）式和图中也可以看出，标量场的准正规模依赖于归一化常数 c 和
ｑｕｉｎｔｅｓｓｅｎｃｅ 的态参量 w．然而，在这里我们只想研究 准正规模与态参量 w 的关系．
因此，这里我们令 M ＝１ 和 c＝０．００１．下面，我们将采用三阶 ＷＫＢ 近似来估算黑
洞时空（６．５．８）式中的标量场的准正规模．在三阶 ＷＫＢ 近似中，准正规模的频谱
公式为

ω２ ＝［V０ ＋（－２V″０ ） １ ／２Λ］ －ｉ n ＋１
２ （ －２V″０ ） １ ／２ （１ ＋Ω）， （６．５．１０）

其中

Λ＝ １
（－２V″０）１／２

１
８
V（４）０
V″０

１
４ ＋α２ －１

２８８
V碶０
V″０

２（７ ＋６０α２） ，　　（６．５．１１）

Ω＝ １
－２V″０

５
６９１２

V碶０
V″０ （７７ ＋１８８α２ ）

　 － １
３８４

V碶２
０V（４）

０
V″３０ （５１ ＋１００α２ ） ＋ １

２３０４
V（ ４）

０
V″０

２ （６７ ＋６８α２ ）

　 ＋ １
２８８

V碶０V（５）
０

V″２０ （１９ ＋２８α２ ） － １
２８８

V（ ６）
０
V″０ （５ ＋４α２ ） ， （６．５．１２）

α＝n ＋１
２ ，　V（ n）

０ ＝ｄnVｄrn倡 r倡 ＝r倡（ r p）

把有效势代入上述频谱公式，我们就可以得到 ｑｕｉｎｔｅｓｓｅｎｃｅ 包围的黑洞时空中的准
正规模频谱．数值计算表明，暗能量的出现使微扰场的衰减加快．
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声学黑洞的准正规模

１９８１ 年，Ｕｎｒｕｈ 提出了声学黑洞的概念并指出有可能在实验室观测到黑洞的
Ｈａｗｋｉｎｇ 辐射．他们假设有一种流体，它的流速沿流动方向不断的增加．那么在流
体的速度超过声速的地方就形成一个对声波的显视界．显视界里面的部分就可看
作声学黑洞．此后，人们应用一些不同的流体模型（如超流，凝聚态物质等等也构
造出了声学黑洞．

声学黑洞为人们在实验室研究黑洞的准正规模提供了一条可能的途径．因此，
近来有许多人 研究声学黑洞时空中的准正规模．下面我们采用三阶 ＷＫＢ 近似来
研究声学黑洞时空中耦合标量场的准正规模频谱．

首先，我们利用流体力学的有关知识来推导一般声学黑洞时空中耦合标量场
的微扰方程．根据流体力学，流体的连续性方程为

矪ρ
矪t ＋Δ· （ρv） ＋S ＝０ （６．５．１３）

Ｅｕｌｅｒ方程为
ρ 矪v

矪t ＋（ v·Δ） v ＝－Δp ＋F， （６．５．１４）
F 为作用在流体上的所有外力．S 表示流体由于有源或有漏以及不稳定的漂移对
流体密度的影响．它的形式与源或漏的具体形式有关．我们假设：（１） 外力 F ＝－
ρΔΦ， 这样我们可以忽略粘性的影响．（２）流体是局部无旋的，因而我们可引进速
度势 v＝－Δψ．（３）流体压强 p 是流体密度 ρ的函数．

令

h（p） ＝∫ρ

０
ｄp′（ρ′）
ρ′ｄρ′ｄρ′， （６．５．１５）

即

Δh ＝Δp（ρ）ρ ． （６．５．１６）
因此，Ｅｕｌｅｒ 方程可写为

矪ψ
矪t ＋h ＋１

２ （Δψ） ２ ＋Φ ＝０． （６．５．１７）
为了研究声波在流体中传播，我们将对连续性方程和 Ｅｕｌｅｒ 方程围绕某一背景做
一阶线性微扰．令 ρ ＝ρ０ ＋矯ρ１ ， p ＝p０ ＋矯p１ ， ψ＝ψ０ ＋矯ψ１．假设 S 的形式为 G（ v０ ）
ψ，且 Φ为常数．然后丢掉所有的二阶项和高阶项， 由连续性方程，我们有

矪ρ０
矪t ＋Δ· （ρ０ v０ ） ＋G（ v０ ）ψ０ ＝０， （６．５．１８）
矪ρ１
矪t ＋Δ· （ρ１ v０ ＋ρ０ v１ ） ＋G（ v０ ）ψ１ ＝０， （６．５．１９）
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把 h 线性展开 h（ p０ ＋矯p１ ） ～h（p０ ） ＋矯p１ ｄhｄp p ＝p０
＝h（p０ ） ＋矯p１ρ０

．因此，由 Ｅｕｌｅｒ方
程，我们有

矪ψ０
矪t ＋h０ ＋１

２ （Δψ０ ） ２ ＋Φ ＝０， （６．５．２０）
p１ ＝ρ０

矪ψ１
矪t ＋v０·Δψ１ ． （６．５．２１）

由于我们假设压强 p 是 ρ的函数，所以有
ρ１ ＝矪ρ

矪pp１ ＝矪ρ
矪pρ０

矪ψ１
矪t ＋v０ ·Δψ１ ． （６．５．２２）

把（６．５．２２）式代入（６．５．１８）式，我们得到
－矪

矪t
矪ρ
矪pρ０

矪ψ１
矪t ＋v０ ·Δψ１

＋Δ· ρ０Δψ１ －矪ρ
矪pp０ v０

矪ψ１
矪t ＋v０ ·Δψ１ －G（v０）ψ１ ＝０．（６．５．２３）

这个方程也可由弯曲时空中的 Ｋｌｅｉｎ桘Ｇｏｒｄｏｎ 方程
１
－g矪μ（ －ggμν矪ν）ψ－ cρ２

０
G（ v０ ）ψ＝０， （６．５．２４）

推导得到．其中度规 gμν
为

gμν ＝ １
ρ０ c

－１　　　 －υj０
－v i０　　（ c２ δi j －v i０ v j０） ， （６．５．２５）

其协变形式为

gμν ＝ρ０
c

－（ c２ －v２０ ）　　 －υj０
　 －v i０　　　　　δij ， （６．５．２６）

流体局部的声速 c －２ ＝矪ρ
矪p．假设 G（ v０ ） ＝ξρ２

０
c R， R 为度规（６．５．２６）的 Ｒｉｃｃｉ 曲率标

量，则声波在这种流体中的传播等价于耦合标量场在弯曲时空（６．５．２６）中的传播．
由上面的讨论可知，声学度规中时空的间隔为

ｄs２ ＝ρ０
c ［ －（c２ －v２０ ）ｄt２ －２v i０ ｄtｄx i ＋δijｄx iｄx j］． （６．５．２７）

在球坐标系里面，它的形式为
ｄs２ ＝－c２ ｄt２ ＋（ｄr －v０ ｄt） ２ ＋r２ （ｄθ２ ＋ｓｉｎ２ θｄφ２ ）． （６．５．２８）

做一个坐标变换

ｄτ＝ｄt － v０
c２ －v２０ ｄr， （６．５．２９）
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再假设 v０ ＝c r
２
０
r２ ，然后我们得到

ｄs２ ＝－c２ １ －r
４
０
r４
ｄτ２ ＋ １ －r

４
０
r４

－１

ｄr２ ＋r２ （ｄθ２ ＋ｓｉｎ２ θｄφ２ ），
（６．５．３０）

r０ 为归一化常数．这个度规与爱因斯坦引力理论中的标准球对称度规有明显的不
同．它描述的是一个声学黑洞．黑洞视界位于 r ＝r０ 的地方，Ｈａｗｋｉｎｇ 温度为 １／
（πr０ ）．这里我们取 c＝r０ ＝１．

把度规（６．５．３０）代入耦合标量场的 Ｋｌｅｉｎ桘Ｇｏｒｄｏｎ 方程：
１
－g矪μ（ －ggμν矪ν）Ψ－ξRΨ ＝０， （６．５．３１）

我们得到耦合标量微扰场的径向方程：
ｄ２矱（ r）
ｄr２倡 ＋（ω２ －V）矱（ r） ＝０， （６．５．３２）

其中 ξ为耦合因子，波函数 Ψ＝ｅ
－ｉωt矱（ r）
r ，有效势

V ＝ １ －１
r４

l（ l ＋１）
r２

＋４
r６

＋ξR ， （６．５．３３）
Ｒｉｃｃｉ曲率标量为

R ＝ ６
r６ ． （６．５．３４）

图 ２９　声学黑洞时空背景中耦合标量场
的有效势在 l＝２及ξ＝０， ３， ６时随变

量 r的变化关系
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由（６．５．３３）式可看出，有效势与角量子数 l 和耦合因子 ξ有关．图 ２９ 为 l ＝２
时的有效势与耦合因子 ξ的变化关系，当 ξ越大，势垒的峰值也就越高，但峰值所
对应的 r 的值 rp 却越小．

６．６　黑洞时空中的幂律拖尾
由于微扰场在渐近无限远处存在逆向散射，因此在黑洞时空中微扰场的晚期

演化行为表现为幂律拖尾的形式．并且影响这种幂律拖尾的因素与影响准正规模
的因素有很大的差异．以标量微扰场为例，它的准正规模与黑洞的旋转参数 a 有
关，而其幂律拖尾则与旋转参数 a 无关．为了弄清微扰场在黑洞时空中的演化行
为，人们对各类微扰场在各类黑洞时空中的幂律拖尾进行了探讨，并已取得了一系
列成果．在本节， 我们讨论两种研究幂律拖尾的主要方法（代数求根法和 Ｇｒｅｅｎ 函
数法）．
代数求根法

代数求根法是一种最直接的研究黑洞外部扰动物质场晚期拖尾的方法．它的
指导思想是先直接求出方程（６．４．１）的解，然后再讨论当 t→∞时其解的渐近
行为．

令 u ＝t－r倡 ， v＝t＋r倡 ，则方程（６．４．１）变形为
４ 矪２

矪v矪u ＋V l（ r） u l（u， v） ＝０． （６．６．１）
该方程的通解可以表示为延迟时间 u 和超前时间 v 的两个函数 F（ v）和 G（u）的
组合：

u l（u， v） ＝∑l
p ＝０
Apl r－p［G（ l－p） （u） ＋（ －１） pF（１ －p） （v）］

　 ＋∑∞
p ＝０
Bpl （ r）［G（ l－p－１） （u） ＋（－１） pF（ １ －p－１） （ v）］， （６．６．２）

其中 F（v）和 G（u）上标的正负具有不同的意义：正表示对函数求导的次数，负表示
对函数积分的重数．第一求和项表示起始的入射波，第二个求和项表示散射波．系
数 A l p 是无量纲常数，其值与平直时空时的值相同．而系数函数 B l p （ r）则与时空参
量有关．对其做泰勒展开，去掉高阶项，则可近似表示为

B pl （ r） ＝apl r－（ p＋２） ［１ ＋O（M／r）］， （６．６．３）
其中系数 a l p 正比于 M．可见在 M硳０ 时，B l p（ r）的值趋向于零．经过一系列冗长的
推导，我们最后得到，在类时无限远 i ＋处，当 M ＜＜r倡 ＜＜ t时，有
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u l（u， v） ＝－２k２ l＋１l F０ （p ＋２l）！t－（ p＋２ l＋１） r l＋１倡 ． （６．６．４）
其中 F０ 为一与时间无关的参量．如果微扰是在天体发生塌缩之后形成的，则参数
p 取 ２，因而微扰场晚期衰减的形式为 t －（２ l ＋２） ；若塌缩开始前天体外已经存在微扰
场（质量为 μ），那么参数 p 取 １，扰动场晚期衰减的形式为 t －（２ l ＋３） ，它较之前者迅
速．这说明微扰场的晚期拖尾与其初始条件有关．
格林函数法

代数求根法尽管非常直观，然而它具有很大的局限性．它只能有效地处理静态
时空中的微扰场的情况．对于稍微复杂一点的稳态时空（如 Ｋｅｒｒ黑洞时空）中的无
质量扰动物质场的情形，它就无能无力，最主要的原因是来自数学上的困难．因此，
人们希望找到一种更为有效的、适用范围广的方法来研究各类时空中的幂律拖尾
行为．

在 １９８６ 年，Ｌｅａｖｅｒ 提出了利用频谱分解技术的黑洞格林（Ｇｒｅｅｎ）函数法 ．该
方法不仅可以用于讨论黑洞的准正模，也可以用于研究扰动场的晚期幂律拖尾．
如图 ３０ 所示，Ｌｅａｖｅｒ 指出：黑洞的准正模源于复频面中 Ｇｒｅｅｎ 函数 珘G（ r倡 ， y， ω）的
奇点（图 ３０ 中用 ×表示出部分的奇点）；晚期幂律拖尾源于空间无限远处纯出射
波珘u l up中分支切割的存在（图中用沿ω虚负轴粗黑线表示），珘G（ r倡 ， y， ω）沿该分支
切割的积分将给出黑洞外部扰动场的晚期衰减行为．

图 ３０　微扰场在黑洞时空中演化的
复频面示意图

我们知道，波函数 u l（ r倡 ，t）随时间的演化如下：
u l（ r倡 ， t） ＝∫G（ r倡 ， y， t）矪tu l（y， ０）ｄy ＋∫矪tG（ r倡 ， y， t）u l（y， ０）ｄy，

（６．６．５）
其中 G（ r倡 ， y， t）为 Ｇｒｅｅｎ 函数，它满足
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矪２

矪r２倡 －矪２

矪t２ －V l（ r） G（ r倡 ， y， t） ＝δ（ t）δ（ r倡 －y）． （６．６．６）
根据因果关系，Ｇｒｅｅｎ 函数 G（ r倡 ，y，t）必须满足以下初始条件：即 t≤０ 时，G（ r倡 ，y，
t） ＝０．

在 Ｌｅａｖｅｒ 的格林函数法中，不是直接去计算波函数 u l （ r倡 ，t），而是通过研究
微扰场的传播函数———Ｇｒｅｅｎ 函数 G（ r倡 ，y，t）去探讨微扰场在黑洞时空中的晚期
演化．

为了求出 Ｇｒｅｅｎ 函数 G（ r倡 ，y，t），我们引入傅里叶变换
珘G（ r倡 ， y， ω） ＝∫＋∞

０ － G（ r倡 ， y， t）ｅ ｉωtｄt， （６．６．７）
及其逆变换为

G（ r倡 ， y， t） ＝ １
２π∫＋∞ ＋ｉc

－∞ ＋ｉc 珘G（ r倡 ， y， ω）ｅ－ｉωtｄω， （６．６．８）
c为某个正的常数．

显然傅里叶变换在 ω复平面的上半面是解析的，而且 Ｇｒｅｅｎ 函数 珘G（ r倡 ，y，ω）
满足方程

矪２

矪r２倡 ＋ω２ －V l（ r） 珘G（ r倡 ， y， ω） ＝δ（ r倡 －y）． （６．６．９）
设方程

ｄ２
ｄr２倡 ＋ω２ －V l（ r） u l（ r倡 ， ω） ＝０ （６．６．１０）

两个线性无关的解分别为 u l in（ r倡 ，ω）和 u l up（ r倡 ，ω）．为了构造 Ｇｒｅｅｎ 函数，我们要
求其中一个解 u l in（ r倡 ，ω）满足边界条件
　　　u l in（ r倡 ， ω） ～ ｅ－ｉωr倡　　　　　　　　　　　 r倡硳 －∞；

A out（ω）ｅ ｉωr倡 ＋A in（ω）ｅ－ｉωr倡 r倡硳 ＋∞． （６．６．１１）
即在事件视界处表现为纯入射波；另一个解 u l up （ r倡 ，ω）在空间无限远处表现为纯
出射波，即
　　　珘u l up（ r倡 ， ω） ～ Bout（ω）ｅ ｉωr倡 ＋B in（ω）ｅ－ｉωr倡，　 r倡硳 －∞；

ｅ＋ｉωr倡， r倡硳 ＋∞． （６．６．１２）
利用这两个解和朗斯基关系

W（ω） ≡ 珘u inl ｄ珘u
up
l

ｄr倡 －珘uupl ｄ珘u
in
l

ｄr倡 ＝２ｉωA in（ω）， （６．６．１３）
我们可以构造出黑洞 Ｇｒｅｅｎ 函数 珘G（ r倡 ，y，ω）：
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珘G（ r倡 ， y， ω） ＝－ １
２ｉωA in（ω）

珘u inl （ r倡 ， ω）珘uupl （y， ω）， 　r倡 ＜y；
珘u inl （y， ω）珘uupl （ r倡 ， ω）， 　r倡 ＞y．

（６．６．１４）
　　研究表明，黑洞外部扰动物质场的晚期拖尾源于复频率 Ｇｒｅｅｎ 函数中存在分
支切割，而且 珘G（ r倡 ，y，ω）沿该分支切割的积分（用 G c（ r倡 ，y，t）表示）将主宰这种晚
期渐近行为．此外由于在渐近无限远区只有低频才能被很小的时空曲率或电磁相
互作用逆向散射，因此我们可进一步确定微扰场的晚期拖尾又是由黑洞 Ｇｒｅｅｎ 函
数中的低频部分主导的．所以我们可以采用低频近似来处理微扰场的晚期拖尾
问题．

在 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞时空，我们可引入变量 珘u l ＝ １ －２M
r

－１ ／２φ，然后采用低
频近似，可得到无质量标量微扰场的径向方程

ｄ２
ｄr２ ＋ω２ ＋４Mω２

r －l（ l ＋１）
r２

φ＝０． （６．６．１５）
令 z＝－２ｉωr，可得到构造黑洞 Ｇｒｅｅｎ 函数所必需的两根（ r ＞＞２M）

珘u inl ＝A r
M

l＋１ ｅ ｉωrM（ l ＋１ －２ｉωM， ２l ＋２， －２ｉωr）， （６．６．１６）
珘uupl ＝B r

M
l＋１ ｅ ｉωrU（ l ＋１ －２ｉωM， ２l ＋２， －２ｉωr）， （６．６．１７）

其中 A 和 B 是正交归一化常数，M（a，b，z）和 U（a，b，z）是合流超几何方程的两个
根．由于 U（a，b，z）是一个多值函数， 因此 珘u l up存在分支切割，且分支切割对 Ｇｒｅｅｎ
函数中的贡献为

C c（ r倡 ， y， t） ＝ １
２π∫－ｉ∞

０ 珘u inl （y， ω） 珘uupl （ r倡 ， ωｅ２πｉ）
W（ωｅ２πｉ） －u

up
l （ r倡 ， ω）
W（ω）

　 ×ｅ－ｉωtｄω． （６．６．１８）
利用低频近似条件，我们有

W（ω） ＝（－１） －l－１ ｉAB （２l ＋１）！（２ω） ２ l－１

Γ（ l ＋１ －２ｉωM） ． （６．６．１９）
且

W（ωｅ２πｉ） ＝W（ω）， （６．６．２０）
W［珘uupl （ r倡 ， ω）， 珘uupl （ r倡 ， ωｅ２πｉ）］ ＝B２ （ －１） －l－１２π（２ω） －２ －１

Γ（－l －２ｉωM）Γ（ l ＋１ －２ｉωM）．
（６．６．２１）

此时，波函数也可近似表示为
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u inl ＝A（２l ＋１）！！（ωM） －l r
M J l（ωr）， （６．６．２２）

其中， （２l＋１）！！ ＝２ l l！；Jn（ z）为 Ｂｅｓｓｅｌ函数．最后我们得到 Ｇｒｅｅｎ 函数
G c（ r倡 ， y， t） ＝（－１） l＋１ （２l ＋２）！

［（２l ＋１）！！］ ２
４M（ r倡 y） l＋１
t２ l＋３

． （６．６．２３）
这一结果与 Ｐｒｉｃｅ 和 Ｃｈｉｎｇ 等用其他方法所得到的结果完全一致．
整体单极子黑洞时空中的幂律拖尾

下面我们以整体单极子黑洞时空中的耦合标量场为例，来探讨耦合因子 ξ对
幂律拖尾的影响．

我们先介绍一下什么是整体单极子黑洞时空．早期宇宙的相变会引起多种拓
扑缺陷．而缺陷的类型取决于真空流形的拓扑．当真空流形包含有不能连续收缩
成一个点的曲面时，则有单极子的形成．与基本粒子的形成相似， 单极子的形成也
是对称性破缺的结果．单极子的能量大部分集中在单极子核附近 的小区域内．大
统一理论预言宇宙早期有很多这样的单极子存在．后来人们采用暴胀理论才解决
宇宙中单极子问题．

当整体对称性破缺时，就会形成整体单极子．整体单极子周围 Ｇｏｌｄｓｔｏｎｅ 场具
有巨大的能量，能够产生很强的引力场．能够产生整体单极子的最简单的模型可用
下面的 Ｌａｇｒａｎｇｉａｎ 描述

L ＝ １
２ 矪μ矱a矪μ矱a －λ

４ （矱a矱a －η２ ） ２． （６．６．２４）
其中 矱a 为标量场．这个模型具有整体 O（３）对称性，但是它会自发地发生对称性
破缺，最终只具有 U（１）对称性．通过求解爱因斯坦场方程，得到一个描述整体单
极子黑洞的静态球对称度规

ｄs２ ＝－ １ －８πGη２
０ －２Gm

R ｄτ２

　 ＋ １ －８πGη２
０ －２Gm

R

－１

ｄR２ ＋R２ （ｄθ２ ＋ｓｉｎ２ θｄφ２ ）， （６．６．２５）
m 是黑洞的质量，η０ 为整体单极子形成时的对称性破缺标度．我们做一个坐标
变换

t ＝（１ －８πGη２
０ ） １２ τ，　r硳（１ －８πGη２

０） －１２ R， （６．６．２６）
然后对黑洞质量和对称性破缺标度进行重新标度

M ＝（１ －８πGη２
０ ） －３２ m，　b ＝（１ －８πGη２

０ ）， （６．６．２７）
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就可以把度规变为

ｄs２ ＝－ １ －２GM
r ｄt２ ＋ １ －２GM

r

－１

ｄr２ ＋br２ （ｄθ２ ＋ｓｉｎ２ θｄφ２ ）．
（６．６．２８）

这个度规依然是静态的球队称度规，它具有一个附加的亏损立体角 Δ＝４πb
＝３２πGη２

０．
在弯曲时空中质量为 μ的耦合标量场的 Ｋｌｅｉｎ桘Ｇｏｒｄｏｎ 方程为

１
－g矪μ（ －ggμν矪ν）矱－（μ２ ＋ξR）ψ＝０． （６．６．２９）

把度规（６．６．２８） 代入（６．６．２９）式中，我们有
ψ， tt －ψ，r倡r倡 ＋Vψ＝０， （６．６．３０）

其中有效势和 Ｒｉｃｃｉ曲率标量为
V ＝ １ －２M

r
l（ l ＋１）
br２

＋２M
r３

＋μ２ ＋ξR ， （６．６．３１）
和

R ＝２（ l －b）
br２ ． （６．６．３２）

由谱分解方法知，方程（６．６．３０）中标量场 Ψ（ r倡 ， t）随时间的演化方程为
Ψ（ r倡 ， t） ＝∫［G（ r倡 ， r′倡 ； t）矪tΨ（ r＇倡 ， ０） ＋矪tG（ r倡 ， r′倡 ； t）Ψ（ r′倡 ， ０）］ｄr′倡 ．

（６．６．３３）
G（ r倡 ，r′倡 ；t） 为延迟 Ｇｒｅｅｎ 函数，它的定义为

矪２

矪t２ － 矪２

矪t２倡 ＋V（ r） G（ r倡 ， r′倡 ； t） ＝δ（ t）δ（ r倡 －r′倡 ）． （６．６．３４）

由因果性条件，我们知道当 t＜０ 时，有 G（ r倡 ，r′倡 ；t） ＝０．对函数 G（ r倡 ，r′倡 ；t）进行
Ｆｏｕｒｉｅｒ 变换

珘G（ r倡 ， r′倡 ； ω） ＝∫∞

０ －G（ r倡 ， r′倡 ； t）ｅ ｉωtｄt． （６．６．３５）
在 ω的上半复平面， Ｆｏｕｒｉｅｒ变换是解析的．它的逆变换为

G（ r倡 ，r′倡 ； t） ＝ １
２π∫∞ ＋ｉc

－∞ ＋ｉc珘G（ r倡 ， r′倡 ； ω）ｅ－ｉωtｄω， （６．６．３６）
c 为某一正数．我们定义辅助函数 珟Ψ１（ r倡 ，ω）和 珟Ψ２ （ r倡 ，ω）为齐次方程

ｄ２
ｄr２倡 ＋ω２ －V［ r（x）］ 珟Ψi（ r倡 ， ω） ＝０， 　i ＝１，２， （６．６．３７）
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的两个线性无关的特解．利用 Ｗｒｏｎｓｋｉａｎ 关系式
W（ω） ＝W（珟Ψ１， 珟Ψ２ ） ＝珟Ψ１ 珟Ψ２，r倡 －珟Ψ２ 珟Ψ１， r倡， （６．６．３８）

可以构造出黑洞的 Ｇｒｅｅｎ 函数
珘G（ r倡 ， r′倡 ； ω） ＝－ １

W（ω）
珟Ψ１ （ r倡 ， ω）珟Ψ２ （ r′倡 ， ω），　r倡 ＜r′倡 ；
珟Ψ１ （ r倡 ， ω）珟Ψ２ （ r′倡 ， ω），　r倡 ＞r′倡 ．

（６．６．３９）
为了能够利用（６．６．３９）式计算出 Ｇｒｅｅｎ 函数 G（ r倡 ，r′倡 ；t），我们必须在 ω的下半
复平面沿一条闭合的积分围道对 珘G（ r倡 ，r′倡 ；ω） 进行积分．众所周知，函数 珟Ψ２ 在

ω的下半复平面存在一条分支切割线—负虚轴，且 珘G（ r倡 ，r′倡 ；ω）沿该分支切割线
的积分（用 GC（ r倡 ，r′倡 ；t）表示）将主导这种幂律拖尾行为．因此，我们下面的工作
主要着手于 GC（ r倡 ，r′倡 ； t）的计算．

首先考虑无质量耦合标量场在整体单极子黑洞时空中的幂律拖尾行为．我们
知道无质量微扰场的幂律拖尾行为取决于时空渐进无限远区的逆散射，而在渐进
无限远区只有低频部分才能被很小的时空曲率或电磁相互作用逆散射．因此， 对
Ｇｒｅｅｎ 函数的主导贡献来自低频部分．所以我们可以采用低频近似来研究微扰场
的幂律拖尾行为．按 M／r 的级数将方程（６．６．３７）展开并忽略 O M

r２ 项后得到

ｄ２
ｄr２ ＋ω２ ＋４Mω２

r －l（ l ＋１） ＋２ξ（１ －b）
br２

ζ（ r， ω） ＝０， （６．６．４０）

这里 ζ＝ １ －２Mr 珟Ψ．令

ζ＝rρ＋１２ ｅ－ z２ Φ（ z）， 　z ＝－２ｉωr，　ρ ＝l（ l ＋１） ＋２ξ（１ －b）
b ＋１

４ ，
（６．６．４１）

则方程（６．６．４０）变为复合超几何方程：
z ｄ

２Φ
ｄz２ ＋（１ ＋２ρ －z） ｄΦｄz － １

２ ＋ρ －２ｉMω Φ ＝０． （６．６．４２）
这个方程的两个用来构造黑洞 Ｇｒｅｅｎ 函数的解为

珟Ψ１ ＝Aｅ ｉωr r １２ ＋ρM １
２ ＋ρ －２ｉMω， １ ＋２ρ， －２ｉωr ， （６．６．４３）

珟Ψ２ ＝Bｅ ｉωr r １２ ＋ρU １
２ ＋ρ －２ｉMω， １ ＋２ρ， ２ωr ， （６．６．４４）

其中 A 和 B 为归一化常数．M（a， b， z）和 U（a， b，z）是复合超几何方程的两个解．
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因为 U（a， b， z）是一个多值函数，所以函数 珟Ψ２ 存在分支切割．根据（６．６．３６）式，
我们发现分支切割对 Ｇｒｅｅｎ 函数的贡献为
GC（ r倡 ， r′倡 ； t） ＝ １

２π∫－ｉ∞

０ 珟Ψ１ （ r′倡 ， ω） 珟Ψ２ （ r倡 ， ωｅ２πｉ）
W（ωｅ２πｉ） －珟Ψ２ （ r倡 ， ω）

W（ω） ×ｅ－ｉωtｄω
（６．６．４５）

应用关系式：
珟Ψ１ （ r倡 ， ωｅ２πｉ） ＝珟Ψ１ （ r倡 ， ω），
珟Ψ２ （ r倡 ， ωｅ２πｉ） ＝ ２πｉe－π（２ρ＋１） ｉ

Γ（２ρ ＋１）Γ １
２ －ρ －２ｉωM

珟Ψ１ （ r倡 ， ω）

　 ＋ｅ－２π（２ρ＋１） ｉ珟Ψ２ （ r倡 ， ω）， （６．６．４６）
我们有

W（ω） ＝AB（２ρ）！（ －ｉ） －（２ρ－２） （２ω） －２ρ

Γ １
２ ＋ρ －２ｉωM

， （６．６．４７）

和

W（ωｅ２πｉ） ＝ｅ－２πｉ（２ρ＋１）W（ω）． （６．６．４８）
在低频近似下，Ｇｒｅｅｎ 函数可近似为

GC（ r倡 ， r′倡 ； t） ＝∑∞
l

ｅπｉ（２ρ＋１）２２ρM ρ －１
２ ！ ２ （ －ｉ） ４ρ＋１

πA２ ［（２ρ ＋１）！］ ２

　 ×∫－ｉ∞

０ 珟Ψ１ （ r倡 ， ω）珟Ψ１ （ r′倡 ， ω）ω２ρ＋１ ｅ－ｉωtdω．（６．６．４９）
　　下面我们研究标量场在类光无穷远处 i ＋的幂律拖尾行为．正如前面所述，由
于对 Ｇｒｅｅｎ 函数的主导贡献来自微扰场的低频部分，因此，微扰场的这种晚期演化
行为也将取决于低频部分．因而对（６．６．４９）式的 积分的主要贡献应该来自 ｜ω｜＝
O（１／t）．在满足｜ω｜＝O（１／t）的条件下， 我们有

珟Ψ１ （ r倡 ， ω） ≈ Arρ＋１ ／２
倡 ，　珟Ψ１ （ r′倡 ， ω） ≈ Ar′ρ＋１ ／２

倡 ． （６．６．５０）
把（６．６．５０）式代入（６．６．４９）式，然后对其积分，我们发现描述标量场的幂律拖尾
的 Ｇｒｅｅｎ 函数 GC（ r倡 ，r′倡 ；t）为

CC（ r倡 ， r′倡 ； t） ＝∑∞
l

ｅπｉ（２ρ＋１）M ρ －１
２ ！ ２ （ －２ｉ） ２ρ（２ρ ＋１）！

ｉπ［（２ρ ＋１）！］ ２

　（ r′倡 ， r倡 ） ρ＋１２ t－２ρ－２ （６．６．５１）
因此，在整体单极子黑洞时空中，非最小耦合的无质量标量场的幂律拖尾不仅取决
于角量子数 l和对称破缺标度 η０ ，而且取决于标量场和引力场之间的耦合因子 ξ．
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此外，标量场和引力场之间的耦合使标量场衰减得更快．
像无质量的标量场一样，在研究有质量的标量场幂律拖尾的时候，我们也只考

虑 Ｇｒｅｅｎ 函数 GC（ r倡 ，r′倡 ； t）．但此时， 对 Ｇｒｅｅｎ 函数 GC（ r倡 ，r′倡 ；t）的贡献来自对
珟Ψ２ 的积分区间为 －μ≤ω≤μ的分支切割，而不是整个负虚轴．假设观察者和初始
的微扰源离黑洞都很远，即有 r＞＞M，则方程（６．６．３７）就可以展开为一个 M／r 的
级数，忽略高阶项 O M

r

２

后，有

ｄ２
ｄr２ ＋ω２ －μ２ ＋４Mω２ －２Mμ２

r －l（ l ＋１） ＋２ξ（１ －b）
br２

ζ（ r， ω） ＝０，
（６．６．５２）

其中 ζ等于 １ －２Mr 珟Ψ．令
z ＝２ μ２ －ω２ r ＝２ ωr， 　　　ζ＝zρ＋１２ ｅ－z２ Φ（ z），
λ＝Mμ２

ω －２M ω， 　　ρ l（ l ＋１） ＋２ξ（１ －b）
b ＋１

４ ， （６．６．５３）
则方程（６．６．５２）可以化为复合超几何方程

z ｄ
２Φ
ｄz２ ＋（１ ＋２ρ －z） ｄΦｄz － １

２ ＋ρ －λ Φ ＝０． （６．６．５４）
当条件｜ω｜＜＜μ得到满足时，复合超几何方程的用来构造 Ｇｒｅｅｎ 函数的两个解为

珟Ψ１ ＝A′Mλ， ρ（２ ωr） ＝A′ｅ－ωr（２ ωr） １２ ＋ρM １
２ ＋ρ －λ， １ ＋２ρ， ２ ωr ，

（６．６．５５）
珟Ψ２ ＝B′Wλ， ρ（２ ωr） ＝B′ｅ－ωr（２ ωr） １２ ＋ρU １

２ ＋ρ －λ， １ ＋２ρ， ２ ωr ，
（６．６．５６）

A′和 B′为归一化常数．利用（６．６．３６）式，我们发现分支切割对 Ｇｒｅｅｎ 函数的贡
献为

GC（ r倡 ， r′倡 ； t） ＝ １
２π∫μ

－μ
珟Ψ１ （ r′倡 ， ωｅ ｉπ）珟Ψ２ （ r倡 ， ωｅ ｉπ）

W（ωｅ ｉπ）
　 －珟Ψ１（ r′倡 ， ω）珟Ψ２ （ r倡 ， ω）

W（ω） ｅ－ｉωtｄω

＝ １
２π∫μ

－μF（ω）ｅ－ｉωtｄω． （６．６．５７）
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应用关系式

Wλ， ρ（２ ωr） ＝ Γ（ －２ρ）
Γ １

２ －ρ －λ
Mλ， ρ（２ ωr） ＋ Γ（２ρ）

Γ １
２ ＋ρ －λ

Mλ， －ρ（２ ωr）

（６．６．５８）
Mλ，ρ（ｅ ｉπ２ ωr） ＝ｅ １２ ＋ρ ｉπM－λ， ρ（２ ωr）， （６．６．５９）

我们发现有

W（ωe iπ） ＝－W（ω） ＝A′B′ Γ（２ρ）
Γ １

２ ＋ρ －λ
４ρ ω， （６．６．６０）

和

F（ω） ＝ １
４ρ ω［Mλ， ρ（２ ωr′倡 ）Mλ， －ρ（２ ωr倡 ） －M－λ， ρ（２ ωr′倡 ）M－λ， －ρ（２ ωr倡 ）］

　 ＋ １
４ρ ω

Γ（－２ρ）Γ １
２ ＋ρ －λ

Γ（２ρ）Γ １
２ －ρ －λ

［Mλ， ρ（２ ωr′倡 ）Mλ， ρ（２ ωr′倡 ）

　 －ｅ（２ρ＋１） ｉπM－λ， ρ（２ ωr′倡 ）M－λ， ρ（２ ωr倡 ）］． （６．６．６１）
成立．

下面，我们讨论整体单极子黑洞时空中有质量的耦合标量场的两种幂律拖尾
行为：中晚期拖尾和极晚期拖尾．

中晚期拖尾行为出现在区间 M ＜＜ r ＜＜ t ＜＜M／（μM） ２
内．在该时间区域内，

频率w ＝O（ μ／t）的范围暗示λ＜＜１．而λ来源于有质量标量场波动方程中的 １／
r，因此，它描述在渐进无限远区时空曲率的逆散射效应．因为 λ＜＜１，所以渐进无
限远区时空曲率的逆散射效应在研究中晚期拖尾行为时可以忽略不计．因此，我
们有

F（ω） ≈ １ ＋ｅ（２ρ＋１） ｉπ
４ρ ω

Γ（ －２ρ）Γ １
２ ＋ρ

Γ（２ρ）Γ １
２ －ρ

M０， ρ（２ ωr′倡 ）M０， ρ（２ ωr倡 ）．

（６．６．６２）
为了计算有质量标量场在某一固定远处（ r′倡 ，r倡 ＜＜ t）的中晚期拖尾行为， 我们应
用条件 珚ωr ＜＜１ 和函数 M（ a，b，z）在 z 趋向于零时约等于 １ 的性质．注意到方程
（６．６．６２）可近似为

F（ω） ≈ １ ＋ｅ（２ρ＋１） ｉπ
４ρ２ －２ρ－１

Γ（ －２ρ）Γ １
２ ＋ρ

Γ（２ρ）Γ １
２ －ρ

（ r′倡 r倡 ） １２ ＋ρ ω２ρ． （６．６．６３）
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因此，在 t＞＞μ－１
的极限下，Ｇｒｅｅｎ 函数 GC（ r倡 ，r′倡 ；t）可化为

GC（ r倡 ， r′倡 ；t） ＝（１ ＋ｅ（ ２ρ＋１ ） ｉπ）
πρ２ －３ρ－２

Γ（ －２ρ）Γ １
２ ＋ρ Γ（１ ＋ρ）μρ

Γ（２ρ）Γ １
２ －ρ

　（ r′倡 r倡 ） １２ ＋ρ t－ρ－１ ｃｏｓ μt －π（ρ ＋１）
２ ． （６．６．６４）

因此，整体单极子时空中有质量耦合标量场的中晚期拖尾行为由振荡负幂律拖尾
t －ρ －１ ｃｏｓ μt－π（ρ＋１）

２ 主导．与无质量耦合标量场在类光无穷远处的晚期拖尾
行为一样，中晚期拖尾行为同样依赖于标量场的角量子数和对称破缺标度，而且还
依赖于标量场与引力场之间的耦合．耦合标量场比最小耦合标量场衰减得快．此
外，耦合标量场的衰减随耦合因子 ξ的增加而变快．

有质量标量场的极晚期的幂律拖尾，它的激励机制与中晚期拖尾行为是不同
的．因为在 极晚期 μ＞＞１／（μM） ２ ，渐进无限远区的时空曲率的逆散射效应不能再
忽略不计，此时这种时空曲率的逆散射效应将对极晚期的幂律拖尾起十分重要的
作用．由此我们可以预计到 极晚期的幂律拖尾将呈现出另一种衰减形式．此时 λ
＞＞１，所以有

M±λ， ±ρ（２ ωr） ≈ Γ（１ ±２ρ）（２ ωr） １２ （ ±λ） ±ρJ±２ρ（ ±αr）， （６．６．６５）
这里我们令 α＝８λw．因此方程（６．６．６１）可化为

f（ω） ＝
Γ（１ ＋２ρ） ２Γ（－２ρ）Γ １

２ ＋ρ －λ r′倡 r倡
２ρΓ（２ρ）Γ １

２ －ρ －λ
　λ－２ρ［J２ρ（ ±αr′倡 ）J２ρ（ ±αr倡 ）
　 ＋I２ρ（ ±αr′倡 ） I２ρ（ ±αr倡 ）］ ＋Γ（１ ＋２ρ）Γ（１ －２ρ） r′倡 r倡

２ρ
　［ J２ρ（ ±αr′倡 ）J－２ρ（ ±αr倡 ） －I２ρ（ ±αr′倡 ） I２ρ（ ±αr倡 ）］，　　　　

（６．６．６６）
I ±２ρ是所谓的修正 Ｂｅｓｓｅｌ函数．由于α＝８λw≈８Mμ２

独立于ω，因此由第二项引起
的晚期拖尾的形式将为 t －１．在取极限 μt→∞ 及｜ω｜→μ时，我们来讨论由第一项
引起的幂律拖尾行为．为了表述方便，我们令

L ＝Γ（１ ＋２ρ） ２Γ（－２ρ） r′倡 r倡
２ρΓ（２ρ）
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　 ×［J２ρ（ ±αr′倡 ）J２ρ（ ±αr倡 ） ＋I２ρ（ ±αr′倡 ） I２ρ（ ±αr倡 ）］．　　　
（６．６．６７）

由于 λ＞＞１，（６．６．６６）式中第一项对 Ｇｒｅｅｎ 函数 GC１ （ r倡 ，r′倡 ； t）的贡献可近似为
GC１ （ r倡 ， r′倡 ； t） ＝ L

２π∫μ

－μ
１ ＋（－１） ２ρｅ－ｉ２πλ

１ ＋（－１） ２ρｅ ｉ２πλ ｅ ｉ（２πλ－ωt） ｄω． （６．６．６８）
应用鞍点积分法，我们发现由第一项引起的幂律拖尾行为所具有的形式为 ～ t －５ ／６

ｓｉｎμt，它把源自第二项引起的幂律拖尾行为淹没了．因此，整体单极子黑洞时空中
的有质量的耦合标量场的极晚期幂律拖尾的形式为 t －５ ／６ ｓｉｎμt．这与最小耦合标量
场的极晚期幂律拖尾完全一致．最近的研究表明这可能是标量场在渐进平直时空
中幂律拖尾的一个普适的性质．当 b ＝１ 时，我们的结果与 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 时空的一
致．因为在 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 时空，由于 Ｒｉｃｃｉ 曲率标量为零，从而使耦合项不能起作
用．当 b＝０ 时，由于背景时空不能用 Ｂａｒｒｉｏｌａ桘Ｖｉｌｅｎｋｉｎ 度规（６．６．２５）来描述，所以，
此时微扰场的晚期幂律拖尾行为还有待进一步的研究．

６畅７　暗物质和暗能量
宇宙动力学方程和临界密度

宇宙学原理告诉我们，在宇宙学尺度上宇宙是均匀各向同性的．其 ４ 维时空为
Ｒｏｂｅｒｔｓｏｎ唱Ｗａｌｋｅｒ 度规所描述：

　　ｄs２ ＝ｄt２ －a２ （ t）（ ｄr
２

１ －kr２ ＋r
２ ｄθ２ ＋r２ ｓｉｎ２ θｄφ２ ） （６畅７畅１）

式中 a（ t）为宇宙标度因子，k 为一常数．适当选择 r 的单位，可以使 k ＝＋１，０， －１，
分别对应于正曲率空间、零曲率空间和负曲率空间，即分别对应于闭合的、平直的
和开放的宇宙．

宇宙物质的能量动量张量通常写成理想流体的形式：
Tμν ＝（ρ ＋p）UμUν ＋pgμν， （６畅７畅２）

式中 ρ和 p分别为宇宙物质密度和压强，Uμ为 ４ 维速度：

U０ ＝１， （６畅７畅３）
U i ＝０． （６畅７畅４）

　　守恒定律表述为
Tμν；ν ＝０． （６畅７畅５）

当 μ＝i，（６．７．５）式显然成立；当 μ＝０，（６．７．５）式成为
ｄ［a３ （ρ ＋p）］ ＝a３ ｄp， （６畅７畅６）
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或者

ｄ（ρa３ ） ＝－pｄ（a３ ）． （６畅７畅７）
对于最简单的状态方程

p ＝wρ， （６畅７畅８）
能量密度和宇宙标度因子的关系是

ρ ～a－３（１ ＋w） （６畅７畅９）
对于辐射、物质和真空分别有

辐射 　p ＝ １
３ ρ，　　ρ ～a－１ ； （６．７．１０）

物质 　p ＝０，　　ρ ～a－３ ； （６畅７畅１１）
真空 　p ＝－ρ，　　ρ ＝常数．

　　由 Ｒｏｂｅｒｔｓｏｎ唱Ｗａｌｋｅｒ 度规出发，根据广义相对论，我们可以得到 Ｒｉｃｃｉ 张量的
非零分量

R００ ＝－３ a··a R ij ＝－（ a··a ＋２ a·
２

a２ ＋２ ka２ ）g ij （６．７．１２）
Ｒｉｃｃｉ标量为

R ＝－６ a··
a ＋a· ２

a２
＋ k
a２

（６．７．１３）
爱因斯坦场方程

Rμν －１
２ gμνR ＝８πGTμν （６畅７畅１４）

的 ０桘０ 分量就是弗里德曼（Ｆｒｉｅｄｍａｎｎ）方程
a· ２

a２
＋ k
a２

＝８πGρ
３ ， （６畅７畅１５）

场方程的 i桘i分量是
２ a··a ＋a·

２

a２ ＋ ka２ ＝－８πGρ． （６畅７畅１６）
方程（６畅７畅７），（６畅７畅１５），（６畅７畅１６）由 Ｂｉａｎｃｈｉ恒等式相联系，这三个方程中只有两
个是独立的，由（６畅７畅１５）和（６畅７畅１６）式可以得到一个能直观表示宇宙膨胀加速度
的方程

a··
a ＝－４πG

３ （ρ ＋３p）． （６畅７畅１７）
我们知道现在宇宙在加速膨胀，即 a· · ＞０，这就要求 ρ ＋３p ＜０，从而我们知道，宇宙
加速膨胀的条件是物态方程参数 w＜－１／３．

宇宙膨胀的速度由哈勃常数描述，它是这样定义的：

·５３２·６畅７　暗物质和暗能量



H ≡ a·
a （６畅７畅１８）

哈勃常数其实并非常数，而是随时间变化的．哈勃常数 H０ 是哈勃常数的当前值．
弗里德曼方程可以写成下面的形式：

k
H２ a２

＝ ρ
ρc －１ （６畅７畅１９）

ρc ≡ ３H２

８πG （６畅７畅２０）
由（６畅７畅１９）式可见，宇宙空间的曲率完全决定于密度．若密度大于临界密度 ρc，则
k 是正的，宇宙空间是弯曲且有限的；若密度小于 ρc，则 k 是负的，宇宙空间是弯曲
且无限的；若密度等于 ρc，k等于零，宇宙空间是平直的、无限的．

我们定义一个量纲为一的密度参数：
Ω＝ ρ

ρc ， （６畅７畅２１）
则弗里德量方程可写为

k
H２ a２

＝Ω－１ （６畅７畅２２）
显然，Ω＞１， Ω＝１ 和 Ω＜１ 分别对应于 k＞０， k＝０ 和 k＜０．
暗物质

１９３７ 年，弗里兹· 札维奇（Ｆｒｉｔｚ Ｚｗｉｃｋｙ）发现大星系团中的星系具有极高的运
动速度．要束缚住这些星系，星系团的实际质量应该是观测到的恒量总质量的 １００
多倍．即有大量的暗物质存在．为了简化，下面我们用牛顿引力理论讨论旋涡星系
的质量计算．假定星系质量分布是球对称的，设半径为 r 的球面以内的质量为 M
（ r），则距中心 r 处的恒量的轨道速率为

v（ r） ＝ GM（ r）
r （６畅７畅２３）

　　随着距离球心的距离 r 的增大， 发光物质变得很稀少了，这时应该可以认为
M 近于一个常量，速度 v就应该随半径 r －１２ 下降．然而实际的观测与此恰恰相反，
转动曲线在距星系中心很远处并不下降，而是维持一个恒定的速度（图 ３１）．据此
我们可以推知，一定有我们所看不见的暗物质晕在贡献其引力，维持旋转速度．

根据天文观测数据，经过简单的计算得到，发光物质对密度参数的现在值 Ω０
的贡献

ΩOL ≈ ０畅５％ （６畅７畅２４）
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图 ３１　七个漩涡星系的旋转曲线，它们在距离星系中心很
远的地方依然维持恒定的速度，说明星系被一个巨大的暗物质

晕所包围

　　人们用类似的牛顿动力学方法，对星系团进行观测，假定维里定理成立，应用
式（６畅７畅２３），得到星系团对Ω０ 的贡献为

１０％ ＜ΩOG ＜３０％ （６畅７畅２５）
（６．７．２５）式与（６畅７畅２４）式比较，表明星系团中除发光物质以外还有大量暗物质．

２０ 世纪 ８０ 年代提出的宇宙暴胀理论认为Ω０≈１．后来的测量和计算都支持这
一结论，宇宙暴胀理论已得到公认．（６畅７畅２５）式表明星系团中的发光物质和暗物
质的总和对 Ω０ 的贡献也只有 ２０％左右，与 Ω０≈１ 比较，人们认为除了星系团之类
的成团物质之外，还有 ８０％的物质不成团，甚至均匀分布于宇宙中．这问题我们在
下面一小节再继续讨论．

正是暗物质促成了宇宙结构的形成．如果没有暗物质就不会形成星系、恒星和
行星，也就更谈不上今天的人类了．宇宙尽管在大尺度上表现出均匀和各向同性，
但是在小一些的尺度上则存在着恒星、星系、星系团、巨洞以及星系长城．在大尺度
上主宰物质运动的力只有引力．但是均匀分布的物质不会产生引力，因此今天所有
的宇宙结构必然源自于宇宙极早期物质分布的微小涨落，这些涨落会在宇宙微波
背景辐射（ＣＭＢ）中留下痕迹．然而普通物质不可能通过其自身的涨落形成实质上
的结构而又不在宇宙微波背景辐射中留下痕迹，因为在宇宙极早期普通物质还没
有从辐射中退耦出来．而暗物质不与辐射耦合，其微小的涨落在普通物质退耦之前
就放大了许多倍．在普通物质退耦之后，已经成团的暗物质就开始吸引普通物质，
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进而形成了我们现在观测到的结构．这一初始涨落的振幅非常非常地小．这样的物
质就是冷暗物质，它是无热（低速）运动的非相对论性粒子，因此称为冷暗物质．

对于先前提到的小扰动（涨落），为了预言其在不同波长上的引力效应，小扰
动谱必须具有特殊的形态．为此，最初的密度涨落应该是标度无关的．也就是说，如
果我们把能量分布分解成一系列不同波长的正弦波之和，那么所有正弦波的振幅
都应该是相同的．暴涨理论的成功之处就在于它提供了很好的动力学机制来形成
这样一个标度无关的小扰动谱（其谱指数 n ＝１）．ＷＭＡＰ 的观测结果证实了这一预
言，其观测到的结果为 n ＝０．９９ ±０畅０４．

现在已经知道了两种暗物质———中微子和黑洞．但是它们对暗物质总量的贡
献是非常微小的．最被看好的暗物质是低温无碰撞暗物质（ＣＣＤＭ），其粒子具有寿
命长、温度低、无碰撞的特性．寿命长意味着它的寿命必须与现今宇宙年龄相当，甚
至更长．温度低意味着在退耦时它们是非相对论性粒子，只有这样它们才能在引力
作用下迅速成团．由于成团过程发生在比哈勃视界（宇宙年龄与光速的乘积）小的
范围内，而且这一视界相对现在的宇宙而言非常的小，因此最先形成的暗物质团块
或者暗物质晕比银河系的尺度要小得多，质量也要小得多．随着宇宙的膨胀和哈勃
视界的增大，这些最先形成的小暗物质晕会合并形成较大尺度的结构，而这些较大
尺度的结构之后又会合并形成更大尺度的结构．其结果就是形成不同体积和质量
的结构体系，这是与观测相一致的．相反的，对于相对论性粒子，例如中微子，在物
质引力成团的时期由于其运动速度过快而无法形成我们观测到的结构．因此中微
子对暗物质质量密度的贡献是可以忽略的．在太阳中微子实验中对中微子质量的
测量结果也支持了这一点．无碰撞指的是暗物质粒子（与暗物质和普通物质）的相
互作用截面在暗物质晕中小的可以忽略不计．这些粒子仅仅依靠引力来束缚住对
方，并且在暗物质晕中以一个较宽的轨道偏心率谱无阻碍地作轨道运动．

低温无碰撞暗物质（ＣＣＤＭ）被看好有几方面的原因．第一，ＣＣＤＭ 的结构形成
数值模拟结果与观测相一致．第二，作为一个特殊的亚类，弱相互作用大质量粒子
（ＷＩＭＰ）可以很好地解释其在宇宙中的丰度．如果粒子间相互作用很弱，那么在宇
宙最初的万亿分之一秒它们是处于热平衡的．之后，由于湮灭它们开始脱离平衡．
根据其相互作用截面估计，这些物质的能量密度大约占了宇宙总能量密度的 ２０％
～３０％．这与观测相符．
暗能量

自从 １９２９ 年哈勃发现宇宙膨胀以来，人们一直以为宇宙是减速膨胀的．因为
主宰宇宙物质运动的力是引力，在引力作用下膨胀只能减速．如同地面上一个坚直
上抛的物体，在重力作用下只能减速．然而 １９９７ 年 １２ 月，作为大红移超新星搜索
小组成员的哈佛大学天文学家 Ｒ畅基尔希纳的观测结果显示，宇宙膨胀不是减速
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而是在加速．１９９８ 年，Ｓ畅玻尔穆特和 Ｂ畅史密特两个小组利用 Ｉａ 型超新星作标准
烛光，精确测量距离－红移关系，发现宇宙在加速膨胀．这一事实告诉我们，宇宙中
除了普通物质之外，还有一种一直未被人们发现的能量，这种能量会产生斥力，从
而推动宇宙加速膨胀．芝加哥大学的 Ｍ畅特纳给这种能量起了个名字，叫暗能量．
后来更多的天文观测，如新的超新星探测，斯隆数字巡天得到的宇宙大尺度结构，
威尔金森宇宙微波背景辐射各向异性探测器 ＷＭＡＰ（Ｗｉｌｋｉｎｓｏｎ ｍｉｃｒｏｗａｖｅ ａｎｉｓｏｔｒｏ唱
ｐｅ ｐｒｏｂｅ）的观测，都证实了暗能量的存在，并且使它成为了标准宇宙模型的一
部分．

因为观测到宇宙微波背景辐射的各向异性和黑体谱，进一步支持了标准宇宙
模型，获得了 ２００６ 年诺贝尔物理学奖．

暗能量是一种不可见的具大的能量，在宇宙总物质中约占 ７３％，足以主宰宇
宙的运动．它与普通物质和暗物质都有本质的不同，它产生负压强而且均匀分布于
宇宙中．普通物质和暗物质的压强都是非负的．

暗能量是近年来宇宙学研究中一个具有里程碑意义的重大成果．支持暗能量
主要证据有二：一是观测发现宇宙在加速膨胀．按照爱因斯坦场方程（６畅７畅１７），加
速膨胀要求 p／ρ ＜０，导致具有负压强的暗能量．二是由 ＷＭＡＰ 给出的宇宙中物质
总密度的精确测定结果：普通物质和暗物质加起来只占 ２７％，仍有 ７３％的短缺．这
一短缺的物质就是暗能量．

由于 ＷＭＡＰ的精密数据和超新量 Ｉａ 的观测数据，人们确认以下观测结果：
（１） 宇宙总密度参数 Ω０ ＝１．０２ ±０畅０２，即宇宙几近平直．
（２） 宇宙年令是 １３７ ±２ 亿年．
（３） 哈勃常数 H０≈０畅７１ ±０畅０１ ｋｍ／ｓ／Ｍｐｃ．
（４） 宇宙总质量（１００％）≈重子 ＋轻子（４畅４％） ＋热暗物质（≤２％） ＋冷暗物

质（≈２０％） ＋暗能量（７３％）．
暗能量的一个很重要的参数，就是它的物态方程参数 w，由（６畅７畅１７）式可知，

只有当 p＋３p＜０ 时，才会得到加速膨胀，即 a· · ＞０，此时对于特态方程 p ＝wρ，其参
数 w ＜－１／３．因而各种暗能量模型都必须满足 w ＜－１／３ 的条件，同时由观测确定
的 w 的值又成为检验各种暗能量模型的标准．例如利用 ＷＭＡＰ 和 ＳＮＬＳ（ ｓｕｐｅｒｎｏｖａ
ｌｅｇａｃｙ ｓｕｒｖｅｙ）可以给暗能量的物态方程参数一个很强的限制：w ＝－０．９６７ ＋０．０７３

－０．０７２．
一些主要的暗能量候选者有：

1畅宇宙学常数
爱因斯坦根据广义相对论构建第一个宇宙模型时，人们尚不知道宇宙膨胀这

一事实，因而爱因斯坦引入了宇宙学常数， 试图构建一个静态的宇宙模型．引入宇宙
学常数后，场方程变为如下形式：
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Rμν －１
２ gμνR －Λgμν ＝８πGTμν

将 Λgμν项移到方程的右边，可以看出，宇宙学常数其实提供了一个等效的能量桘动
量张量．它的能量密度和压强分别是

p c ＝ Λ
８πG （６畅７畅２６）

p c ＝－ Λ
８πG （６畅７畅２７）

　　由此可知，相应的物态方程参数 w ＝－１．实际上用宇宙常数构造的静态宇宙
是不稳定的，只要变大一点就会导致斥力增大和引力减小，从而使膨胀加速．这恰
好符合现在观测到的宇宙加速膨胀的事实．

然而，用宇宙学常数解释宇宙的加速膨胀尚有两个疑难问题．第一个问题是宇
宙常数问题，第二个问题称为巧合（ ｃｏｉｎｃｉｄｅｎｃｅ）问题．由量子场论可以计算真空
能，所得到的形式与宇宙学常数给出的能量－动量张量相同，因此可以把两者作为
等效的宇宙学常数或等效真空能处理．但是由 ＷＭＡＰ给出的等效真空能为

pobsc ＝１０ －４７GeV４ （６畅７畅２８）
理论预言值为

p thc ＝１０７４GeV４ （６畅７畅２９）
两者相差上百个数量级．

所谓巧合问题，是指的今天的物质密度与真空能密度恰好处在同一个量级．由
于两者随宇宙膨胀的演化规律不同，所以需要在极早期对宇宙的初始条件进行精
细的微调（ ｆｉｎｅ唱ｔｕｎｉｎｇ）．
2畅Quintessence

Ｑｕｉｎｔｅｓｓｅｎｃｅ 是通过引入一个标量场来构造的暗能量模型．它的拉氏量为
L ＝ －g １

２ 矪μ矱矪μ矱－V（矱） ， （６畅７畅３０）
式中 V（矱）是势．度规取平直的 Ｒ桘Ｗ 度规．由拉氏量变分就可得到 Ｑｕｉｎｔｅｓｓｅｎｃｅ 的
运动方程：

矱·· ＋３H 矱· ＋V′（矱） ＝０ （６畅７畅３１）
上面的撇号表示对 矱求导．由理想流体的能量－动量张量形式，得到 Ｑｕｉｎｔｅｓｓｅｎｃｅ
的能量密度和压强分别是

ρQ ＝ １
２ 矱· ２ ＋V （６畅７畅３２）

pQ ＝ １
２ 矱· ２ －V （６畅７畅３３）
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由此我们可以得到它的物态方程参数

w ＝
１
２ 矱· ２ －V
１
２ 矱· ２ ＋V

（６畅７畅３４）

势函数 V（矱）取不同形式，则 w 可在 ０ 到 －１ 之间变化．并且一般来说，w 不再是一
个常数，而是变化的．作为一个动力学模型，Ｑｕｉｎｔｅｓｓｅｎｃｅ 可以解决巧合问题．这是
一个几被公认的候选者，可意为继夸克、轻子、中间破色子和非重子暗物质之后的
第五原质．

除了 Ｑｕｉｎｔｅｓｓｅｎｃｅ 以外，还有一些不同的暗能量候选者，下面介绍两种．
3畅Phantom

Ｑｕｉｎｔｅｓｓｅｎｃｅ 虽然能够实现 w ＜－１／３．从而解释宇宙加速膨胀，但是实测表
明，w 也很有可能是小于 －１ 的．因此 Ｃａｉｄｗｅｌｌ 于 ２００２ 年提出 Ｐｈａｎｔｏｍ．Ｐｈａｎｔｏｍ 也
引入了一个标量场，但与 Ｑｕｉｎｔｅｓｓｅｎｃｅ 不同的是，它的动能项是负的．Ｐｈａｎｔｏｍ 的拉
氏量是：

L ＝ －g －１
２ 矪μ矱矪μ矱－V（矱） （６畅７畅３５）

它的能量密度和压强分别是

ρQ ＝－１
２ 矱· ２ ＋V （６畅７畅３６）

pQ ＝－１
２ 矱· ２ －V （６畅７畅３７）

因而它的物态方程参数为

w ＝
－１

２ 矱· ２ －V
－１

２ 矱· ２ ＋V
（６畅７畅３８）

很明显地，与 Ｑｕｉｎｔｅｓｓｅｎｃｅ 相比， Ｐｈａｎｔｏｍ 可以实现 w ＜－１．由于w ＜－１， Ｐｈａｎｔｏｍ
具有很有趣的性质，例如 Ｐｈａｎｔｏｍ 的能量密度是随着宇宙膨胀而增加的．还有一种
新的宇宙结局的可能性“Ｂｉｇ Ｒｉｐ”．哈勃膨胀只是星系退行，作为引力束缚体的星
系本身是并不膨胀的．然而 Ｐｈａｎｔｏｍ 导致的“Ｂｉｇ Ｒｉｐ”却可以将星系、恒星、行星等
引力束缚体全部撕裂．
4畅Quintom

Ｑｕｉｎｔｅｓｓｅｎｃｅ 和 Ｐｈａｎｔｏｍ 虽然可以分别实现 w ＞－１ 和 w ＜－１，但是却不能实
现 w 穿越 －１．为了解决这个问题 Ｑｕｉｎｔｏｍ 被提了出来．

·１４２·６畅７　暗物质和暗能量



Ｑｕｉｎｔｏｍ 实际是由 Ｑｕｉｎｔｅｓｓｅｎｃｅ 和 Ｐｈａｎｔｏｍ 两场构成的．它的拉氏量是
L ＝ －g －１

２ 矪μ矱１ 矪μ矱１ ＋１
２ 矪μ矱２ 矪μ矱２ －V（矱１ ，矱２ ） ， （６畅７畅３９）

它的物态方程参数：

w ＝
－１

２ 矱· ２
１ ＋１

２ 矱· ２
２ －V（矱１ ，矱２ ）

－１
２ 矱· ２

１ ＋１
２ 矱· ２

２ ＋V（矱１ ，矱２ ）
（６畅７畅４０）

可见 Ｑｕｉｎｔｏｍ 可以实现物态方程参数 w 穿过 －１．

６畅８　ＲＮΛ黑洞的量子化
引力场的正则量子化方法首先由 Ａｒｎｏｗｉｔｔｔ， Ｄｅｓｅｒ 和 Ｍｉｓｎｅｒ（ＡＤＭ）提出，由

Ｄｉｒａｃ 所发展．正则量子化的步骤是：首先对时空做（３ ＋１）分解，即 M ＝R碅Σ３ ，Σ３

为某个类空超曲面．然后把经典理论改写成哈密顿形式，找出正则共轭量．选择一
个类空超曲面，把正则共轭量当做算符，它们满足基本的对易（反对易）关系———
量子化条件．对经典作用量变分时，可得到两个约束，哈密顿约束和动量约束，量子
化后，可得到 Ｗｈｅｅｌｅｒ唱Ｄｅ Ｗｉｔｔ方程和动量约束方程．

在半经典近似下，哈密顿约束方程或 ＷＤ 方程是量子几何动力学中的基本方
程，它的地位就像量子力学中的 Ｓｃｈｒ迸ｄｉｎｇｅｒ方程．ＷＤ 方程是一个在超空间上具有
Ｄｅ Ｗｉｔｔ超度规的二阶泛函双曲方程，一般情况下很难求解．对于一些具有特殊对
称性的时空，我们可以将 ＷＤ 方程由无穷维化成有限维，从而变得易于求解．这种
方法称为小超空间近似或小超空间模型．至今，人们已经对球对称时空情况下的
ＷＤ 方程进行了广泛的研究．

Ｋｕｃｈａｒ研究了史瓦西黑洞的几何动力学，发现黑洞的质量应被看成相空间的
动力学变量．Ｎａｋａｍｕｒａ 等应用正则量子化方法于史瓦西黑洞的视界内部，并且引
入 Ｋｕｃｈａｒ 提出的作为动力学变量的黑洞质量函数，得到了 ＷＤ 方程的严格解．随
后，ｄｅ Ｂｒｏｇｌｉｅ唱Ｂｏｈｍ 解释被引入了史瓦西黑洞和 Ｒｅｉｓｓｎｅｒ唱Ｎｏｒｄｓｔｒ迸ｍ 黑洞的研究．

在量子理论中，有两种著名的对波函数的解释．一种是 Ｃｏｐｅｎｈａｇｅｎ 解释，另一
种就是 ｄｅ Ｂｒｏｇｌｉｅ唱Ｂｏｈｍ（ｄＢＢ）解释．Ｃｏｐｅｎｈａｇｅｎ 解释就是人们最为熟悉的波函数
概率解释．ｄＢＢ 解释则引入一个非常类似于 ＷＫＢ 方案的时间，用波函数“经典化”
地定义一个量子轨道或称 ｄＢＢ 轨道．在量子效应可以忽略的地方，量子轨道自然
与经典轨道一致．通过这样的处理，对于一个量子动力学系统，我们能够得到它的
量子演化情况．在 ｄＢＢ 解释中，量子效应是由一个叫量子势的物理量来描述的，它
定义为波函数振幅的 ２ 阶微分．当量子势很小可以忽略时，量子演化就回到了经典
情形．ｄＢＢ 解释在量子宇宙学的研究中也得到了广泛的应用．
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在本节和下一节，我们将对三类黑洞时空，进行正则量子化，并给出 ｄＢＢ
解释．

具有电荷和宇宙常数（ＲＮΛ）黑洞的度规为
ｄs２ ＝－Aｄt２ ＋A－１ ｄr２ ＋r２（ｄφ２ ＋ｄψ２ ），
A ＝ －１

３ λr２ －２m
πr ＋４Q２

πr２ ， （６畅８畅１）
其中 m， Q 和 λ分别是黑洞的质量、电荷和宇宙常数．这里我们把 φ＝０ 和 φ＝２π
及 ψ＝０ 和 ψ＝２π认同．因此度规（６畅８畅１）描写一个具有环拓扑的时空．

在事件视界以内，度规分量 g tt成为正的而 g rr成为负的，时空坐标发生互换．为
明显起见，作变量替换：

t→ R，　　r → T． （６畅８畅２）
这样黑洞内部的度规可表示为

ｄs２ ＝ －１
３ λT２ －２m

πT ＋４Q２

πT２

－１

ｄT２

　 － －１
３ λT２ －２m

πT ＋４Q２

πT２ ｄR２ ＋T２ （ｄφ２ ＋ｄψ２ ）． （６畅８畅３）
假定量子化后的度规具有如下形式：

ｄs２ ＝－α２ （T）
U（T） ｄT

２ ＋U（T）ｄR２ ＋V（T）（ｄφ２ ＋ｄψ２ ）， （６畅８畅４）
其中变量 T和 R 的范围为 T ＞０， －∞ ＜R ＜∞．相应的引力场作用量为

Sg ＝ １
１６π∫ｄ４ x －g （ ４）

R

＝ １
１６π∫ｄTｄRｄφｄψ －g １

２α３V２ （２V２ U·· α－２V２ 痹U痹α
　 ＋４ V·· UαV －４ V·· αUV ＋４痹V痹UVα－痹V２Uα）
＝πv０

４ ∫ｄT －１
α（ 痹U痹V ＋U痹V２

２V ） ， （６畅８畅５）
其中“· ”表示对 T求导．系统的“体积” v０ ＝∫∞

０ ｄR 视为有限的．（ ４） R 是 ４ 维的标
量曲率．

物质场的作用量为

Sm ＝ １
１６π∫ｄ４x －g［FμνFμν －２λ］ ＝πv０

４ ∫ｄT －８αQ２

πV２ －２αλV ， （６畅８畅６）
其中 Fμν是电磁场张量．由方程（６畅８畅５）和（６畅８畅６）可得系统的拉氏量为
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L ＝πv０
４ －１

α 痹U痹V ＋U痹V２

２V －８αQ２

πV －２αλV ． （６畅８畅７）
容易验证度规的经典解：

α＝１，　U ＝－ －１
３ λT２ －２m

πT ＋４Q２

πT２ ，　V ＝T２ （６畅８畅８）
满足拉氏方程：

ｄ
ｄT 矪L

矪痹U －矪L
矪U ＝０，

ｄ
ｄT 矪L

矪痹V －矪L
矪V ＝０，

ｄ
ｄT 矪L

矪痹α －矪L
矪α＝０． （６畅８畅９）

这说明我们的拉氏量是合理的．
对作用量做如下变量代换从变量 U，V到变量 z ＋，z －

z＋ ＝U V，　z－ ＝ V， （６畅８畅１０）
拉氏量变为如下简单对称的形式：

L ＝πv０
４ －２

α痹z＋ 痹z－－２αλz２－－８αQ２

πz２－ ， （６畅８畅１１）
其中 z ＋，z －作为循环坐标出现．由拉氏量可得与 z ＋，z －和 α共轭的正则动量

π＋≡ 矪L
矪痹z＋ ＝－πv０

２α痹z－，

π－≡ 矪L
矪痹z－ ＝－πv０

２α痹z＋，

πα ≡ 矪L
矪痹α＝０． （６畅８畅１２）

很明显，变量 α起到时移函数的作用，因此它的正则共轭动量为零，这给出一个初
级约束，于是有

H ＝－α ２
πv０π＋ π－－πv０

２ λz２ －２v０Q２

z２－
． （６畅８畅１３）

从初级约束（πα＝０）可得 Ｈａｍｉｌｔｏｎｉａｎ 约束 H ＝０．引入质量函数：
M ＝ ２

π２ v２０
π＋ z＋ π＋－１

６ λz３－＋２Q２

πz－， （６畅８畅１４）
对应的 Ｐｏｉｓｓｏｎ 括号弱等于零：

［H，M］ ＝－ ２
π２ v２０

π＋H ≈ ０． （６畅８畅１５）
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因此，哈密顿 H 和质量函数算符 M 具有相同的本征态．
在 Ｓｃｈｒ迸ｄｉｎｇｅｒ 表象中，正则动量量子化为

π^＋ ＝－ｉ 矪
矪z＋，π^－ ＝－ｉ 矪

矪z－． （６畅８畅１６）
这样哈密顿约束给出 ＷＤ 方程，质量函数给出另一个本征态方程

H^Ψ（ z＋，z－） ＝－α ２
πv０ π^＋ π^－－πv０

２ λz２－－２v０Q２

z２－
Ψ ＝０， （６畅８畅１７）

M^Ψ ＝ ２
π２ v２０

π^＋ z＋ π^＋－１
６ λz３－＋２Q２

πz－ Ψ ＝mπΨ． （６畅８畅１８）
其中 m／π是质量函数本征值．这与史瓦西情况不同．

直接求解 ＷＤ 方程和质量本征方程非常困难，为此我们首先考虑哈密顿算符
和质量算符的线性组合

L^ ＝－２ｉ １
πv０απ^＋ z＋ H^ ＋π^－ M^ －mπ

＝ｉ －４Q２

πz２－ －λz２－ z＋ π^＋－ｉ －２m
π ＋４Q２

πz－ －１
３ λz３－ π^－． （６畅８畅１９）

很明显 H^，M^ －m 和 L^ 具有相同的本征态．为了求解波动方程，进一步做变量代换
x ＝πv０ －z＋ ／－２m

π ＋４Q２

πz－ －１
３ λz３－ ，

y ＝πv０ －z＋ －２m
π ＋４Q２

πz－ －１
３ λz３－ ， （６畅８畅２０）

从本征方程 L^Ψ（x，y） ＝０ 可知本征波函数可写为
Ψ（x，y） ＝Ψ（y）． （６畅８畅２１）

这样方程（６畅８畅１７）和（６畅８畅１８）都被简化为
ｄ２Ψ（y）
ｄy２ ＋１

y
ｄΨ
ｄy ＋Ψ ＝０． （６畅８畅２２）

这是零阶 Ｂｅｓｓｅｌ微分方程．由此我们得到哈密顿和质量算符的本征函数：
Ψ（y） ＝cH（２）

０ （y）， （６畅８畅２３）
其中 c是一个积分常数，H（ ２）

０ 是零阶第二类 Ｈａｎｋｅｌ 函数．第一类 Ｈａｎｋｅｌ 函数或第
一类 Ｈａｎｋｅｌ函数与第二类 Ｈａｎｋｅｌ 函数的组合不满足经典解．故只取第二类 Ｈａｎ唱
ｋｅｌ函数 H（２）

０ ．
根据 ｄｅ Ｂｒｏｇｌｉｅ唱Ｂｏｈｍ（ｄＢＢ）解释，把波函数分解为

Ψ（ z＋，z－） ＝R（ z＋，z－）ｅ ｉS（ z＋，z－） （６畅８畅２４）
把方程（６畅８畅２４）代入方程（６畅８畅１７）和（６畅８畅１８），得

２
πv０

矪S
矪z＋·

矪S
矪z－ －πv０λ

２ λz２－－２v０Q２

z２－
＋Vq ＝０，
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矪
矪z－ R

２ 矪S
矪z＋ ＋ 矪

矪z＋ R
２ 矪S
矪z－ ＝０，

２
π２ v２０
z＋ 矪S

矪z＋
２ ＋ －mπ ＋２Q２

πz－ －１
６ λz３－ ＋M q ＝０，

矪
矪z＋ R

２ z＋ 矪S
矪z＋ ＝０， （６畅８畅２５）

其中 Vq 表示量子势，Mq 表示对质量函数的量子效应，它们定义为
Vq ＝－ ２

πv０R
矪２R

矪z＋ 矪z－，　Mq ＝－ ２
π２ v２０R

矪
矪z＋ z＋

矪R
矪z＋ ． （６畅８畅２６）

同样，算符 L^ 的本征态方程可以写为
－４Q２

πz２－ －λz２－ z＋ 矪R
矪z＋ － －２m

π ＋４Q２

πz－ －１
３ λz３－ 矪R

矪z－ ＝０，

－４Q２

πz２－ －λz２－ z＋ 矪S
矪z＋ － －２m

π ＋４Q２

πz－ －１
３ λz３－ 矪S

矪z－ ＝０． （６畅８畅２７）
ｄＢＢ 解释假定量子轨道由 Z ＋（T） ＝z ＋（T）和 Z －（T） ＝z －（T）决定．黑洞量子几何
的动量假定为

π＋ ＝－πv０
２α痹Z－ ＝ 矪S

矪z＋ ｜z＋ ＝Z＋，　z－ ＝Z－，

π－ ＝－πv０
２α痹Z＋ ＝ 矪S

矪z－ ｜z＋ ＝Z＋，　z－ ＝Z－， （６畅８畅２８）
把方程（６畅８畅２７）代入方程（６畅８畅２５），得

Z
·

－ ＝πv０α
x
ｄS
ｄy，

痹Z＋ ＝－２α
πv０ －４Q２

πz２－ －λz２－ x２
ｄS
ｄy，

Vq ＝－ －πv０
２ λz２－－２v０Q２

z２－
１ － ｄS

ｄy
２ ，

Mq ＝－ －mπ ＋２Q２

πz－ －１
６ λz３－ １ － ｄS

ｄy
２ ． （６畅８畅２９）

从方程组（６畅８畅２７）的最后一个方程可得
ｄS
ｄy ＝ ２

πy｜H（２）
０ （y） ｜２ （６畅８畅３０）

进一步得到 U桘V的关系
U ＝－ － ２m

π V
＋４Q２

πV －１
３ λV （６畅８畅３１）

现在我们得到该时空的量子解
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ｄs２ ＝－ － ２m
π V

＋４Q２

πV －１
３ λV －１

ｄT２

　 ＋ － ２m
π V

＋４Q２

πV －１
３ λV ｄR２ ＋V（T）（ｄφ２ ＋ｄψ２ ）． （６畅８畅３２）

换回到原来的变量，即 T→r，R→t，我们有
ｄs２ ＝－ － ２m

π V（ r） ＋ ４Q２

πV（ r） －１
３ λV（ r） ｄt２

　 ＋ － ２m
π V（ r） ＋ ４Q２

πV（ r） －１
３ λV（ r） －１

ｄr２ ＋V（ r）（ｄφ２ ＋ｄψ２ ），　　　
（６畅８畅３３）

其中 V（ r）和 r 的关系为
r ＝∫π

２ Z｜H（２）
０ （Z） ｜２ ｄ V， （６畅８畅３４）

这里 Z 定义为

Z ＝πv０ ２m
π －４Q２

π V
＋１

３ λV３ ／２ ． （６畅８畅３５）
需要指出的是，为了使方程（６畅８畅３３）在经典情况 Z→∞，即 V（ r） ＝r２ 下，回到方程
（６畅８畅１），我们必须有关系 α＝１．因此 ｄＢＢ 轨迹不依赖于规范的选择．当 Z→０，即
在事件视界附近的时候，我们有 Vq→∞和ｄ Vｄr →∞．这说明视界附近的量子效应
是非常显著的．当 Z→∞时，方程（６畅８畅３２）回到方程（６畅８畅１）．

下面讨论热效应．
我们从一般球对称时空的度规

ｄs２ ＝－u（ r）ｄt２ ＋u（ r） －１ ｄr２ ＋v（ r）ｄΩ２
２ （６畅８畅３６）

出发，考虑该背景时空的 Ｋｌｅｉｎ唱Ｇｏｒｄｏｎ 方程
－１
u

矪２Φ
矪t２ ＋１

v
矪
矪r vu 矪Φ矪r ＋矪２Φ

矪φ２ ＋矪２Φ
矪ψ２ ＝０． （６畅８畅３７）

引入乌龟坐标：
r倡 ＝r ＋１

２κｌｎ（ r －rH ）， （６畅８畅３８）
其中 κ和 rH 分别是黑洞的表面重力和视界半径，rH 由事件视界方程 u（ r） ＝０ 确
定．对波函数分离变量 Φ＝F（ t，r）G（ψ，矱），方程（６畅８畅３７）在视界附近应化为标准
的波动方程

矪２F
矪r２倡 －矪２F

矪t２ ＝０， （６畅８畅３９）
因此，我们有
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ｌｉｍ
r→ rH
u２ １ ＋ １

２κ（ r －rH） ＝１． （６畅８畅４０）
从方程（６畅８畅４０）可得表面重力

κ＝ １
２ · ｄuｄr ｜r→ rH （６畅８畅４１）

进一步得到 Ｈａｗｋｉｎｇ 温度
T ＝ １

４π·
ｄu
ｄr ｜r→ rH （６畅８畅４２）

对于经典情况，即当 Z→∞时，我们有
Tc ＝ １

２π·
m

πVH －４Q２

πV３ ／２
H

－１
３ λV１ ／２

H · π
２ · Z H（２）

０ （Z） ２ ｜Z→∞

＝ １
２π·

m
πVH －４Q２

πV３ ／２
H

－１
３ λV１ ／２

H ． （６畅８畅４３）
对于量子情况，我们有

Tq ＝ １
２π·

m
πVH －４Q２

πV３ ／２
H

－１
３ λV１ ／２

H · π
２ · Z H（ ２）

０ （Z） ２ ｜Z→π／４

＝ １
２π·

m
πVH －４Q２

πV３ ／２
H

－１
３ λV１ ／２

H ， （６畅８畅４４）
其中 VH 由视界方程 Z ＝πv０［２m／（π VH ） －４Q２ ／（πVH ） ＋λVH ／３］ ＝０ 确定．值得
指出，由于当 Z ＝０ 时，Ｈａｗｋｉｎｇ 温度趋于发散，可以在视界附近取一个截断因 ε ＝
π／（４v０ ）．这里 v０≡∫∞

０ ｄR 是系统的“体积”，它被视为是有限的．如果体积 v０ 足够
大，那么截断因子 ε 将具有 Ｐｌａｎｋ 尺度的量级．特别是当 v０ ＝π／４ 时，截断因子只
有一个 Ｐｌａｎｋ 尺度．

总之，通过解拉氏方程的办法我们首先验证了所取拉氏量的合理性．对波函数
运用 ｄＢＢ 解释，我们得到了类环黑洞的量子解形式．通过对量子势的分析，我们知
道视界附近的量子效应是非常显著的．为了避免 Ｈａｗｋｉｎｇ 温度的发散，我们建议在
视界附近引入一个截断因子．我们认为，对于经典黑洞，视界稳定地处于 z ＝０ 处．
对于量子黑洞，由于视界附近的真空涨落，视界位置变得不确定；如果仍然认为视
界在 z ＝０ 处，那么与之对应的某一个物理量必然是发散的．

６畅９　宇宙弦黑洞的量子化
众所周知，早期宇宙的相变会产生许多拓扑缺陷，例如：宇宙弦，整体单极子，

畴壁和纹理．拓扑缺陷的类型依赖于真空流形 μ的拓扑．Ｂａｒｒｉｏｌａ 和 Ｖｉｌｅｎｋｉｎ 得到
了 Ｅｉｎｓｔｅｉｎ 方程的一个近似解，该解描写一个具有整体单极子的黑洞．这样一个黑
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洞可以在宇宙早期由一个史瓦西黑洞吞并一个单极子形成．另外，Ｍｕｋｕｎｄａ 和
Ｖｉｌｅｎｋｉｎ 得到了一个包含宇宙弦的真空解．该时空具有一个锥形的拓扑．本节我们
对具有整体单极子和宇宙弦这两类拓扑缺陷的时空同时进行量子化，并用 ｄＢＢ 解
释求得其量子化解．

包含一个整体单极子的黑洞解为

ｄs２ ＝－ １ －８πη２ －２M′
r′ ｄt′

２ ＋ １ －８πη２ －２M′
r′

－１ ｄr′２

　 ＋r′２ ｄΩ２
２， （６畅９畅１）

其中 M′是黑洞的质量，η是对称破缺的尺度．对典型的大统一尺度 η～１０１６Ｇｅｖ，我
们有 ８πη２虫１．如果我们进行变量代换

t′＝（１ －８πη２ ） －１２ t，r′＝（１ －８πη２ ） １２ r，M′
＝（１ －８πη２ ） ３２ m′， （６畅９畅２）

则方程（６畅９畅１）成为
ｄs２ ＝－ １ －２m

r ｄt
２ ＋ １ －２m

r
－１ ｄr２ ＋（１ －８πη２） r２ ｄΩ２

２． （６畅９畅３）
从方程（６畅９畅３）很明显看出，围绕整体单极子的空间少了一部分立体角，换言之，
该时空具有了拓扑缺陷．

另一方面，包含宇宙弦的黑洞解为
ｄs２ ＝－ １ －２m

r ｄt
２ ＋ １ －２m

r
－１ ｄr２ ＋r２（ｄθ２

　 ＋b２ ｓｉｎ２ θｄφ２ ）． （６畅９畅４）
这是一个具有宇宙弦的质量为 m的黑洞解．该解具有锥形的空间．其中 b＝１ －４μ，
μ是单位弦场的质量．

现在我们把方程（６畅９畅３）和方程（６畅９畅４）改写为如下形式：
ｄs２ ＝－ １ －２m

r ｄt
２ ＋ １ －２m

r
－１ｄr２ ＋a２ r２ （ｄθ２

　 ＋b２ ｓｉｎθｄφ２ ）． （６畅９畅５）
其中 a ＝ １ －８πη２ ，b ＝１ 和 a ＝１，b ＝１ －４μ分别对应于方程 （６畅９畅３）和方程
（６畅９畅４）．

为了进行时空量子化，作变量替换

t→ R，　r → T． （６畅９畅６）
则方程（６畅９畅５）成为

ｄs２ ＝－ １ －２m
T ｄR

２ ＋ １ －２m
T

－１ ｄT２ ＋a２T２（ｄθ２
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　 ＋b２ ｓｉｎθｄφ２ ）． （６畅９畅７）
假定量子化后的度规具有如下形式：

ｄs２ ＝－α２ （T）
U（T） ｄT

２ ＋U（T）ｄR２ ＋V（T）（ｄθ２ ＋b２ ｓｉｎ２ θｄφ２ ）， （６畅９畅８）
则相应的引力场作用量为

Sg ＝ １
１６π∫ｄ４ x －g（ ４）

R

＝ １
１６π∫ｄTｄRｄθｄφ －g １

２α３V２ （２V２ U·· α－２V２ 痹U痹α
　 ＋４ V·· UαV －４痹V痹αUV ＋４痹V痹UVα－痹V２Uα＋４α３V）
＝ v０４∫ｄT －１

α 痹U痹V ＋U痹V２

２V ＋２α， （６畅９畅９）
其中“· ”表示对 T求导．系统的“体积”v０ ＝∫∞

０
ｄR 被视为是有限的．

能产生整体单极子的最简单的作用量模型为

Sm ＝ １
１６π∫ｄ４ x －g １

２ 矪μ矱a矪μ矱a －１
４ λ（矱a矱a －η２ ） ２ ， （６畅９畅１０）

其中 矱a 是三分量标量场，a ＝１，２，３．该模型具有整体 O（３）对称性，它可以自发破
缺为 U（１）对称性．描写单极子的场位形为 矱a ＝ηf（ r′） xa ／r′．这里 xa xa ＝r′２．xa 是
Ｃａｒｔｅｓｉａｎ 坐标．同样，进行变量代换 r′→r→T，t→R，方程成为

Sm ＝ v０４∫ｄTαV １
２U f

· ２ ＋４f２
V －１

４ λ（ f２ －１） ２η２ η２． （６畅９畅１１）
由方程（６畅９畅９）和方程（６畅９畅１１）我们得到该时空的拉氏量：
L ＝ v０４ －１

α 痹U痹V ＋U痹V２

２V ＋２α＋４αf· ２η２ ＋αV
２U f

２η２ －αV
４ λ（ f２ －１） ２η４ ．

（６畅９畅１２）
考虑到 ８πη２虫１，可以证明经典解：

α＝１，　U ＝－ １ －２m
T

，　V ＝aT２ ，　f≈ １ （６畅９畅１３）
满足拉格朗日方程组：

ｄ
ｄT 矪L

矪痹U －矪L
矪U ＝０，

ｄ
ｄT 矪L

矪痹V －矪L
矪V ＝０，

ｄ
ｄT

矪L
矪 f· －矪L

矪f ＝０，
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ｄ
ｄT 矪L

矪痹α －矪L
矪α＝０， （６畅９畅１４）

这说明所求拉氏量是合理的．
方程（６畅９畅１３）表明单极子的场位形为 矱a ＝ηxa ／r．所以系统的拉氏量为下面

简单的形式：
L ＝ v０４ －１

α 痹U痹V ＋U痹V２

２V ＋２α． （６畅９畅１５）
在方程（６畅９畅１２）中我们考虑了关系 ４η２虫２．把变量从 U，V 变到 z ＋，z －

z＋ ＝U V，　z－ ＝ V， （６畅９畅１６）
拉氏量可写为对称的形式：

L ＝ v０４ －２
α痹z＋ 痹z－＋２α， （６畅９畅１７）

其中 z ＋，z －做为循环坐标出现，与 z ＋，z －和 α共轭的正则动量为
π＋≡ 矪L

矪痹z＋ ＝－v０２α痹z－，

π－≡ 矪L
矪痹z－ ＝－v０２α痹z＋，

πα ≡ 矪L
矪痹α＝０． （６畅９畅１８）

系统的哈密顿可写为

H ＝－α ２
v０
π＋ π－＋v０２ ． （６畅９畅１９）

从初级约束（πα＝０）我们可得哈密顿约束 H ＝０．同样引入质量函数
M ＝ ２

v２０
π＋ z＋ π＋＋z－２ ， （６畅９畅２０）

质量函数与哈密顿的 Ｐｏｉｓｓｏｎ 括号弱等于零：
［H，M］ ＝－ｉ ２

v２０
π＋ H ≈ ０． （６畅９畅２１）

因此 H 和 M 具有相同的本征态．
在 Ｓｃｈｒｏｄｉｎｇｅｒ 表象中，正则动量被量子化为

π^＋ ＝－ｉ 矪
矪z＋，π^－ ＝－ｉ 矪

矪z－． （６畅９畅２２）
这样哈密顿约束给出 ＷＤ 方程，质量函数给出另一个方程．

H^ψ（ z＋，z－） ＝ －２
v０
π^＋ π^－－v０２ ψ＝０， （６畅９畅２３）
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M^ψ（ z＋，z－） ＝ ２
v２０
π^＋ z＋ π^＋＋z－２ ψ＝amψ． （６畅９畅２４）

值得指出，这里质量的本征值是 am．
直接求解 ＷＤ 方程和质量本征方程较复杂，为此，我们首先考虑哈密顿算符和

质量算符的线性组合

L^ ＝－２ｉ １
v０
π^＋ z＋ H^ ＋π^－ （ M^ －am）

＝ｉ［ z＋ π^＋－（ z－－２am）π^－］． （６畅９畅２５）
很明显，H^，M^ －am 和 L^ 具有相同的本征态．进一步做变量代换

x ＝v０ －z＋ ／（ z－－２am），y ＝v０ －z＋ （ z－－２am）， （６畅９畅２６）
可从本征方程 L^ψ（x，y） ＝０，得到本征波函数

ψ（x，y） ＝ψ（y）． （６畅９畅２７）
这样方程（６畅９畅２３）和方程（６畅９畅２４）都化为相同的形式

ｄ２ψ（y）
ｄy２ ＋１

y
ｄψ
ｄy ＋ψ＝０． （６畅９畅２８）

这是零阶 Ｂｅｓｓｅｌ微分方程．由此可得哈密顿和质量算符的共同本征态
ψ（y） ＝cH（２）

０ （y）， （６畅９畅２９）
其中 c是一个积分常数，H（ ２）

０ 是零阶第二类 Ｈａｎｋｅｌ函数．
根据 ｄｅ Ｂｒｏｇｌｉｅ唱Ｂｏｈｍ（ｄＢＢ）解释，波函数被分解为

ψ（ z＋，z－） ＝R（ z＋，z－）ｅ ｉS（ z＋，z－） ． （６畅９畅３０）
容易得到

２
v０

矪S
矪z＋·

矪S
矪z－ ＋v０２ ＋Vq ＝０，

矪
矪z－ R

２ 矪S
矪z＋ ＋ 矪

矪z＋ R
２ 矪S
矪z－ ＝０，

２
v２０
z＋ 矪S

矪z＋
２ ＋１

２ （ z－－２am） ＋M q ＝０，
矪
矪z＋ R

２ z＋ 矪S
矪z＋ ＝０， （６畅９畅３１）

其中， Vq 表示量子势，Mq 表示对质量函数的量子修正．它们定义为
Vq ＝－ ２

v０R
矪２R

矪z＋ 矪z－，M q ＝－ ２
v２０R

矪
矪z＋ z＋

矪R
矪z＋ ． （６畅９畅３２）

同样，L^ 的本征方程可写为
z＋ 矪R

矪z＋ －（ z－－２am） 矪R
矪z－ ＝０，
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z＋ 矪R
矪z＋ －（ z－－２am） 矪S

矪z－ ＝０． （６畅９畅３３）
ｄＢＢ 解释假定量子轨迹由 Z ＋（T） ＝z ＋（T）和 Z －（T） ＝z －（T）确定．黑洞量子几何
的动量假定为

π＋ ＝－v０２ 痹Z－ ＝ 矪S
矪z＋ ｜z＋＝Z＋，z－＝Z－，

π－ ＝－v０２ 痹Z＋ ＝ 矪S
矪z－ ｜z＋＝Z＋，z－＝Z－， （６畅９畅３４）

其中速度由经典条件 α＝１ 决定．经过简单的代换，我们得到
Z
·

－ ＝ ２
πv０ ·

a
Z＋ H（ ２）

０ （y） ２ ，

痹Z＋ ＝ ２
πv０ ·

a
（Z－－２am）Z＋ H（ ２）

０ （ y） ２ ，

V q ＝－v０２ １ －４
π２ · a２

y２ ｜H（２）
０ （y） ｜４ ，

M q ＝ １
v０
（Z－－２am）Vq． （６畅９畅３５）

从方程组（６畅９畅３５）的前两个方程可得
U ＝－ １ －２am

V
． （６畅９畅３６）

这样我们就得到了该时空的量子化解：
ｄs２ ＝－ １ － ２am

V（T）
－１
ｄT２ ＋ １ － ２am

V（T） ｄR
２ ＋V（T）（ｄθ２ ＋b２ ｓｉｎ２ θｄφ２ ）．

（６畅９畅３７）
回到以前的变量，即 T→r，R→t，我们有

ｄs２ ＝－ １ － ２am
V（ r） ｄt

２ ＋ １ － ２am
V（ r）

－１
ｄr２

　 ＋V（ r）（ｄθ２ ＋b２ ｓｉｎ２ θｄφ２ ）， （６畅９畅３８）
其中 V（ r）和 r 的关系为

r ＝∫π
２aZ H（２）

０ （Z） ２ ｄ V， （６畅９畅３９）
其中 Z 定义为 Z ＝v０ （ V －２am）．

当 Z→０，即事件视界附近时，我们有 Vq→∞，ｄ Vｄr →∞．可见视界附近的量子

效应是非常显著的．当 Z→∞，即平直区域，我们有 Vq ＝－v０２ （１ －a２ ）≠０ 和ｄ Vｄr ＝
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a≠１，这与史瓦西情况不同．之所以出现这种不同，这是因为黑洞携带单极子，空
间出现了拓扑缺陷的缘故．

采用与上一节完全类似的方法，可得经典黑洞的温度为
Tｃ ＝ １

８πm． （６畅９畅４０）
量子黑洞的温度为

Tｑ ＝ １
８πm·

２
π· １
Z H（２）

０ （Z） ２ Z→π／４ ＝ １
８πm． （６畅９畅４１）

对于量子黑洞，为避免发散，我们同样在视界附近引入了截断因子 ε ＝π
４v０．

６畅１０　Ｑｕｉｎｔｅｓｓｅｎｃｅ黑洞的量子化
Quintessence黑洞的度规

本节利用约化相空瓿量子化方法讨论被 Ｑｕｉｎｔｅｓｓｅｎｃｅ 所包围的静态球对称黑
洞的视界面积量子化，得到面积谱．

Ｑｕｉｎｔｅｓｓｅｎｃｅ 是讨论得最多的暗能量候选者，它的状态方程参数 －１ ＜w ＜－
１／３．在静态球对称情况下，可将能量动量张量的各分量写为如下形式：

T t t ＝A（ r），
T t j ＝０，
T i j ＝C（T）T iT j ＋B（ r）δ ji， （６畅１０畅１）

对角度进行平均后可得

枙T j
i枛 ＝D（ r）δ ji，

D（ r） ＝－１
３ C（ r） r

２ ＋B（ r）． （６畅１０畅２）
球对称静态时空的度规可以写为

ｄs２ ＝ｅ vｄt２ －ｅλｄr２ －r２ （ｄθ２ ＋ｓｉｎ２ θｄ矱２ ）， （６畅１０畅３）
其中 ν ＝ν（ r）和 λ＝λ（ r）都是 r的函数．爱因斯坦场方程具体化为

２T t
t ＝－ｅ－λ １

r２
－λ′
r ＋１

r２
， （６畅１０畅４）

２T r
r ＝－ｅ－λ １

r２
＋ν′
r ＋１

r２
， （６畅１０畅５）

２T θ
θ ＝２T矱

矱 ＝－１
２ ｅ

－λ ν″＋ν′２
２ ＋ν′－λ′

r －ν′λ′
２ ， （６畅１０畅６）

这里撇号表示对 r 求导．Ｑｕｉｎｔｅｓｓｅｎｃｅ 能动张量的一般表达式可以写为

·４５２· 第 ６章　黑洞的量子效应



T t
t ＝ρq（ r）， （６畅１０畅７）
T j
i ＝ρq（ r）α －（１ ＋３B） r i r

j

rn rn
＋Bδ j

i ， （６畅１０畅８）
从上式可以看出，空间部分和时间部分是成比例的，比例系数与一个参数 B 有关．

空间是各向同性的，对角度求平均可得
枙T j

i枛 ＝－ρq（ r） α
３ δ j

i ＝－pq（ r）δ j
i． （６畅１０畅９）

由此可以得到

pq ＝wqρq，
wq ＝ １

３ α． （６畅１０畅１０）
假设 Ｑｕｉｎｔｅｓｓｅｎｃｅ 的能动张量满足线性叠加条件，则

T t
t ＝T r

r痴λ＋ν ＝０， （６畅１０畅１１）
做一个替换

λ＝－ｌｎ（１ ＋f），
即可得到 f的线性微分方程组：

T t
t ＝T r

r ＝－ １
２r２ （ f ＋rf′）， （６畅１０畅１２）

T θ
θ ＝T Φ

Φ ＝－１
４r（２f′＋rf″）． （６畅１０畅１３）

上述两式告诉我们 f的解的线性叠加对应于物质场能动张量相应分量的叠加：
∑
n
cn fn（ r）痴∑

n
cnTν

μ［ fn（ r）］． （６畅１０畅１４）
线性叠加条件可以给出物质场能动张量的自由参数：

B ＝３w q ＋１
６w q ， （６畅１０畅１５）

由此可得

T tt ＝T r
r ＝ρq， （６畅１０畅１６）

T θ
θ ＝T 矱

矱 ＝－１
２ ρq（３w q ＋q）． （６畅１０畅１７）

由（６畅１０畅１２） ～（６畅１０畅１３），（６畅１０畅１６） ～（６．１０．１７）式可知
（３wq ＋１） f ＋３（１ ＋w q） rf′＋r２ f″＝０， （６畅１０畅１８）

它的通解为

f ＝１ －rgr － r０
r

３w＋１ （６畅１０畅１９）
这里 r０ 和 rg 是归一化常数．令 rg ＝２M 我们得到被 Ｑｕｉｎｔｅｓｓｅｎｃｅ 包围的黑洞的度规
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为

ｄs２ ＝ １ －２M
r － r０

r
３w＋１ ｄt２ － ｄr２

１ －rgr － r０
r

３w＋１ －r２ （ｄθ２ ＋ｓｉｎ２ θｄ矱２ ），

（６畅１０畅２０）
约化相空间量子化

我们将黑洞的一些参量，例如质量 M，电荷 Q 作为系统的广义坐标，相空间即
由这些变量和它们的共轭动量构成．约化作用量具有如下形式：

I ｒｅｄ ＝∫ｄt［∑
i
PZ i 痹Z i －H（Z i）］． （６畅１０畅２１）

例如对史瓦希黑洞来说，M 和 PM 就分别被视为广义坐标及它的共轭动量．在这
里，哈密顿量 H（Z i）的具体表达式并不重要．接下来需要找到一个变换（M，PM ）→
（X，ΠX），并将视界面积表为 Ah ～１

２ （X２ ＋Π２
X ）．运用标准的量子化方法我们就可

得到面积谱 Ah ＝α n ＋１
２ ， 这里 α的单位是普朗克长度的平方 l２p．

下面我们利用约化相空间量子化方法来求得（６畅５０畅２０）式所描述的黑洞的视
界面积谱．该黑洞的视界半径 rh 由下式决定．

１ －２M
Th

－ T０
Th

３w＋１ ＝０． （６畅１０畅２２）
在视界处，黑洞的质量 M 可表示为

M ＝ １
２ －r０ r０

rh
３w ＋rh （６畅１０畅２３）

视界处的表面引力为

κ＝ １
２

２M
r２h

＋
r０ r０rh

３w（１ ＋３w）
r２h

． （６畅１０畅２４）

该黑洞的视界面积为

Ah ＝４π（ rh） ２ ， （６．１０．２５）
因此有

ｄM ＝ κ
８πｄAh． （６．１０．２６）

下面我们做一个变换：
X ＝ B（M） ｃｏｓ（κPM ）， （６．１０．２７）
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Πx ＝ B（M） ｓｉｎ（κPM ）， （６．１０．２８）
这里 B（M）是 M 的一个函数．

对 X 变分得

δX ＝ １
２ B（M） ｃｏｓ（κPM ）B′δM － B（M） ｓｉｎ（κPM ）（κδPM ＋PMκ′δM），

（６．１０．２９）
这里，

B′＝ｄBｄM， （６．１０．３０）
κ′＝ ｄkｄM， （６．１０．３１）

通过上面的计算，我们可以得到
PM δM －ΠXδX ＝η１ δPM ＋η２ δM， （６．１０．３２）

其中，
η１ ＝Bｓｉｎ２ （κPM ）κ， （６畅１０畅３３）
η２ ＝PM －１

２ B′ｓｉｎ（κPM ）ｃｏｓ（κPM ） ＋Bｓｉｎ２ （κPM ）κPMκ′．（６畅１０畅３４）
而（M，PM ）→（X，ΠX）的变换为正则变换的条件是

矪η１
矪M ＝矪η２

矪PM． （６畅１０畅３５）
直接计算可得

矪η１
矪M ＝B′ｓｉｎ２ （κPM ）κ＋Bｓｉｎ２ （κPM ）κ′

　 ＋２Bｓｉｎ（κPM ）ｃｏｓ（κPM ）PMκκ′， （６畅１０畅３６）
矪η２
矪PM ＝１ －１

２ B′ｃｏｓ
２ （κPM ）κ＋１

２ B′ｓｉｎ
２（κPM ）κ＋Bｓｉｎ２ （κPM ）κ′

　 ＋２Bｓｉｎ（κPM ）ｃｏｓ（κPM ）PMκκ′． （６畅１０畅３７）
比较（６畅１０畅３５），（６畅１０畅３６），（６畅１０畅３７）式可得

１ －１
２ B′κ＝０， （６畅１０畅３８）

将（６畅１０畅３８）与（６畅１０畅２６）式比较又可得到
Ah
４π＝B ＝X２ ＋Π２

X． （６畅１０畅３９）
我们注意到，（６．１０．３９）式与简谐振子的哈密顿量非常相似，按照标准的量子化手
续，就可得到视界面积的分立谱．

首先将 X，ΠX 算符化：
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X → X^， （６畅１０畅４０）
ΠX → Π^X ＝－ｉ 矪

矪X． （６畅１０畅４１）
定义升算符

a^＋ ＝ １
２（X －ｉΠX）， （６畅１０畅４２）

降算符

a^－ ＝ １
２（X ＋ｉΠX）， （６畅１０畅４３）

粒了数算符

N^ ＝a^＋ a^， （６畅１０畅４４）
B（M）可分解为

B（M） ＝２N^ ＋１． （６畅１０畅４５）
N 的本征值为 n，因而可 知 B 的本征值为 ２n ＋１．将其代入（６畅１０畅３９）即可得

Ah ＝８π（n ＋１
２ ），　n ＝０，１，２， …，

恢复自然常数有

Ah ＝８π（n ＋１
２ ） l２p，　n ＝０，１，２，…． （６畅１０畅４６）

此即 Ｑｕｉｎｔｅｓｓｅｎｃｅ 黑洞的视界面积谱．
暗能量的影响体现在引力半径不同［见（６畅１０畅２２）式］．
对于 Ｓｃｈｗａｒｚｓｈｉｌｄ 黑洞，除了（６畅１０畅４６）式以外，我们可以得到黑洞的质量谱：

m２ ＝ A
１６π＝ １

２ （n ＋１
２ ）m２

p ， （６畅１０畅４７）
式中 m p ＝（G －１砽c） １ ／２ ，l２p ＝G砽c －３ ，在自然单位制中有 m２

p ＝l２p．
刘辽采用 Ｓｏｍｍｅｒｆｅｌｄ 作量量量子化方法得到

m２ ＝ １
６ （n ＋１

２ ）m２
p． （６畅１０畅４８）

（６．１０．４８）式表明 n ＝０ 对应于量子 ＳＢＨ 的基态质量
mc ＝ １

２ ３mp， （６畅１０畅４９）
Ｈａｗｋｉｎｇ 辐射不会把量子 ＳＢＨ 化为乌有．

６．１１　Ｋｅｒｒ桘Ｎｅｗｍａｎ黑洞的量子化
本节讨论 Ｋｅｒｒ桘Ｎｅｗｍａｎ 黑洞的一种量子力学模型，它主要基于黑洞的无毛定
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理．由这个定理知道稳态时空中的黑洞只由三个经典自由度描述，它们是黑洞的
质量 M，电荷 Q 和角动量 J．因此，只由这三个变量表示的 Ｋｅｒｒ桘Ｎｅｗｍａｎ 解成为满
足爱因斯坦方程的最一般的稳态黑洞解．我们的模型讨论稳态黑洞时空的哈密顿
量，其中相空间由变量 M， Q， J和它们的正则动量 PM ， PQ， PJ 构成，但不足的是
这些相空间变量只描述黑洞时空的静态方面．而黑洞视界之间没有类时 Ｋｉｌｌｉｎｇ 矢
量场，从这个意义上说，Ｋｅｒｒ桘Ｎｅｗｍａｎ 时空由动力学性质．所以我们设法找到一组
能自然描述 Ｋｅｒｒ桘Ｎｅｗｍａｎ 时空动力学性质的新的相空间坐标，将它们用对应的量
子力学算符代替就得到了对应的哈密顿算符，这样便可和 ＡＤＭ 质量一起构成本
征方程．从某种意义上讲，这些本征方程可看作黑洞的薛定谔方程．由此便可得
到黑洞的 ＡＤＭ 质量谱、面积谱、电荷谱和角动量谱，它们都是分立的 （Ｍａｋｅｌａ，
２００１）．

Ｅｉｎｓｔｅｉｎ桘Ｍａｘｗｅｌｌ 场的哈密顿量一般可以写成
S ＝ １

１６π∫ｄ４ x －g（ （ ４） R －FμνFμν） ＋（边界项） （６．１１．１）
　　这个积分遍及整个四维时空，g 是时空度规 gμν的行列式，

Fμν ＝矪μAν －矪νA μ （６．１１．２）
是电磁场张量，Aμ是电磁场的矢势，（ ４） R 是四维曲率标量．

众所周知，作用量（６．１１．１）式可以写成
S ＝SｇｒａνΣ ＋S emΣ ＋Sｇｒａν矪Σ ＋Sｅｍ矪Σ （６．１１．３）

其中

SｇｒａνΣ ＝－ １
１６π∫ｄt∫Σｄ３ x qN（KabKab －K２ ＋R） （６．１１．４ａ）

S ｅｍΣ ＝ １
１６π∫ｄt∫Σｄ３ x qNFμνFμν， （６．１１．４ｂ）

Sｇｒａν矪Σ 和 Sｅｍ矪Σ是渐近平直时空类空渐近无限远处的边界项．（６．１１．４ａ）式和（６．１１．
４ｂ）式中空间积分遍及 t为常数的类空超曲面 Σ，Kab是超曲面上外部曲率张量，K
是它的迹，N 是时移函数，q 是类空超曲面 Σ上的度规 qab行列式．

作用量 SｇｒａνΣ 的性质我们已经知道了，现在研究（６．１１．４ｂ）式的作用量 S emΣ ．时
空度规可以写成如下形式：

ｄs２ ＝－ｄt２ ＋qabｄxaｄxb， （６．１１．５）
即我们选择的是时轴正交坐标系，N≡１，Na 为零．将 SｅｍΣ 写成
SｅｍΣ ＝∫ｄt∫Σｄ３ xLｅｍ ， （６．１１．６）
Lｅｍ ＝ １

１６π q｛２qab［A· a A· b －２A· a（矪b A０ ） ＋（矪a A０ ）（矪bA０）］ －（ ３） Fab （３） Fab｝．
（６．１１．７）
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L em是弯曲时空中电磁场的拉氏量，点表示对时间求导，
（３） Fab ＝矪aAb －矪bAa， （６．１１．８ａ）
（３） Fab ＝qam qbn（３） Fmn． （６．１１．８ｂ）

Aa 的共轭正则动量是

pa ＝矪Lｅｍ
矪A· a ＝ q

４πq
as（A· s －矪sA０ ） ＝ q

４πq
asF０ s， （６．１１．９）

反过来，我们有
A
·
b
４π
q
pb ＋矪bA０ ， （６．１１．１０）

其中

pb ＝qabpa． （６．１１．１１）
将电磁场的拉氏量写成 Pa 的形式

Lｅｍ ＝paA· a q
２πqab p

a qb ＋pa（矪aA０ ） ＋ q
１６π

（ ３） Fab （ ３） Fab ， （６．１１．１２）
就得到

SｅｍΣ ＝∫ｄt∫Σｄ３ x［paA· a －Hｅｍ ＋A０ （矪a pa）］， （６．１１．１３）
Hｅｍ ＝２π

q
qabpa pb ＋ q

１６π
（３） Fab （３） Fab． （６．１１．１４）

在（６．１１．１３）式中，我们去掉了 １
２ ∫ｄt∫Σ

ｄ３ x矪a（A０ pa）这项，它转化成一个边界项．
现在我们将时移和位移包含到我们的哈密顿量中来，将 ｄt根据下式变换，

ｄt′＝Nｄt． （６．１１．１５）
由于 A０ 有变换

A′０ ＝矪xμ
矪x′０ Aμ， （６．１１．１６）

我们发现当位移为零而时移为一般值时，电磁场的作用量是
SｅｍΣ ＝∫ｄt∫Σｄ３ x［pa A· a －NHｅｍ ＋A０ （矪a pa）］． （６．１１．１７）

要包含不为零的位移，需要一些技巧．将 ｄxa 根据下式变换
ｄx′a ＝ｄxa ＋Naｄt， （６．１１．１８）

于是，A０ 根据下式变换

A′０ ＝A０ －N sA s， （６．１１．１９）
同时类空超曲面上 x０ ＝T ＋ｄt处 Aa 根据下式变换
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A′a 矪xs
矪x′aA s（ t ＋ｄt， x

b －Nbｄt） ＝Aa ＋A· aｄt －（矪sAa）N sｄt －（矪aN s）A sｄt．
（６．１１．２０）

A
·
a 必然根据下式变换

A
· ′a ＝A· a －（矪sAa）N s －（矪aN s）A s． （６．１１．２１）

将方程（６．１１．１９）和（６．１１．２１）代入（６．１１．１７）式，我们得到位移不为零的电磁场
作用量的表达式：

SｅｍΣ ＝∫ｄt∫Σｄ３ x［paA· a －NHｅｍ －N sHｅｍs ＋A０ （矪a pa）］， （６．１１．２２）
其中，我们定义了

Hｅｍs ＝pa（３） F sa （６．１１．２３）
并忽略了∫ｄt∫Σ

ｄ３ x矪a（A sN spa）项．
现在写出不含边界项的整个 Ｅｉｎｓｔｅｉｎ桘Ｍａｘｗｅｌｌ 作用量，引力部分的 S ｇｒａｖΣ 只是

ＡＤＭ 作用量：
SｇｒａｖΣ ＝∫ｄt∫Σｄ３ x（pab q· ab －NHｇｒａｖ －N sHｇｒａｖs ）， （６．１１．２４）

其中

Hｇｒａｖ ＝ １
２ （１６π）Gabcd pabp cd ＋ １

１６π qR （６．１１．２５ａ）
Hｇｒａｖ ＝－２pas｜a· （６．１１．２５ｂ）
pab ＝－ １

１６π q（Kab －qabK） （６．１１．２６）
是与 qab共轭的正则动量．

Gabcd ＝－１
q
（qab q cd －qacqbd －qad qbc）， （６．１１．２７）

是 Ｗｈｅｅｌｅｒ桘Ｄｅｗｉｔ度规．将作用量（６．１１．２２）和（６．１１．２４）加起来，就得到 Ｅｉｎｓｔｅｉｎ桘
Ｍａｘｗｅｌｌ 作用量：

SｇｒａｖΣ ＝∫ｄt∫Σ ｄ３ x（pab q· ab ＋paA· a －NH －N sH s －A０ 瞊） （６．１１．２８）
其中

H ＝Hｇｒａｖ ＋Hｅｍ （６．１１．２９）
是哈密顿约束，

H s ＝Hｇｒａｖs ＋Hｅｍs （６．１１．３０）
是微分约束，

瞊 ＝－矪a pa （６．１１．３１）

·１６２·６．１１　Ｋｅｒｒ桘Ｎｅｗｍａｎ黑洞的量子化



是高斯约束．
现在考虑渐近平直时空．对于这种时空，我们必须引入某种边界项，因为不能

假设那些动力学变量和它们的正则动量在渐近无限远处为零．以下，我们将取空
间无限远处的渐近坐标为笛卡尔坐标．

首先，我们有 ＡＤＭ 边界项
SＡＤＭ矪Σ ＝－∫ｄtN＋ （ t）EＡＤＭ （ t）， （６．１１．３２）

其中

N＋ （ t） ＝ｌｉｍ
r→∞N（ t， xa）， （６．１１．３３）

是渐近空间无限远处的时移函数．
EＡＤＭ ＝ｌｉｍ

r→∞
１

１６π∮矪hmn
矪xn －矪hnn

矪xm ｄSm （６．１１．３４）
是时空的 ＡＤＭ 能量．（６．１１．３４）式中 hmn表示在渐近笛卡尔坐标中线性化引力场
的空间部分．更明确地说，我们假设了渐近类空无限远处的空间坐标为笛卡尔坐
标．在这个坐标系中，时空度规可以写成 gμv ＝ημv ＋hμv， ημv ＝ｄｉａｇ（ －１， １， １，１）是
平直时空度规．

ＡＤＭ 边界项是与渐近无限远处随时间演化相关的．除了这个边界项之外，还
有与空间无限远处渐近空间变换相关的位移不为零的边界项．作用量（６．１１．２８）
对 qab的共轭动量 pab变分得到

２∫ｄt∫Σｄ３ x（Naδpab） ｜b，
这项必须在无限远处去掉，所以我们需要以下的边界项

S ｔｒａｎｓ矪Σ ＝－∫ｄtN＋
a （ t）paＡＤＭ （ t）， （６．１１．３５）

其中

N＋
a （ t） ＝ｌｉｍ

r→∞Na（ t， xa）， （６．１１．３６）
是无限远处的位移．

PaADM ＝－ｌｉｍ
r→∞２∮Pabｄsb （６．１１．３７）

是时空的 ＡＤＭ 动量．
到现在为止，我们讨论了与纯引力相关的项，包括边界项．下面我们引入与电

磁场相关的边界项．首先将作用量对 Aa 的共轭动量 Pa 变分得到
∫ｄt∫Σｄ３ x矪a（A０ δpa），

它必须在无限远处去掉，所以我们需要的电磁场边界项为
Sｅｍ矪Σ ＝－∫ｄtA＋

０ （ t）Q（ t）， （６．１１．３８）
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其中

A＋
０ （ t） ＝ｌｉｍ

r→∞A０ （ t， xa）， （６．１１．３９）
是无限远处的电势，

Q ＝－ｌｉｍ
r硳∞∮paｄSa （６．１１．４０）

是时空电荷．
这样，选取适当的边界项，我们得到整个 Ｅｉｎｓｔｅｉｎ桘Ｍａｘｗｅｌｌ作用量：

SΣ ＝∫ｄt∫ｄ３ x（pab q· ab ＋paA· a －NH －NSH s －A０瞊）
　 －∫ｄt［N＋

a （ t）EADM （ t） ＋N＋
a （ t）paＡＤＭ （ t） ＋A＋

０ （ t）Q（ t）］ （６．１１．４１）
于是，Ｅｉｎｓｔｅｉｎ桘Ｍａｘｗｅｌｌ 场的哈密顿量就可以写出
H ＝∫Σ ｄ３ x（NH ＋N sH s ＋A０ 瞊） ＋N＋ （ t）EＡＤＭ （ t） ＋N＋

a （ t）paＡＤＭ （ t） ＋A＋
０ （ t）Q（ t）．
（６．１１．４２）

只有当满足经典约束

H ＝０， （６．１１．４３ａ）
H s ＝０， （６．１１．４３ｂ）
瞊 ＝０ （６．１１．４３ｃ）

时哈密顿量才只剩最后三项．
前面我们看到，在渐近平直时空中，根据变分原理的要求，我们必须引入某种

边界项．作为一般黑洞时空的 Ｋｅｒｒ桘Ｎｅｗｍａｎ 时空中的边界项尤其有趣，下面我们
计算这个边界项．

在 Ｂｏｙｅｒ桘Ｌｉｎｄｑｕｉｓｔ坐标中写出 Ｋｅｒｒ桘Ｎｅｗｍａｎ 时空的线元
ｄs２ ＝－Δ－a２ ｓｉｎ２ θ

Σ ｄt２ －２aｓｉｎ２ θ（ r２ ＋a２ －Δ）
Σ ｄtｄφ

　 ＋（ r２ ＋a２ ） ２ －Δa２ ｓｉｎ２ θ
Σ ｓｉｎ２ θｄφ２ ＋Σ

Δｄr
２ ＋Σｄθ２ ， （６．１１．４４）

其中 ，
Σ＝r２ ＋a２ ｃｏｓ２ θ， （６．１１．４５）
Δ＝r２ ＋a２ ＋Q２ －２Mr． （６．１１．４６）

在此式中，M 是黑洞的 ＡＤＭ 质量，Q 是它的电荷，a 是单位质量的角动量．为了计
算这个边界项，我们必须写出（６．１１．４４）式当 r硳∞时的形式．只考虑前面几阶
得到

ｄs２ ≈－ １ －２M
r ｄt２ －４Jｓｉｎ２ θ

r ｄtｄφ＋r２ ｓｉｎ２ θｄφ２ ＋ １ ＋２M
r ｄr２ ＋r２ｄθ２ ，

（６．１１．４７）
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其中 J＝Ma 是黑洞的角动量．在笛卡尔坐标系中，此式可以写成
ｄs２ ≈－ １ －２M

r ｄt２ －４J
r３
（xｄy －yｄx）ｄt ＋ １ ＋２M

r （ｄx２ ＋ｄy２ ＋ｄz２ ），
（６．１１．４８）

这里的 r 不是（６．１１．４７）式中的 r，（６．１１．４７）式中的 r 是 Ｂｏｙｅｒ桘Ｌｉｎｄｑｕｉｓｔ 坐标，而
（６．１１．４８）式中的 r等于 x２ ＋y２ ＋z２

１２ ．
现在我们必须确定离黑洞无限远处的坐标系．我们选择一个绕笛卡尔坐标系

的 z轴以极小的角速度旋转的坐标系．（我们必须假设 ω极小，否则很远处的观测
者的速度将会超过光速．更明确地说，取 ω很小，边界项也是很好的近似，那些在
无限远处计算出的速度也会小于光速．）因为在平直空间，以角速度 ω旋转的 r ＝
xi＋yj＋zk 处的观测者的线速度是

v ＝ω×r， （６．１１．４９）
在笛卡尔坐标系中，Na 代表线速度的 a 分量，我们有

Na ＝ε abcωbωc， （６．１１．５０）
其中 ε abc是 Ｌｅｖｉ桘Ｃｉｖｉｔａ 符号，ε１２３ ＝１．

哪种坐标系才会有这种位移呢？ 作用量对 qab的共轭动量 pab变分得到的项
２∫ｄt∫ｄ３ x（Naδpab） ｜b

在无限远处必须去掉．如果位移按照（６．１１．５０）式选择，我们将得到边界项
S ｒｅｖΣ ＝－２εabc∫ｄtωb ｌｉｍr硳∞∮x cpanｄSn， （６．１１．５１）

它就代替了（６．１１．４９）式中的边界项 S ｒｅｖ矪Σ．
现在我们就来计算（６．１１．５１）式中的 S ｒｅｖ矪Σ．首先我们要作一个坐标变换，使得

（６．１１．４８）式中的时空度规能用旋转坐标表示的度规代替，然后用这种表示来计
算边界项．当远处的坐标系旋转得很慢时，我们只对 ω的一次项感兴趣．考虑到
以度规表示的坐标变换将产生 ω的二次项，这些项可以忽略，所以我们可以用
（６．１１．４８）式中的度规来计算边界项（６．１１．５１）．因为 ω＝ωk，我们得到

S ｒｅｖ矪Σ ＝－∫ｄtωJ． （６．１１．５２）
　　我们仍然必须计算 ＡＤＭ 边界项和电磁场边界项（６．１１．３８）．对于无限远的任
意时移，Ｋｅｒｒ桘Ｎｅｗｍａｎ 时空的边界项是

SＡＤＭ矪Σ ＝－∫ｄtN＋M． （６．１１．５３）
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为了计算电磁场边界项，首先回到 Ｂｏｙｅｒ桘Ｌｉｎｄｑｕｉｓｔ 坐标中．对于 Ｋｅｒｒ桘Ｎｅｗｍａｎ 解，
Aμ的惟一不为零的分量是

A t ＝－QrΣ， （６．１１．５４ａ）

Aφ ＝QarΣ ｓｉｎ
２ θ． （６．１１．５４ｂ）

利用（６．１１．９），（６．１１．１９）和（６．１１．２１）式我们发现，对于一般的时移和位移，Aa
的共轭动量 pa 可以写成

pa ＝ １
N
q

４πq
as（F０ s －Nb（３） F bs）． （６．１１．５５）

从表达式（６．１１．５５）和（６．１１．５４）式得到，在 Ｂｏｙｅｒ桘Ｌｉｎｄｑｕｉｓｔ坐标中 pa 的惟一不为
零的分量是 p r，在离黑洞很远的地方有

p r ＝－ Q
４πr２ ＋O（ r－３ ）． （６．１１．５６）

所以，电磁场边界项（６．１１．３８）可以写成
Sｅｍ矪Σ ＝－∫ｄtA＋

０ Q， （６．１１．５７）
就像我们预期的，渐近坐标的旋转将使 ＡＤＭ 和电磁场的边界项有点改变，但是，
得到的修正 O（ω２ ）可以忽略．
Kerr桘Newman 时空的哈密顿动力学

下面我们继续研究最大延拓的 Ｋｅｒｒ桘Ｎｅｗｍａｎ 时空的哈密顿动力学．首先，我
们将这样的时空考虑为空间和时间两部分．显然，我们想使 t 为常数的类空超曲
面尽可能覆盖时空的大部分．最大延拓的 Ｋｅｒｒ桘Ｎｅｗｍａｎ 时空具有周期性的几何结
构．我们选择这样一个周期，使 t 为常数的类空超曲面在共形图上从左边的渐近
无限远开始，沿任意路径穿过黑洞的内部区域，最后到达右边的渐近无限远，但是
这种类空超曲面不能覆盖 Ｂｏｙｅｒ桘Ｌｉｎｄｑｕｉｓｔ坐标为

r ＝r－ ＝M － M２ －Q２ －a２ （６．１１．５８）
的内视界以外的区域，否则，我们的超曲面将不会是类空的．因此，我们对 Ｋｅｒｒ桘
Ｎｅｗｍａｎ 时空的哈密顿动力学的研究限制在这样一个区域内，它包括在共形图上
左边和右边的外部区域以及连续两个 r ＝r －的超曲面之间的区域．类空超曲面从
过去超曲面 r ＝r －开始，然后穿过分支点
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图 ３２　自由下落观察者的世界线在共
形图中是一条穿过分支点的竖直线．
观察者的固有时等同于渐近 Ｍｉｎｋｏｗｓｋｉ

时间

r ＝r＋ ＝M ＋ M２ －Q２ －a２ （６．１１．５９）
最后终止于未来超曲面 r ＝r －．我们就是研究这个区域内的 Ｋｅｒｒ桘Ｎｅｗｍａｎ 时空的
哈密顿动力学．

首先要写出含适当边界项的作用量．可是现在我们有两个渐近无限远，在这
两个无限远处都有边界项，因此作用量应该具有以下的形式

S ＝∫ｄt∫Σｄ３ x（pab q· ab ＋paA· a －NH －N sH s －A０ 瞊）
　 －∫ｄt［（N＋＋N－）M ＋（A＋

０ －A－
０ ）Q ＋（ω＋－ω－）J］ （６．１１．６０）

其中上标带正和负的项分别代表左边和右边渐近无限处的量，ω＋
和 ω－

是无限远

处坐标系绕 z 轴旋转的角速度，因此 Ｋｅｒｒ桘Ｎｅｗｍａｎ 时空的总哈密顿量可以写成
H to t ＝∫Σｄ３ x（NH ＋N sH s ＋A０ 瞊） ＋（N＋＋N－）M ＋（A＋

０ －A－
０ ）Q ＋（ω＋－ω－）J．

（６．１１．６１）
　　 现在的问题是，我们的哈密顿量具有大量不确定的自由度，实际上它可以是
类空超曲面 Σ上每点 x处的超曲面度规 qab和对应的正则动量 pab的函数．我们的
目的是在 Ｅｉｎｓｔｅｉｎ桘Ｍａｘｗｅｌｌ 理论下对稳态黑洞进行正则量子化，而稳态黑洞只由三
个经典自由度描述，因此，有很多自由度必须去掉．

对于非旋转的黑洞时空，可以按以下的方式去掉这些自由度：首先写出渐近平
直、球对称 Ｅｉｎｓｔｅｉｎ桘Ｍａｘｗｅｌｌ 理论中的作用量，然后求解哈密顿约束、微分约束和高
斯约束，这样就只剩下 ４ 个正则自由度了，它们是黑洞的质量 M 和电荷 Q 以及它
们对应的正则动量 pM 和 pQ．对于旋转黑洞，我们可以用相似的方法，从有某种对
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称性的渐近平直 Ｅｉｎｓｔｅｉｎ桘Ｍａｘｗｅｌｌ 理论开始，求解经典约束，最后就剩下 ６ 个正则
自由度了，包括质量 M、电荷 Q、角动量 J 和它们分别对应的正则动量 pM ， pQ 和 pJ．

在上述过程中，相空间退化成只剩物理自由度，这个过程的一个重要特点就是
使得到的哈密顿量，既所谓的退化哈密顿量只涉及边界项．最特别的情况是 Ｋｅｒｒ桘
Ｎｅｗｍａｎ 时空的约化哈密顿量成为

H ｒｅｄ ＝（N＋＋N－）M ＋（A＋
０ －A－

０ ）Q ＋（ω＋－ω－）J． （６．１１．６２）
实际上约化哈密顿量可以用作系统的真实的物理的哈密顿量．假设变量 qab和 pab
能由一个一一对应的，与时间无关的函数可微的正则变换按下面的方法分离成
（φα， πα）和（ψA， πA）两组量
　　（ａ） 约化哈密顿量只取决于 φa 和 πa
　　（ｂ） 当 πa 作为 x函数时，Pα满足

p· α ＝０． （６．１１．６３）
然后解出约束 H ＝０ 和 H s ＝０，便可以写出剩余正则变量的函数：

φα ＝fα［ψA， πA］． （６．１１．６４）
假设函数 fα对 ψA 和 πA 的导数都存在，加上以上的假设，约化哈密顿量的哈密顿
方程：

H ｒｅｄ［ψA， πA］ ＝（边界项）
φα＝fα， πα＝pα

， （６．１１．６５）
和（６．１１．６３）， （６．１１．６４）式与由 πα ＝pα确定的特殊标架中的 Ｅｉｎｓｔｅｉｎ 方程是相
同的．

这个结果的证明非常简单，泊松括号在正则变换下具有不变性，且如果正则变
换与时间无关，那么哈密顿量保持不变，因此

ψ· A（x） ＝ δH
δπA（x） φα＝fα， πα＝pα

（６．１１．６６）
另一方面

H［φα， πα， ψA， πA］ φα＝fα， πα＝pα ＝（边界项） φα＝fα， πα＝pα ＝H ｒｅｄ［ψA， πA］，
（６．１１．６７）

将（６．１１．６７）式对 πA 微分得到
∫Σｄ３ y δH

δφα（y） φα＝fα， πα＝pα
δfα（y）
δπA（x） ＋ δH

δπA（x） φα＝fα， πα＝pα
＝ δH ｒｅｄ

δπA（x）．
（６．１１．６８）

但由（６．１１．６３）式有
π· α（x） ＝ δH

δφα（x） φα＝f a， πα＝pα
＝０， （６．１１．６９）

所以

·７６２·６．１１　Ｋｅｒｒ桘Ｎｅｗｍａｎ黑洞的量子化



δH
δπA（x） φα＝fα， πα＝pα

＝ δH ｒｅｄ
δπA（x）． （６．１１．７０）

换句话说，H ｒｅｄ给出了 ψA 的正确的运动方程．得到 πA 的运动方程的方法是完全类
似的．尽管我们只考虑了纯引力，但我们的分析很容易推广到包含电磁场的情况．

我们认为，退化哈密顿量只依赖于 M， Q， J和 pM ， pQ ， pJ，而且
M· ＝Q· ＝J· ＝０． （６．１１．７１）

解微分约束可以得到关于 pM ， pQ 和 pJ 的可微函数 ψA 和 pA．
（６．１１．６２）式中的 H ｒｅｄ可以用作我们理论的哈密顿量，以 M， Q 和 J 作为构造

空间的坐标，因此，以后将 H ｒｅｄ
简写成 H．

由现在的哈密顿量可以得出正则运动方程

M· ＝ 矪H
矪pM ＝０， （６．１１．７２ａ）

Q· ＝矪H
矪pQ ＝０， （６．１１．７２ｂ）

J· ＝矪H
矪pJ ＝０， （６．１１．７２ｃ）

p· M ＝－矪H
矪M ＝－（N＋＋N－）， （６．１１．７２ｄ）

p· Q ＝－矪H
矪Q ＝－（A＋

０ ＋A－
０ ）， （６．１１．７２ｅ）

p· J ＝－矪H
矪J ＝－（ω＋－ω－）， （６．１１．７２ｆ）

其中 pM ， pQ 和 pJ 分别为 M， Q 和 J的共轭动量，pM 对时间的导数取决于类空超曲
面在两个渐近无限远处的时移函数的选择，pQ 对时间的导数取决于两个无限远处
的电势差，pJ 对时间的导数取决于无限远处坐标系的旋转角速度之差．N ±， ω±

和

A ±
０ 决定了理论的规范，从物理意义出发，我们选择以下特殊的规范：

N＋ ≡ １， （６．１１．７３ａ）
N－≡ ０， （６．１１．７３ｂ）
ω±≡ ０， （６．１１．７３ｃ）
A±

０ ≡ ０． （６．１１．７３ｄ）
在这种规范下，由正则坐标表示的哈密顿量具有很简洁的形式：

H ＝M． （６．１１．７４）
取这种规范的物理意义在于，我们以某种特殊观测者的角度来考虑 Ｋｅｒｒ桘Ｎｅｗｍａｎ
时空．我们的观测者静止于右边的无限远处，他的时间坐标是渐近闵科夫斯基时
间，也就是这个观测者的固有时间，我们“冻结”了左边无限处的时间演化．这是有
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意义的，因为我们的观测者只能从一个无限远处作观测，对于这样的观测者，Ｋｅｒｒ桘
Ｎｅｗｍａｎ 时空的经典哈密顿量就是 Ｍ，即 Ｋｅｒｒ桘Ｎｅｗｍａｎ 黑洞的 ADM 质量．

现在的问题是相空间坐标 M， Q， J， pM ， pQ 和 pJ 只描述 Ｋｅｒｒ桘Ｎｅｗｍａｎ 时空的
静态方面，而在 Ｋｅｒｒ桘Ｎｅｗｍａｎ 黑洞两个视界之间的区域没有类时 Ｋｉｌｌｉｎｇ 矢量场，这
说明 Ｋｅｒｒ桘Ｎｅｗｍａｎ 时空具有动力学性质．接下来我们的任务就是找到能自然描述
Ｋｅｒｒ桘Ｎｅｗｍａｎ 黑洞的动力学性质的正则变量．

当选择相空间坐标时，我们参考我们的观测者的性质：我们的观测者是一个惯
性观测者，他静止于离黑洞无限远处．对于这样一个观测者来说，Ｋｅｒｒ桘Ｎｅｗｍａｎ 时
空看起来是静态的，就是说它的动力学限制在黑洞视界内部．这种性质就提示我
们要怎样去选择相空间的坐标，那就是要使得当满足经典运动方程时，所有的动力
学都限制在黑洞视界 r ＝r ＋内．我们马上就会明白，对描述时空动力学的相空间的
选择与将时空分离成时间和空间的方法选择有关，我们选择的分离方法能使自由
下落并穿过分支面的观测者的固有时间和远处静止观测者的固有时间等同．根据
等效原理，我们的这种分离方法对于揭示黑洞内部的物理性质和远处观测者测到
的物理性质之间的联系具有优越性．

为了使问题简化，首先考虑 J 和 Q 只是外部参数，那么相空间就成为只由 M
和 PM 构成的二维空间了．在这个二维相空间中，我们对“旧”的相空间坐标 M 和
PM 作一个变换，得到新的相空间坐标 R 和 pR：

｜pM ｜＝ ２MR －R２ －Q２ －a２ ＋M ａｒｃ ｓｉｎ M －R
M２ －Q２ －a２ ＋１

２ πM，
（６．１１．７５ａ）

pR ＝ｓｇｎ（pM ） ２MR －R２ －Q２ －a２ ， （６．１１．７５ｂ）
而且作以下的限制

－πM ≤ pM ≤ πM． （６．１１．７６）
有了（６．１１．７６）式的限制，变换（６．１１．７５）式就很好确定．由（６．１１．７５ｂ）式得到

M ＝ １
２R（R

２
R ＋R２ ＋Q２ ＋a２ ）． （６．１１．７７）

将 M 由（６．１１．７７）式代入（６．１１．７５ａ）式就得到由 R 和 PR 构成的 PM．我们发现 M
和 PM 之间的泊松括号是不变的，因此变换（６．１１．７５）式是正则变换．

由（６．１１．７４）和（６．１１．７７）式得到由 R 和 PR 构成的经典哈密顿量
H ＝ １

２R（p
２
R ＋R２ ＋Q２ ＋a２ ）． （６．１１．７８）

变量 R 的几何解释非常有趣，首先，我们写出 R 的哈密顿运动方程
R
· ＝矪H

矪pR ＝pRR． （６．１１．７９）
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根据（６．１１．７８）式，当 M 和 PM 的经典运动方程满足时，R 的运动方程为
R
· ＝２M

R －１ －Q
２ ＋a２
R２ ． （６．１１．８０）

从 Ｋｅｒｒ桘Ｎｅｗｍａｎ 度规（６．１１．４５）可以得到，考虑观测者在 θ ＝π
２ 面上，θ· ＝φ· ＝０， 对

于这个自由下落穿过分支面的观测者来说，当 r 变到 r ＋ｄr 时，他的固有时间 τ的
变化为

－ｄτ２ ＝ r２

r２ ＋a２ ＋Q２ －２Mrｄr
２ ， （６．１１．８１）

观测者的运动方程是

r
· ２ ＝２M

r －１ －a２ ＋Q２

r２
， （６．１１．８２）

其中点代表对固有时间的导数．可以看到（６．１１．８０）式和（６．１１．８２）形式相同，所
以，从一个在 θ ＝π

２ 的面自由下落穿过分支面的观测者的角度来说，我们可以将 R
解释为 Ｋｅｒｒ桘Ｎｅｗｍａｎ 黑洞的虫洞喉半径．我们还可以从（６．１１．８０）式看到，R 只能
限制在［ r －， r ＋］区域内，换言之，R 只能存在于 Ｋｅｒｒ桘Ｎｅｗｍａｎ 黑洞的内外视界之间
的区域．正是从个区域我们能找到一个时间坐标，使得时空对这个时间坐标是静
态的．因此，我们提出的对相空间坐标的两个要求都满足了：动力学限制在视界
内，而且虫洞喉的时间坐标就是自由下落观测者的时间坐标．

有了以上的解释，（６．１１．７６）式 的限制就可以理解了．从（６．１１．７２ｄ）式可以
看到，当时移函数 N ±

按 （６．１１．７３）式选择时，M 的共轭正则动量 PM 为 －t ＋
（ｃｏｎｓｔ．）时，t是渐近观测者的时间坐标，此时对（６．１１．７５）式要考虑区分时间坐标
t和喉处的自由下落观测者的固有时间．我们已经提到过，不可能将 t 为常数的类
空超曲面覆盖到共形图上 r＝r －的超曲面之外．一个自由下落的观测者从过去超
曲面 r ＝r －穿过分支面再到达未来超曲面 r ＝r －所需的固有时间是

Δt ＝２∫r＋r－ r′ｄr′
２Mr′－r′２ －Q２ －a２ ＝２πM． （６．１１．８３）

　　 现在回到（６．１１．７６）式的限制．从（６．１１．７５ａ）式可以看到，当 R ＝r ＋时，｜pM ｜
＝０， 当 R ＝r －时，｜pM ｜＝πM．当 t为常数的类空超曲面在过去超曲面 r ＝r －和分
支面之间时，我们取 PM 为正，而当 t为常数的类空超曲面在分支点和未来超曲面 r
＝r －之间时，我们取 PM 为负．
接下来的任务就是在（６．１１．７８）式中的经典哈密顿量中，将 Q 和 a 用适当相

空间变量的函数代替，这些变量是能够自然描述 Ｋｅｒｒ桘Ｎｅｗｍａｎ 时空动力学的变量．
我们发现当 M 和 a 为常数时，存在一个正则变换使得相空间坐标（Q， pQ ）和（ J，
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pJ）变换到一个新的相空间坐标，记为 u 和 v，它们的正则动量是 pu 和 p v．
我们将通过两步得到这个正则变换．首先，用两个坐标 ω１ 和 ω２ 的共轭正则

动量 Pω１和 Pω２代替 Q 和 a，
Pω１ ＝Q， （６．１１．８４ａ）
Pω２ ＝a． （６．１１．８４ｂ）

于是，（６．１１．７８）式的经典哈密顿量变成
H ＝ １

２R（p
２
R ＋p２ω１ ＋p２ω２ ＋R２ ）． （６．１１．８５）

接下来就是寻找 ω１ 和ω２ ，我们推测ω１ 和ω２ 分别与 Q 和 J的共轭动量 pQ 和 pJ 存
在着某种关联．因为从（６．１１．７２ｅ）式可以看出，pQ 决定了电磁规范， pJ 决定了远
处坐标系的旋转角速度．我们首先给出在一般电磁规范下远处坐标系以任意角速
度旋转的经典哈密顿量：

H ＝１
２R（p

２
R ＋p２ω１ ＋p２ω２ ＋R２） ＋（A＋

０ －A－
０ ）pω１ ＋M（ω＋－ω－）pω２， （６．１１．８６）

这是由（６．１１．６２）， （６．１１．７２ｅ），（６．１１．７２ｆ）和当满足经典运动方程时 M 为常数
得出的．我们得到 ω１ 和 ω２ 的哈密顿运动方程

ω· １ ＝ 矪H
矪pω１

＝pω１
R －p· Q， （６．１１．８７ａ）

ω· ２ ＝ 矪H
矪pω２

＝pω２
R －Mp· J． （６．１１．８７ｂ）

将（６．１１．８７ａ）， （６．１１．８７ｂ）式两边同时沿相空间的经典轨道积分就得到关于 R，
pR， ω１ ， ω２， pω１和 pω２的表达式：

pQ ＝∫pω１
RR·
ｄR －ω１， （６．１１．８８ａ）

pJ ＝∫pω２
RR·
ｄR －ω２ ， （６．１１．８８ｂ）

其中，
R· ＝－ｓｇｎ（pM ） ２M

R －１ －p
２
ω１ ＋p２ω２
R ． （６．１１．８９）

作这个替换是由于我们选择了 p· Q ＝p· J ＝０．因为要使得无限远处的电势为零和渐
近坐标为非旋转的是可以做到的．选择适当的积分常数后我们得到
pQ ＝ｓｇｎ（pM ）pω１

　 ａｒｃ ｓｉｎ p２R ＋p２ω１ ＋p２ω２ －R２

（p２R ＋p２ω１ ＋p２ω２ ＋R２ ） ２ －４R２（p２ω１ ＋p２ω２）
＋π

２ －ω１ ，
（６．１１．９０ａ）
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pJ ＝ｓｇｎ（pM ） ２Rpω２
p２R ＋p２ω１ ＋p２ω２ －R２

　 ａｒｃ ｓｉｎ p２R ＋p２ω１ ＋p２ω１ －R２

（p２R ＋p２ω１ ＋p２ω２ ＋R２ ） ２ －４R２ （p２ω１ ＋p２ω２）
＋π

２ －ω２ ，
（６．１１．９０ｂ）

式中，
M ＝ １

２R（p
２
R ＋p２ω１ ＋p２ω２ ＋R２ ） ２． （６．１１．９１）

（６．１１．７５ｂ）， （６．１１．８４）， （６．１１．９０）式构成一个从相空间坐标 M， pM ， Q， pQ ， J，
pJ 到相空间坐标 R， pR， ω１， pω１， ω２ ， pω２的变换．很容易证明，它是一个正则变换，
加上条件

pQ ＋ω１
pω１

≤ π， （６．１１．９２ａ）
MpJ －ω２
pω２

≤ π． （６．１１．９２ｂ）
它还是个一对一的变换．给出这些限制是由于我们只考虑两个 r ＝r －的超曲面之
间的时空．当渐近无限远处的电势为零且渐近坐标系是非旋转的时候，p· Q ＝p· J ＝
０，我们得出的 ω１ 和 ω２ 具有以下的性质：在过去超曲面 r ＝r －处，ω１ ＝－Qπ＋pQ，
ω２ ＝－aπ＋MpJ； 在分支面处 ω１ ＝pQ， ω２ ＝MpJ；在未来超曲面 r ＝r －处，ω１ ＝Qπ
＋pQ ，ω２ ＝aπ＋MpJ．也就是说，t 为常数的超曲面不能超出 r ＝r －的超曲面以外，
这使 ω１ 和 ω２ 的经典区域受到限制．

最后一步，对 ω１ ， pω１和 ω２ ， pω２作一个正则变换得到变量 u， pu 和 v，p v．我们
定义：

u ＝pω１ｓｉｎ ω１
pω１

， （６．１１．９３ａ）

pu ＝pω１ｃｏｓ ω１
pω１

， （６．１１．９３ｂ）

v ＝pω２ ｓｉｎ ω２
pω２

， （６．１１．９３ｃ）

p v ＝pω２ｃｏｓ ω２
pω２

． （６．１１．９３ｄ）
这个变换是正则变换，符合我们的条件．我们发现
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P２
ω１ ＝p２u ＋u２ ， （６．１１．９４ａ）
p２ω２ ＝p２v ＋v２． （６．１１．９４ｂ）

也就是说，我们将 p２u ＋u２ 看作 Q２ ，p２v ＋v２ 看作 a２ ，那么 Ｋｅｒｒ桘Ｎｅｗｍａｎ 黑洞的经典哈
密顿量就具有非常简洁的形式：

H ＝ １
２R（p

２
R ＋p２u ＋p２ν ＋R２ ＋u２ ＋v２ ）． （６．１１．９５）

Kerr桘Newman 黑洞的量子理论

完成了包括 Ｋｅｒｒ桘Ｎｅｗｍａｎ 黑洞在内的稳态时空的经典哈密顿理论之后，接下
来讨论这类时空的正则量子化理论，再接下来讨论一类特殊的正则量子化理论．
我们定义希尔伯特空间为 L２ （R ＋ ×R ×R， R２ dRdudv），其内积定义为

棟ψ１ ｜ψ２ 棡 ＝∫∞

０ ｄRR s∫＋∞

－∞ ｄu∫＋∞

－∞ ｄvψ倡
１ （R， u， v）ψ２（R， u， v）．（６．１１．９６）

将（６．１１．９５）式中的经典哈密顿量用对应的对称算符代替，即 pR硳 －ｉ（矪／矪R），pu
硳 －ｉ（矪／矪u），p v硳 －ｉ（矪／矪v），得到

H^ ＝－１
２ R

－s 矪
矪R R

s－１ 矪
矪R －１

２R
矪２

矪u２ －１
２R

矪２

矪v２ ＋１
２ R ＋u２２R ＋v２２R．

（６．１１．９７）
这个算符可以看作是 Ｋｅｒｒ桘Ｎｅｗｍａｎ 黑洞的哈密顿算符．它的本征值就是远处静止
观测者测得的黑洞的 ＡＤＭ 质量的本征值．它的本征方程为

－１
２ R

－s 矪
矪R R

s－１ 矪
矪R －１

２R
矪２

矪u２ －１
２R

矪２

矪v２

＋１
２ R ＋u２２R ＋v２２R ψ（R， u， v） ＝Eψ（ r， u， v）． （６．１１．９８）

这个方程是我们的主要结果．在某种意义上，可以认为是所有黑洞的不含时薛定谔
方程．ψ（R， u， v）是黑洞的波函数．对于 s＝１ 的特殊情况，（６．１１．９８）具有非常简洁
漂亮的形式：

１
２R － 矪２

矪R２ －矪２

矪u２ －矪２

矪v２ ＋R２ ＋u２ ＋v２ ψ（R， u， v） ＝Eψ（R， u， v）．
（６．１１．９９）

如果我们将 ψ（R， u， v）写成
ψ（R， u， v） ＝ψ（R）φ１ （u）φ２ （ v）， （６．１１．１００）

则（６．１１．９８）式可以分离成 M，Q２
和 a２ 的本征方程
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－１
２ R

－s ｄ
ｄR R

s－１ ｄ
ｄR ＋１

２ R ＋Q２

２R ＋a２２R ψ（R） ＝Mψ（R），　　　（６．１１．１０１ａ）

－ ｄ２ｄu２ ＋u２ φ１ （u） ＝Q２φ１ （u）， （６．１１．１０１ｂ）

－ｄ
２

ｄv２ ＋v２ φ２（ v） ＝a２φ２ （ v）． （６．１１．１０１ｃ）
现在我们考虑黑洞的 ADM 质量的本征方程（６．１１．１０１ａ）．此式可改写为

R－s ｄ
ｄR R

s－１ ｄ
ｄR ψ（R） ＝ Q２

R ＋a２R ＋R －２M ψ（R）．
（６．１１．１０２）

我们发现，函数
Q２

R ＋a
２

R ＋R －２M
在 r － ＜R ＜r ＋为正，其他情况为负或为 ０．如果从半经典的理论考虑，应该可以推
测当 r － ＜R＜r ＋时，波函数有震荡，而在其他地方会呈指数形式．因此我们的系统
就类似于一个势阱中的粒子，R 就如经典情况中的一样，被限制在黑洞内外两视界
之间．半经典的情况是，对应 R 的波包被内视界反射．当黑洞处于稳态时，内外视
界之间存在着一个驻波．因此，由于我们的时空只在 －πM≤t≤πM 区域有效而造
成的经典不完整性被量子力学消除了：当黑洞处于稳态时，视界之间没有波包的传
播，因而我们的量子理论在任何时候都有效．但是波只存在于史瓦希视界和奇点
之间，方程（６．１１．１００）和氢原子的薛定谔方程的性质之间存在着一个很有趣的相
似性，当氢原子处于 s 态时，即电子绕质子转动的轨道角动量为零，从经典轨道理
论来看，电子应该在很短的时间内撞到质子．但是在量子力学中，这是由于电子波
包被质子反射而变成电子驻波了．这就使得氢原子量子理论在任何时候都有效．
在史瓦希黑洞中，黑洞的奇点对应质子，而喉半径 R 对应电子到质子的距离．黑洞
和氢原子一些经典问题由量子理论给出的解是相似的．

现在我们对本征方程（６．１１．１０１ａ）进行详细讨论．如果令
x ＝R３ ／２ ， （６．１１．１０３ａ）
ψ＝x（ １ －２ s） ／６χ（x）， （６．１１．１０３ｂ）

并定义

ρ ＝２s －１
６ ，　 s ≥ ２， （６．１１．１０４ａ）

ρ ＝７ －２s
６ ，　s ＜２． （６．１１．１０４ｂ）
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则（６．１１．１０１ａ）式变为

９
８ － ｄ２ｄx２ ＋ρ（ρ －１）

x２
＋４

９ x３ ／２ ＋Q２ ＋a２
x３ ／２ χ（x） ＝Mχ（x）．

（６．１１．１０５）
当 ρ≥３／２ 时，M２ －Q２ －a２ 的本征值总是正的，而且，当 １／２≤ρ≤３／２ 时，我们可以
通过适当选择 x＝０ 处波函数 χ（x）的边界条件或者说通过选择适当的延拓，使 M２

－Q２ －a２ 为正．对方程（６．１１．１０５）的 ＷＫＢ 分析得到：当 Q２ ＋a２ ＞＞１，M２
n －Q２ －a２

＞＞１，这样 r ＞＞１， ＷＫＢ 本征值 Mn 具有性质
M２
n －Q２ －a２ ＝２n ＋１ ＋O（１）， （６．１１．１０６）

n 是整数，O（１）代表当 n 趋向很大时为零的项．大部分文章对（６．１１．１０５）式的分
析结果得到（６．１１．１０６）式右边的第一项，而（６．１１．１０６）式给出的是严格解．即使
Q２ ＋a２和 n 相对很小，也就是说，在半经典限制下， M２ －Q２ －a２也有 ２n ＋１

的形式．
现在，我们该怎么去理解这些结果呢？ 考虑到霍金辐射，由 M２ －Q２ －a２ 的正

定性得出很有趣的结论：如果把霍金辐射看成是从高能本征态到低能本征态的跃
迁的结果，那么谱 M２ －Q２ －a２ 的正定性意味着，一个非极端的 Ｋｅｒｒ桘Ｎｅｗｍａｎ 黑洞
永远不可能通过霍金辐射成为一个绝对零度的极端黑洞．这个结论与热力学第三
定律和极端黑洞和非极端黑洞之间的性质上的区别都是相符的．这个结论证明我
们对描述 Ｋｅｒｒ桘Ｎｅｗｍａｎ 时空的相空间坐标的选择是合理的．

在讨论（６．１１．１０６）式的意义之前，先通过（６．１１．１０１ｂ）（６．１１．１０１ｃ）计算 Q 和
a 的谱．可以看出这两个方程本质上都是一维线性谐振子的不含时薛定谔方程，
当（６．１１．１０１ｂ）式作为谐振子的本征方程时，Q２

的本征值是

Q２
k ＝２k ＋１， （６．１１．１０７）

在自然单位制下

Q２
k ＝（２k ＋１） e２α， （６．１１．１０８）

其中，k＝０，１，２…，在这个方程当中，e是元电荷，
α＝ e２

４πε０砽c ≈
１

１３７ （６．１１．１０９）
是精细结构常数．也就是说，黑洞的电荷谱是分立的．

我们可能对（６．１１．１０８）式中的电荷谱的合理性感到混淆：至少对于基本粒
子，电荷 Q 本身是个整数，而不是 Q２．这看上去与所有可能的观测和期望值矛盾，
而且与我们物理的基本概念不相符．

然而事实不是这样的．首先，由于｜Q｜＞＞M，那些基本粒子肯定不是黑洞；第
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二，由量纲分析得出，（６．１１．１０８）式的电荷谱正好是我们对黑洞所预期的．当电荷
写成自然常数 ε０ ，砽和 c的形式时，我们发现，电荷的自然单位就是所谓的“普朗克
电荷”

Qpl ＝ ４πε０砽c． （６．１１．１１０）
　　我们发现恰恰是普朗克电荷的平方 Q２

而不是普朗克电荷本身正比于砽．对于
束缚系统，当我们将物理量写成与系统相关的自然常数的形式时，谱中砽一定乘了
一个整数，可观测的物理量一般是按照这种方式被量子化的．例如，氢原子中相关
的物理常数是 ε０ ，砽，e和电子质量 me，这些量可以构成一个自然单位的能量

me e４

（４πε０ ） ２砽２．
　　我们希望能量被量子化且能量的本征值具有以下的形式：

En ＝－γ m e e４

（４πε０ ） ２砽２ n２
， （６．１１．１１１）

其中 γ是纯数，n 是整数，如果取 γ＝１
２ ，得到的正好是氢原子的能谱．对于黑洞，

我们允许用的自然常数只有 砽， c， G 和 ε０ ，因此（６．１１．１１０）式中的普朗克电荷 Qpl
是黑洞的自然单位的电荷，也就是说，（６．１１．１０８）式的电荷就是我们期望的黑洞
的电荷谱．

除了量纲方面的论证，还有另一个理由说明为什么黑洞的电荷不必要有和普
通物质相同的谱．由 Ｋｅｒｒ桘Ｎｅｗｍａｎ 黑洞的共形图很容易看出 t 为常数的类空超曲
面永远不会到达黑洞的奇点 R ＝０．从这点可以得到在这些超曲面上，任意一处的
电场力线都没有起点和终点（如果有的话在奇点 R ＝０ 处也有），而是穿过 Ｋｅｒｒ桘
Ｎｅｗｍａｎ 虫洞到达另一个不连通的区域．因此我们不可能像讨论一般物质的电荷
一样来讨论黑洞的电荷．对于一般物质，电荷分布在电场力线的出发点或终点，而
对于黑洞，根本不存在这样的点．因此，外部观测者观测到黑洞的电荷是黑洞时空
的几何和因果结构导致的，而不是因为黑洞具有物质的性质．因此黑洞的电荷没
必要与一般物质的电荷相同，也没必要与一般物质有相同的谱．

现在讨论方程（６．１１．１０１ｃ），它给出 a２ 的谱．与电荷相似，我们找到 a２ 的可
能的本征值为

a２l ＝２l ＋１， （６．１１．１１２）
恢复自然常数有

a２l ＝（２l ＋１） 砽G
c ， （６．１１．１１３）

其中 l＝０， １，２， …它也是以 砽乘一个整数的方式被量子化的．将（６．１１．１０６）
（６．１１．１０８）和（６．１１．１１２）式联合，我们发现，在半经典限制下，黑洞质量本征
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值为

Mn ＝ ２m， （６．１１．１１４）
m ＝n ＋l ＋k ＝０， １， ２，… （６．１１．１１５）

恢复自然常数有

Mm ＝ ２m ＋１Mpl， （６．１１．１１６）
其中

M pl ＝ 砽c
G （６．１１．１１７）

是普朗克质量．
考虑到黑洞的总面积，M， Q 和 a 的谱给出有趣的结论．Ｋｅｒｒ桘Ｎｅｗｍａｎ 黑洞的

外视界面积

A＋ ＝４π（ r２＋＋a２ ）． （６．１１．１１８）
内视界面积为

A－ ＝４π（ r２－＋a２ ）． （６．１１．１１９）
利用（６．１１．１０６）和（６．１１．１０８）式，我们得到量

a to t ＝A＋＋A－， （６．１１．１２０）
为了方便起见，我们称之为黑洞总面积．它的半经典本征值具有以下的形式

A to tn， l， k ＝１６π（２n ＋２l ＋k） （６．１１．１２１）
恢复自然常数有

A totn， l， k ＝１６π（２n ＋２l ＋k） l２pl． （６．１１．１２２）
lpl ＝ 砽G

c３
（６．１１．１２３）

是普朗克长度，这个结论与 Ｂｅｋｅｎｓｔｅｉｎ 于 １９７４ 年提出的，后来又有很多人研究得
出的结论非常相似．他们提出，黑洞外视界面积谱具有以下的形式：

A＋
n ＝γnl２pl， （６．１１．１２４）

n 为整数，γ为纯数．由此式得出，当 γ＝１６π时，黑洞的总面积按照上式量子化．
现在我们计算黑洞的角动量谱．从（６．１１．１１３）， （６．１１．１１５）， （６．１１．１１６）式

得出黑洞总角动量 J ＝Ma 的可能的本征值有以下的形式
Jn， l， k ＝±２ l（ l ＋n ＋k）砽 （６．１１．１２５）

对于 k＝０ 的不带电黑洞，当 l＞＞n 时，角动量本征值为
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Jm ＝m j砽， （６．１１．１２６）
其中 m j ＝０， ±２， ±４， …．

可以看到，黑洞的角动量谱就像我们理论预言的一样，至少在它取极限时是我
们期望的，即角动量为偶数．当黑洞从一个角动量本征态跃迁到另一个本征态时，
就会引起辐射或吸收，由于引力子的自旋是 ２，因此可以推测到黑洞角动量只能以
偶数的整数倍变化．例如，由两个绕质心转动的质点组成的系统每吸收或辐射
一个引力子，他们的角动量量子数就改变一个偶数．所以，对于极端黑洞，由
（６．１１．１２６）式给出的角动量谱是合理的．

·８７２· 第 ６章　黑洞的量子效应



第 7 章　黑洞的引力效应
７畅１　有质量标量粒子的有限运动

有质量经典粒子在克尔场和史瓦希场中的运动已为许多工作研究过．但是有
质量粒子在微黑洞（其半径可以和粒子的德布罗意波长相比拟）附近运动则出现
量子性质．

在本节中，我们采用 Ｋｌｅｉｎ唱Ｇｏｒｄｏｎ 方程，讨论有质量标量粒子的弱相对论
运动．
1．史瓦希场中的情况

设粒子质量为μ．选用 Ｅｄｄｉｎｇｔｏｎ唱Ｆｉｎｋｅｌｓｈｔｅｉｎ 坐标（ t^＝t＋r ＋ －r，r，θ，φ）比较方
便，因为它不仅当 r ＞rg ＝２M，而且对于进入 r ＜rg 区域的粒子，也可以描述其运
动．在这一坐标系中，度规具有形式

（ g^μν） ＝

１ ＋rgr －rgr ０ ０

－rgr － １ －rgr ０ ０

０ ０ －１
r２

０
０ ０ ０ － １

r２ ｓｉｎ２ θ

（７畅１畅１）

Ｋ唱Ｇ 方程具有形式
（ －g） －１ ／２ 抄

抄xμ （ －g） －１ ／２ gμν 抄Φ
抄xν ＋μ２Φ ＝０． （７畅１畅２）

分离变量可得

Φ（ t^，r，θ，φ） ＝∫ｄω∑
l，m
ｅｘｐ（ －ｉωt^）R lm（ r）Yml （θ，φ）， （７畅１畅３）

且径向方程可以用量纲为一的变量 x＝ r^rg ，ω^＝ωrg 写出
x（１ －x）R″＋［１ －２（１ －ｉ ω^）x］R′－［ω^２ x（x ＋１） －μ^２ x２ －ｉ ω^－l（ l ＋１）］R

＝０． （７畅１畅４）
当



｜ω^２ x（x ＋１） －μ２ x２ ｜虫 l（ l ＋１）
时，即在引力半径附近，方程（７畅１畅４）变为

x（１ －x）R″＋［１ －２（１ －ｉ ω^）x］R′＋［ l（ l ＋１） ＋ｉ ω^］R ＝０．（７畅１畅５）
这一方程的线性无关解为

R１ ＝２F１（ －l －ｉ ω^，１ ＋l －ｉ ω^；１；x），
R２ ＝R１ ｌｎx ＋∑∞

k ＝１
C k xk；　　　（x ＜１）

（７畅１畅６）

珘R１ ＝２F１ （ －l －ｉ ω^，１ ＋l －ｉ ω^；１ －２ｉ ω^；１ －x），
珘R２ ＝（１ －x） ２ ｉω^

２F１ （ －l ＋ｉ ω^，１ ＋l ＋ｉ ω^；１ ＋２ｉ ω^；１ －x）．（｜x －１ ｜＜１）

　　在黑洞的引力场中，波函数的行为有一个特征，对于具有任意角动量的粒子，
函数 R２ 中存在一个对数奇点（ x＝０）．这类特征不依于所取的长波近似，对于 λ虫
rg 的情况仍有这一特征．这是因为被黑洞俘获的粒子经过中心奇点的过程与粒子
的角动量无关．

在远离黑洞的区域， ω^２ x２冲l（ l＋１），方程（７畅１畅４）的解在弱相对论近似
０ ＜Ω^２ ＝μ^２ －ω^２ 虫 μ^２

下，可以渐近地表示为退化了的超几何函数：
R∞ （x） ＝ｅ－Ω^x x l＋ｉω^Ψ １ ＋l －ω^２

２ Ω^，２ ＋２l；２x Ω^ ． （７畅１畅７）
由所获得的解，加上边界条件（中心处或边界处），便可求出史瓦希场中弱相对论
粒子的能谱．

面 rg 对于经典粒子是单向膜．假设对于量子化的粒子仍有这一性质．在 rg 面
上，我们选择 珘R１ 与被黑洞俘获的粒子相对应．在区域 x冲１，这个解具有渐近行为：

珘R１ ～x l＋ｉω^ Γ（１ ＋l）
Γ（１ ＋l －ｉω）

＋ ｉω^x
－１ －l－ｉω^ Γ（１ ＋l ＋ｉ ω^）

Γ（２ ＋２l） ｜Γ（ －l －ｉ ω^） ｜２．
当 Ωx虫１ 时，解 R∞具有类似的形式．忽略对数项，函数 R∞具有渐近：

R∞ ～x l＋ｉω^
ψ１ ＋l －ω２

２ Ω^
Γ（２ ＋２l）Γ －l －ω^２

２ Ω^
＋x－１ －l＋ｉω^ １

２ Ω^
２ l＋１ Γ（１ ＋２l）

Γ １ ＋l －ω^２

２ Ω^
．
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分别比较上两式中对应的 x l 项和 x －１ －l
项系数，可以得到确定史瓦希场中本征能

谱的方程：

ψ １ －l －ω^２

２ Ω^
Γ １ ＋l －ω^２

２ Ω^
Γ －l －ω^２

２ Ω
（２ Ω^） １ ＋２ l

＝ｉ ω^［Γ（１ ＋２l）Γ（２ ＋２l）］ ２ ｜Γ（－l －ｉ ω^） ｜２

｜Γ（１ ＋l －ｉ ω^） ｜２． （７畅１畅８）
能量的复数值满足方程（７畅１畅８），即能级不是定态的．粒子被黑洞俘获而引起的准
定态能级分裂本质上取决于粒子的能量和角动量．在平直空间中，类氢原子的本征
值谱由波函数在边界上为零来求出．在所讨论的近似下，粒子所在的局部区域中，
史瓦希场和库仑场的差别很小，系能

Ω^ ＝μ^２

２n ＋ΔΩ^－ｉ ε^， （７畅１畅９）
且

｜ΔΩ^｜，ε^ 虫 μ^
２n ≡ Ωc０ ，

此时有

１ ＋l －ω^２

２ Ω^≈ １ ＋l －n １ －ΔΩ^
Ω^c

０
－ｉ － ε^

Ω^c
０
．

在我们研究的长波近似下，衰减随着粒子角动量的增大而很快减小：
　　　　　　 ε^

Ωc０ n， l
＝ω^（Ω^c０） １ －２ l Πl

s ＝１（１ ＋ω^２

s２ ）·
（２l＋１） ２

n２２ l －１ ［（２l＋１）！！］ ４
Γ（n ＋l＋１）
Γ（n －l） ． （７畅１畅１０）

在导出上式时，假定粒子在黑洞附近的行为是经典的，但是当粒子的康普顿波长和
黑洞的引力半径相比拟时粒子的产生是可能的．在霍金过程中，产生的粒子可能占
据准静态能级．产生的反粒子按随动系计算经过有限长时间便落入黑洞的中心奇
点．我们采用在视界 rg 处对解进行解析延拓的方法来研究粒子的产生过程．在区
域 x冲１，解 珘R２ 具有渐近行为

珘R２ ～x l＋ｉω^ Γ（１ －２l）
Γ（１ ＋l －ｉω^） － ｉω^x

－１ －l＋ｉω^．
Γ（１ ＋l ＋ｉ ω^）

Γ（２ ＋２l） ｜Γ（－l －２ｉ ω^） ｜２ ，
与解 珘R１ 不同的只是 ｉ前面的符号．这导致衰减 ε^的不同符号．因此，霍金过程导致
黑洞附近粒子向准静态能级聚集．粒子聚集的过程和被黑洞俘获的过程是独立的，

·１８２·７畅１　有质量标量粒子的有限运动



所以可以期望系统中动力学平衡的建立．在平衡状态存在的情况下，由平衡的稳定
性条件 ε ＝０，可以求出粒子的产生幅和俘获幅之间的关系．

在区域｜x－１｜＜１ 中，与粒子 －反粒子对产生相对应的完全解由下式给出：
Φout ～［θ（x －１）珘R２（x －１） ＋ｅ２πω^θ（１ －x）珘R２·

（１ －x）］ｅ－ｉω^tYml （θ，φ）． （７畅１畅１１）
在这种情况下，x ＝０ 附近的解很有趣．这一解由解析延拓的方法得到，具有形式

Φout ～R１ ｌｎx ＋∑
k
B k xk． （７畅１畅１２）

式中除了正常部分以外还有奇异部分，这是和平直空间库仑场中的静态解不同的．
2．克尔场中的情况

黑洞的旋转改变了引力场的性质，相应地也改变了能谱的图像，对于准静态能
级衰减的大小有特别强烈的影响．在径向坐标的所有取值范围内对波方程进行全
面的分析是十分复杂的，因为拓扑变得相当复杂；而且把解延拓过 r ＋和 r －，使积分
变得非常复杂，特别是因果规律遭到破坏．所以，我们只限于研究外部区域 r ＞r ＋．
在这个区域，我们要用更简单的 Ｂｏｙｅｒ唱Ｌｉｎｄｑｕｉｓｔ 坐标 t，r，θ，φ．此时 Ｋｅｒｒ 度规具有
熟知的形式．将相应的 Ｋｌｅｉｎ唱Ｇｏｒｄｏｎ 方程分离变量，得到

Φ（ t，r，θ，φ） ＝∫ｄωｅ ｉωt ∑
l，m
Rω， l，m （ r）Sml （θ）ｅ ｉmφ． （７畅１畅１３）

径向部分满足的方程是

ｄ
ｄr ΔｄRｄr ＋ １

Δ （ r２ ＋a２ ）ω２ －４aMmωr ＋（am） ２ －μ２ （ r２ ＋a２ ） －λ R ＝０，
（７畅１畅１４）

式中 λ是分离变量常数．球函数
Sml （a μ２ －ω２ ，ｃｏｓθ）

满足的方程是

１
ｓｉｎθ

ｄ
ｄθ ｓｉｎθ ｄSｄθ ＋ λ＋a２ （μ２ －ω２ ） ｓｉｎ２ θ － m２

ｓｉｎ２ θ S ＝０． （７畅１畅１５）
和前面讨论过的球对称引力场的情况一样，我们仍局限于长波近似 rg ／λ虫１．这一
方程在 r ＋附近满足旋转黑洞视界处边界条件的解为

R in ＝ x
x ＋１

ｉQ
２F１ （ －l，１ ＋l，１ ＋２ｉQ；x ＋１）， （７畅１畅１６）

式中

Q ＝（ω－mΩH） rg r＋ ／（ r＋－r－），
x ＝（ r －r－） ／（ r＋－r－），
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ΩH 是旋转黑洞的角速度．得到这个解的过程中假定了
a（μ２ －ω２ ） １ ／２ 虫 １，
λ≈ l（ l ＋１）．

在远离黑洞处，这个解的渐近行为是
R in≈（ －１） l （２l）！l！

Γ（１ ＋２ｉQ）
Γ（１ ＋l ＋２ｉQ）x

l ＋（ －１） １ ＋l

× l！
（１ ＋２l）！·

Γ（１ ＋２ｉQ）
Γ（ －l ＋２ｉQ） x

－１ －l．
　　当 r→∞时，方程（７畅１畅１４）的解按指数形式衰减，可表示为

R∞ ＝x l e－σΩ^xΨ（１ ＋l －ρ，２ ＋２l；２σΩ^x）， （７畅１畅１７）
式中，

Ω^＝（μ２ －ω２ ） １ ／２ r＋，　σ＝（ r＋－r－） ／r＋，
ρ ＝ω^２

Ω^（１ －σ／２）．
当 x→０ 时，渐近行为（７畅１畅１７）可写为近似式

R∞ ≈ Ψ（１ ＋l －ρ）
Γ（－l －ρ） （２σΩ^） １ ＋２ lx l

＋Γ（１ ＋２l）Γ（２ ＋２l）
Γ（１ ＋l －ρ） x－１ －l．

将（７畅１畅１６）和（７畅１畅１７）式的解在公共区域内连接起来，我们得到确定克尔场中本
征能谱的方程

Ψ（１ ＋l －ρ） Γ（１ ＋l －ρ）
Γ（－l －ρ） （２σΩ^） １ ＋２ l

＝－ （２l）！（１ ＋２l）！
l！

２ Γ（ －l ＋２ｉQ）
Γ（１ ＋l ＋２ｉQ）， （７畅１畅１８）

由此，再考虑到
Ω^ ＝Ω^０ ＋ｉ ε^，　１ ＋l －ρ≈ １ ＋l －n（１ －ｉε^ ／Ω^０ ）， （７畅１畅１９）

我们得到克尔场中准静态能级衰减的表达式：
　　　　　　　 ε^

Ω^０ n， l，m
＝Q（σΩ^０ ） １ ＋２ l Πl

S ＝１ １ ＋４ Q
２

S２

×Γ（n ＋l＋１）
Γ（n －１）n

（１ ＋２l） ２

２２ l －１ ［（２l＋１）！！］ ４． （７畅１畅２０）
与前边讨论的史瓦希场的情况不同，克尔场中的衰减依赖于黑洞旋转的角速度．在
ω＜mΩH 的情况下可以改变符号，即衰减变为激发．这一条件导致被克尔黑洞散射
的多极波的加强，这与克尔场中粒子的产生有关．
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这里我们指出，在 （７畅１畅２０）式中代入 σ＝１ 与史瓦希场对应，应得到结果
（７畅１畅１０）．其中有一点不同，是由于 Ｂｏｙｅｒ唱Ｌｉｎｄｑｕｉｓｔ 坐标和 Ｅｄｄｉｎｇｔｏｎ唱Ｆｉｎｋｌｓｈｔｅｉｎ
坐标的不同造成的．

７畅２　狄拉克方程的能谱
当场源的角速度 a ～GM／c２ 时，产生的非线性效应十分复杂．我们这里局限于

慢速转动（a虫GM／c２ ）的情况．这时克尔度规可以线性化．在区域
r≥ r＋ ＝GM／c２ ＋ G２M２ ／c４ －a４ ≈ ２GM／c２ （７畅２畅１）

中，克尔度规具有形式
ｄs２ ＝ｅνｄt２ －ｅλｄr２ －r２ ｄΩ２ ＋４Ma

r ｓｉｎ
２θｄφｄt， （７畅２畅２）

式中

ｅν ＝ｅ－λ ＝１ －Rgr ≡ Y２ ，　I ＝ManZ，　Rg ＝２M， （７畅２畅３）
这里和下面都采用自然单位制 c＝G＝珔h ＝１．

在这一度规下的 Ｄｉｒａｃ 方程为
γμ楚μψ＋ｉμψ＝０， （７畅２畅４）

式中 γμ
是广义 Ｄｉｒａｃ 矩阵，它满足关系式

γμγν ＋γνγμ ＝２gμν． （７畅２畅５）
自旋的协变导数Δμ由福克 －伊凡宁柯系数定义：

Δμ＝抄μ －Γμ，Γμ ＝－１
４ γν（γν，μ －γρΓρ

ν，μ）． （７畅２畅６）

1．史瓦希场
在史瓦希度规的情况下，可以借助于通常的球自旋进行分解．为此，应选择 γ

矩阵具有形式：
γt ＝ｅ－ν／２珘γ０ ＝ｅ－ν／２珘β，

　　γφ ＝r－１ ｓｉｎ－１θ（ｓｉｎφ珘γ１ －ｃｏｓθ珘γ２ ），
γr ＝ｅ－λ／２ （ ｓｉｎθｃｏｓφ珘γ１ ＋ｓｉｎθｓｉｎφ珘γ２ ＋ｃｏｓθ珘γ３ ）， （７畅２畅７）
γθ ＝r－１ （ｃｏｓθｃｏｓφ珘γ１ ＋ｃｏｓθｓｉｎφ珘γ２ －ｓｉｎθ珘γ３ ）．

这时可得

Ψ ＝r－１ ｅν／４ ｅ－ｉωt· F（ r）Yml j（ j） （θ，φ）
－ｉG（ r）（n，σ）Yml j（ j） （θ，φ） ， （７畅２畅８）

式中
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Yml j（ j ＝l＋１ ／２） （θ，φ） ＝（－１） k ｉ·
j ＋m j
２ j Y

m
l j－１ ／２ （θ，φ）

－ｉG（ r）（n，σ）Yml j（ j） （θ，φ）
， （７畅２畅９）

Yml j（ j ＝l－１ ／２） （θ，φ） ＝
j ＋m j ＋１
２ j ＋２ Yml j－１ ／２ （θ，φ）
j ＋m j ＋１
２ j ＋２ Yml j＋１ ／２ （θ，φ）

， （７畅２畅１０）

σ是泡利矩阵：（n，σ） ＝ｓｉｎθｃｏｓφσ１ ＋ｓｉｎθｓｉｎφσ２ ＋ｃｏｓθσ３ ，
σ１ ＝ ０　１

１　０ ，σ２ ＝ ０ －ｉ
ｉ ０ ，σ３ ＝ １ ０

０ －１ ． （７畅２畅１１）
解（７畅２畅８）式中，径向函数满足方程组：

ｅ－λ／２F′＋m lr F ＝（ｅ－ν／２ω＋μ）G， （７畅２畅１２）

ｅ－λ／２G′－m lr G ＝（－ｅν／２ω＋μ）F， （７畅２畅１３）
式中 m l 取正负整数，

l ＝｜m l ＋１
２ ｜－１

２ ＝ ｜m l ｜，m l ＞０，
｜m l ｜－１，m l ＜０． （７畅２畅１４）

m j 是粒子的总角动量在 z（θ ＝０）方向的投影，l 是轨道量子数，j＝｜m l｜－１
２ 是粒子

的总角动量．和在任何有心力场中一样，m l，m j 和 j是运动积分．与四维流密度矢量
Iμ ＝珘ψγμψ，珘ψ＝ψ倡 珘B （７畅２畅１５）

对应，我们得到稳态情况下的归一化积分
∫
r≥ R g

珘ψψ －gｅν／２ ｄ３ x ＝∫∞

R g
（｜F ｜２ ＋｜G｜２ ）ｄr． （７畅２畅１６）

由方程组（７畅２畅１２）和（７畅２畅１３）可以得到
F″＋ ω２

γ４ －１
γ２ ［μ２ ＋１

γ２m l（m l ＋１）］ F ＝Ω^m lF， （７畅２畅１７）
式中

Ω^m l ＝ω＋μY
Y２

Y２

ω＋μY ′ｄｄr ＋
m l
r

ω＋μY
Y２

Y２

ω＋μY ′． （７畅２畅１８）
考虑到 m l（m l ＋１） ＝l（ l＋１），不难推断，如果形式地设Q^m l ＝０，我们将得到史瓦希
场中无自旋粒子径向函数的方程．由方程（７畅２畅１７）作变换 ω→ －ω，m l→ －m l，可
以得到函数 G 的方程．下面将证明，算符Q^m l包含引力自旋 －轨道相互作用和其他
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的非线性自旋效应．
在非相对论（泡利）近似下，函数 G 可认为等于零，而函数 F 对于束缚态可用

拉盖尔多项式表示．这里，我们引入
ω＝μ＋ε，　 ｜ε ｜虫 μ，

得到

ω
μ≡１ ＋ε

μ ＝１ －μ２M２

２n２ ， （７畅２畅１９）
n ＝１ ＋l ＋n r ＝１，２，３，…．

　　在弱相对论近似下，将（７畅２畅１８）和（７畅２畅１９）式分解，精确到 v２ ／c２ 项，并引入
坐标 ρ ＝r－Rg，我们得到

１
２μ
ｄ２
ｄρ２ ＋ε －VM －l（ l ＋１）

ρ２ F

＝［V（ １） ＋V（ ２） ＋V（３） ＋V（ ４） ］F， （７畅２畅２０）
式中

VM ＝μM
ρ ， （７畅２畅２１）

而右端方括号中各项是微扰势之和．在这种近似下，根据（７畅２畅１２）有
G ＝ １

２μ F′＋
m l
ρ F ， （７畅２畅２２）

归一化条件（７畅２畅１６）可写为
∫∞

ρ ＝０
（｜F ｜２ ＋｜G ｜２ ）ｄρ ＝∫∞

ρ ＝０
｜F ｜２ １ ＋ε －VM

２ρ ｄρ ＝１．（７畅２畅２３）
　　现在我们逐一研究每一项微扰能量．项 V（ １）

是和引力场中粒子能量的重新确

定相联系的，这一项没有解除按轨道量子数的简并：
１
μ枙V（ １） 枛 ＝Δε n

μ ＝１５
８

μ４M４

n４
． （７畅２畅２４）

　　项 V（２）
反映粒子轨道近日点的经典位移效应，它解除了按轨道量子数的简并：

Δε nl
μ ＝ １

μ枙V（２） 枛 ＝－ ３（μM） ４

n３ l ＋１
２

１ －１
３ δl０ ． （７畅２畅２５）

　　附加微扰 V（３）
可解释为引力的自旋－轨道相互作用，可用下式确定：

V（ ３） ＝（Lσ）
４μ２ ρ

ｄVM
ｄρ ， （７畅２畅２６）

式中

Lσ ＝－（１ ＋m l）．
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　　上述相互作用对于粒子能量的贡献为
Δε nm l l
μ ＝－μ４M４ （１ －δl０）

４n３m l（ l ＋１／２）． （７畅２畅２７）
当 m l ＜０，即 j＝l＋１

２ （自旋角动量和轨道角动量平行）时上式为正；当 m l ＞０，即 j
＝l－１

２ 时（７．２．２７）式为负．
项 V（４）

也是和粒子的自旋相关联的：
１
μ枙V（ ４） 枛 ＝枙 － M

２μρ（ρ ＋Rg）
ｄ
ｄρ枛

＝－ μ４M４ （１ －δl０）
２n３ l（ l ＋１／２）（ l ＋１）． （７畅２畅２８）

在史瓦希场中，当 ２μM虫l＋１
２ 时，Ｄｉｒａｃ 粒子的能量最后表达式具有形式：

ωnm l l
μ ＝１ －μ２M２

２n２ －３μ４M４

n４
n

l ＋１
２

１ －１
３ δL０

＋１
１２（１ －δL０） １

m l
＋ ２
l（ l ＋１） －５

８
　
　
　

． （７畅２畅２９）

　　现在我们讨论由相对论和自旋效应所引起的粒子能级简并的解除（无论按总
角动量还是按轨道角动量）．这和平直空间的库仑场中的情况不同，在那里和电子
状态相联系的能量只依赖于量子数和 j．对于相同的 l，m l ＜０（ j ＝l ＋１

２ ）的粒子系
能比 m l ＞０（ j＝l－１

２ ）的要小些．由（７畅２畅２９）式已经看到，非线性自旋效应的贡献
只对于最低能级才能与自旋 －轨道相互作用相比拟．
2．克尔场

和克尔度规对应的 γ矩阵为
γt ＝Υt，　γi ＝Υi ＋g iφΥφ，
γφ ＝Υφ ＋g iφΥi，　γφ ＝Υφ， （７畅２畅３０）

式中 g iφ为克尔度规．采用定义（７畅２畅７），并考虑到粒子所在的区域 ｅ －λ／２ ≈１，可以
将系统的哈密顿写成

H ＝H^S ＋H^１ ＋H^２ ＝H^S ＋２（ I· L）
r３ ＋１

２ （Ωσ）， （７畅２畅３１）
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式中 HS 是粒子在史瓦希度规下的哈密顿，Ω是 Ｌｅｎｓｅ唱Ｔｉｒｒｉｎｇ 进动角速度：
Ω ＝r－３ ｛３（ I· n）n －I｝． （７畅２畅３２）

在导出计算结果之前我们指出，相互作用H^１ 形式上和中心物体的偶极矩与无自旋

粒子轨道角动量之间的相互作用相符合．但在自旋粒子的情况下，算符 L^ z 对于给
定的态 n，l，j已不再是确定的．这导致能级的分裂．对于精细结构，把 H１ 和自旋轨

道相互作用特征值 V（ ３）
比较，不难发现，当 μa虫１ 时，它导致能级的上面的结构．考

虑到微扰（H１ ＋H２ ），我们将 Ｄｉｒａｃ 方程写成形式：
ε －VM ＋１

２μ
ｄ２
ｄρ２ －l（ l ＋１）

ρ２
ψ１

ψ２

＝［V１ ＋V（ ２） ＋V（３） ＋V（ ４） ＋H１ ＋H２ ］ ψ１

ψ２
， （７畅２畅３３）

式中

ψ１

ψ２
＝Fnl（ρ）Yml j（ j） （θ，φ）． （７畅２畅３４）

经过不太复杂的计算，可以得到
１
μ枙H１ 枛 ＝ ４m j

２l ＋１
μa（μM） ４ ｜m l ｜
n３ l l ＋１

２ （ l ＋１）
， （７畅２畅３５）

和

１
μ枙nl j ｜H２ ｜nl j枛 ＝ 枙 Ma２r３枛 r

· ４m j
±l（ l ＋１） ＋３ l ＋１

２ 碢 ３ m２
j ＋１

４
（２l －１）（２l ＋１）（２l ＋３） ．

（７畅２畅３６）
所以，所有处于基态以外的电子的能级都分裂为 ２ j＋１ 子能级（分别对应于总角动
量在场源转动轴方向投影的可能值）：

１
μΔωm j

n lj
（a） ＝ ２m j

２l ＋１
μa（μM） ４

n３ l l ＋１
２ （ l ＋１）

×
２ ｜m l ｜－

３ m２
j ＋１

４ －l（ l ＋１） －３ l ＋１
２

（２l －１）（２l ＋３） ，

２ ｜m l ｜＋
３ m２

j ＋１
４ －l（ l ＋１） ＋３ l ＋１

２
（２l －１）（２l ＋３） ．

（７畅２畅３７）
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在上式中，当 j ＝l ＋１
２ ，m l ＜０ 时取上面的符号；当 j ＝l －１

２ ，m l ＞０ 时取下面的
符号．
3．准束缚态能谱

我们要指出，相对论效应，中心质量的旋转和粒子的自旋，使得史瓦希场和克
尔场中 Ｄｉｒａｃ 粒子的准束缚态能谱具有复杂的结构．特有的相对论效应是在史瓦
希场中能级 ２p 和 ２s 的分裂，而且由于引力的轨道－自旋相互作用，存在两个可能
的跃迁：

E２ p１／２ －E２ s１／２
μc２ ＝２８９６ GμM珔hc

４ ，
E２ p３／２ －E２ s１／２

μc２ ＝３１９６ GμM珔hc
４． （７畅２畅３８）

史瓦希场的这些情况和在平直空间中的库仑场中的情况不同．另一个区别是在 s
态不存在接触相互作用，还有非线性自旋效应的影响．

受中心旋转质量约束的偶极子－轨道和偶极子－自旋相互作用哈密顿
（７畅２畅３１），其外部形式类似于氢原子的相对应的高能态精细结构的哈密顿．但是
在我们讨论的情况下同样不存在接触相互作用．电子的有效引力 g 因子等于 １，而
电磁的 g 因子等于 ２．我们讨论的相互作用使 ２p１ ／２能级分裂为两个子能级，２p３ ／２能

级分裂为四个子能级．其中，
ΔEm j ＝±１ ／２

２ p１／２ ＝±１
１５ μc２ μac

珔h
GμM
珔hc

４ ， （７畅２畅３９ａ）
ΔEm j ＝±１ ／２

２ p３／２ ＝±１
２４ μc２ μac

珔h
GμM
珔hc

４ ， （７畅２畅３９ｂ）
ΔEm j ＝±３ ／２

２ p３／２ ＝±３
４０ μc２ μac

珔h
GμM
珔hc

４． （７畅２畅３９ｃ）
　　Ｄｉｒａｃ 粒子最低能级的分布如图 ３３ 所示．（ａ）是类氢原子在史瓦希场中简并的
非相对论能谱； （ｂ）是在史瓦希场中考虑到相对论的和自旋的效应，消除了按轨道
量子数和内部量子数的简并； （ｃ）是在克尔场中消除了能谱的空间简并．右侧的数

图 ３３
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字表示总角动量在中心质量转动轴上投影的值．
最后我们指出自旋效应的作用．当 μM ～M２

pl时，引力的自旋－轨道相互作用变
得十分明显．在跃迁（７畅２畅３８）中辐射的波长约为

λ＝ １．１４
１．０２ ×１０ －９ ３．８５ ×１０－１２

Rg

４

（ｃｍ）　 当 Δj ＝０
当 Δj ＝１ ， （７畅２畅４０）

即当辐射和“引力原子”与辐射相互作用时，可能出现精细结构，原初微黑洞（Rg≤
１０ －１２ ｃｍ）可能起这样的“原子”的作用，这些微黑洞的能级被充满，并处于量子的
热力学蒸发状态．

如果 μac～珔h，则中心物体的偶极矩与粒子自旋的相互作用也变得十分明显．
当 a→GM／c２ 和 μM／M pl ～m j 时，能谱的结构将在很大程度上决定于非线性效应．

７畅３　电子在微黑洞场中的有限运动
假定微黑洞（M虫１０１７ ｇ）具有角动量 a虫M，所荷电荷远小于临界值（ z ＝Q／e虫

１３７）．本节对 Ｄｉｒａｃ 方程取某种近似，讨论电子在微黑洞引力场中的有限运动．在
这种情况下，粒子的运动是非相对论的，而能谱是类氢的．黑洞的角动量对粒子系
能的影响是很小的和不重要的（对于确定电子被黑洞俘获过程中能量的衰减）．与
标量粒子不同，当 ω＜m jΩH ＋eVH 时，电子能量只有衰减，没有激发，引力的自旋－
轨道相互作用对于衰减的大小有强烈影响．自旋反平行于轨道矩的电子的俘获概
率大于自旋平行于轨道矩的电子的俘获概率．s －态电子在史瓦希场中能量衰减比
标量粒子基态能级的衰减小 ８ 倍．

（１）我们由下面形式的拉格朗日出发：
L ＝珔ψｉγμ（楚μ ＋ｉeAμ） －μ珔ψψ， （７畅３畅１）

式中 Aμ是黑洞的电磁势，e和 μ是电子的电荷和质量．Ｄｉｒａｃ 矩阵满足关系式：
γμγν ＋γνγμ ＝２gμν．

代入 γμ
和 ψ的表达式：

γμ ＝ ２ ０ σμ
A 痹B

σμ
A 痹B ０ ，ψ＝ PA

Q 痹A
（７畅３畅２）

我们得到旋量形式的 Ｄｉｒａｃ 方程：
２σμ

痹AB（楚μ ＋ｉeAμ）PB ＝－ｉμQ 痹A，
２σμA 痹B（楚μ ＋ｉeAμ）QB ＝－ｉμP 痹A． （７畅３畅３）

珔ψ具有形式：
珔ψ＝（QA，PA）．
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选择各向同性标架（ l，n，m，m倡 ）与旋基ζA 和χA 相对应．分量 P 和 Q 旋基的投影为
PA ＝P０ζA ＋P１χA，Q 痹A ＝Q倡

０ ζ痹A ＋Q倡
１ χ痹A． （７畅３畅４）

采用（７．３．４）式，并引入 Ｋｉｎｎｅｒｓｌｅｙ 标架，在 Ｄｉｒａｃ 方程中借助于代换
P０ ＝ｅ－ｉωtｅ ｉmφ S

（ －）（θ） R（ －）（ r）
２（ r －ｉaｃｏｓθ），

Q倡
０ ＝－ｅ－ｉωt ｅ ｉmφ S

（ ＋）（θ） R（ －）（ r）
２（ r ＋ｉaｃｏｓθ）， （７畅３畅５）

P１ ＝ｅ－ｉωtｅ ｉmφΔ－１ ／２ S
（ ＋）（θ） R（ ＋）（ r），

Q倡
１ ＝ｅ－ｉωtｅ ｉmφΔ－１ ／２ S

（ －）（θ） R（ ＋）（ r），
式中，

Δ＝r２ －２Mr ＋Q２ ＋a２．
我们得到关于 S

（ ＋）， S（ －）
和 R

（ ＋）， R（ －）
的四个方程．

［ D^０ ＋D^１ （a）］ S（ －）（θ，a） ＝－（λ２ ＋２aωm －１／４） S（ －）（θ，a）；
｜S（ －）（θ ＝０） ｜＜∞，　 ｜S（ －）（θ ＝π） ｜＜∞， （７畅３畅６）

式中，
D^０ ＝ １

ｓｉｎθ
ｄ
ｄθ ｓｉｎθ ｄｄθ －m

２ －mｃｏｓθ ＋１／４
ｓｉｎ２ θ ，

D^１ ＝ aμ
λ＋aμｃｏｓθ ｓｉｎθ ｄｄθ ＋１

２ ｃｏｓθ －m ＋aωｓｉｎ２ θ ＋aωｃｏｓθ －a２ω２ ｓｉｎ２ θ
－a２μ２ ｃｏｓ２ θ（λ－κонстaнтa разДеДення）， （７畅３畅７）

S
（ ＋）（π－θ） ＝ S（ －）（θ）． （７畅３畅８）

对于径向部分，我们得到
Δ１ ／２ ｄ

ｄr ＋ｉ
K
Δ R

（ ＋） ＝（λ－ｉμr） R（ －），
Δ１ ／２ ｄ

ｄr －ｉ
K
Δ R

（ －） ＝（λ＋ｉμr） R（ ＋）． （７畅３畅９）

求出 R
（ ＋），我们得到关于 R（ －）

的二阶方程：
　　　 Δｄ２ｄr２ ＋ r －M － ｉμΔ

λ＋ｉμr
ｄ
ｄr ＋

K２ ＋ｉ（ r －M）K
Δ

－２ｉωr －ｉeQ －μ２ r２ －λ２ － μK
λ＋ｉμr R

（ －） ＝０， （７畅３畅１０）
式中
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κ＝（ r２ ＋a２）ω－m ja ＋eQr．
我们还得到

R
（ ＋） 倡 （ r） ＝ R（ －）（ r）．

　　（２） 当 a ＝０ 时，方程（７畅３畅６）和（７畅３畅７）过渡到函数 P lmn （n ＝１／２）的微分方
程．因此，当

j＝１／２，３／２，５／２，…
m ＝m j ＝±１／２， ±３／２，…， ±j （７畅３畅１１）

时， S（ －）（θ，０） ＝P jm j１ ／２ （ｃｏｓθ）构成完全系．λ（０） ＝m l ＝± j ±１
２ 对应于闵可夫斯

基空间有心力场中算符

K^ ＝β［（σ· L） ＋１］
的本征值．对于第二个角函数有

S
（ ＋）（θ，０） ＝（ －１） j－m j－１ ｉP jm j－１ ／２．

当 ｍａｘ｛aω， μω｝虫j时，可以采用微扰理论来计算第一个线性算符的本征值：
λ２ ＋２aωm j －１

４ ＝j（ j ＋１） ＋ aωm j
j（ j ＋１）． （７畅３畅１２）

　　（３） 由方程（７畅３畅１０）和（７畅３畅９），可以确定径向部分通解的渐近行为．当 r→
∞和 ω＜μ，我们得到

R
（ －）（ r）C１ ｅ－Ωr倡 －ω

μ １ －ｉ Ωω C２ ｅΩr倡， （７畅３畅１３）
R

（ ＋）（ r） ＝－ω
μ １ －ｉ Ωω C１ ｅ－Ωr倡 ＋C２ ｅΩr倡，

式中

ｄr倡
ｄr ＝（ r２ ＋a２ ） ／Δ，　Ω ＝ μ２ －ω２．

当 r→r ＋ ＝M ＋ M２ －Q２ －a２ ，即在视界附近， 解应具有形式
R

（ －）（ r） ＝（λ＋ｉμr）A１Δ－１ ／２ ｅ－ｉ（ω－m jΩH＋eVH） r倡

（ r＋－r－）（１／２ －ｉΓ） ＋A２ ｅ ｉ（ω－m jΩH＋eVH） r倡，

R
（ ＋）（ r） ＝A１ ｅ－ｉ（ω－m jΩH＋eVH） r倡 ＋（λ－ｉμr）A２Δ１ ／２ ｅ ｉ（ω－m jΩH＋eVH） r倡

（ r＋－r－）（１／２ ＋ｉΓ） ， （７畅３畅１４）
式中 Γ＝K（ r ＋） ／（ r ＋ －r －）．有限运动的边界条件对应于 A２ ＝０ 和波函数在无限远
处的限制 c２ ＝０．

（４） 径向方程（７畅３畅１０）的解在我们的近似下可以在坐标 r 的三个区域得到
（ ｉ） r虫｜m l｜

μM ．方程（７畅３畅１０）具有线性独立的解．
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R in ＝ r －r＋
r －r－

ｉΓ r －r＋
r＋－r－·

r －r－
r＋－r－

１ ／２
２F１

× １ －｜κ｜，１ ＋｜κ｜；３／２ ＋２ｉΓ； r －r－r＋－r－ ， （７畅３畅１５）

R out ＝ r －r＋
r＋－r－

ｉΓ
２F１ －｜κ｜， ｜κ｜；１／２ －２ｉΓ； r －r－r＋－r－

（当 ｜Γ｜虫｜m l ｜），κ≡ m l． （７畅３畅１６）
不难发现，解（７畅３畅１５）式描述落向黑洞的电子波．在任意自旋的情况下，它可以
写成

R ins ＝ r －r＋
r＋－r－

－ｉΓ r －r＋
r＋－r－·

r －r－
r＋－r－

－s
２F１

× －j －s，j －s －l；１ －s ＋２ｉΓ； r －r－r＋－r－ ， （７畅３畅１７）
式中，

s ＝０， ±１／２， ±１，…，
j ＝｜s ｜， ｜s ｜＋１， ｜s｜＋２，…
（这里 s ＝－１／２）．

这个函数在 r冲r ＋时的渐近行为可表示为
R in ＝（ －１） j＋s r

r＋－r－
j－s
B in１ s ＋ r

r＋－r－
－j－s－１
B in２ s ， （７畅３畅１８）

系数的比值对于得到运动的基本性质是很重要的，在整数自旋和半整数自旋的情
况下这一比值是完全不同的：

B in２ s
B in１ s

＝
（－１） sΓΠj

p ＝１ １ ＋４Γ２

p２

（ －１） s－１ ／２ １
２π Πj＋１ ／２

p ＝１ １ ＋ ４Γ２

（p －１／２） ２

×（ j －s）！（ j ＋s）！
（２ j）！（２j ＋１）！ Γ２ （１ ＋j）． （７畅３畅１９）

括号下面一个式子对应于半整数自旋，作代换 Γ→ －Γ时不变号，与整数自旋的情
况不同，这和电子、中微子没有超辐射相符．我们还发现，从视界传出的波，系数比
的符号不同：

B ou t２ s ／B out１ s ＝－B in２ s／B in１ s．
　　（ ｉｉ） １虫 r

２M虫
｜m l ｜
μ２M２．在这个区域，必须准确考虑径向方程中的各项．通解具有

多项式形式：

·３９２·７畅３　电子在微黑洞场中的有限运动



珔R（ r） ＝b１ r｜κ｜ ２F１ －１ －l ＋｜κ｜，l ＋｜κ｜；１ ＋２ ｜κ｜； －ｉ μrλ
＋b２ （｜κ｜→－｜κ｜） ＝b１ r｜κ｜ １ ＋ ｉμr

｜κ｜＋１／２
　　１

＋b２ r－｜κ｜
　　１
１ － ｉμr

｜κ｜－１／２
， （７畅３畅２０）

式中，
l ＝ κ＋１

２ －１
２ ＝ ｜κ｜＝j ＋１／２，　κ＞０；

｜κ｜－１ ＝j －１／２，　κ＜０． （７畅３畅２１）

系数 b１ 和 b２ 由函数 珔R 和 R in在重叠区域 ２M虫r虫｜κ｜
μ内的吻合来确定．

（ ｉｉｉ） r
２M冲

｜κ｜
μM．在这个区域内波函数具有库仑性质．与所选择的无限远边界

条件和我们的近似相对应的解，可用 Ψ函数表示：
R∞ （ r） ＝ｅ－Ωr r１ ＋lΨ １ ＋l －μ２M ＋ωeQ

Ω ，２ ＋２l，２Ωr ． （７畅３畅２２）
　　（５） 解电子的 Ｄｉｒａｃ 方程的程序和标量粒子情况的不同在于中间区域
１虫 r

２M虫
｜κ｜２
μ２M２ ，在该区域中波函数用解 珔R ［（７畅３畅２０）式］描述．库仑函数和解

（７畅３畅１７）当 s＝０ 时可在区域 ２M虫r虫｜κ｜
μ中吻合．在研究中微子的非有限运动时

不需要这个解．自旋为 １／２ 的有质量粒子势的类似区别是和引力的自旋 －轨道相
互作用相联系的．这一相互作用从根本上影响到电子在强引力场中运动的性质．比
较函数 珔R 和 R∞

在相互重叠区域
｜κ｜
μM虫 r

２M虫
１
Ω 内的渐近行为，可以得到函数吻

合的条件：
Πl
p ＝１ １ ＋ ４Γ２

（p －１／２） ２
２（２l ＋１）
μ（ r＋－r－）

Πl＋１
p ＝１ １ ＋ ４Γ２

（p －１／２） ２
μ（ r＋－r－）
２（２l ＋１）

＝（２l）！（２l ＋１）！
Ω（ r＋－r－）

２
１ ＋２ l

Γ －l －μ２M ＋ωeQ
Ω

Γ １ ＋l －μ２M ＋ωeQ
Ω

ψ－１．１ ＋l －μ２M ＋ωeQ
Ω ，

（７畅３畅２３）
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式中 ψ是 Γ函数对数的导数．我们用 l 改写上式是为了便于与标量情况比较．显
然，只有 Ω（与 ω对应）取复数值，解（７畅３畅２３）式才是可能的，此时有

Ω ＝Ω０ ＋ｉ矯，矯虫 Ω０． （７畅３畅２４）
假设作为零级近似条件

１ ＋l －μ２M ＋ωeQ
Ω０

＝－n r，　n r ＝０，１，２，３，… （７畅３畅２５）
就是重叠区域中函数 R∞

的限制条件，则可用逐次逼近法确定其值．Ω０ 对应于平直

空间类氢原子理论中电子玻尔半径的倒数：
Ω０ ≈ μ（μM ＋eQ）

n ，　n ＝１ ＋l ＋n r ＝１，２，３，… （７畅３畅２６）
数 n 为主量子数，它确定电子在黑洞引力场中能谱的图像：

ω
μ n

≈ １ －（μM ＋eQ） ２

２n２ １ ＋２ｉ 矯
Ω０

． （７畅３畅２７）
在所讨论的近似下，束缚在黑洞势阱中的电子，其能级是简并的．当 κ＝－１ －l（ j ＝
l＋１

２ ）和 κ＝l（ j ＝l －１
２ ）时，系能是相同的，这对应于有心力场中电子能级的简

并．严格讲，这仅对无旋转的中心物体才是正确的，但是在所讨论的情况下，黑洞的
旋转对系能的影响很小．在我们的近似下，极限 eQ→ －μM 对应于粒子被黑洞电荷
推斥至无限远处．极限 M→０ 过渡到库仑场．我们还发现，在所假定的限制条件下，
引力的自旋－轨道相互作用对系统的影响比较弱．对于标量荷电粒子的能量公式
（在 Ｒ唱Ｎ 场中），情况完全类似，但是没有和粒子自旋相联系的简并．在两种情况下
势阱都不深，能级都是非相对论的．

（６） 我们现在把电子能量的衰减（能级降低）与标量荷电粒子在 Ｒ唱Ｎ 场中对
应的量进行比较．考虑到近似，我们有

矯
Ω０ n， l，m

＝４Γ Ω０ （ r＋－r－）
２

１ ＋２ l Πl
p ＝１ １ ＋４Γ２

p２

× （２l ＋１） ２

（２l ＋１）！！４
（n ＋l）！

（n －l －１）！ n； （７畅３畅２８）

矯
Ω０ n，k， j

＝ Ω０ （ r＋－r－）
２

１ ＋２ l

×
Πl
p ＝１ １ ＋ ４Γ２

（p －１／２） ２
２（２l ＋１）
μ（ r＋－r－）

Πl
p ＝１ １ ＋ ４Γ２

（p －１／２） ２
μ（ r＋－r－）
２（２l ＋１）

·
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１
（２l）！（２l ＋１）！

（n ＋l）！
（n －l －１）！ n， （７畅３畅２９）

式中，
Γ０ ＝（ r２＋＋a２）μ－ma ＋eQr＋

r＋－r－ ，
括号中上面的式子对应于 κ＞０，下面的式子对应 κ＜０．因此，引力的轨道－自旋相
互作用导致与自旋方向反平行的轨道角动量的粒子能量衰减是具有平行轨道角动

量粒子衰减的 κ＝４（２l＋１） ２ ／μ２ · （ r ＋ －r －） ２
倍．这一效应随着黑洞质量的减小和

它的电荷的增大而增大．有趣的是，史瓦希场中电子基态能量的减少比无自旋粒子
的减少小 ８ 倍．无论电子还是标量粒子，能级的衰减随着轨道角动量和径向量子数
的增大都迅速减小．电子能级衰减对于总角动量在黑洞转动轴上投影的依赖性当
m ja／M虫１ 时，特别是对于比较小的角动量，是很小的．那时和在标量粒子的情况
下一样，相互作用（m· a）导致衰减参量迅速减小．在点 a／M≈４Mμ＋eQm变为零并
改变符号．这对应于向激发的过渡，与粒子的产生效应相联系．当 m ＜０，黑洞俘获
标量粒子的概率随 a 增大．还可以发现，在我们所取的电磁场近似（ eQ虫１）的情况
下，在不转动黑洞的引力场中，不可能过渡到激发（在有限运动情况下），与标量粒
子在非有限运动时的超辐射散射不同，因为在推斥的情况下势阱不够深．在 Ｒ唱Ｎ
场中标量粒子基态也不出现这个效应．图 ３４ 中描述了电子 s 态和 p 态以及标量粒
子的能量衰减对于黑洞参量的依赖关系．

图 ３４

７畅４　旋量和零标架的应用
应用旋量和零标架方法计算相对论性氢原子的能级，所得到的结果和用 Γ矩
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阵方法得到的结果相同，但不必明显地使用任何对易关系．只要构造的零标架合
适，就可以自动地使狄拉克方程退耦和分离变量．对于比较复杂的弯曲时空中的狄
拉克方程，用 Γ矩阵方法很难求解，但是用旋量零标架方法则比较容易求解．为了
显示这一方法的优点，本节以闵可夫斯基时空中的氢原子为例，介绍这一方法．

１畅狄拉克方程的退耦和分离变量
闵可夫斯基线元可以写为

ｄs２ ＝ｄt２ －ｄr２ －r２ ｄθ２ －r２ ｓｉｎ２ θｄ矱２． （７畅４畅１）
相应的零标架可构造为

lμ＝１
２（１，１，０，０），　nμ ＝ １

２（１， －１，０，０），

mμ＝１
２（０，０，r，ｉrｓｉｎθ），　珚mμ ＝ １

２（０，０，r， －ｉrｓｉｎθ）． （７畅４畅２）
类氢原子的电磁 ４ 维势可写为

Aμ ＝ Qr （１，０，０，０）， （７畅４畅３）
其中 Q ＝ze，z 为电荷数．由（７畅４畅２）式可以求得旋系数：

K ＝π＝矯＝λ＝σ＝ν ＝τ＝γ＝０，
ρ ＝μ＝ １

２r，β＝－α＝－ １
２rｃｏｔθ． （７畅４畅４）

用旋坐标表示的 Ｄｉｒａｃ 方程为
２（ΔA 痹B ＋ｉeAA 痹B）PA ＋ｉμ珚Q 痹B ＝０，
２（ΔA 痹B －ｉeAA 痹B）QA ＋ｉμ珔P 痹B ＝０， （７畅４畅５）

其中 μ是 Ｄｉｒａｃ 粒子的质量．由（７．４．５）式两方程可得
２（D ＋矯－ρ ＋ｉeAμlμ）F１ ＋ ２（珋δ ＋π－α＋ｉeAμ珚mμ）F２ －ｉμG１ ＝０，
２（Δ＋μ－γ＋ｉeAμnμ）F２ ＋ ２（δ ＋β－τ＋ｉeAμ珚mμ）F１ －ｉμG２ ＝０，
２（D ＋矯倡 －ρ倡 ＋ｉeAμlμ）G２ － ２（δ ＋π倡 －α倡 ＋ｉeAμmμ）G１ －ｉμF２ ＝０，
２（Δ＋μ倡 －γ倡 ＋ｉeAμnμ）G１ － ２（珋δ ＋β倡 －τ倡 ＋ｉeAμmμ）G２ －ｉμF１ ＝０．

（７畅４畅６）
式中，

D ＝１
２

抄
抄t －

抄
抄r ，　Δ＝ １

２
抄
抄t ＋

抄
抄r ，

δ ＝１
２ －１

r
抄
抄θ － ｉ

rｓｉｎθ
抄
抄矱 ，
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珋δ＝１
２ －１

r
抄
抄θ ＋ ｉ

rｓｉｎθ
抄
抄矱． （７畅４畅７）

将（７畅４畅４）和（７畅４畅３）式代入（７畅４畅６）式，得到
抄
抄t －

抄
抄r －

１
r ＋ｉQer F１ ＋ －１

r
抄
抄θ ＋ ｉ

rｓｉｎθ
抄
抄矱－１

２rｃｏｔθ F２ －ｉμG１ ＝０，
抄
抄t ＋

抄
抄r ＋

１
r ＋ｉQer F２ ＋ －１

r
抄
抄θ － ｉ

rｓｉｎθ
抄
抄矱－１

２rｃｏｔθ F１ －ｉμG２ ＝０，
抄
抄t －

抄
抄r －

１
r ＋ｉQer G２ － －１

r
抄
抄θ － ｉ

rｓｉｎθ
抄
抄矱－１

２rｃｏｔθ G１ －ｉμF２ ＝０，
抄
抄t ＋

抄
抄r ＋

１
r ＋ｉQer G１ － －１

r
抄
抄θ ＋ ｉ

rｓｉｎθ
抄
抄矱－１

２rｃｏｔθ G２ －ｉμF１ ＝０．（７畅４畅８）
（７．４．８）式可以改写为

γ０ 抄
抄t ＋γ１ 抄

抄r ＋γ２ 抄
抄θ ＋γ３ 抄

抄矱＋γ１ １
r ＋γ２ １

２ ｃｏｔθ ＋γ０ ｉQe
r －ｉμI ψ＝０，

（７畅４畅９）
其中，

γ０ ＝
０ ０ １ ０
０ ０ ０ １
１ ０ ０ ０
０ １ ０ ０

，　γ１ ＝
０ ０ １ ０
０ ０ ０ －１
－１ ０ ０ ０
０ １ ０ ０

，

γ２ ＝１
r

０ ０ ０ １
０ ０ １ ０
０ －１ ０ ０
－１ ０ ０ ０

，　γ３ ＝ １
rｓｉｎθ

０ ０ ０ －ｉ
０ ０ ｉ ０
０ ｉ ０ ０
－ｉ ０ ０ ０

， （７畅４畅１０）

ψ（F１ ，F２ ，G１ ，G２ ） Ｔ， （７畅４畅１１）
Ｔ 为转置算子．令

ψ＝ １
r（ ｓｉｎθ） １ ／２ ψ^， （７畅４畅１２）

并代入（７畅４畅９）式，得到
γ０ 抄

抄t ＋γ１ 抄
抄r ＋γ２ 抄

抄θ ＋γ３ 抄
抄矱＋γ０ ｉQe

r －ｉμI ψ^＝０， （７畅４畅１３）
式中

ψ^＝（ F^１ ，F^２ ，G^１ ，G^２ ） Ｔ ， （７畅４畅１４）
（７畅４畅１３）式也可以写成

　　 抄
抄t －

抄
抄r ＋

ｉQe
r F^１ －１

r
抄
抄θ － ｉ

ｓｉｎθ
抄
抄矱 F^２ －ｉμG^１ ＝０，
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　　 抄
抄t ＋

抄
抄r ＋

ｉQe
r F^２ －１

r
抄
抄θ ＋ ｉ

ｓｉｎθ
抄
抄矱 F^１ －ｉμG^２ ＝０，

　　 抄
抄t ＋

抄
抄r ＋

ｉQe
r G^１ ＋１

r
抄
抄θ － ｉ

ｓｉｎθ
抄
抄矱 G^２ －ｉμF^１ ＝０，

　　 抄
抄t －

抄
抄r ＋

ｉQe
r G^２ ＋１

r
抄
抄θ ＋ ｉ

ｓｉｎθ
抄
抄矱 G^１ －ｉμF^２ ＝０． （７畅４畅１５）

由于联立偏微分方程（７畅４畅１５）的系数不含 t和 矱，可设
F^ j ＝ｅ－ｉEt＋ｉm矱f j（ r，θ），
G^ j ＝ｅ－ｉEt＋ｉm矱g j（ r，θ），　 j ＝１，２． （７畅４畅１６）

把（７畅４畅１６）式代入（７畅４畅１５）式，得到
　　　　　　　 －ｉE －抄

抄r ＋
ｉQe
r f１ －

１
r

抄
抄θ ＋ mｓｉｎθ f２ －ｉμg１ ＝０，

　　　　　　　 －ｉE ＋抄
抄r ＋

ｉQe
r f２ －

１
r

抄
抄θ － mｓｉｎθ f１ －ｉμg２ ＝０，

　　　　　　　 －ｉE ＋抄
抄r ＋

ｉQe
r g１ ＋

１
r

抄
抄θ ＋ mｓｉｎθ g２ －ｉμf１ ＝０，

　　　　　　　 －ｉE －抄
抄r ＋

ｉQe
r g２ ＋

１
r

抄
抄θ － mｓｉｎθ g１ －ｉμf２ ＝０． （７畅４畅１７）

为了进一步分离变量，令
　　　　　　　　　　　f１ （ r，θ） ＝X ＋１２ （ r）P ＋１２ （θ），
　　　　　　　　　　　f２ （ r，θ） ＝X －１２ （ r）P －１２ （θ），
　　　　　　　　　　　g１ （ r，θ） ＝X －１２ （ r）P ＋１２ （θ），
　　　　　　　　　　　g２ （ r，θ） ＝X ＋１２ （ r）P －１２ （θ）畅 （７畅４畅１８）

把（７畅４畅１８）式代入（７畅４畅１７）式，得到
　　r ｉE ＋抄

抄r －
ｉQe
r X ＋１２ ＋ｉμX －１２ P ＋１２ ＋ 抄

抄θ ＋ mｓｉｎθ X －１２ P －１２ ＝０，
　　r ｉE －抄

抄r －
ｉQe
r X －１２ ＋ｉμX ＋１２ P －１２ ＋ 抄

抄θ － mｓｉｎθ X ＋１２ P ＋１２ ＝０，
　　r ｉE －抄

抄r －
ｉQe
r X －１２ ＋ｉμX ＋１２ P ＋１２ － 抄

抄θ ＋ mｓｉｎθ X ＋１２ P －１２ ＝０，
　　r ｉE ＋抄

抄r －
ｉQe
r X ＋１２ ＋ｉμX －１２ P －１２ － 抄

抄θ － mｓｉｎθ X －１２ P ＋１２ ＝０．（７畅４畅１９）
为了满足上列方程，只要有

　　　　　　　　　r ｉE ＋抄
抄r －

ｉQe
r X ＋１２ ＋ｉμX －１２ ＝λ１X －１２ ，

　　　　　　　　　 抄
抄θ ＋ mｓｉｎθ P －１２ ＝－λ１P ＋１２ ；
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　　　　　　　　　r ｉE －抄
抄r －

ｉQe
r X －１２ ＋ｉμX ＋１２ ＝λ２X ＋１２ ，

　　　　　　　　　 抄
抄θ － mｓｉｎθ P ＋１２ ＝－λ２P －１２ ；

　　　　　　　　　r ｉE －抄
抄r －

ｉQe
r X －１２ ＋ｉμX ＋１２ ＝λ３X ＋１２ ，

　　　　　　　　　 抄
抄θ ＋ mｓｉｎθ P －１２ ＝λ３P ＋１２ ；

　　　　　　　　　r ｉE ＋抄
抄r －

ｉQe
r X ＋１２ ＋ｉμX －１２ ＝λ４X －１２ ，

　　　　　　　　　 抄
抄θ － mｓｉｎθ P ＋１２ ＝λ４P －１２ ． （７畅４畅２０）

为了使（７畅４畅２０）式中各式自洽，应该有
λ１ ＝－λ２ ＝－λ３ ＝λ４ ≡ λ． （７畅４畅２１）

将此式代入（７畅４畅２０）式，得到独立的方程：
r ｉE ＋抄

抄r －
ｉQe
r X＋１２ ＋ｉμX－１２ ＝λ１X－１２ ， （７畅４畅２２ａ）

抄
抄θ ＋ m

ｓｉｎθ P－１２ ＝－λ１P＋１２ ； （７畅４畅２２ｂ）
r ｉE －抄

抄r －
ｉQe
r X－１２ ＋ｉμX＋１２ ＝－λ１X＋１２ ， （７畅４畅２２ｃ）

抄
抄θ － m

ｓｉｎθ P＋１２ ＝λ１P－１２ ． （７畅４畅２２ｄ）
此即分离变量和部分退耦的方程．

２畅级能分式
由（７畅４畅２２ｂ）式和（７畅４畅２２ｄ）式可以得到

ｄ２
ｄθ２ ＋mｃｏｓθｓｉｎ２ θ － m２

ｓｉｎ２ θ ＋λ２ P＋１２ ＝０， （７畅４畅２３ａ）
ｄ２
ｄθ２ －mｃｏｓθｓｉｎ２ θ － m２

ｓｉｎ２ θ ＋λ２ P－１２ ＝０． （７畅４畅２３ｂ）
令

z ＝ １
２ （１ ＋ｃｏｓθ）， （７畅４畅２４）

则（７畅４畅２３ｂ）可写为
z２ （１ －z） ２ ｄ２

ｄz２ ＋ １
２ －z （１ －z） z ｄｄz ＋［－λ２ z２

＋ λ２ ＋１
２ m z －

１
４ m（m ＋１）］ P＋１２ ＝０． （７畅４畅２５）
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这一方程的一个解是

y ＝z－１２ m （１ －z） １２ mF λ， －λ， １２ －m，z ． （７畅４畅２６）
为了使超几何级数在某一项截断，成为一多项式，λ必须取整数值．

令

X＋１２ ＝ｅ－αrR＋１２ ，X－１２ ＝ｅ－αrR－１２ ， （７畅４畅２７）
式中 α＝（μ２ －E２ ） １２ ．将（７畅４畅２７）式代入（７畅４畅２２ａ），（７畅４畅２２ｂ）式可得

ｄ
ｄr －α＋ｉE －ｉQer R＋１２ ＋ｉμR－１２ ＝λ

r R－１２ ，
ｄ
ｄr －α－ｉE －ｉQer R－１２ －ｉμR＋１２ ＝λ

r R＋１２ ． （７畅４畅２８）
令

R＋１２ ＝Σbν r s＋ν，R－１２ ＝Σdν r s＋ν， （７畅４畅２９）
式中

S ＝（λ２ －Q２ e２ ） １２ ．
　　将（７畅４畅２９）式代入（７畅４畅２８）式并比较级数中 r s ＋ν －１

项的系数，可得
（ s ＋ν）bν －（α－ｉE）bν－１ －ｉQebν ＋ｉμdν－１ －λdν ＝０，
（ s ＋ν）dν －（α＋ｉE）d ν－１ ＋ｉQedν －ｉμdν－１ －λbν ＝０． （７畅４畅３０）

利用熟知的级数求解方法，由（７畅４畅３０）式可以导出
α（n ＋s） ＋EQe ＝０， （７畅４畅３１）

其中 n 为正整数．由（７畅４畅３１）式可得
E２ ＝μ２ １ ＋ Q２ e２

（n ＋s） ２
－１． （７畅４畅３２）

正能解为

E ＝μ１ ＋ Q２ e２

（n ＋s） ２
－１２ ＝μ１ ＋ Q２ e２

（n ＋ λ２ －Q２ e２ ） ２

－１２ ． （７畅４畅３３）
恢复使用 ＣＧＳ 单位制．令 α＝e２ ／c珔h 并注意 Q ＝ze．于是（７畅４畅３３）式可以写成

E ＝μc２ １ ＋ z２α２

（n ＋ λ２ －z２ a２ ） ２

－１２ ． （７畅４畅３４）
（７畅４畅３４）式就是计入相对论效应类氢原子的能级公式．

从上面的计算可以清楚地看到旋量零标架方法的特点．这个方法对 Ｍｉｎｋｏｗｓｋｉ
时空类氢原子的 Ｄｉｒａｃ 方程的求解，不需要计算任何对易关系，只要构造的零标架
合适，就能自动地求解．

通常总是把旋量零标架方法和静止质量为零的粒子（比如光子、引力子等）的
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辐射和传播等一类的问题联系在一起．本节的结果指出，旋量零标架方法可以用于
计算静止质量不为零的粒子的束缚态能级．

７畅５　关于退耦和分离变量
本节通过微扰和退耦的计算，表明在克尔时空中对于静止质量为零、自旋为任

意值的粒子场，所有场分量都可以退耦．然后应用零标架法证明只有中微子场的两
个分量和电磁场的两个分量可以分离变量．

１畅场方程
静止质量为零的旋量场方程具有形式：

ΔA 痹BξACD… JK ＝０ （７畅５畅１ａ）
或者

ΔAB· ξACD… JK ＝０． （７畅５畅１ｂ）
其中ΔA B· 是旋空间的协变微商；旋量 ξACD… JK是场量，大写拉丁字母 A，C，D 等表示
旋空间的坐标指标，取值为 ０ 或 １； 痹B 是共轭空间的坐标指标，取值为 ０ 或 １；场量
ξACD… JK的指标 A，C，D，…，J，K 一共有 ２s 个．场量对所有指标全对称，对于一定的 s
一共有 ２s ＋１ 个场分量．

（７．５．１０）式可用旋空间的标架表示：

Δab

·
ξacd… jk ＝０． （７畅５畅２）

式中小写拉丁字母 a，c，d，…，j，k 表示旋空间的标架指标，取值 ０ 或 １；b
·
是共轭空

间的标架指标，取值 ０ 或 １．同样，场量 ξacd… jk对所有指标 a，c，d，…，j，k全对称．
由（７畅５畅２）式可以直接导出黎曼空间的标架方程：

［Δ＋２（ s －t －１）γ＋（２s －t）μ］ψ（ s）
２ s－t－１

－［δ ＋２（ s －t）β－（ t ＋１）τ］ψ（ s）
２ s－t

－（２s －t －１）νψ（ s）
２ s－t－２ －tσψ（ s）

２ s－t＋１ ＝０， （７畅５畅３ａ）
［D ＋２（ s －t）矯－（ t ＋１）ρ］ψ（ s）

２ s－t

－［珋δ ＋２（ s －t －１）α＋（２s －t）π］ψ（ s）
２ s －t ＋１

＋tκψ（ s）
２ s－t－１ ＋（２s －t －１）λψ（ s）

２ s－t－２ ＝０． （７畅５畅３ｂ）
ξ１１１…１０…００ ≡ （－１） pψ（ s）

p ，ξ１１１…１０…００
的指标中有 p个 ０，（２s －p） 个 １． （７畅５畅４）

这里场量 ψ（ s）
i 的右上指标（ s）表示自旋，右下指标 i 表示场量的各分量，i 取值 ０，

１，２，…，２s．不允许取其他值，或者说，若出现其他值则该场量的这一项应为零．D，
Δ，δ和 珋δ是 Ｎ唱Ｐ 特别规定的偏微分算子的符号；ρ，β，τ等是 Ｎ唱Ｐ 特别规定的旋系
数，t取值 ０，１，２，…，２s －１，所以一共有 ４s个场方程．

·２０３· 第 ７章　黑洞的引力效应



当 s＝１／２，１ 和 ２ 时，（７畅５畅３）式分别是用旋系数表示的中微子方程、电磁场方
程和引力场方程．

２畅微扰和退耦
用角标 A 表示不存在微扰时的物理量，用角标 B 表示一阶微扰量．标架等可

写为

l ＝lA ＋lB，　n ＝nA ＋nB，　…
D ＝DA ＋DB，　ρ ＝ρA ＋ρB，　…

这样，方程（７畅５畅３）变为
｛［Δ＋２（ s －t －１）γ＋（２s －t）μ］ A ＋［Δ＋２（ s －t －１）γ＋（２s －t）μ］ B｝

×（ψA２ s－t－１ ＋ψB２ s－t－１ ） －｛［δ ＋２（ s －t）β－（ t ＋１）τ］ A
＋［δ ＋２（ s －t）β－（ t ＋１）τ］ B｝（ψA２ s－t ＋ψB２ s－t）
－（２s －t －１）（νA ＋νB）（ψA２ s－t－２ ＋ψB２ s－t－２ ）
－t（σA ＋σB）（ψA２ s－t＋１ ＋ψB２ s－t＋１ ） ＝０， （７畅５畅５ａ）

｛［D ＋２（ s －t）矯－（ t ＋１）ρ］ A ＋［D ＋２（ s －t）矯－（ t ＋１）ρ］ B｝
×（ψA２ s－t ＋ψB２ s－t） －｛［δ ＋２（ s －t －１）α＋（２s －t）π］ A
＋［δ ＋２（ s －t －１）α＋（２s －t）π］ B｝（ψA２ s－t－１ ＋ψB２ s－t－１ ）
＋t（κA ＋κB）（ψA２ s－t＋１ ＋ψB２ s－t＋１ ）
＋（２s －t －１） ×（λA ＋λB）（ψA２ s－t－２ ＋ψB２ s－t－２ ） ＝０． （７畅５畅５ｂ）

按照黑洞的半经典理论，对试验粒子场有
ψAi ＝０，　i ＝０，１，２，…，２s． （７畅５畅６）

对于 D 类时空，有
κA ＝σA ＝νA ＝λA ＝０． （７畅５畅７）

只计及一阶小量，（７畅５畅５）式变为
［Δ＋２（ s －t －１）γ＋（２s －t）μ］ AψB２ s－t－１

－［δ ＋２（ s －t）β－（ t ＋１）τ］ AψB２ s－t ＝０， （７畅５畅８ａ）

［D ＋２（ s －t）矯－（ t ＋１）ρ］ AψB２ s－t －［珋δ ＋２（ s －t －１）α
＋（２s －t）π］ AψA２ s－t－１ ＝０， （７畅５畅８ｂ）

式中 t取值 ０，１，２，…，２s －１．微分算子和旋系数是正常量，描述试验粒子的场量
ψBi 是一阶无穷小量．在以下的计算中我们将省写角标 A和 B，恢复使用角标（ s）．

Ｔｅｕｋｏｌｓｋｙ 曾导出以下的对易关系：
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［D －（p ＋１）矯＋矯倡 ＋qρ －ρ倡 ］（δ －pβ＋qτ）
－［δ －（p ＋１）β－α倡 ＋π倡 ＋qτ］（D －p矯＋qρ） ＝０， （７畅５畅９）

式中 p和 q为任意常数．
令

p ＝－２（ s －t），q ＝－（ t ＋１），
则（７畅５畅９）式变为

［D ＋（２s －２t －１）矯＋矯倡 －（ t ＋１）ρ －ρ倡 ］［δ ＋２（ s －t）β－（ t ＋１）τ］
－［δ ＋（２s －２t －１）β－α倡 ＋π倡 －（ t ＋１）τ］
×［D ＋２（ s －t）矯－（ t ＋１）ρ］ ＝０． （７畅５畅１０）

用

［D ＋（２s －２t －１）矯＋矯倡 －（ t ＋１）ρ －ρ倡 ］
作用于（７畅５畅８ａ）式，用

［δ ＋（２s －２t －１）β－α倡 ＋π倡 －（ t ＋１）τ］
作用于（７畅５畅８ｂ）式，然后相加，并考虑到（７畅５畅１０）式，得

｛［D ＋（２s －２t －１）矯＋矯倡 －（ t ＋１）ρ －ρ倡 ］
［Δ＋２（ s －t －１）γ＋（２s －t）μ］

－（δ ＋（２s －２t －１）β－α倡 ＋π倡 －（ t ＋１）τ］
×［δ ＋２（ s －t －１）α＋（２s －t）π］｝ψ（ s）

２ s－t－１ ＝０． （７畅５畅１１）
当参数 t取值 ０，１，２，…，２s －１，我们得到 ２s 个场量的退耦方程．

做对换 l吃n，m吃珚m，则有 D吃Δ，δ吃δ，K吃 －ν，π吃 －τ，ε吃 －γ，ρ吃 －γ，λ吃 －
σ，α吃 －β．此时（７畅５畅９）式变为

［Δ＋（p ＋１）γ－γ倡 －qμ＋μ倡 ］［δ ＋pα－qπ］
－［δ ＋（p ＋１）α＋β倡 －τ倡 －qπ］（Δ＋pγ－qμ） ＝０． （７畅５畅１２）

令

p ＝２（ s －t －１），q ＝－（２s －t），
上式可改写为

［Δ＋（２s －２t －１）γ－γ倡 ＋（２s －t）μ＋μ倡 ］
×［δ ＋２（ s －t －１）α＋（２s －t）π］
－［δ ＋（２s －２t －１）α＋β倡 －τ倡 ＋（２s －t）π］
×［Δ＋２（ s －t －１）γ＋（２s －t）μ］ ＝０． （７畅５畅１３）

由（７．５．１３）式和（７畅５畅８）式消去 ψ（ s）
２ s －t －１项，得到

｛［Δ＋（２s －２t －１）γ－γ倡 ＋（２s －t）μ＋μ倡 ］［D ＋２（ s －t）矯－（ t ＋１）ρ］
－［δ ＋（２s －２t －１）α＋β倡 －τ倡 ＋（２s －t）π］
×［δ ＋２（ s －t）β－（ t ＋１）τ］ψ（ s）

２ s－t ＝０． （７畅５畅１４）
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当 t取值 ０，１，２，…，２s－１，又得到 ２s 个场量的退耦方程．
对于中微子场，s ＝１

２ ，t＝０，（７畅５畅１１）和（７畅５畅１４）式简化为
［（D＋矯倡 －ρ －ρ倡）（Δ－γ＋μ） －（δ －α倡 ＋π倡 －τ）· （δ －α＋π）］［ψ（１／２）

０ ＝０ ，
［（Δ－γ倡 ＋μ＋μ倡）（D＋矯－ρ） －（δ ＋β倡 －τ倡 ＋π）（δ ＋β－τ）］［ψ（１／２）

１ ＝０．（７畅５畅１５）
　　对于电磁场，s＝１，t＝０，１， （７畅５畅１１）和（７畅５畅１４）式简化为

［（D ＋矯＋矯倡 －ρ －ρ倡 ）（Δ＋２μ）
－（δ ＋β－α倡 ＋π倡 －τ）· （δ ＋２π）］［ψ（ １）

１ ＝０，
［（D －矯＋矯倡 －２ρ －ρ倡 ）（Δ－２γ＋μ）

－（δ －β－α倡 ＋π倡 －２τ）· （δ －２α＋π）｝ψ（１）
０ ＝０，

［（Δ＋γ－γ倡 ＋２μ＋μ倡 ）（D ＋２矯－ρ） －（δ ＋α＋β倡 －τ倡 ＋２π）
×（δ ＋２β－τ）｝ψ（１）

２ ＝０，［（Δ－γ－γ倡 ＋μ＋μ倡 ）（D －２ρ）
－（δ －α＋β倡 －τ倡 ＋π）· （δ －２τ）］ψ（１）

１ ＝０． （７畅５畅１６）
　　对于自旋为 ３／２ 的场，t＝０，１，２，（７畅５畅１１）和（７畅５畅１４）式简化为

［（D ＋２矯＋矯倡 －ρ －ρ倡 ）（Δ＋γ＋３μ）
－（δ ＋２β－α倡 ＋π倡 －τ］· ［δ ＋α＋３π）］ψ（ ３２ ）

２ ＝０，
［（D ＋矯倡 －２ρ －ρ倡 ）（Δ－γ＋２μ） －（δ －α倡 ＋π倡 －２τ）

×（δ －α＋２π）］ψ（ ３２ ）
１ ＝０，

［（D －２矯＋矯倡 －３ρ －ρ倡 ）（Δ－３γ＋μ）
－（δ －２β－α倡 ＋π倡 －３τ）· （δ －３α＋π）］ψ（ ３２ ）

０ ＝０，
［（Δ＋２γ－γ倡 ＋３μ＋μ倡 ）（D ＋３矯－ρ） －（δ ＋２α＋β倡 －τ倡 ＋３π）
×（δ ＋３β－τ）］ψ（ ３２ ）

３ ＝０，
［（Δ－γ倡 ＋２μ＋μ倡 ）（D ＋矯－２ρ）

－（δ ＋β倡 －τ倡 ＋２π）· （δ ＋β－２τ）］ψ（ ３２ ）
２ ＝０，

［（Δ－２γ－γ倡 ＋μ＋μ倡 ）
（D －矯－３ρ） －（δ －２α＋β倡 －τ倡 ＋π）· （δ －β－３τ）］ψ（ ３２ ）

１ ＝０．　　（７畅５畅１７）
这里应注意，（７畅５畅１１）和（７畅５畅１４）式这两组退耦方程不是独立的，通过本节的变
换式，可以由一组变为另一组．比如，（７畅５畅１７１ ）式可以变为（７畅５畅１７６ ），（７畅５畅１７２ ）
式可以变为（７畅５畅１７５ ）式．

３畅分离变量
把含有各个场分量的耦合方程变为只含一个场分量的方程称之为退耦；而分

离变量则进一步把偏微分方程化为常微分方程．
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引入零标架

lμ＝１
Δ［（ r２ ＋a２ ），Δ，０，a］，

nμ＝１
２Σ［（ r

２ ＋a２ ）， －Δ，０，a］，
mμ＝ １

２（ r ＋ｉaｃｏｓθ）［ ｉaｓｉｎθ，０，１，ｉｃｏｓｅｃθ］， （７畅５畅１８）
相应的旋系数为

ρ ＝－ １
（ r －ｉaｃｏｓθ），　β＝－ １

２ ２ρ
倡 ｃｏｔθ，

π＝ １
２ ２ ｉaρ

２ ｓｉｎθ，　τ＝－１
２ ｉaρρ

倡 ｓｉｎθ，
μ＝１

２ ρ２ ρ倡Δ，　γ＝μ＋１
２ ρρ倡 （ r －M），

α＝π－β倡 ，　矯＝０． （７畅５畅１９）
式中 Δ＝r２ －２Mr ＋a２，Σ＝r２ ＋a２ ｃｏｓ２ θ，M 是 Ｋｅｒｒ 黑洞的质量，a 是比角动量．

对于 D 型时空（Ｋｅｒｒ 度规属于 D 型时空），
κ＝σ＝ν ＝λ＝０． （７畅５畅２０）

微分算符：
D ＝lμ 抄

抄xμ，　Δ＝nμ 抄
抄xμ，　δ ＝mμ 抄

抄xμ，　δ ＝（m倡 ）μ 抄
抄xμ．（７畅５畅２１）

在以上各式和以下各式中，应注意区分微分算符 Δ≡nμ 抄
抄xμ和 Ｋｅｒｒ 度规中常用的

符号 Δ≡r２ －２Mr ＋a２．
将（７畅５畅１９）和（７畅５畅２１）式代入（７畅５畅１１）式，得到

１
２Σ １

Δ（ r２ ＋a２ ） ２ －a２ ｓｉｎ２ θ 抄２

抄t２ ＋２a １
Δ（ r２ ＋a２ ） －１

　× 抄２

抄t抄矱＋ a２
Δ － １

ｓｉｎ２ θ
抄２

抄矱２ －Δ抄２

抄r２ －抄２

抄θ２ ＋２（ s －t －１）
　× １

ΔM（ r
２ －a２） －r －ｉaｃｏｓθ 抄

抄t ＋［２（２s －t －１）ρΔ＋２（ s －２）
×（ r －M）］ 抄

抄r ＋［２（２s －t －１） ｉaρｓｉｎθ －ｃｏｔθ］ 抄
抄θ

＋２（ s －t －１） a
Δ（ r －M） ＋ｉｃｏｓθｓｉｎ２ θ

抄
抄矱＋２（ t２ －st －２t ＋４s －２）

×ρ（ r －M） －（ t －１） ×（４s －３t －２）ρ２Δ＋２（２s２ －４st ＋２ ＋s －１）
×ｉaρｃｏｓθ ＋（ t －１）（４s －３t －２）ρ２a２ ｓｉｎ２ θ ＋２（ s －t －１）
＋（ s －t）（ s －t －１）ｃｏｔ２ θ －（ s －t －１） １

ｓｉｎ２ θ ψ（ s）
２ s－t－１ ＝０． （７畅５畅２２）
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当 t＝２s －１，（７畅５畅２２）式化简为
１
Δ（ r２ ＋a２ ） ２ －a２ ｓｉｎ２ θ 抄２

抄t２ ＋２a １
Δ（ r２ ＋a２ ） －１ 抄２

抄t抄矱
＋ a２Δ － １

ｓｉｎ２ θ
抄２

抄矱２ －Δ抄２

抄r２ －抄２

抄θ２ －２s １
ΔM（ r

２ －a２ ） －r －ｉaｃｏｓθ

×抄
抄t －２（ s ＋１）（ r －M） 抄

抄r －ｃｏｔ
矪
矪θ －２s aΔ（ r －M） ＋ｉｃｏｓθｓｉｎ２ θ

×抄
抄矱＋２（ s －１）（２s －１）［ρ（ r －M） ＋ρ２Δ＋ｉaρｃｏｓθ －ρ２ a２ ｓｉｎ２ θ］

＋s２ ｃｏｔ２ θ －s ψ（ s）
０ ＝０． （７畅５畅２３）

　　对于中微子场和电磁场，s 分别为 １／２ 和 １，（７．５．２３）式中（ s－１）· （２s－１）一
项为零，化简后得到

１
Δ（ r２ ＋a２ ） ２ －a２ ｓｉｎ２ θ 抄２

抄t２ ＋２a １
Δ（ r２ ＋a２ ） －１ 抄２

抄t抄矱
＋ a２Δ－ １

ｓｉｎ２ θ
抄２

抄矱２ －Δ抄２

抄r２ － 抄２

抄矱２ －２s １
ΔM（ r

２ －a２ ） －r－ｉaｃｏｓθ
×抄
抄t －２（ s ＋１）（ r －M） 抄

抄r －ｃｏｔθ
抄
抄θ

－２s aΔ（ r －M） ＋ｉｃｏｓθｓｉｎ２ θ · 抄
抄矱＋s２ ｃｏｔ２ θ －s ψ（ s）

０ ＝０． （７畅５畅２４）
令

ψ（ s）
２ s－t－１ ＝ｅ－ｉωt＋ｉm矱R（ r）S（θ）， （７畅５畅２５）

（７畅５畅２２）式成为
１
２Σ － １

Δ（ r２ ＋a２ ） ２ －a２ ｓｉｎ２ θ ω＋２ １
Δ（ r２ ＋a２ ） －１ maω－ a２

Δ－ １
ｓｉｎ２ θ m

２

－Δ抄２

抄r２ － 抄２

抄矱２ －２（ s －t －１） １
ΔM（ r

２ －a２ ） －r－ｉaｃｏｓθ ｉω
＋［２（２s －t －１）ρΔ＋２（ s －t －２）（ r －M）］ 抄

抄r
＋［２（２s －t －１） ｉaρｓｉｎθ －ｃｏｔθ］ 抄

抄θ ＋２（ s －t －１） a
Δ（ r －M） ＋ｉｃｏｓθｓｉｎ２ θ ｉm

＋２（ t２ －st －２t ＋４s －２）ρ（ r －M） －（ t －１）
×（４s －３t －２）ρ２Δ＋２（ s －t －１） ＋２（２s２ －４st ＋２t２ ＋s －１） ｉaρｃｏｓθ
＋（ t －１）（４s －３t －２）ρ２ a２ ｓｉｎ２ θ ＋（ s －t）（ s －t －１）ｃｏｔ２ θ
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－（ s －t －１） １
ｓｉｎ２ θ ｅ

－ｉωt＋ｉm矱R（ r）S（θ） ＝０． （７畅５畅２６）
　　能分离变量的条件是含 ρ的项为零．取 t＝２s －１，（７畅５畅２６）式变为

－ １
Δ（ r２ ＋a２ ） ２ －a２ ｓｉｎ２θ ω２ ＋２ １

Δ（ r２ ＋a２ ） －１ maω

－ a２Δ－ １
ｓｉｎ２θ m

２ －Δ抄２

抄r２ －抄２

抄θ２ ＋２s １
ΔM（ r

２ －a２ ） －r
－ｉaｃｏｓθ · ｉω－２（ s ＋１）（ r －M） 抄

抄r －ｃｏｔθ
抄
抄θ

－２s aΔ（ r －M） ＋ｉｃｏｓθｓｉｎ２ θ ｉm ＋２（ s －１）（２s －１）［ρ（ r －M） ＋ρ２Δ＋ｉaｃｏｓθ
－　　ρ２ a２ ｓｉｎ２ θ］ ＋s２ ｃｏｔ２ θ －s R（ r）S（θ） ＝０． （７畅５畅２７）

由（７．５．２７）式可以看出，仅当 s＝１
２ ，１ 时，含 ρ的项才都为零．分离变量，得

Δ－s ｄ
ｄr Δs＋１ ｄｄrR（ r） ＋ １

Δ［K２ －２ｉs（ r －M）K］

＋４ｉsωr －λ R（ r） ＝０， （７畅５畅２８）
１
ｓｉｎθ

ｄ
ｄθ ｓｉｎθ ｄｄθS（θ） ＋ a２ω２ ｃｏｓ２ θ － m２

ｓｉｎ２ θ
－２aωsｃｏｓθ －２msｃｏｓθ

ｓｉｎ２ θ －s２ ｃｏｔ２ θ －s２ ＋E S（θ） ＝０， （７畅５畅２９）
式中，

K ＝（ r２ ＋a２ ）ω－am，　λ＝E ＋a２ω２ －２amω－s（ s ＋１），
E 为分离变量常数．

类似的计算表明，只有电磁场的两个分场量 ψ（ １）
０ ，ψ（ １）

２ 和中微子场的两个分场

量 ψ（ １２ ）
０ ，ψ（ １２ ）

１ 可以分离变量，其他场量均不能分离变量．

７畅６　粒子的散射和吸收
在粒子的波长远大于中心质量的半径，且史瓦希场为弱场的情况下，粒子的散

射问题已为许多作者计算过，用的是低阶微扰理论和散射场的弱场近似方法．得到
的结果是，标量和矢量粒子的散射遵守卢瑟福角分布，光子的散射截面和点质量牛
顿场的散射公式相符（Ｗｅｓｔｅｒｗｅｌｔ，１９７１）．在线性史瓦希场背景上计算二阶微扰可
以给出光子的偏振效应．
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当引力源已坍缩成黑洞时，相互作用势中的后牛顿项对散射图像有影响，这时
只考虑线性项是不行的．具有自旋的粒子即使被球对称黑洞散射，也可以引起偏振
效应．

黑洞的电荷和角动量强烈地影响对粒子的吸收，这可能与玻色子的极端辐射
相联系（Ｇｉｂｂｏｎｓ，１９７５）．费米子在 Ｋｅｒｒ唱Ｎｅｗｍａｎ 场中的行为与玻色子的不同，没有
极端辐射效应．弱相对论电子被史瓦希小黑洞吸收的截面为标量粒子的 １

８ （Ｕｎ唱
ｒｕｈ，１９７６）．本章讨论 Ｒｅｉｓｓｎｅｒ唱Ｎｏｒｄｓｔｒｏｍ 黑洞对标量粒子和电子的散射．
1畅标量粒子的波函数

设标量粒子的质量为 μ，电荷为 e．球对称荷电黑洞的引力场度规为（第 １ 章
１畅３ 节）：

ｄs２ ＝ １ －２M
r ＋Q２

r２
ｄt２ － １ －２M

r ＋Q２

r２
－１ ｄr２ －r２ （ｄθ２ ＋ｓｉｎ２ θｄφ２ ）．

（７畅６畅１）
式中 M 和 Q 分别为 Ｒｅｉｓｓｎｅｒ唱Ｎｏｒｄｓｔｒｏｍ 黑洞的质量和电荷．系统的拉格朗日具有
形式

L ＝（抄μ －ｉeAμ）Φgμν（抄ν －ｉeAν）Φ倡 －μ２ΦΦ倡． （７畅６畅２）
式中四维势 Aμ＝（ －Q／r，０，０，０）．Ｋｌｅｉｎ唱Ｇｏｒｄｏｎ 方程具有形式：

（ －g） －１ ／２ 抄ν［（ －g） １ ／２ gμν（抄μ －ｉeAμ）Φ
－ｉeAν抄νΦ－（ e２AμAμ －μ２ ）Φ ＝０， （７畅６畅３）

（ －g） －１ ／２ 抄ν［（ －g） １ ／２ gμν（抄μ ＋ｉeAμ）Φ倡

＋ｉeAν抄νΦ倡 －（e２AμAμ －μ２ ）Φ倡 ＝０， （７畅６畅４）
（７畅６畅３）和（７畅６畅４）式的区别只是将 e换为 －e．下面我们研究函数 Φ的方程．具有
能量 ω，轨道角动量 l和在 z 轴上的投影 m的态的波函数表示为

Φωlm ＝ １
r Rωl（ r）Yml （θ，Φ） e ｉωl，

它的径向部分在无限远处是入射波和出射波之和：
Rωl ＝ｅｘｐ（ －ｉωυr －ｉηｌｎ２ωυr） ＋A l（ω）ｅｘｐ（ ｉωυr ＋ｉηｌｎ２ωυr）．（７畅６畅５）

式中，
υ＝（１ －μ２ ／ω２ ） １ ／２ ，
η＝［ωM（１ ＋υ２ ） ＋Zα］ ／υ

是粒子与黑洞相互作用势中的库仑部分，Zα ＝eQ．视界面 rh＋ ＝M ＋ M２ －Q２
上的

边界条件为
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Rωl ＝ｅｘｐ［ －ｉ（ω＋Zα／rh＋）珋r］， （７畅６畅６ａ）
式中 珋r 由（７．６．６９）式确定：

ｄ珋r／ｄr ＝（１ －２M／r ＋Q２ ／r２ ） －１． （７畅６畅６ｂ）
出射波振幅 A l（ω）可由这一边界条件确定．
2畅标量粒子的散射和吸收

沿 z 轴传播的粒子流，散射波函数的渐近行为具有形式
Ψ＝ｅｘｐ（ －ｉωt）｛ｅｘｐ［ ｉωυz －ｉηｌｎωυ（ r －z）］

＋［ f（θ） ／r］ ｅｘｐ（ ｉωυr ＋ｉηｌｎ２ωυr）｝． （７畅６畅７）
将弹性散射振幅按本征态分解，得到

f（θ） ＝ ｉ
２ωυ∑

∞

l ＝０
（２l ＋１）（１ －S l）P l（ｃｏｓθ），S l ＝（－１） l＋１A l． （７畅６畅８）

弹性散射的总截面为

σe ＝ π
ω２υ２ ∑∞

l ＝０
（２l ＋１） ｜１ －S l ｜２． （７畅６畅９）

此时吸收总截面表示为

σA ＝ π
ω２υ２ ∑∞

l ＝０
（２l ＋１）（１ －｜S l ｜２ ） ＝ π

ω２υ２ ∑∞
l ＝０

（２l ＋１）T l， （７畅６畅１０）
式中 T l 是局部吸收系数．
3畅慢速标量粒子的散射和吸收

在近似条件下，当 μM ～｜Zα｜虫１，υ２ 虫１ 时，再考虑到 Q虫M，r ＋≈２M，r －≈０，
由径向方程的连接方法得到

A l（ω） ＝（－１） l＋１ Γ（１ ＋l －ｉη）
Γ（１ ＋l ＋ｉη）（１ －１

２ T l）

＝（－１） l＋１ SCl （１ －T l２ ）． （７畅６畅１１）
式中 SCl （η）是散射算符的库仑矩阵元；局部吸收系数 T l 具有形式：

T l（ω） ＝２Γ［２ωυ（ r＋－r－）］ ２ l＋１ ２πη
１ －ｅ－２πη

× （ l！） ６

（２l）！２ （２l ＋１）！２ Πl
k ＝１ １ ＋４ Γ２

k２
１ ＋η２

k２
，

Γ≡（ωr＋＋Zα） r＋ ／（ r＋－r－） ≈ ２ωM ＋Zα． （７畅６畅１２）
将 T０ 代入，得到总吸收截面：

σA ＝１６πM
２

υ２ （１ ＋ Zα
２ωM）２πωM
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× １ ＋υ２ ＋Zα／ωM
１ －ｅｘｐ［ －２πωM／υ（１ ＋υ２ ＋Zα／ωM）］． （７畅６畅１３）

当满足极端辐射条件 Zα ＜－２ωM 时，此截面为负的．
弹性散射的振幅具有形式：

f（θ） ＝fCη（θ） ＋ ｉ
４ωυ∑

∞

l ＝０
（２l ＋１）T lSCl （η）P l（ｃｏｓθ）． （７畅６畅１４）

式中 fCη（θ）是弹性散射的库仑振幅：
fCl （θ） ＝ ηΓ（１ －ｉη）

２ωυΓ（１ ＋ｉη）
ｅｘｐ［２ｉηｌｎｓｉｎ（θ／２）］

ｓｉｎ２ （θ／２） ． （７畅６畅１５）
　　如果（１ ＋υ２ ）ωM ＋Zα≠０，只限于 Ｓ 波的吸收，我们得到修正后的卢瑟福散射
角分布：

ｄσe
ｄΩ＝M２ （１ ＋υ２ ＋Zα／ωM） ２

４υ４ ｓｉｎ４（θ／２） ｛１ ＋３２π ω２M２υ
１ －ｅｘｐ（ －２πη）

×（１ ＋ Zα
２ωM） ｓｉｎ

２ θ
２ ｓｉｎ（２ηｌｎｓｉｎ

θ
２ ）｝． （７畅６畅１６）

当 η≈０ 时，牛顿引力与电斥力相抵消， fCl （ θ）→０，弹性散射对角度的依赖关系
很弱：

ｄσe
ｄΩ≈ １６M２（２ωM ＋Zα） ２ １ ＋１

３ （ωυM） ２ ｃｏｓθ ． （７畅６畅１７）

4畅电子的散射
本节研究电子在 Ｒｅｉｓｓｎｅｒ唱Ｎｏｒｄｓｔｒｏｍ 黑洞场中的散射和吸收．由量子电动力学

可知，散射幅由系数 A和 B 确定，A和 B 的表达式可写为
A＝ １

２ｉωυ∑
∞

l ＝０
［（ l ＋１）（S－

l －１） ＋l（S＋
l －１）］P l（ｃｏｓθ），

B ＝ １
２ωυ∑

∞

l ＝０
［（S－

l －S＋
l ）］P１

l （ｃｏｓθ）． （７畅６畅１８）
式中符号 ±分别对应于 k ＞０ 和 k ＜０ 的态．设入射束是非偏振的，微分散射截面
（按所有下落粒子的自旋态取平均并按散射流中所有粒子态取和）等于

ｄσe
ｄΩ ＝｜A｜２ ＋｜B ｜２． （７畅６畅１９）

吸收总截面可写为

σA ＝ π
ω２υ２ ∑∞

l ＝０
［（ l ＋１）（１ －｜S－

l ｜２ ） ＋l（１ －｜S＋
l ｜２ ）］

＝ π
ω２υ２ ∑∞

l ＝０
［（ l ＋１）T－

l ＋lT＋
l ］

·１１３·７畅６　粒子的散射和吸收



＝ π
ω２υ２ ∑

k
｜k｜T k． （７畅６畅２０）

与得到（７畅６畅１１）式的过程类似，得到出射波振幅的表达式：
A±
l （ω） ≈ （－１） l＋１ SCl （η）（１ －T±

l ／２）． （７畅６畅２１）
将（７畅６畅２１）式代入（７畅６畅１８）式，得到系数 A和 B：

A ＝fCη（θ） ＋ ｉ
４ωυ∑

∞

l ＝０
［（ l ＋１）T－

l ＋lT＋
l ］SCl （η）P l（ｃｏｓθ），

B ＝ １
４ωυ∑

∞

l ＝１
（T＋

l －T－
l ）SCl （η）P１

l （ｃｏｓθ）． （７畅６畅２２）
吸收截面的大小和标量粒子的情况一样，主要由 S －波的吸收来确定：

σA ＝πM２

υ２ （１ ＋μ
ω）２πωM

× １ ＋υ２ ＋Zα／ωM
１ －ｅｘｐ［（ －２πωM／υ）（１ ＋υ２ ＋Zα／ωM）］． （７畅６畅２３）

显然，σA 随着静电引力的增大而增大．在所讨论的近似条件下，确定偏振效应的系
数 B 只是由于吸收才不等于零．由于吸收的结果，散射束是偏振的，偏振矢量垂直
于散射平面．如果只限于 P １２波的贡献，可以得到散射粒子的偏振矢量：

P＝－４π（１ －μ／ω）（ωM） ２υ
１ －ｅｘｐ（ －２πη） ｓｉｎ

３ θ
２ ｃｏｓ

θ
２

　
　（η

２ －１）
×ｃｏｓ（２ηｌｎｓｉｎ θ

２ ） ＋２ηｓｉｎ（２ηｌｎｓｉｎ θ
２ ） n ×n′ （７畅６畅２４）

　　（７畅６畅２４）式表明，偏振度Δ（θ）是角的振荡函数，当 θ ＝０ 和θ ＝π时Δ＝０．如果
η冲１，即 １冲ωM冲υ，υ→０，则偏振矢量的模很小（ ～ω４M４ ）．但当υ冲ωM 时，它基本
上与 ωM 成正比．因此，黑洞视界可看做“起偏器”．还可以得到含有吸收效应的电
子的微分散射截面

ｄσe
ｄΩ＝M２ （１ ＋υ２ ＋Zα／ωM） ２

４υ４ ｓｉｎ４ （θ／２） ［１ ＋２π（１ ＋μ／ω）

× ω２M２υ
１ －ｅｘｐ（ －２πη） ｓｉｎ

２ θ
２ ｓｉｎ（２ηｌｎｓｉｎ

θ
２ ）］． （７畅６畅２５）

这里没考虑相对论效应．
5畅中微子的散射和吸收

前几节中的结果可用来研究无质量的自旋为 ０ 和 １
２ 的粒子的散射和吸收过

程，近似条件是 ωM虫１．对于中微子，除令 μ→０ 以外，还要令 e→０．我们得到中微
子的微分散射截面
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ｄσe
ｄΩ ＝M２ ｓｉｎ－４ θ

２ １ ＋１
４ ωMｓｉｎ２ θｓｉｎ（４ωMｌｎｓｉｎ θ

２ ） ， （７畅６畅２６）
散射中微子的偏振度

Δ（θ） ＝ωMｓｉｎ３ θ
２ ｃｏｓ

θ
２ ｃｏｓ ４ωMｌｎｓｉｎ θ

２ ． （７畅６畅２７）
由前边所得结果还可以求出中微子的吸收截面：

σA ＝（π／ω２ ）（T－
０ ＋T＋

１ ） ＝２πM２． （７畅６畅２８）

７畅７　克尔－纽曼－德西特黑洞和中微子波
1畅黑洞微扰理论

如果黑洞的视界外面存在电磁场或中微子场，则这些物质场通过它们的能 －
动张量影响黑洞的空时度规；同时，黑洞的度规（引力场）又将作用于物质场．在通
常情况下，电磁场或中微子场的强度是一阶无穷小量，能 －动张量是二阶无穷小
量．因此，若只保留一阶小量，则黑洞外物质的作用可略去，只剩下引力场（度规）
对物质场的作用，此时可把物质场看做试验粒子场．这一类微扰理论称为引力场的
半径典量子理论，或称为弯曲空时量子理论．关于黑洞的微扰理论已为 Ｓ．Ｃｈａｎ唱
ｄｒａｓｅｋｈａｒ（１９８３）系统给出．黑洞微扰理论的数学工具是 Ｎｅｗｍａｎ唱Ｐｅｎｏｒｓｅ 的旋系数
和零标架方法．

黑洞微扰理论中的一个内容就是计算物质波的反射系数和入射系数．
Ｃｈａｎｄｒａｓｅｋｈａｒ（１９７７）计算了 Ｋｅｒｒ空时中的中微子波．
Ｋｈａｎａｌ（１９８５）计算了 Ｋｅｒｒ唱ｄｅ Ｓｉｔｔｅｒ 空时中的中微子波．
在本节中我们讨论了 Ｋｅｒｒ唱Ｎｅｗｍａｎ唱ｄｅ Ｓｉｔｔｅｒ 空时中的中微子波（分静止质量

为零和不为零两种情况），计算反射系数和入射系数．我们发现 Ｋｅｒｒ唱Ｎｅｗｍａｎ唱ｄｅ
Ｓｉｔｔｅｒ黑洞的有效势大于 Ｋｅｒｒ唱ｄｅ Ｓｉｔｔｅｒ 黑洞的有效势．
2畅狄拉克方程

在弯曲空时中，中微子的旋坐标形式的场方程为（Ｔｅｕｋｏｌｓｋｙ，１９７３）

ΔA 痹BPA ＝０， （７畅７畅１）

ΔA 痹BQA ＝０， （７畅７畅２）
这里 PA 和 QA 是两个二分量旋量．ΔAB是旋协变微分．

用旋标架表示的 Ｄｉｒａｃ 方程为

Δab· Pa ＝０， （７畅７畅３）

Δab· Qa ＝０， （７畅７畅４）
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　　在 Ｂｏｙｅｒ唱Ｌｉｎｄｑｕｉｓｔ坐标系中 Ｋｅｒｒ唱Ｎｅｗｍａｎ唱ｄｅ Ｓｉｔｔｅｒ 度规具有形式：
ｄs２ ＝ １

ρ２Σ２ （Δr －Δθa２ ｓｉｎ２ θ）ｄt２ －ρ２

Δr ｄr
２ －ρ２

Δθｄθ
２

－ １
ρ２Σ２ ［Δθ（ r２ ＋a２） ２ －Δra２ ｓｉｎ２ θ］ｓｉｎ２ θｄφ２

＋２a
ρ２Σ［Δθ（ r２ ＋a２ ） －Δr］ ｓｉｎ２ θｄtｄφ． （７畅７畅５）

式中，
珋ρ ＝r ＋ｉaｃｏｓθ，ρ２ ＝珋ρ珋ρ倡 ，
Δr ＝（ r２ ＋a２ ） １ －λ

３ r
２ －２Mr ＋Q２ ，

Δθ ＝１ ＋１
３ λa２ ｃｏｓ２ θ，

Σ＝１ ＋１
３ λa２．

（７畅７畅６）

　　度规张量的逆变分量为

gμν ＝

Σ２

ρ２
（ r２ ＋a２ ） ２

Δr －a
２ ｓｉｎ２ θ
Δθ

０ ０ a２Σ２

ρ２
r２ ＋a２
Δr －１

Δθ

０ －Δr
ρ２ ０ ０

０ ０ －Δθ
ρ２ ０

a２Σ２

ρ２
r２ ＋a２
Δr －１

Δθ
０ ０ － Σ２

ρ２ ｓｉｎ２ θ
１
Δθ

－a
２ ｓｉｎ２ θ
Δr

（７畅７畅７）

选取零标架

lμ＝ （ r２ ＋a２ ）Σ
Δr ，１，０，aΣΔr ，

nμ＝１
２ρ２ ［Σ（ r２ ＋a２）， －Δr，０，aΣ］，

mμ＝ １
２Δθ珋ρ ｉaΣｓｉｎθ，０，Δθ， ｉΣｓｉｎθ ， （７畅７畅８）

则 Ｄｉｒａｃ 方程（７畅３），（７畅４）式化为四个耦合方程：
（D ＋ε －ρ）F１ ＋（δ ＋π－a）F２ ＝０，
（Δ＋μ－r）F２ ＋（δ ＋β－τ）F１ ＝０，
（D ＋ε倡 －ρ倡 ）G２ －（δ ＋π倡 －a倡 ）G１ ＝０，
（Δ＋μ倡 －r倡 ）G１ －（δ ＋β倡 －τ倡 ）G２ ＝０． （７畅７畅９）
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式中，
F１ ＝P０ ，　F２ ＝P１ ，　G１ ＝珚Q１ ，　G２ ＝－珚Q０· ，
D ＝lμ抄μ ＝抄００· ，　Δ＝nμ抄μ ＝抄１１· ，
δ ＝mμ抄μ ＝抄０１· ，　δ ＝珚mμ抄μ ＝抄１０· ，
ρ ＝－ １

珋ρ倡 ，　τ＝－ｉa Δθ ｓｉｎθ
２ρ２ ，

μ＝－ Δr
２ρ２ 珋ρ倡 ，　β＝ １

２ ２珋ρｓｉｎθ
ｄ（ Δθ ｓｉｎθ）

ｄθ ，

r＝１
４ρ２
ｄΔr
ｄr ＋μ，　π＝ｉa Δθ ｓｉｎθ

２（珋ρ倡 ） ２ ，
a ＝π－ρ倡

　　经过下述三个变换，（沈有根，１９８５）：
（１） F１ ＝ｅ －ｉωtｅ ｉmφf１ （ r，θ），

F２ ＝ｅ －ｉωtｅ ｉmφf２ （ r，θ），
G１ ＝ｅ －ｉωtｅ ｉmφg１（ r，θ），
G２ ＝ｅ －ｉωtｅ ｉmφg２（ r，θ）， （７畅７畅１０）

（２） U１ （ r，θ） ＝珋ρ倡 f１ （ r，θ），　U２ （ r，θ） ＝f２（ r，θ），
V１ （ r，θ） ＝g１ （ r，θ），　V２ （ r，θ） ＝珋ρg２（ r，θ）， （７畅７畅１１）

（３） U１ ＝R －１２ （ r）S －１２ （θ），　U２ ＝R ＋１２ （ r）S ＋１２ （θ），
V１ ＝R ＋１２ （ r）S －１２ （θ），　V２ ＝R －１２ （ r）S ＋１２ （θ）． （７畅７畅１２）

（７畅７畅９）式化为
D０R－１２ S－１２ ＋ Δθ

２ L １２ R＋１２ S＋１２ ＝０，
ΔrD ＋１２ R＋１２ S＋１２ － ２ΔθL ＋１２ R－１２ S－１２ ＝０，
D０R－１２ S＋１２ － Δθ

２ L
＋１２ R＋１２ S－１２ ＝０，

ΔrD＋１２ R＋１２ S－１２ ＋ ２ΔθL＋１２ R－１２ S＋１２ ＝０． （７畅７畅１３）
式中，

Dn ＝抄r －ｉΣKΔr ＋ nΔr
ｄΔr
ｄr ，

D＋
n ＝抄r ＋ｉΣKΔr ＋ nΔr

ｄΔr
ｄr ，
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L n ＝抄θ －ΣH
Δθ

＋ n
Δθ ｓｉｎθ

ｄ（ Δθ ｓｉｎθ）
ｄθ ，

L ＋
n ＝抄θ ＋ΣH

Δθ
＋ n

Δθ ｓｉｎθ
ｄ（ Δθ ｓｉｎθ）

ｄθ ，
K ＝（ r２ ＋a２ ）ω－am，
H＝aωｓｉｎθ － m

ｓｉｎθ． （７畅７畅１４）
分离变量得

D０R－１２ ＝λ１R＋１２ ，　 Δθ
２ L １２ S＋１２ ＝－λ１ S－１２ ，

ΔrD＋
１ ／２R＋１２ ＝λ２R－１２ ，　 ２ΔθL＋

１ ／２ S－１２ ＝λ２ S＋１２ ，
D０R－１２ ＝λ３R＋１２ ，　 Δθ

２ L
＋１２ S－１２ ＝λ３ S＋１２ ，

ΔrD＋
１ ／２R＋１２ ＝λ４R－１２ ，　 ２ΔθL １２ S＋１２ ＝－λ４ S－１２ ， （７畅７畅１５）

这里 λ１，λ２ ，λ３ ，λ４ 均为分离变量常数，不难得到
λ１ ＝λ３ ＝ １

２ λ２ ＝ １
２ λ４ ≡ λ． （７畅７畅１６）

因此（７畅７畅１５）式成为
D０R－１２ ＝λR＋１２ ，

ΔrD＋
１ ／２R＋１２ ＝２λR－１２ ， （７畅７畅１７）

Δ１ ／２
θ L １２ S＋１２ ＝－ ２λS－１２ ，

Δ１ ／２
θ L＋１２ S－１２ ＝ ２λS＋１２ ． （７畅７畅１８）

　　记 ２λ为 λ， ２R －１２为 R －１２ ，则（７畅７畅１７）式成为
Δ１ ／２
r D０R－１２ ＝λΔ１ ／２

r R＋１２ ， （７畅７畅１９）
Δ１ ／２
r D＋

０ Δ１ ／２
r R＋１２ ＝λR－１２ ， （７畅７畅２０）

Δ１ ／２
θ L １２ S＋１２ ＝－λS－１２ ， （７畅７畅２１）

Δ１ ／２
θ L＋１２ S－１２ ＝λS＋１２ ， （７畅７畅２２）

令

Δ１ ／２
r R＋１２ ＝P＋１ ／２ ，R－１２ ＝P－１２ ， （７畅７畅２３）

则（７畅７畅１９） ～（７畅７畅２２）式化为
Δ１ ／２
r D ＋

０ P＋１２ ＝λR－１２ ，　Δ１ ／２
r D０P－１２ ＝λR １２ ， （７畅７畅２４）
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Δ１ ／２
r L １２ S＋１２ ＝－λS－

１
２ ，　Δ１ ／２

θ L ＋
１ ／２ S－１２ ＝λS＋１２ ． （７畅７畅２５）

　　我们把径向方程化为一维波动方程．为此，引进缓变（ ｔｏｒｔｏｉｓｅ）坐标 r倡 ，其微分
表示为

ｄ
ｄr倡 ＝ Δrｄ

珚ω２ ｄr， （７畅７畅２６）
式中，

珚ω２ ＝r２ ＋α２ ，α２ ＝a２ －amω． （７畅７畅２７）
　　令

D０ ＝珚ω２

Δr （
ｄ
ｄr倡 ＋ｉσ）， （７畅７畅２８）

其中

σ＝－Σω， （７畅７畅２９）
而

D＋
０ ＝珚ω２

Δr
ｄ
ｄr倡 －ｉσ， （７畅７畅３０）

因此由（５畅２畅２４）式得到
ｄ
ｄr倡 －ｉσ P＋１２ ＝λΔ１ ／２

r

珚ω２ P－１２ ， （７畅７畅３１）
ｄ
ｄr倡 ＋ｉσ P－１２ ＝λΔ１ ／２

r

珚ω２ P＋１２ ． （７畅７畅３２）
设

Z± ＝P＋１２ ±P－１２ ， （７畅７畅３３）
由（５畅２畅３１）和（５畅２畅３２）式得到

ｄ
ｄr倡 －λΔ１２

珚ω２ Z＋ ＝ｉσZ－， （７畅７畅３４）

ｄ
ｄr倡 ＋λΔ１２

r

珚ω２ Z－ ＝ｉσZ＋． （７畅７畅３５）
　　由（７畅７畅３４）和（７畅７畅３５）式，我们得到波动方程

ｄ
ｄr２倡 ＋σ２ Z± ＝V± Z±， （７畅７畅３６）

式中

V± ＝λ２ Δr
珚ω４ ±λ ｄ

ｄr倡
Δ１ ／２
r

珚ω２ ． （７畅７畅３７）
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3畅反射系数和入射系数
对于 Ｋｅｒｒ唱ｄｅ Ｓｉｔｔｅｒ黑洞

Δ１ ＝（ r２ ＋a２ ）（１ －１
３ λr２ ） －２Mr， （７畅７畅３８）

珚ω２
１ ＝r２ ＋a２ －amω． （７畅７畅３９）

对于 Ｋｅｒｒ唱Ｎｅｗｍａｎ唱ｄｅ Ｓｉｔｔｅｒ 黑洞
Δ２ ＝（ r２ ＋a２ ） １ －１

３ λr２ －２Mr ＋Q２ ， （７畅７畅４０）
珚ω２

２ ＝r２ a２ －amω． （７畅７畅４１）
由此我们得到

V±（１） ＜V±（２） ． （７畅７畅４２）
　　当 １

λ冲M２ ＞a２ 时，Δr ＝０ 有四个实根，记为 r ＋＋，r ＋，r －，r －－．r ＋＋表示宇宙视

界，r ＋表示黑洞视界，r －表示黑洞内视界，r －－表示宇宙内视界．
令

ω＋ ＝ am
r２＋＋a２ ，ω－ ＝ am

r２＋＋ ＋a２ ，ωc ＝ma ．
显然有

r＋≤ r≤ r＋＋．
　　当 ω＞ωc，有 a２ ＞０，则

Z±→ ｄZ碢
ｉσｄr倡 （当 r倡 →±∞）； （７畅７畅４３）

Z＋→ ｅ＋ｉσr倡 ＋A（σ）ｅ ｉ－σr倡（ r倡 →＋∞），
　　　B（σ）ｅ－ｉσr倡（ r倡 →－∞）； （７畅７畅４４）

Z－→ ｅ＋ｉσr倡 －A（σ）ｅ ｉ－σr倡（ r倡 →＋∞），
　　　B（σ）ｅ＋ｉσr倡（ r倡 →－∞）． （７畅７畅４５）

因此对于势 V ±，反射系数和入射系数为
R ＝｜A（σ） ｜２ ，J ＝｜B（σ） ｜２ ， （７畅７畅４６）

Ｋｈａｎａｌ（１９８５）给出
R ＋J ＝１． （７畅７畅４７）
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　　当 ω＋ ＜ω＜ωc，有 a２ ＜０，但 r２＋ ＋a２ ＞０，此时仍有
R ＋J ＝１． （７畅７畅４８）

当 ω－ ＜ω＜ω＋，有 r２＋ ＋a２ ＜０，
Z → ｅ ｉσr倡 ＋Aｅ－ｉσr倡，　r → r＋＋；

　　　Bｅ ｉσr倡，　r → r＋， （７畅７畅４９）
Ｋｈａｎａｌ给出

R ＝１ ＋J， （７畅７畅５０）
式中， R ＝｜A｜２，J ＝｜B｜２．
4畅中微子波

根据宇宙学的考虑，中微子静质量可能不为零．Ｌｙｕｂｉｍｏｖ 等（１９８０）和 Ｒｅｉｎｅｓ
等（１９８０）的实验似乎也支持了这一点．

设中微子静质量为 μ．与上节类似，我们有
ｄ
ｄr倡 －ｉσ P＋１２ ＝Δ１ ／２

r

珚ω２ （λ－ｉμr）P－１２ ， （７畅７畅５１）
ｄ
ｄr倡 ＋ｉσ P－１２ ＝Δ１ ／２

r

珚ω２ （λ＋ｉμr）P＋１２ ， （７畅７畅５２）
设

θ ＝ａｒｃｔａｎ μrλ， （７畅７畅５３）
则

λ±ｉμr ＝ λ２ ＋μ２ r２ ｅ±ｉθ． （７畅７畅５４）
于是（７畅７畅５１）和（７畅７畅５２）式可写为

ｄ
ｄr倡 －ｉσ P＋１２ ＝Δ１ ／２

r

珚ω２ （λ２ ＋μ２ r２ ） １ ／２P－１２ ｅｘｐ －ｉａｒｃｔａｎ μr
λ ，

ｄ
ｄr倡 ＋ｉσ P－１２ ＝Δ１ ／２

r

珚ω２ （λ２ ＋μ２ r２ ） １ ／２P＋１２ ｅｘｐ ＋ｉａｒｃｔａｎ μr
λ ．（７畅７畅５５）

　　令
P＋１２ ＝ψ＋１２ ｅｘｐ －１

２ ｉａｒｃｔａｎ μr
λ ，

P－１２ ＝ψ－１２ ｅｘｐ ＋１
２ ｉａｒｃｔａｎ μr

λ ， （７畅７畅５６）
则我们有

ｄψ＋１２
ｄr倡 －ｉσ １ ＋Δr

珚ω２
λμ
２σ

１
λ２ ＋μ２λ２ ψ＋１２
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＝Δ１ ／２
r

珚ω２ （λ２ ＋μ２ r２） １２ ψ－１２ ， （７畅７畅５７）
ｄψ－１２
ｄr倡 ＋ｉσ（１ ＋Δr

珚ω２
λμ
２σ

１
λ２ ＋μ２λ２ ）ψ－１２

＝Δ１ ／２
r

珚ω２ （λ２ ＋μ２ r２） １２ ψ＋１２ ． （７畅７畅５８）
　　引进坐标变换

r^倡 ＝r倡 ＋１
２σａｒｃｔａｎ

μr
λ， （７畅７畅５９）

（７畅７畅５９）式微分表达式为
ｄ r^倡 ＝ １ ＋Δr

珚ω２
λμ
２σ

１
λ２ ＋μ２ r２

ｄr倡． （７畅７畅６０）
　　由（７畅７畅５６）和（７畅７畅６０）式我们有

ｄ
ｄ r^倡 －ｉσψ＋１２ ＝Wψ－１２ ， （７畅７畅６１）
ｄ
ｄ r^倡 ＋ｉσψ－１２ ＝Wψ＋１２ ， （７畅７畅６２）

式中

W ＝ Δ１ ／２
r （λ２ ＋μ２ r２ ） ３ ／２

珚ω２ （λ２ ＋μ２γ２ ） ＋λμΔr
２σ

， （７畅７畅６３）

令

Z± ＝ψ＋１２ ±ψ－１２ ， （７畅７畅６４）
由（７畅７畅６１）和（７畅７畅６２）式可得

ｄ
ｄ r^倡 －W Z＋ ＝ｉσZ－， （７畅７畅６５）
ｄ
ｄ r^倡 ＋W Z－ ＝ｉσZ＋， （７畅７畅６６）

将（７．７．６５）和（７．７．６６）式化成二阶微分方程，得到
ｄ２
ｄ r^２倡 ＋σ２ Z± ＝V± Z±． （７畅７畅６７）

式中，
V± ＝W２ ± ｄWｄ d^倡

＝ Δ１ ／２
r （λ２ ＋μ２ r２） ３ ／２

珚ω２ （λ２ ＋μ２ r２ ） ＋λμΔr
２σ

２
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× Δ１ ／２
r （λ２ ＋μ２ r２ ） ３ ／２ ± １

２ （λ２ ＋μ２ r２ ） ｄΔrｄr ＋３μ２ rΔr

碢 Δ３ ／２
r （λ２ ＋μ２ r２ ） ５ ／２

［珚ω２ （λ２ ＋μ２ r２ ） ＋Δμλ
２σ］ ３

［２r（λ２ ＋μ２ r２ ） ＋２μ２珚ω２ r ＋λμｄΔr
２σｄr ］．

（７畅７畅６８）

７畅８　黑洞的表面几何效应
本节讨论黑洞表面几何效应．

1畅荷电匀加速动态黑洞的表面几何
荷电直线匀加速动态黑洞的时空线元：

ｄs２ ＝g００ ｄv２ ＋２g０１ ｄvｄr ＋２g０２ ｄvｄθ ＋g２２ｄθ２ ＋g３３ ｄφ２． （７畅８畅１）
其中度规的各分量为

g００ ＝１ －２m
r ＋Q２

r２
－２arｃｏｓθ －４a Q２

r ｃｏｓθ －a２ r２ ｓｉｎ２ θ，
g０１ ＝－１，　g０２ ＝ar２ ｓｉｎθ，
g２２ ＝－r２ ，　g３３ ＝－r２ ｓｉｎ２ θ．

（７畅８畅２）

为了方便，（７畅８畅１）式中直接采用了超前爱丁顿坐标．参量 m ＝m（ v），Q ＝Q（ v）分
别是黑洞的质量和所带电荷．a 为直线加速度的大小，它是一个常量．根据
（７畅８畅１）， （７畅８畅２）两式，我们即可讨论该黑洞时空的三种类视界超曲面．

时空（７畅８畅２）式的类时极限面满足条件：
gνν ＝gab 抄

抄υ
a 抄

抄υ
b ＝０， （７畅８畅３）

即

１ －２m
r ＋Q２

r２
－２arｃｏｓθ －４a Q２

r ｃｏｓθ －a２ r２ ｓｉｎ２θ ＝０， （７畅８畅４）

r４ ＋２aｃｏｓθ
a２ ｓｉｎ２θr

３ － １
a２ ｓｉｎ２ θr

２ ＋２m ＋４aQ２ ｃｏｓθ
a２ ｓｉｎ２ θ r － Q２

a２ ｓｉｎ２ θ ＝０． （７畅８畅５）
方程（７畅８畅４）的有物理意义的三个根为

rＴＬＳ１ ＝ １
２ （ －D ＋E ＋R） － aｃｏｓθ

２a２ ｓｉｎ２ θ， （７畅８畅６）
rＴＬＳ２ ＝ １

２ （D －E ＋R） － aｃｏｓθ
２a２ ｓｉｎ２ θ， （７畅８畅７）
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rＴＬＳ３ ＝ １
２ （D ＋E －R） － aｃｏｓθ

２a２ ｓｉｎ２ θ． （７畅８畅８）
其中，

D ＝ １
aｓｉｎθ １

３ ＋１
２ ｃｏｔ

２ θ －αｃｏｓ（ φ
３ －π

３ ）
１２ ， （７畅８畅９）

E ＝ １
aｓｉｎθ １

３ ＋１
２ ｃｏｔ

２ θ －αｃｏｓ（ φ
３ ＋π

３ ）
１２ ， （７畅８畅１０）

R ＝ １
aｓｉｎθ １

３ ＋１
２ ｃｏｔ

２ θ －αｃｏｓ（ φ
３ ）

１２ ， （７畅８畅１１）
其中，

α＝［３ｃｏｔ４ θ ＋４ｃｏｔ２ θ ＋８
９ ＋１６maｃｏｓθ ＋１６a２Q２（１ ＋ｃｏｓ２ θ）］ １２ ，

φ＝ａｒｃｃｏｓ －β
α３ ．

　　在 ０ ＜φ＜π范围内，有
β＝４a６ ｓｉｎ６ θf，
f＝ ７

２１６
（２ ＋ｃｏｓ２ θ） ３

a６ ｓｉｎ１２ θ ＋２ ＋ｃｏｓ２ θ
６a２ ｓｉｎ４ θ

３
４
aｃｏｓθ
a２ ｓｉｎ２θ

４ ＋ aｃｏｓθ
a４ ｓｉｎ４ θ

３

＋４maｃｏｓθ ＋４a２Q２ （１ ＋ｃｏｓ２ θ） － aｃｏｓθ
a２ ｓｉｎ２ θ

３ ＋ aｃｏｓθ
a４ ｓｉｎ４ θ

＋ ２m
a２ ｓｉｎ２ θ ＋４aQ２ ｃｏｓθ

a２ ｓｉｎ２ θ
２ ， （７畅８畅１２）

由 D，E，R 的大小我们可判断出：
rＴＬＳ１ ＞rＴＬＳ２ ＞rＴＬＳ３．

　　下面对 m ＝０，Q ＝０ 和 a ＝０ 两种特殊情况做一分析．
（１） m ＝０，Q ＝０ 的情况．
此时（７畅８畅４）式简化为

a２ ｓｉｎ２ θr２ ＋２aｃｏｓθr －１ ＝０， （７畅８畅１３）
解之得 Ｒｉｎｄｌｅｒ 类时极限面为

r ＝ １
a（１ ＋ｃｏｓθ）． （７畅８畅１４）

　　（２） 当 a ＝０ 即对于无加速动态惯性黑洞，有
r２ －２mr ＋Q２ ＝０， （７畅８畅１５）

解之得

r±ＴＬＳ ＝m ± m２ －Q２． （７畅８畅１６）
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此式表明，在这种特殊情况下匀加速荷电动态黑洞的外部度规退化为 Ｖａｉｄｙａ唱Ｂｏｎ唱
ｎｅｒ 度规．若

（ ｉ） 此时为蒸发黑洞，即 痹m ＝ｄmｄv ＜０（设 Q ＝ｃｏｎｓｔ．），则

痹r＋ＴＬＳ ＝ｄr＋ｄυ ＝ １ ＋ m
m２ －Q２ m

· ＜０（收缩态）， （７畅８畅１７）

痹r－ＴＬＳ ＝ｄr－ｄυ ＝ １ － m
m２ －Q２ m

· ＞０（扩张态）． （７畅８畅１８）
即在蒸发状态下，黑洞的外类时极限面处于收缩状态，内类时极限面处于扩张态．
其结果将导致内外类时极限面间的距离变小．

对于吸积黑洞 痹m ＝ｄmｄυ＞０，则有相反结论．
（ ｉｉ） 对于正在吸收电荷的黑洞，即 痹Q ＝ｄQｄυ＞０（设 m ＝ｃｏｎｓｔ．），则

痹r－ＴＬＳ ＝碢 Q痹Q
m２ －Q２ ，

即

痹r＋ＴＬＳ ＝－ Q痹Q
m２ －Q２ ＜０　（收缩态）， （７畅８畅１９）

痹r－ＴＬＳ ＝＋ Q痹Q
m２ －Q２ ＞０　（扩张态）． （７畅８畅２０）

不难看出，动态黑洞吸收物质和吸收电荷产生的结果是相反的．吸收电荷的黑洞，
其外类时极限面不断收缩，而内类时极限面不断扩大，释放电荷的情况相反．

两种吸收都存在时，我们有
痹r±ＴＬＳ ＝ｄr±ｄυ ＝m· ±m 痹m －Q痹Q

m２ －Q２ ， （７畅８畅２１）
如果

痹m
痹Q ＝ Q

m ＋ m２ －Q２ ， （７畅８畅２２）
则有

痹r＋ＴＬＳ ＝０． （７畅８畅２３）
这表明，当满足条件（７畅８畅２２）时，黑洞的外类时极限面处于动态平衡状态．

如果满足条件：
痹m
痹Q ＝ Q

m － m２ －Q２ ， （７畅８畅２４）
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则有

痹r－ＴＬＳ ＝０． （７畅８畅２５）
此时黑洞的内类时极限面处于动态平衡状态．

为了求出短程线汇的膨胀 Θ，引入零标架是方便的．由（７畅８畅２）式可得
g ＝－r４ ｓｉｎ２ θ， （７畅８畅２６）

（gμν） ＝
０ －１ ０ ０
－１ g１１ －aｓｉｎθ ０
０ －aｓｉｎθ －r２ ０
０ ０ ０ －r２ ｓｉｎ２ θ

， （７畅８畅２７）

g１１ ＝－１ ＋２m
r －Q２

r２
＋２ａｒｃｏｓθ ＋４a Q２

r ｃｏｓθ；
lμ ＝（１，０，０，０），
nμ ＝ １

２ g００ ， －１，r２ aｓｉｎθ，０ ，
mμ ＝ － r２ （０，０，１，ｉｓｉｎθ），

珚mμ ＝ － r２ （０，０，１， －ｉｓｉｎθ）．

（７畅８畅２８）

利用逆变度规升降指标得到逆变零标架为

lμ ＝（０， －１，０，０），
nμ ＝ １， １２ g００ ，０，０ ，
mμ ＝ r

２ （０，aｓｉｎθ，r－２ ，ｉr－２ ｓｉｎ－１ θ），

珚mμ ＝ r
２ （０，aｓｉｎθ，r－２ ， －ｉr－２ ｓｉｎ－１ θ）．

（７畅８畅２９）

经验证（７畅８畅２８）， （７畅８畅２９）式满足零标架条件、伪正交条件及度规条件：
lμlμ ＝nμnμ ＝mμmμ ＝珚mμ珚mμ ＝０，
nμlμ ＝－mμ珚mμ ＝１，
lμmμ ＝lμ珚mμ ＝nμmμ ＝nμ珚mu ＝０，
gμν ＝lμnν ＋nμlν －mμ珚mν －珚mμnν，

（７畅８畅３０）

而线汇的膨胀 Θ为
Θ ＝nμ

；μ －κ，　κ＝nμ；ν lμnν． （７畅８畅３１）
经计算可得
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κ＝＋m
r２

－Q２

r３
－aｃｏｓθ ＋２a Q２

r２
ｃｏｓθ －a２ rｓｉｎ２ θ， （７畅８畅３２）

Θ ＝ １
r －２m

r２ －Q
２

r３ －２aｃｏｓθ －４a Q
２

r２ ｃｏｓθ －a２ rｓｉｎ２ θ． （７畅８畅３３）
由定义 Θ＝０ 知（７畅８畅３１）式即为

g００ ＝０， （７畅８畅３４）
故此荷电加速动态黑洞的表观视界与类时极限面相重合，因而前面关于类时极限
面的讨论均适用于表观视界．

为了确定动态时空中事件视界，可采用 Ｙｏｒｋ 的定义，把 L ＝－痹m 作为小量，在
一级近似下，事件视界由条件

痹rＥＨ ≈ ０， r　·· ＥＨ ≈ ０ （７畅８畅３５）
确定．由径向类光短程线

ｄ
ｄυ＝naΔa ＝ 抄

抄υ＋１
２ g００

抄
抄r

得

痹r ＝１
２ g００ ， （７畅８畅３６）

r
　·· ＝抄

抄υ痹r ＋
１
２ g００

抄
抄r痹r

＝－ 痹m
r ＋Q痹Q

r （ １
r －２aｃｏｓθ） ＋２痹r m

r２
－Q２

r３
－aｃｏｓθ

＋２a Q２

r２
ｃｏｓθ －a２ rｓｉｎ２ θ ． （７畅８畅３７）

采用逐次逼近法求事件视界．令 r
　· · ＝０，则由（７畅８畅３５）式得

痹r ＝
痹m
r －Q痹Q

r
１
r －２aｃｏｓθ

２ m
r２ －Q

２

r３ －aｃｏｓθ ＋２a Q
２

r２ －a２ rｓｉｎ２θ
． （７畅８畅３８）

由于 rＡＨ与 rＥＨ相近，故可令在 r＝rＡＨ上有
痹m
rＡＨ

－Q痹Q
rＡＨ

１
rＡＨ

－２aｃｏｓθ
２ m
r２ＡＨ

－Q２

r３ＡＨ
－aｃｏｓθ ＋２a Q２

r２ＡＨ
－a２ rＡＨ ｓｉｎ２ θ

≡ A． （７畅８畅３９）

（７．８．３９）式即
痹r ＝A，　 当 r ＝rＡＨ． （７畅８畅４０）

由（７畅８畅４０）和（７畅８畅３６）式得到
g００ －２A ＝０． （７畅８畅４１）
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此即黑洞的视界表达式．代入 g００，得到
a２ ｓｉｎ２ θr４ ＋２aｃｏｓθr３ －（１ －２A） r２ ＋（２m ＋４aQ２ ｃｏｓθ） r －Q２ ＝０，

即

r４ ＋２aｃｏｓθ
a２ ｓｉｎ２ θr

３ －（１ －２A） r２
a２ ｓｉｎ２ θ ＋２m ＋４aQ２ ｃｏｓθ

a２ ｓｉｎ２ θ r － Q２

a２ ｓｉｎ２ θ ＝０．（７畅８畅４２）
解此代数方程，得到

rＥＨ１ ＝１
２ （ －D′＋E′＋R′） － aｃｏｓθ

２a２ ｓｉｎ２ θ， （７畅８畅４３）
rＥＨ２ ＝１

２ （D′－E′＋R′） － aｃｏｓθ
２a２ ｓｉｎ２θ， （７畅８畅４４）

rＥＨ３ ＝１
２ （D′＋E′－R′） － aｃｏｓθ

２a２ ｓｉｎ２θ， （７畅８畅４５）
式中，

D′＝ １
aｓｉｎθ

１ －２A
３ ＋１

２ ｃｏｔ
２ θ －α′ｃｏｓ φ′

３ －π
３

１２ ， （７畅８畅４６）

E′＝ １
aｓｉｎθ

１ －２A
３ ＋１

２ ｃｏｔ
２ θ －α′ｃｏｓ φ′

３ ＋π
３

１２ ， （７畅８畅４７）

R′＝ １
aｓｉｎθ １ －２A

３ ＋１
２ ｃｏｔ

２ θ －α′ｃｏｓ φ′３
１２ ， （７畅８畅４８）

其中，
α′＝［３ｃｏｔ４θ ＋４（１ －２A）ｃｏｔ２ θ ＋８

９ （１ －２A） ２

＋１６maｃｏｓθ ＋１６a２Q２ （１ ＋ｃｏｓ２ θ） １ ／２ ，
φ′＝ａｒｃｃｏｓ －β′

α′３ ，
　　在 ０ ＜φ′＜π范围内，β′＝４a６ ｓｉｎ６ θf′，

f′＝７
２７

３
２
a２ ｃｏｓ２ θ
a４ ｓｉｎ４ θ ＋１ －２A

a２ ｓｉｎ２θ
３ ＋ a２ ｃｏｓ２ θ

２a４ ｓｉｎ４ θ ＋ １ －２A
３a２ ｓｉｎ２ θ

× ３
４
aｃｏｓθ
a２ ｓｉｎ２θ

４ ＋（１ －２A）a２ ｃｏｓ２ θ
a６ ｓｉｎ６ θ ＋４maｃｏｓθ

a４ ｓｉｎ４θ ＋４a２Q２

a４ ｓｉｎ４θ
×（１ ＋ｃｏｓ２ θ） － aｃｏｓθ

a２ ｓｉｎ２ θ
３ ＋（１ －２A）aｃｏｓθ

a４ ｓｉｎ４ θ ＋ ２m
a２ ｓｉｎ２θ

＋４Q２ aｃｏｓθ
a２ ｓｉｎ２ θ

２
，

（７畅８畅４３） ～（７畅８畅４５）式即动态匀加速荷电黑洞的三个事件视界的表达式．其中
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（７畅８畅４３）式为 Ｒｉｎｄｌｅｒ 事件视界．（７畅８畅４４）和（７畅８畅４５）式分别为外、内视界．
比较 D，E，R 与 D′，E′，R′的表达式可知，在动态情况下，匀加速荷电动态黑洞

的事件视界与类时极限面及表观视界分开．
（１） 当 m ＝０，Q ＝０ 时，（７畅８畅４１）式变为

a２ ｓｉｎ２θr２ ＋２aｃｏｓθr －（１ －２A） ＝０， （７畅８畅４９）
解之得

rＨ ＝－ｃｏｓθ ±（１ －Aｓｉｎ２ θ）
aｓｉｎ２ θ ，

取“ ＋”得到
rＨ ＝ １

a（１ ＋ｃｏｓθ） －Aa ， （７畅８畅５０）
由此可知：动态情况下黑洞的 Ｒｉｎｄｌｅｒ 视界与稳态时空的 Ｒｉｎｄｌｅｒ视界相比，其位置
向黑洞的中心移动了

A
a ，但形状并未发生改变，仍然是旋转抛物面．因而对于 Ｒｉｎ唱

ｄｌｅｒ 观测者来说，它的三个视界面不再是重合的．
而当 m ＝０ 时，Q ＝０ 满足时，A＝０（因为 m ＝０），（７畅８畅５０）式就变为

rＨ ＝ １
a（１ ＋ｃｏｓθ）， （７畅８畅５１）

这是一个稳定的 Ｒｉｎｄｌｅｒ视界．
（２） 当 a ＝０ 时，（７畅８畅４１）式变为

（１ －２A） r２ －２mr ＋Q２ ＝０， （７畅８畅５２）
解之得

rＥＨ ＝m ± m２ －Q２ （１ －２A）
１ －２A ， （７畅８畅５３）

此式即为动态 Ｖａｉｄｙａ唱Ｂｏｎｎｅｒ黑洞的事件视界表达式．当 A＝０ 时，事件视界回到早
已熟悉的稳态 Ｒｅｉｓｓｎｅｒ唱Ｎｏｒｄｓｔｏｒｍ 黑洞的事件视界位置

rＥＨ ＝m ± m２ －Q２ ， （７畅８畅５４）
而当 Q ＝０ 时，（７畅８畅５４）式表示的事件视界回到史瓦希事件视界位置

rＥＨ１ ＝２m，　　rＥＨ２ ＝０． （７畅８畅５５）
　　（３） A＝０ 时，（７畅８畅４１）式就变为（７畅８畅４）式，于是得到

g００ ｜ＥＨ ＝g００ ｜ＴＬＳ ＝g００ ｜ＡＨ ＝０． （７畅８畅５６）
故在稳态情况下，荷电匀加速黑洞的三种类视界超曲面：事件视界、表观视界和类
时极限面相互重合．

总之，我们求出了匀加速荷电动态黑洞的类时极限面（ＴＬＳ）、表观视界（ＡＨ）
和事件视界（ＥＨ）的位置．在动态情况下，事件视界与类时极限面和表观视界分
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开，而类时极限面仍与表观视界重合．
2畅Kerr唱NUT 黑洞的表面几何

取 Ｗｅｙｌ坐标下的线元，其视界坐标为
ρh ＝０， ｜z ｜≤ k， （７畅８畅５７）

其中

k ＝ m２ ＋l２ －a２． （７畅８畅５８）
视界的二维线元具有形式：

ｄs２eh ＝E２ （ z）ｄz２ ＋G２ （ z）ｄφ２． （７畅８畅５９）
为了计算方便，（７畅８畅５９）式中已将原度规的号差由 －２ 改为 ＋２，且

E（ z） ＝１
k

k２ （m ＋k） ２ ＋（az ＋lk） ２

k２ －z２ ， （７畅８畅６０）

G（ z） ＝２（m２ ＋l２ ＋mk） k２ －z２
k２ （m ＋k） ２ ＋（az ＋lk） ２

＝２（m２ ＋l２ ＋mk）
kE（ z） ． （７畅８畅６１）

值得注意的是

E（ z）G（ z） ＝ ２
k （m

２ ＋l２ ＋mk） ＝ｃｏｎｓｔ．． （７畅８畅６２）
下面将用 Ｗｅｙｌ坐标进行计算．当然同样的计算也可用这一度规的 Ｂｏｙｅｒ唱Ｌｉｎｑｕｉｓｔ
形式进行，因此必要时，也将间或采用后一度规形式或将结果化为用后一坐标
表示．

线元为（７畅８畅５９）式的二维曲面的高斯曲率为
R＝－ １

２E（ z）G（ z）
ｄ
ｄz １
E（ z）G（ z）

ｄ
ｄzG

２ （ z）
＝－ １

２［E（ z）G（ z）］ ２
ｄ２
ｄz２G

２ （ z）． （７畅８畅６３）
直接计算可得

ｄ２
ｄz２G

２ （ z） ＝－１６k（m２ ＋l２ ＋mk） ２ ×｛［k（m２ ＋l２ ＋mk） ＋alz］
×［k２ （m ＋k） ２ ＋（az ＋lk） ２］ －２a（az ＋lk）［２kz（m２ ＋l２ ＋mk）
＋al（k２ ＋z２ ）］｝ ／［k２（m ＋k） ２ ＋（az ＋lk） ２］ ３ ， （７畅８畅６４）

因此高斯曲率为

R ＝２k３ · ｛［k（m２ ＋l２ ＋mk） ＋alz］［k２ （m ＋k） ２

＋（az ＋lk） ２ ］ －２a（az ＋lk）［２kz（m２ ＋l２ ＋mk）
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＋a（k２ ＋z２ ）］｝ ／［k２ · （m ＋k） ２ ＋（az ＋lk） ２］ ３． （７畅８畅６５）
此式的形式比较复杂，为了看清 R 的性质，可先讨论一些特殊情况．

（ａ） l＝a ＝０，k＝m．
R ＝ １

（２m） ２． （７畅８畅６６）
这是 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞的视界曲率．

（ｂ） l＝０，a≠０，k ＝ m２ －a２． （７．８．６７）
此时不难求得

R ＝２mk４ （m ＋k）· k２ （m ＋k） ２ －３a２ z２
k２ （m ＋k） ２ ＋a２ z２ ． （７畅８畅６８）

在 Ｂｏｙｅｒ唱Ｌｉｎｄｑｕｉｓｔ坐标系中，R 的形式为
R ＝（ rh２＋ ＋a２）（ rh２＋ －３a２ ｃｏｓ２ θ）（ rh２＋ ＋a２ ｃｏｓ２ θ） －３ ， （７．８．６９）

其中，
rh＋ ＝m ＋k．

　　（ｃ） a ＝０，l≠０，k＝ m２ ＋l２．这时 Ｋｅｒｒ唱ＮＵＴ度规成为 ＮＵＴ唱Ｔａｕｂ 度规，
R ＝ １

２k（m ＋k） ＝ １
２krh＋， （７畅８畅７０）

此式表明视界的高斯曲率与 θ无关．
（ｄ） l≠０，a≠０，k ＝ m２ ＋l２ －a２．这是一般的 Ｋｅｒｒ唱ＮＵＴ情况，此时可以求得
R（ z ＝k） ＝２（m２ ＋l２ ＋mk ＋al）［（m ＋k） ２ －４a２ ＋（ l －a） ２ ］

［（m ＋k） ２ ＋（a ＋l） ２ ］ ３ ，
（７畅８畅７１）

R（ z ＝－k） ＝２（m２ ＋l２ ＋mk －al）［（m ＋k） ２ －４a２ ＋（ l ＋a） ２ ］
［（m ＋k） ２ ＋（ l －a） ２ ］ ３ ，

（７畅８畅７２）
　　利用高斯曲率 R 还可以检查黑洞视界的拓扑．易求出欧拉示性数

χ＝１
２π∫２π０ ｄ矱∫＋k

－k R（ z）E（ z）G（ z）ｄz

＝－ １
２E（ z）G（ z）∫＋k

－k ｄ ｄｄzG
２ （ z）

＝ ２（m２ ＋l２ ＋mk） ２

（m２ ＋l２ ＋mk） ２ －a２ l２． （７畅８畅７３）
显然 a，l中至少有一个为零时 χ＝２，即 Ｓｃｈｗａｒｚｓｃｈｉｌｄ，Ｋｅｒｒ 和 ＮＵＴ唱Ｔａｕｂ 黑洞的视
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界从拓扑上看是二维球面，但当 a 和 l 均不为零时 χ＞２，即 Ｋｅｒｒ唱ＮＵＴ 黑洞的视界
不具有二维球的拓扑，而 Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞的视界却具有二维球的拓扑．

顺便给出 Ｋｅｒｒ唱ＮＵＴ黑洞视界的面积
A ＝８π（m２ ＋l２ ＋mk）． （７畅８畅７４）

显然 ＮＵＴ 参数使视界面积增加．
除了高斯曲率之外，赤道周长 C ｅ 和极向周长 Cｐ 的变化也反映视界的变形．根

据（７畅８畅５９）式可得 Ｋｅｒｒ唱ＮＵＴ黑洞视界的赤道周长：
C ｅ ＝∫２ x０ G（ z ＝０）ｄφ＝４π（m２ ＋l２ ＋mk）

（m ＋k） ２ ＋l２ ． （７畅８畅７５）
不难证明：

C ｅ ≥ ４πm ＝CＳｃｈ， （７畅８畅７６）
式中 CＳｃｈ为孤立 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞的周长．另外

C ｅ（ l ＝０，a ≠ ０） ＝４πm． （７畅８畅７７）
视界的赤道周长与 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞的周长相同，即旋转对赤道周长无影响，而
（７畅８畅７６）式说明 ＮＵＴ参数使视界的赤道周长增大．

极向周长

Cｐ ＝２∫＋k

－k E（ z）ｄz ＝ ２
k∫＋k

－k
k２ （m ＋k） ２ ＋（az ＋lk） ２

k２ －z２ ｄz

＝２∫１０ １
１ －x２ ［ （m ＋k） ２ ＋（ l ＋ax） ２ ＋

（m ＋k） ２ ＋（ l －ax） ２ ］ｄx． （７畅８畅７８）
当 a，l不同时为零时，Cｐ 没有解析表达式也不能表示成椭圆积分．当 a，l 中至少有
一个为零时，可以求得

Cｐ ＝４πm，　a ＝l ＝０， （７畅８畅７９）
Cｐ ＝４ （m ＋k） ２ ＋a２E a

（m ＋k） ２ ＋a２ ，
a ≠ ０，　l ＝０， （７畅８畅８０）

Cｐ ＝２π ２k（m ＋k），　a ＝０，　l≠ ０， （７畅８畅８１）
（７畅８畅８０）式中 E 为第二类完全椭圆积分．

对于一般情况，由（７畅８畅７５）和（７畅８畅７８）式可以看出，C ｅ 和 Cｐ 都是 l 的增函
数，虽然对于 Ｋｅｒｒ唱ＮＵＴ黑洞，C ｅ 和 Cｐ 都随 l的增大而增大，仍然可以定义参数

δ ＝C ｅ －CｐC ｅ
， （７畅８畅８２）

用以度量视界偏离球面的程度．值得注意的是 C ｅ 和 Cｐ 随 l的增大是无界的，但 C ｅ
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≥Cｐ，即 δ≥０ 却恒成立．对于有限的 a 和很大的 l，易得
Cｅ ≈ Cｐ ≈ ２ ２πl， （７畅８畅８３）

δ ≈ ０． （７畅８畅８４）
　　对于线元为

ｄs２ ＝E（b）ｄb２ ＋J（b）ｄφ２ （７畅８畅８５）
的二维曲面，可以等距嵌入平直三维欧氏空间 E３

或伪欧氏空间 PE３．满足条件
E ≥ （J′） ２

４J ，J′＝ｄJｄb （７畅８畅８６）
时可嵌入空间 ｄs２ ＝ｄX２ ＋ｄY２ ＋ｄZ２ ，不满足此条件时则只能嵌入空间 ｄs２ ＝ｄX２ ＋
ｄY２ －ｄZ２．

二维曲面（７畅８畅８５）的高斯曲率为
R ＝－（J′／H）′

２H ，　H２ ＝EJ． （７畅８畅８７）
设

X ＝F（ z）ｃｏｓ矱，　Y ＝F（ z） ｓｉｎ矱，　Z ＝Z（ z）， （７畅８畅８８）
ｄs２ｅｈ ＝E２ （ z）ｄz２ ＋G２ （ z）ｄ矱２ ＝ｄX２ ＋ｄY２ ＋ｄZ２ ， （７畅８畅８９）

则容易得到

F（ z） ＝G（ z）， （７畅８畅９０）
Z（ z） ＝∫π

０ ｛E２ （ z） －［（G２ （ z））′］ ２ ／４G２ （ z）｝ １ ／２ｄz． （７畅８畅９１）
对于这里讨论的情况，（７畅８畅８６）式为

E２ （ z） ≥ ［（G２ （ z））′］ ２

４G２ （ z） ， （７畅８畅９２）
此式不成立的区域只能嵌入 PE３．

由（７畅８畅６０）和（７畅８畅６１）式可以得到
E２ （ z） －［（G２（ z））′］ ２

４G２ （ z） ＝ １
k２ －z２

k２ （m ＋k） ２ ＋（az ＋lk） ２

k２
－

４k２（m２ ＋l２ ＋mk） ２ ［２kz（m２ ＋l２ ＋mk） ＋al（k２ ＋z２ ）］ ２

［k２ （m ＋k） ２ ＋（az ＋lk） ２ ］ ３ ． （７畅８畅９３）
　　令 a ＝０，l≠０，由（７畅８畅６１）和（７畅８畅９０）式得到

F（ z） ＝ １
k ２（m２ ＋l２ ＋mk）（ k２ －z２ ）， （７畅８畅９４）

（７畅８畅９３）和（７畅８畅９１）式变为
E２ （ z） －［（G２ （ z））′］ ２

４G２ （ z） ＝２（m２ ＋l２ ＋mk）
k２ ＞０， （７畅８畅９５）
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Z（ z） ＝ zk ２（m２ ＋l２ ＋mk）． （７畅８畅９６）
由此可见， ＮＵＴ唱Ｔａｕｂ 黑洞视界可以整体嵌入 E３．由 （７畅８畅８８）， （ ７畅８畅９４ ） 和
（７畅８畅９６）式可以得到

X２ ＋Y２ ＋Z２ ＝２krh＋， （７畅８畅９７）
这表明嵌入图是一球面，半径为 ２k（m ＋k）．

下面讨论 Ｋｅｒｒ唱ＮＵＴ时空视界整体嵌入 E３
的问题．由（７畅８畅６１）和（７畅８畅９２）式

可得

｜（G２ （ z））′｜≤ ４（m２ ＋l２ ＋mk）
k ， （７畅８畅９８）

或由（７畅８畅９３）式有
２k２ （m２ ＋l２ ＋mk）

［k２ （m ＋k） ２ ＋（az ＋lk） ２ ］ ２ · ｜２kz（m２ ＋l２ ＋mk） ＋al（k２ ＋z２ ） ｜≤ １．
（７畅８畅９９）

在两极处，可以得到
（G２（ z））′｜z ＝k ＝－ ４（m２ ＋l２ ＋mk） ２

k（m２ ＋l２ ＋mk ＋al）， （７畅８畅１００）

（G２（ z））′｜z ＝－k ＝－ ４（m２ ＋l２ ＋mk） ２

k［al －（m２ ＋l２ ＋mk）］． （７畅８畅１０１）
易证明

（m２ ＋l２ ＋mk） ±al ＞０ （７畅８畅１０２）
恒成立，且与 a，l的符号无关．利用这一结果可以得到

｜（G２ （ z））′｜z ＝k ＜４（m２ ＋l２ ＋mk）
k

｜（G２ （ z））′｜z ＝－k ＞４（m２ ＋l２ ＋mk）
k

al ＞０， （７畅８畅１０３）

｜（G２ （ z））′｜z ＝k ＞４（m２ ＋l２ ＋mk）
k

｜（G２ （ z））′｜z ＝－k ＜４（m２ ＋l２ ＋mk）
k

al ＜０． （７畅８畅１０４）

显然，若 a 和 l同号，则（７畅８畅９８）或（７畅８畅９９）式在 z ＝－k 附近不满足；若 a 和 l 异
号，则在 z ＝k 附近不满足上两式．就是说，若 a 和 l 均不为零，则 Ｋｅｒｒ唱ＮＵＴ 黑洞视
界不能整体嵌入 E３．
3畅双史瓦希黑洞的表面几何

王永成给出的度规在 Ｂｏｙｅｒ唱Ｌｉｎｄｑｕｉｓｔ坐标系中具有形式
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ｄs２ ＝－ １ －２m１
r１

１ －２m２
r２
ｄt２

＋ E（１′，２）E（１，２′）
E（１，２）E（１′，２′）

r２２
r２２ －２m２ r２ ＋m２

２ ｓｉｎ２ θ２

×
１

１ －２m１
r１

ｄr２１ ＋r２１ ｄθ２
１ ＋r

２
１ ｓｉｎ２ θ１

１ －２m２
r２

ｄ矱２， （７畅８畅１０５）

其中，
E（A，B） ＝RARB ＋（ z －mA －ZA）（ z －mB －ZB） ＋ρ２ ，
E（A′，B） ＝E（B，A′） ＝R′ARB ＋（ z ＋mA －ZA）（ z －mB －ZB） ＋ρ２ ，
E（A′，B′） ＝R′AR′B ＋（ z ＋mA －ZA）（ z ＋mB －ZB） ＋ρ２ ，

A，B ＝１，２；　Z１ ＝０，Z２ ＝Z，
R１ ＝±［ρ２ ＋（ z －m１） ２ ］ １ ／２ ，R′１ ＝±［ρ２ ＋（ z ＋m１ ） ２ ］ １ ／２ ，
R２ ＝±［ρ２ ＋（ z －m２ －Z） ２ ］ １ ／２ ，
R′２ ＝±［ρ２ ＋（ z ＋m２ －Z） ２ ］ １ ／２． （７畅８畅１０６）

由

r ＝ １
２ （R ＋R′＋２m），ｃｏｓθ ＝ １

２m（R －R′）， （７畅８畅１０７）
可将（７畅８畅１０５）式变至外尔坐标，其形式为

ｄs２ ＝－（R１ ＋R′１ －２m１ ）（R２ ＋R′２ －２m２ ）
（R１ ＋R′１ ＋２m１ ）（R２ ＋R′２ ＋２m２ ）ｄt

２

＋ E（１′，２）E（１，２′）
E（１，２）E（１′，２′）

×（R１ ＋R′１ ＋２m１ ） ２ （R２ ＋R′２ ＋２m２ ） ２

１６R１R′１R２R′２ （ｄρ２ ＋ｄz２ ）

＋（R１ ＋R′１ ＋２m１ ）（R２ ＋R′２ ＋２m２ ）
（R１ ＋R′１ －２m１ ）（R２ ＋R′２ －２m２ ）ρ

２ ｄφ２． （７畅８畅１０８）
令

E（ z） ＝ g zz ＝ ４m２
１ （Z －z －m２ ）

（m２
１ －z） ２ （Z －z ＋m２ ）·

Z ＋m１ ＋m２
Z ＋m１ －m２

２ １ ／２ ， （７畅８畅１０９）
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G（ z） ＝ gφφ ＝ ４（m２
１ －z２ ）（Z －z ＋m２ ）
Z －z －m２

１ ／２ ， （７畅８畅１１０）
则

E（ z）G（ z） ＝４m１
Z ＋m１ ＋m２
Z ＋m１ －m２

． （７畅８畅１１１）
作代换 θ→z，则可得 m１ 视界的高斯曲率

K１ ＝－ １
２（EG） ２

ｄ２
ｄz２ ［G（ z）］

２

＝ １
２m２

１
Z ＋m１ －m２
Z ＋m１ ＋m２

２

× １ ＋２m２
（Z －m２ ） ２ －m２

１
（Z －z －m２ ） ３ ＞０，　Z ＞m１ ＋m２． （７畅８畅１１２）

可以求得

ｄK１
ｄz ＝３m２

２m２
１
Z ＋m１ －m２
Z ＋m１ ＋m２

２ ［（Z －m２） ２ －m２
１ ］

（Z －z －m２ ） ４ ＞０． （７畅８畅１１３）
所以 K１ 为 z的增函数，即 m１ 从远离 m２ 的一端到靠近 m２ 的一端，高斯曲率 K１ 单

调地增大．在远离 m２ 的一端 K１ 为

K１ f ＝K１（ z ＝－m１ ） ＝ １
（２m１ ） ２

× １ －２m２
Z ＋m２ ＋３m１

（Z ＋m１ ＋m２ ） ２ ＜ １
（２m１ ） ２． （７畅８畅１１４）

显然 K１ f随 Z 的增大单调增加．在靠近 m２ 的一端 K１ 为

K１n ＝K１（ z ＝m１ ）
＝（Z ＋m１ －m２） ２ ［（Z －m１ ） ２ －m２ （m２ －４m１ ）］

（２m１ ） ２ ［Z２ －（m１ ＋m２ ） ２ ］ ２ ． （７畅８畅１１５）
与 K１ f不同，K１n不是 Z 的单调函数．

下边求出 m１ 视界的赤道周长 c１ ｅ和极向周长 c１ｐ．
c１ｅ ＝∫２π０ G（ z ＝０）ｄφ＝∫２π０

４m２
１ （Z ＋m２ ）
Z －m２

１ ／２
ｄφ

＝４πm１
Z ＋m２
Z －m２

＞４πm１ ， （７畅８畅１１６）
式中 ４πm１ 为孤立 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞的赤道周长．因

ｄc１ ｅ
ｄz ＝－ ４πm１m２

（Z －m２ ） ２
Z －m２
Z ＋m２

＜０， （７畅８畅１１７）
所以 m２ 靠近 m１ ，使 m１ 视界的赤道周长增大．
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极向周长

c１ｐ ＝２∫m１－m１E（ z）ｄz ＝４m１
Z ＋m１ ＋m２
Z ＋m１ －m２

×∫m１－m１ Z －z －m２
（Z －z ＋m２ ）（m２

１ －z２ ）ｄz

＝ ８m１ ［Z２ －（m１ ＋m２ ） ２ ］
（Z ＋m１ －m２ ） Z２ －（m２ －m１ ） ２

×Π１ ２m１
Z ＋m１ －m２

，２ m１m２
Z２ －（m２ －m１ ） ２ ，

Z ＞m１ ＋m２ ， （７畅８畅１１８）
式中 Π１ 为第三类完全椭圆积分，容易证明模数

κ＝２ m１m２
Z２ －（m２ －m１ ） ２ ＜１ （７畅８畅１１９）

满足椭圆积分的要求．另外，容易证明
c１ｐ ≤ c１ ｅ． （７畅８畅１２０）

与 c１ ｅ不同，c１ｐ不是 Z 的单调函数．m１ 的视界面积为

A１ ＝∫２π０ ｄφ∫m１－m１EGｄz ＝１６πm２
１
Z ＋m１ ＋m２
Z ＋m１ －m２

，
Z≥m１ ＋m２． （７畅８畅１２１）

显然有

A１ （Z ＝m１ ＋m２） ＝１６πm１ （m１ ＋m２ ）． （７畅８畅１２２）
还可以证明 Z 为有限值时，m１ 的视界不同胚于球面，这只要求出欧拉示性数：

χ１ ＝１
２π∫２π０ ｄφ∫m１－m１K１EGｄz

＝２ Z２ －m２
２ －m２

１
Z２ －（m１ ＋m２ ） ２ ＞２，　Z ＞m１ ＋m２． （７畅８畅１２３）

因此，根据 Ｇａｕｓｓ唱Ｂｏｎｎｅｔ定理，m１ 的视界不再同胚于球面．
黑洞 m２ 的视界的几何性质与 m１ 的视界的几何性质基本相同．将本节上边所

有公式中的 m１ 与 m２ 互换，另外将 z 换为 Z －z，就得到 m２ 视界的相应公式．
Z ＝m１ ＋m２ 时，　z ＝m１ ＝Z －m２ ，　ρ ＝０ （７畅８畅１２４）

的点不在视界上．根据（７畅８畅１１２）式并作上一节已指出的代换，可以求得
K ＝K１ （Z ＝m１ ＋m２） ＝K２（Z ＝m１ ＋m２ ）
＝ １
［２（m１ ＋m２ ）］ ２ ，z≠ m１． （７畅８畅１２５）
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根据（７．８．１２２）式得
c１ｐ ＝４（m１ ＋m２ ） π

２ －ａｒｃｓｉｎ m２ －m１
m１ ＋m２

，　Z ＝m１ ＋m２ ，（７畅８畅１２６）
将 m１ 和 m２ 互换得

c２ｐ ＝４（m１ ＋m２ ） π
２ －ａｒｃｓｉｎ m１ －m２

m１ ＋m２
，　Z ＝m１ ＋m２．（７畅８畅１２７）

下边证 c１ｐ（Z ＝m１ ＋m２ ）≥４πm１，而 c２ｐ（Z ＝m１ ＋m２ ）≤４πm２．
令

f（x） ＝ａｒｃｓｉｎx －π
２ x，　x ＝m２ －m１

m１ ＋m２
，　０ ≤ x ≤ １． （７畅８畅１２８）

对 f（ x）求导可知，其在［０，１］间有一极小值，而在端点处 f（０） ＝f（１） ＝０，所以
f（x）≤０，　ａｒｃｓｉｎ m２ －m１

m１ ＋m２
≤ π

２
m２ －m１
m１ ＋m２

， （７畅８畅１２９）

c１ｐ（Z ＝m１ ＋m２ ） ≥ ４（m１ ＋m２ ） π
２ －π

２
m２ －m１
m１ ＋m２

＝４πm１ ， （７畅８畅１３０）
c２ｐ（Z ＝m１ ＋m２ ） ＝４（m１ ＋m２ ） π

２ ＋ａｒｃｓｉｎ m２ －m１
m１ ＋m２

≤４（m１ ＋m２ ） π
２ ＋π

２
m２ －m１
m１ ＋m２

＝４πm２． （７畅８畅１３１）
值得注意的是，这种临界状态下 c１ｐ 和 c２ｐ 的不同性质，说明质量不同的两个
Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞中的一个对另一个极向周长的影响不同．

由（７畅８畅１２５）和（７畅８畅１２６）式得
c１ｐ ＋c２ｐ ＝２π［２（m１ ＋m２ ）］． （７畅８畅１３２）

视界的总面积：
A＝A１（Z ＝m１ ＋m２ ） ＋A２ （Z ＝m１ ＋m２ ）
＝４π［２（m１ ＋m２ ）］ ２． （７畅８畅１３３）

还可以求出横向周长 c ｔ，无论 －m１≤z≤m１ 或 Z －m２ ＝m１≤z≤Z ＋m２ ＝m１ ＋２m２ ，
都有

c ｔ（ z） ＝∫２π０ ［G（ z） ｜Z ＝m１＋m２］ｄφ
＝４π （ z ＋m１ ）（m１ ＋２m２ －z）． （７畅８畅１３４）

不难证明， －m１≤z≤m２ 时 c ｔ（ z）单调增加，m２≤z≤m１ ＋２m２ 时 c ｔ（ z）单调减少，其
最大值 c ｔ，ｍａｘ ＝c ｔ（ z ＝m２ ）．因此，如果把 z 的原点移到 z ＝m２ 处，即令 z′＝z－m２ ，则

c ｔ（ z′） ＝４π （m１ ＋m２） ２ －z′２． （７畅８畅１３５）

·６３３· 第 ７章　黑洞的引力效应



显然 c ｔ（ z′）关于 z′＝０，即 z ＝m２ 对称．且 z′＝０ 时
G（ z′＝０） ＝c ｔ，ｍａｘ ＝４π（m１ ＋m２）

＝２π［２（m１ ＋m２ ）］
＝cｅ． （７畅８畅１３６）

这正是质量为 m１ ＋m２ 的孤立 Ｓｃｈｗａｒｚｓｃｈｉｌｄ 黑洞的赤道周长．
4畅加速克尔黑洞的特征曲面

匀加速直线运动的克尔黑洞的外部度规时空线元为

ｄs２ ＝（１ －F）ｄv２ －２ｄvｄr －２fp２ ｄvｄθ ＋２ｓｉｎ２ θAFｄvｄφ
＋２Aｓｉｎ２ θｄrｄφ－p２ ｄ２ θ ＋２Afp２ ｓｉｎ２ θｄθｄφ
－ｓｉｎ２ θ（A２Fｓｉｎ２ θ ＋A２ ＋r２ ）ｄφ２ ， （７畅８畅１３７）

其中，
F≡｛２arｃｏｓθ ＋２mr／p２ ＋p２ f２ ，
f≡｛ －aｓｉｎθ， （７畅８畅１３８）
p２≡r２ ＋A２ ｃｏｓ２θ．

　　转动轴的北极 θ ＝０，指向加速度方向，A 为单位质量的角动量，是一个常量；a
为加速度，是一个常量；m 为源质量，是 v的函数．

类时极限面的定义为

g vv ＝gab 抄
抄v

a 抄
抄v

b ＝０． （７畅８畅１３９）
由方程（１）可知：

g vv ＝１ －F ＝０， （７畅８畅１４０）
即

－a２ ｓｉｎ２ θr４ －２aｃｏｓθr３ ＋（１ －２A２ a２ ｓｉｎ２ θｃｏｓ２ θ） r２
－（２m ＋２A２ aｃｏｓ３θ） r ＋A２ ｃｏｓ２ θ －A４ a２ ｓｉｎ２θｃｏｓ４θ ＝０． （７畅８畅１４１）

解此方程，得到
rＴＬＳ１ ＝－D ＋E ＋R －１

２
ｃｏｓθ
aｓｉｎ２ θ， （７畅８畅１４２）

rＴＬＳ２ ＝D －E ＋R －１
２
ｃｏｓθ
aｓｉｎ２ θ， （７畅８畅１４３）

rＴＬＳ３ ＝D ＋E －R －１
２
ｃｏｓθ
aｓｉｎ２ θ

其中，
D ＝ １

６aｓｉｎθ［１ －αｃｏｓ（φ／３ －π／３）］ １ ／２ ， （７畅８畅１４４）
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E ＝ １
６aｓｉｎθ［１ －αｃｏｓ（φ／３ ＋π／３）］ １ ／２ ， （７畅８畅１４５）

R ＝ １
６aｓｉｎθ［１ ＋αｃｏｓ（φ／３）］ １ ／２ ， （７畅８畅１４６）

α＝ １ －２A２ a２ ｓｉｎ２ θｃｏｓ２ θ ＋３
２ ｃｏｔ

２ θ ２

－１２ ３
１６
ｃｏｓ４ θ
a２ ｓｉｎ６ θ ＋１

４
ｃｏｓ２θ
a２ ｓｉｎ４ θ ＋mｃｏｓθ

aｓｉｎ２ θ ＋１
２
A２ ｃｏｓ４ θ
ｓｉｎ２ θ

＋　
　A

２ ｃｏｓ２ θ －A４ a２ ｓｉｎ２θｃｏｓ４θ
１ ／２ ， （７畅８畅１４７）

φ＝ａｒｃｃｏｓ（ －β／α３ ）． （７畅８畅１４８）
当 ０ ＜φ＜π时，

β＝ １ －２A２ a２ ｓｉｎ２ θｃｏｓ２ θ ＋３
２ ｃｏｔ

２ θ ３

＋３０a２ ｓｉｎ２ θ（１ －２A２ a２ ｓｉｎ２ θｃｏｓ２ θ ＋３
２ ｃｏｔ

２ θ）

× ３
１６
ｃｏｓ４θ
a２ ｓｉｎ６ θ ＋１

４
ｃｏｓ２ θ
a２ ｓｉｎ４ θ ＋mｃｏｓθ

aｓｉｎ２ θ ＋１
２
A２ ｃｏｓ４ θ
ｓｉｎ２ θ

＋A２ ｃｏｓ２ θ －A４ a２ ｓｉｎ２ θｃｏｓ４ θ －２７a２ ｓｉｎ２ θ

× ２m ＋ ｃｏｓθ
aｓｉｎ２ θ ＋３

２
ｃｏｓ３ θ
aｓｉｎ４θ

２． （７畅８畅１４９）
rＴＬＳ１为 Ｒｉｎｄｌｅｒ 的类时极限面，rＴＬＳ２和 rＴＬＳ３分别为匀加速直线运动的 Ｋｅｒｒ 黑洞的外
部和内部类时极限面．

当 A ＝０，m＝０ 时，方程（７畅８畅１４１）化为
a２ ｓｉｎ２ θr４ ＋２aｃｏｓθr３ －r２ ＝０， （７畅８畅１５０）

解之得 Ｒｉｎｄｌｅｒ 的类时极限面
r ＝［a（１ ＋ｃｏｓθ）］ －１． （７畅８畅１５１）

当 a ＝０ 时，（７畅８畅１４１）式简化为
r２ －２mr ＋A２ ｃｏｓ２ θ ＝０， （７畅８畅１５２）

解之得

r±ＴＬＳ ＝m ± m２ －A２ ｃｏｓ２ θ． （７畅８畅１５３）
此时显然与克尔黑洞的情况相符．

蒸发黑洞，m ＝ｄm／ｄv＜０，可以发现其外类时极限面收缩，内极限面膨胀．吸积
黑洞的情况相反．
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表观视界由 Θ＝０ 确定．为了得到这一方程，可先将度规（７畅８畅１３７）对称化：
ｄs２ ＝［γ（ r２ ＋A２ ）（ｄv －Aｓｉｎ２ θｄφ）］

× １
r２ ＋A２

Δ
２ ｄv －γ－１ ｄr －fγ－２ ｄθ －Δ

２ Aｓｉｎ
２ θｄφ

＋ １
r２ ＋A２

Δ
２ ｄv －γ－１ ｄr －fγ－２ ｄθ －Δ

２ Aｓｉｎ
２ θｄφ

×［γ（ r２ ＋A２ ）（ｄv －Aｓｉｎ２ θｄφ）］ － γ
２

×［ ｉAｓｉｎθｄv ＋γ－１ ｄθ －ｉ（ r２ ＋A２ ） ｓｉｎθｄφ］ γ
２

×［ －ｉAｓｉｎθｄv ＋γ－１ ｄθ ＋ｉ（ r２ ＋A２ ） ｓｉｎθｄφ］ － γ
２

×［ －ｉAｓｉｎθｄv ＋γ－１ ｄθ ＋ｉ（ r２ ＋A２ ） ｓｉｎθｄφ］ × γ
２

×［ ｉAｓｉｎθｄv ＋γ－１ ｄθ －ｉ（ r２ ＋A２ ） ｓｉｎθｄφ］， （７畅８畅１５４）
式中，

γ＝１／p２ ，　Δ＝r２ ＋A２ －γ－１F． （７畅８畅１５５）
于是得零标架的表达式：

nμ＝γ（ r２ ＋A２）（１，０，０， －Aｓｉｎ２θ），
lμ＝ １
r２ ＋A２

Δ
２ ， －γ－１ ， －fγ－２ ， －Δ

２ Aｓｉｎ
２ θ ，

mμ＝ γ
２ （ －ｉAｓｉｎθ，０，γ－１ ，ｉ（ r２ ＋A２ ） ｓｉｎθ），

珚mμ＝ γ
２ （ ｉAｓｉｎθ，０，γ－１ ， －ｉ（ r２ ＋A２ ） ｓｉｎθ）， （７畅８畅１５６）

和

nμ＝γ（ r２ ＋A２ ）（０， －１，０，０），
lμ＝ １， Δ

２（ r２ ＋A２ ），０，
A

r２ ＋A２ ，

mμ＝ γ
２ （ ｉAｓｉｎθ，０，１， ｉｓｉｎθ）， （７畅８畅１５７）

珚mμ＝ γ
２ （ －ｉAｓｉｎθ，０，１， － ｉ

ｓｉｎθ），
膨胀为

Θ＝lμ；μ －κ， （７畅８畅１５８）
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κ＝－１
２
ｄF
ｄr ＋ A２ ｓｉｎ２θ

２（ r２ ＋A２ ）
ｄF
ｄr － A２Frｓｉｎ２ θ

（ r２ ＋A２ ） ２ ， （７畅８畅１５９）
即

Θ ＝ rΔ
p２ （ r２ ＋A２ ）． （７畅８畅１６０）

Θ＝０ 即
－a２ ｓｉｎ２ θr４ －２aｃｏｓθr３ ＋（１ －２A２ a２ ｓｉｎ２ θｃｏｓ２ θ） r２
－（２m ＋２A２ aｃｏｓ３ θ） r －A４ a２ ｓｉｎ２ θｃｏｓ４ θ ＋A２ ＝０． （７畅８畅１６１）

解之得

rＡＨ１ ＝－D′＋E′＋R′－１
２
ｃｏｓθ
aｓｉｎ２ θ， （７畅８畅１６２）

rＡＨ２ ＝D′－E′＋R′－１
２
ｃｏｓθ
aｓｉｎ２θ， （７畅８畅１６３）

rＡＨ３ ＝D′＋E′－R′－１
２
ｃｏｓθ
aｓｉｎ２θ， （７畅８畅１６４）

式中，
D′＝ １

６aｓｉｎθ［１ －α′ｃｏｓ（φ′／３ －π／３）］ １ ／２ ， （７畅８畅１６５）

E′＝ １
６aｓｉｎθ［１ －α′ｃｏｓ（φ′／３ ＋π／３）］ １ ／２ ， （７畅８畅１６６）

R′＝ １
６aｓｉｎθ［１ ＋α′ｃｏｓ（φ′／３）］ １ ／２ ， （７畅８畅１６７）

α′＝ １ －２A２ a２ ｓｉｎ２ θｃｏｓ２ θ ＋３
２ ｃｏｔ

２ θ ２

－１２ ３
１６
ｃｏｓ４θ
a２ ｓｉｎ６ θ ＋１

４
ｃｏｓ２ θ
a２ ｓｉｎ４ θ ＋mｃｏｓθ

aｓｉｎ２ θ
＋１

２
A２ ｃｏｓ４ θ
ｓｉｎ２ θ ＋A２ －A４ a２ ｓｉｎ２ θｃｏｓ４ θ

１２ ． （７畅８畅１６８）
φ′＝ａｒｃｃｏｓ（ －β′／α′３ ）． （７畅８畅１６９）

当 ０ ＜φ′＜π时，
β′＝ １ －２A２ a２ ｓｉｎ２θｃｏｓ２ θ ＋３

２ ｃｏｔ
２θ ３ ＋３０a２ ｓｉｎ２ θ

× １ －２A２ a２ ｓｉｎ２ θｃｏｓ２ θ ＋３
２ ｃｏｔ

２ θ

× ３
１６
ｃｏｓ４ θ
a２ ｓｉｎ６ θ ＋１

４
ｃｏｓ２ θ
a２ ｓｉｎ４ θ ＋mｃｏｓθaｓｉｎ２θ ＋１

２
A２ ｃｏｓ４θ
ｓｉｎ２ θ
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＋A２ －A４ a２ ｓｉｎ２ θｃｏｓ４ θ
－２７ ２m ＋ ｃｏｓθ

aｓｉｎ２ θ ＋３
２
ｃｏｓ３θ
aｓｉｎ４ θ

２
a２ ｓｉｎ２ θ． （７畅８畅１７０）

rＡＨ１为 Ｒｉｎｄｌｅｒ 的表观视界，rＡＨ２和 rＡＨ３分别为匀加速直线运动的 Ｋｅｒｒ黑洞的外部和
内部的表观视界．

下面讨论事件视界．由
ｄ
ｄv ＝laΔa ＝ 抄

抄v ＋ Δ
２（ r２ ＋A２ ）

抄
抄r ＋

A
r２ ＋A２

抄
抄φ （７畅８畅１７１）

得到

痹r ＝ｄrｄv ＝ Δ
２（ r２ ＋A２ ）， （７畅８畅１７２）

r
　·· ＝－ p２

２（ r２ ＋A２ ）
ｄF
ｄv

＋痹r r（１ －F）
r２ ＋A２ － p２

２（ r２ ＋A２ ）
ｄF
ｄr － ２r痹r

r２ ＋A２ ． （７畅８畅１７３）
事件视界由（７畅８畅３５）式确定．采用逐次逼近法，先令（７畅８畅１７３）式中 r

　· · ＝０，得到
－ p２

２（ r２ ＋A２ ）
ｄF
ｄv ＋痹r r（１ －F）

r２ ＋A２ － p２

２（ r２ ＋A２ ）
ｄF
ｄr － ２r痹r

r２ ＋A２ ＝０．

当
ｄF
ｄv ＝０ 时，即稳态情况下，

痹r r（１ －F）
r２ ＋A２ － p２

２（ r２ ＋A２ ）
ｄF
ｄr － ２r痹r

r２ ＋A２ ＝０． （７畅８畅１７４）
解之得

痹r＝１
２ １ －２arｃｏｓθ －２mr

p２
－p２ f２

－p２４ ２aｃｏｓθ ＋２rf２ ＋２mp２ －４mr
p４

． （７畅８畅１７５）
令 r＝r ＋ＡＨ，我们有

痹r ＝１
２ １ －２ar＋ＡＨ ｃｏｓθ － ２mr＋ＡＨ

r＋２ＡＨ ＋A２ ｃｏｓ２θ －A２ ｓｉｎ２ θ（ r＋２ＡＨ

＋　
　A

２ ｃｏｓ２ θ） －１
４ （ r＋２ＡＨ ＋A２ ｃｏｓ２ θ） ２aｃｏｓθ 　

　
＋２m（ r＋２ＡＨ ＋A２ ｃｏｓ２θ） －４mr＋ＡＨ

（ r＋２ＡＨ ＋A２ ｃｏｓ２ θ） ２ ＋２a２ ｓｉｎ２ θr＋ＡＨ ． （７畅８畅１７６）
将（７．８．１７６）式代入（７畅８畅１７２）式，得到
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－a２ ｓｉｎ２ θr４ －２aｃｏｓθr３ －（２A２ a２ ｓｉｎ２ θｃｏｓ２ θ ＋２痹r －１） r２
－（２m ＋２A２ ｃｏｓ３ θa） r －２痹rA２ ＋A２ －a２ ｓｉｎ２ θA４ ｃｏｓ４ θ ＝０， （７畅８畅１７７）

解之得

rＥＨ１ ＝－D″＋E″＋R″－１
２
ｃｏｓθ
aｓｉｎ２θ， （７畅８畅１７８）

rＥＨ２ ＝D″－E″＋R″－１
２
ｃｏｓθ
aｓｉｎ２ θ， （７畅８畅１７９）

rＥＨ３ ＝D″＋E″－R″－１
２
ｃｏｓθ
aｓｉｎ２ θ， （７畅８畅１８０）

式中，
D″＝ １

６aｓｉｎθ［１ －α″ｃｏｓ（φ″／３ －π／３）］ １ ／２ ，

E″＝ １
６aｓｉｎθ［１ －α″ｃｏｓ（φ″／３ ＋π／３）］ １ ／２ ，

R″＝ １
６aｓｉｎθ［１ ＋α″ｃｏｓ（φ″／３）］ １ ／２ ，

α″＝ １ －r痹r －２A２ a２ ｓｉｎ２θｃｏｓ２ θ ＋３
２ ｃｏｔ

２θ ２

－１２ ３
１６
ｃｏｓ４ θ
a２ ｓｉｎ６ θ ＋mｃｏｓθ

aｓｉｎ２ θ ＋１
４
ｃｏｓ２ θ
a２ ｓｉｎ４ θ ＋１

２
A２ ｃｏｓ４ θ
ｓｉｎ２ θ

× 　
　－２痹rA２ ＋A２ －a２ ｓｉｎ２ θA４ ｃｏｓ４ θ

１ ／２ ，
φ″＝ａｒｃｃｏｓ（ －β″／α″３ ）． （７畅８畅１８１）

当 ０ ＜φ″＜π时，
β″＝ １ －２痹r －２A２ a２ ｓｉｎ２ θｃｏｓ２ θ ＋３

２ ｃｏｔ
２ θ ３

＋３０a２ ｓｉｎ２ θ １ －２痹r －２A２ a２ ｓｉｎ２ θｃｏｓ２ θ ＋３
２ ｃｏｔ

２ θ

× ３
１６
ｃｏｓ４ θ
a２ ｓｉｎ４ θ ＋mｃｏｓθ

aｓｉｎ２ θ ＋１
２
A２ ｃｏｓ４ θ
ｓｉｎ２θ －２痹rA２ ＋A２ －A４a２ ｓｉｎ２ θｃｏｓ４ θ

－２７ ２m ＋ ｃｏｓθ
aｓｉｎ２ θ ＋３

２
ｃｏｓ３ θ
aｓｉｎ４ θ

２
a２ ｓｉｎ２ θ． （７畅８畅１８２）

rＥＨ１为 Ｒｉｎｄｌｅｒ视界，rＥＨ２和 rＥＨ３分别为匀加速直线运动的 Ｋｅｒｒ黑洞的外部和内部事
件视界．

附录：不为零的联络分量为
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Γ０
００ ＝－A２ ｓｉｎ２ θ

２p２
ｄF
ｄv －１

２ １ ＋A
２

p２
ｓｉｎ２ θ ｄFｄr ，

Γ０
０２ ＝Γ０

２０ ＝－ １ ＋A
２

p２ ｓｉｎ
２ θ rf －A

２F
２p２ ｓｉｎ２θ，

Γ０
０３ ＝Γ０

３０ ＝ １
２ １ ＋A２

p２
ｓｉｎ２ θ Aｓｉｎ２ θ ｄFｄr ＋A３ ｓｉｎ４ θ

２p２
ｄF
ｄv ，

Γ０
１２ ＝Γ０

２１ ＝－A２ ｓｉｎ２θ
２p２ ，Γ０

１３ ＝Γ０
３１ ＝Arｓｉｎ２ θ

p２
，

Γ０
２２ ＝－（A２ ＋r２ ） r

p２
－A２ fｓｉｎ２θ，

Γ０
２３ ＝Γ０

３２ ＝A３ ｓｉｎ２ θ
２p２ Fｓｉｎ２θ ＋（A２ ＋r２ ）

p２
Afrｓｉｎ２ θ，

Γ０
３３ ＝－A

４ ｓｉｎ６ θ
２p２

ｄF
ｄv ＋ｄFｄr －１

２ A
２ ｓｉｎ４ θ ｄFｄr －（A２ ＋r２ ） rｓｉｎ２ θ

p２ ，
Γ１

００ ＝１
２ １ －A２

p２
ｓｉｎ２ θ ＋ｄFｄv ＋１

２ g
１１ ｄF
ｄr ＋１

２ f
ｄF
ｄθ，

Γ１
０１ ＝Γ１

１０ ＝ １
２
ｄF
ｄr －rf２ ，

Γ１
０２ ＝Γ１

２０ ＝ １
２
ｄF
ｄθ ＋g１１ （ rf） －A２

２p２Fｓｉｎ２θ，
Γ１

０３ ＝Γ１
３０ ＝－１

２ g
１１ Aｓｉｎ２ θ ｄFｄr －１

２ Afｓｉｎ
２ θ ｄFｄθ

－１
２ AfFｓｉｎ２θ ＋A３ ｓｉｎ４ θ

２p２
ｄF
ｄv ，

Γ１
１２ ＝Γ１

２１ ＝－A２ ｓｉｎ２θ
２p２ ，

Γ１
１３ ＝Γ１

３１ ＝－１
２ Aｓｉｎ

２ θ ｄFｄr ＋Arf２ ｓｉｎ２ θ －Afｓｉｎθｃｏｓθ ＋Arｓｉｎ２θ
p２

，
Γ１

２２ ＝fp２ ｃｏｔθ －３
２ A

２ fｓｉｎ２θ ＋rg１１ ，
Γ１

２３ ＝Γ１
３２ ＝－１

２ Aｓｉｎ
２ θ ｄFｄθ －１

２ f
２ p２Aｓｉｎ２θ －g１１ Afrｓｉｎ２θ，

Γ１
３３ ＝－１

２ A
２ ｓｉｎ４ θ １ ＋A

２

p２ ｓｉｎ
２ θ ｄFｄv

＋１
２ g

１１ A２ ｓｉｎ４ θ ｄFｄr ＋２rｓｉｎ２ θ
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＋１
２ f A２ ｓｉｎ４ θ ｄFｄθ ＋２A２Fｓｉｎ２ θｓｉｎ２θ ＋（A２ ＋r２ ） ｓｉｎ２θ ，

Γ２
００ ＝１

２ f
ｄF
ｄr － １

２p２
ｄF
ｄθ，

Γ２
０１ ＝Γ２

１０ ＝ rfp２ ，Γ
２
０２ ＝Γ２

２０ ＝rf２ ，

Γ２
０３ ＝Γ２

３０ ＝－１
２ fAｓｉｎ

２θ ｄFｄr ＋Aｓｉｎ２ θ２p２
ｄF
ｄθ ＋AF２p２ ｓｉｎ２θ，

Γ２
１２ ＝Γ２

２１ ＝ r
p２
，Γ２

１３ ＝Γ２
３１ ＝Aｓｉｎ２θ －２Arfｓｉｎ２ θ

２p２ ，

Γ２
２２ ＝rf －A

２ ｓｉｎ２θ
２p２ ，Γ２

２３ ＝Γ２
３２ ＝ １

２ Afｓｉｎ２θ －Af２ rｓｉｎ２ θ，
Γ２

３３ ＝１
２ f A２ ｓｉｎ４ θ ｄFｄr ＋２rｓｉｎ２ θ
－ １
２p２ A

２ ｓｉｎ４ θ ｄFｄθ ＋２A２Fｓｉｎ２ θｓｉｎ２θ ＋（A２ ＋r２ ） ｓｉｎ２θ ，
Γ３

００ ＝－ A２p２
ｄF
ｄr ＋ｄFｄv ，Γ３

０２ ＝Γ３
２０ ＝－A

p２
（ rf ＋Fｃｏｔθ），

Γ３
０３ ＝Γ３

３０ ＝A２ ｓｉｎ２ θ
２p２

ｄF
ｄr ＋ｄFｄv ，Γ３

１２ ＝Γ３
２１ ＝－A

p２
ｃｏｔθ，

Γ３
１３ ＝Γ３

３１ ＝ r
p２
，Γ３

２２ ＝－２Afｃｏｔθ －Ar
p２
，

Γ３
２３ ＝Γ３

３２ ＝（A２ ＋r２ ）
p２

ｃｏｔθ ＋A２ frｓｉｎ２θ
p２

＋A２Fｓｉｎ２θ
２p２ ，

Γ３
３３ ＝－A３ ｓｉｎ４ θ

２p２
ｄF
ｄv ＋ｄFｄr －Ar

p２
ｓｉｎ２ θ．

5畅荷电动态黑洞的特征曲面
轴对称荷电动态黑洞的外部度规：

ｄs２ ＝［１ －（２mr －Q２ ）ρ珋ρｄu２ ＋２ｄuｄr ＋２a（２mr
－Q２ ）ρ珋ρｓｉｎ２ θｄuｄφ－２aｓｉｎ２ θｄrｄφ－１

ρ珋ρｄθ
２

＋ （Q２ －２mr）a２ ρ珋ρ －a２ ＋r２
ｓｉｎ２ θ ｓｉｎ４ θｄφ２ ， （７畅８畅１８３）

其中 u 为超前爱丁顿坐标，质量 m＝m（u），电荷 Q ＝Q（u），ρ ＝－（ r－ｉaｃｏｓθ） －１ ，a
为比角动量．
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由类时极限面的定义

guu ＝gab 抄
抄u

a 抄
抄u

b ＝０， （７畅８畅１８４）
可得

r２ －２mr ＋（Q２ ＋a２ ｃｏｓ２ θ） ＝０． （７畅８畅１８５）
解方程求出黑洞的类时极限面为

r±ＴＬＳ ＝m ± m２ －（Q２ ＋a２ ｃｏｓ２ θ）， （７畅８畅１８６）
r ＋ＴＬＳ和 r －ＴＬＳ分别为黑洞的外类时极限面和内类时极限面．在稳态情况下，它们即为
Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞的类时极限面．下面对其动态过程进行讨论．

（１） 当 m ＝m（u），Q ＝ｃｏｎｓｔ．
ｄr±ＴＬＳ
ｄu ＝ｄmｄu １ ± m

m２ －（Q２ ＋a２ ｃｏｓ２θ） ． （７畅８畅１８７）
可见，黑洞蒸发质量时（ｄm／ｄu ＜０），黑洞的外类时极限面收缩，内类时极限面膨
胀；黑洞吸收质量时（ｄm／ｄu ＞０），黑洞的外类时极限面膨胀，内类时极限面收缩．

（２） 当 Q ＝Q（u），m ＝ｃｏｎｓｔ．，
ｄr±ＴＬＳ
ｄu ＝碢 Q

m２ －（Q２ ＋a２ ｃｏｓ２ θ）
ｄQ
ｄu． （７畅８畅１８８）

不难看出，黑洞电荷的减少，将使外类时极限面膨胀，内类时极限面收缩；黑洞电荷
的增加，将使外类时极限面收缩，内类时极限面膨胀．

（３） 当 m ＝m（u），Q ＝Q（u），
ｄr±ＴＬＳ
ｄu ＝ｄmｄu ±

m ｄmｄu －Q ｄQｄu
m２ －（Q２ ＋a２ ｃｏｓ２ θ）． （７畅８畅１８９）

此时黑洞类时极限面位置的变化与质量 m和电荷 Q 变化速率的比值ｄQｄu／
ｄm
ｄu有关．

但是只要它们的比值满足

ｄQ
ｄu／
ｄm
ｄu ＜m － m２ －（Q２ ＋a２ ｃｏｓ２ θ）

Q ， （７畅８畅１９０）
则黑洞类时极限面位置变化与仅仅只有质量变化时的情形类似，即黑洞处于吸收
状态时，其外类时极限面膨胀，内类时极限面收缩．黑洞处于蒸发状态时，其外类时
极限面收缩，内类时极限面膨胀．

一般情况下，［m － m２ －（Q２ ＋a２ ｃｏｓ２ θ）］ ／Q 小于 １，故（７畅８畅１９０）式可写为
ｄQ
ｄu ＜ｄmｄu． （７畅８畅１９１）

　　表观视界被定义为出射光子陷获面的外边界，从它出发的两簇类光测地线汇
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的膨胀 Θ为零，即
Θ ＝nμ

；μ －k ＝０， （７畅８畅１９２）
其中

k ＝nμ；ν lμnν．
引入零标架：

lμ＝δ０
μ －aｓｉｎ２ θδ３

μ，
nμ＝ρ珋ρ r２ ＋a２ ＋Q２ －２mr

２ δ０
μ ＋１

ρ珋ρδ
１
μ ＋

２mr －Q２ －r２ －a２
２ aｓｉｎ２ θδ３

μ ，
mμ＝－ 珋ρ

２ ｉaｓｉｎθδ
０
μ －１

ρ珋ρδ
２
μ －ｉ（ r２ ＋a２） ｓｉｎθδ３

μ ，

珚mμ＝－ρ
２ －ｉaｓｉｎθδ０

μ －１
ρ珋ρδ

２
μ ＋ｉ（ r２ ＋a２ ） ｓｉｎθδ３

μ ， （７畅８畅１９３）
其逆变分量为

lμ＝δμ
１ ，

nμ＝ρ珋ρ （ r２ ＋a２ ）δμ
０ ＋２mr －Q２ －r２ －a２

２ δμ
１ ＋aδμ

３ ，
mμ＝－ 珋ρ

２ ｉaｓｉｎθδ
μ
０ －δμ

２
ｉ
ｓｉｎθδ

μ
３ ，

珚mμ＝－ρ
２ －ｉaｓｉｎθδμ

０ ＋δμ
２ ＋ ｉ
ｓｉｎθδ

μ
３ ． （７畅８畅１９４）

它们显然满足正交关系：
lμnμ ＝－mμmμ ＝１，
lμmμ ＝lμmμ ＝nμmμ ＝nμmμ ＝０，
lμlμ ＝nμnμ ＝mμmμ ＝珚mμmμ ＝０．

　　利用（７畅８畅１９３） ～（７畅８畅１９４）式及联络（见附录），经计算得膨胀 Θ为
Θ ＝（２mr －Q２ －r２ －a２ ） rρ２ 珋ρ２． （７畅８畅１９５）

由表观视界的定义 Θ＝０，有
２mr －Q２ －r２ －a２ ＝０． （７畅８畅１９６）

由此得到表观视界

r±ＡＨ ＝m ± m２ －（a２ ＋Q２ ）． （７畅８畅１９７）
在稳态情况下，它就是 Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞的视界位置，其表观视界与事件视界重
合，显然它是一个球面．在动态情况下，该黑洞表观视界的位置随黑洞的吸收和蒸
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发发生变化，其讨论与类时极限面相似．下面还将看到，动态情况下表观视界与事
件视界不再重合，事件视界也不再是一个球面．
事件视界由

痹rＥＨ ≈ ０， r　·· ＥＨ ≈ ０
决定，现在考察径向出射类光测地线：

ｄ
ｄu ＝n

a楚a ＝ρ珋ρ（ r２ ＋a２） 抄
抄u

＋１
２ （２mr －Q２ －r２ －a２ ）ρ珋ρ 抄

抄r ＋aρ珋ρ
抄
抄φ．

由上式得

痹r＝ｄrｄu ＝ １
２ （２mr －Q２ －r２ －a２ ）ρ珋ρ． （７畅８畅１９８）

r
　·· ＝ｄ２ rｄu２ ＝ρ珋ρ（ r２ ＋a２ ） 抄r·

抄u ＋１
２ （２mr －Q２ －r２ －a２ ）ρ珋ρ 抄r·

抄u
＝（ r２ ＋a２ ）（ 痹mr －Q痹Q）ρ２ 珋ρ２ ＋痹r［（m －r）
－（２mr －Q２ －r２ －a２ ） rρ珋ρ］ρ珋ρ． （７畅８畅１９９）

　　由（７．８．１９８）和（７．８．１９９）式可知，当（ 痹mr －Q痹Q） ＞０ 时，在外表观视界处
痹rＡＨ ＝０， r　·· ＡＨ ＞０，

因此，光子可以从表观视界处逃逸到远方，这与事件视界的定义不符，所以对于轴
对称荷电动态黑洞，其表观视界不再与事件视界重合．

为了求出事件视界的位置，令（７畅８畅１９９）式为零，得
痹r ＝ （ r２ ＋a２ ）（ 痹mr －Q痹Q）ρ珋ρ

（２mr －Q２ －r２ －a２） rρ珋ρ ＋（ r －m）． （７畅８畅２００）
由于 rＡＨ与 rＥＨ接近，故

痹r≈痹r｜r ＝r＋ＡＨ
＝［２m（m ＋ m２ －a２ －Q２ ） －Q２ ］［ 痹m（m ＋ m２ －a２ －Q２ ） －Q痹Q］

m２ －a２ －Q２ ［２m（m ＋ m２ －Q２ －a２ ） －Q２ －a２ ｓｉｎ２ θ］
≡D． （７畅８畅２０１）

将（７畅８畅２０１）式代入（７畅８畅１９８）式，得到
（１ ＋２D） r２ －２mr ＋Q２ ＋a２ （１ ＋２Dｃｏｓ２ θ） ＝０． （７畅８畅２０２）

此式即为在动态情况下，轴对称荷电黑洞的事件视界表达式．解（７畅８畅２０２）式，
可得

r±ＥＨ ＝m ±［m２ －（１ ＋２D）（Q２ ＋a２ ＋２Da２ ｃｏｓ２ θ）］ １ ／２

１ ＋２D ． （７畅８畅２０３）
r ＋ＥＨ和 r －ＥＨ分别为该黑洞的外事件视界和内事件视界．它们与 θ有关，因此黑洞事件
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视界不是一个球面．
（１） 当 痹m ＝０，痹Q ＝０ 时，由（７畅８畅２０１）式得 D ＝０．

r±ＥＨ ＝m ± m２ －Q２ －a２． （７畅８畅２０４）
事件视界回到我们熟悉的稳态 Ｋｅｒｒ唱Ｎｅｗｍａｎ 黑洞视界的位置，这时表观视界和事
件视界重合．

（２） 当 a ＝０ 时，由（７畅８畅２０１）式得
D ＝ 痹m（m ＋ m２ －Q２ ） －Q痹Q

m２ －Q２ ． （７畅８畅２０５）
此时的事件视界位置为

r±ＥＨ ＝m ±［m２ －（１ ＋２D）Q２ ］ １ ／２

１ ＋２D ， （７畅８畅２０６）
这就是球对称荷电动态黑洞的事件视界．显然，在静态情况下（D ＝０），它回到 Ｒｅ唱
ｉｓｓｎｅｒ唱Ｎｏｒｄｓｔｏｒｍ 黑洞的事件视界位置

r±ＥＨ ＝m ± m２ －Q２．
　　（３） 当 痹m ＜０，痹Q ＝０ 时，由（７畅８畅２０１）式得

D ＝ ［２m（m ＋ m２ －a２ －Q２ ） －Q２ ］（m ＋ m２ －a２ －Q２ ）
m２ －a２ －Q２ ［２m（m ＋ m２ －Q２ －a２ ） －Q２ －a２ ｓｉｎ２ θ］m

· ＜０．
（７畅８畅２０７）

在 o（L）量级，可将（７畅８畅２０３）式表示为
r±ＥＨ ≈ （１ －２D） r±ＡＨ 碢 Q２ ＋a２ （１ ＋ｃｏｓ２ θ）

m２ －Q２ －a２ D，

其中， r ±ＡＨ ＝m ± m２ －a２ －Q２
为事件的表观视界，由上式可知，r ＋ＥＨ ＞（１ －２D） r ＋ＡＨ

≈r ＋ＡＨ ，r －ＥＨ ＜（１ －２D） r －ＡＨ≈r －ＡＨ ，即内事件视界收缩，外事件视界膨胀．因此，黑洞的
内外能层都变薄．

（４） 当 痹m ＞０，痹Q ＝０ 时，由（７畅８畅２０７）式得 D ＞０．
同上讨论，由上式可知 r ＋ＥＨ ＜r ＋ＡＨ ，r －ＥＨ ＞r －ＡＨ ， 即内事件视界膨胀，外事件视界收

缩．因此，黑洞的内外能层都变厚．
（５） 若 痹Q≠０， 痹m ＝０，则事件视界的变化正好与（３），（４）的结论相反．

附录：不为零的联络分量为
Γ０

００ ＝－（ 痹mr －Q痹Q）a２ ｓｉｎ２ θρ２ 珋ρ２ －（mr２ －Q２ r）ρ２ 珋ρ２ ＋ma２ ρ２ 珋ρ２

－（２mr －Q２） ra２ ｓｉｎ２ θρ３ 珋ρ３ ，
Γ０

０２ ＝－（２mr －Q２）a２ ｓｉｎθｃｏｓθρ２ 珋ρ２ ，
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Γ０
０３ ＝（２mr －Q２ r）a３ ｓｉｎ４ θρ３ 珋ρ３ ＋（２mr －Q２ ）arｓｉｎ２ θρ２ 珋ρ２

－ma３ ｓｉｎ４θρ２ 珋ρ２ ＋（ 痹mr －Q痹Q）a３ ｓｉｎ４ θρ２ 珋ρ２ －maｓｉｎ２ θρ珋ρ，
Γ０

１２ ＝a２ ｓｉｎθｃｏｓθρ珋ρ，
Γ０

１３ ＝raｓｉｎ２ θρ珋ρ，
Γ０

２２ ＝r（ r２ ＋a２ ）ρ珋ρ，
Γ０

２３ ＝（２mr －Q２ ）a３ ｓｉｎ３ θｃｏｓθρ２ 珋ρ２ ，
Γ０

３３ ＝－（mr４ －Q２ r３ －Q２ ra２ ）a２ ｓｉｎ４ θρ３ 珋ρ３ －mr２ a４ ｓｉｎ６ θρ３ 珋ρ３

＋ma６ ｓｉｎ４θｃｏｓ２ θρ３ 珋ρ３ －（ 痹mr －Q痹Q）a４ ｓｉｎ６ θρ２ 珋ρ２

＋ra２ ｓｉｎ４ θρ珋ρ ＋rｓｉｎ２ θ，
Γ１

００ ＝（２mr２ －Q２ r）a２ ｓｉｎ２ θρ３ 珋ρ３ －（２mr －Q２ ） ２ rρ３ 珋ρ３ ＋（ 痹mr
－Q痹Q）· a２ ｓｉｎ２ θρ２ 珋ρ２ ＋（２mr －Q２）mρ２ 珋ρ２ ＋（２mr２
－Q２ r）ρ２ 珋ρ２ －ma２ ｓｉｎ２ θρ２ 珋ρ２ －（ 痹mr －Q痹Q）ρ珋ρ －mρ珋ρ，

Γ１
０１ ＝（２mr －Q２ ） rρ２ 珋ρ２ －mρ珋ρ，

Γ１
０３ ＝（２mr －Q２ ） ２ raｓｉｎ２ θρ３ 珋ρ３ －（２mr －Q２ ） ２ ra３ ｓｉｎ４ θρ３ 珋ρ３

－（２mr －Q２ ）maｓｉｎ２ θρ２ 珋ρ２ －（２mr －Q２ ） raｓｉｎ２θρ２ 珋ρ２

＋ma３ ｓｉｎ４θρ２ 珋ρ２ －（ 痹mr －Q痹Q）a３ ｓｉｎ４ θρ２ 珋ρ２ ＋maｓｉｎ２ θρ珋ρ，
Γ１

１２ ＝－a２ ｓｉｎθｃｏｓθρ珋ρ，
Γ１

１３ ＝－（２mr －Q２ ） raｓｉｎ２ θρ２ 珋ρ２ ＋maｓｉｎ２ θρ珋ρ －raｓｉｎ２ θρ珋ρ，
Γ１

２２ ＝（２mr －Q２ ） rρ珋ρ －raｓｉｎ２ θρ珋ρ －r，
Γ１

３３ ＝－（２mr －Q２ ） ２ ra２ ｓｉｎ４ θρ３ 珋ρ３ ＋（２mr －Q２ ） ２ ra４ ｓｉｎ２ θρ３ 珋ρ３

＋（ 痹mr －Q痹Q）a４ ｓｉｎ６ θρ２ 珋ρ２ ＋（２mr －Q２ ） ra２ ｓｉｎ４ θρ２ 珋ρ２

＋（２mr －Q２ ）ma２ ｓｉｎ４ θρ２ 珋ρ２ －ma４ ｓｉｎ６ θρ２ 珋ρ２ ＋（ 痹mr
－Q痹Q）a２ ｓｉｎ４ θρ珋ρ －ma２ ｓｉｎ４θρ珋ρ ＋（２mr －Q２ ） rｓｉｎ２ θρ珋ρ
－ra２ ｓｉｎ４ θρ珋ρ －rｓｉｎ２ θ，

Γ２
００ ＝－（２mr －Q２ ）a２ ｓｉｎθｃｏｓθρ３ 珋ρ３，

Γ２
０３ ＝（２mr －Q２ ） r２ aｓｉｎθｃｏｓθρ３ 珋ρ３ ＋（２mr －Q２ ）a３ ｓｉｎθｃｏｓθρ３ 珋ρ３ ，

Γ２
１２ ＝rρ珋ρ，

Γ２
１３ ＝－aｓｉｎθｃｏｓθρ珋ρ，

Γ２
２２ ＝－a２ ｓｉｎθｃｏｓθρ珋ρ，

Γ２
３３ ＝－（２mr －Q２ ）a４ ｓｉｎ５ θｃｏｓθρ３ 珋ρ３ －２（２mr －Q２）a２ ｓｉｎ３ θｃｏｓθρ２ 珋ρ２
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－（ r２ ＋a２ ） ｓｉｎθｃｏｓθρ珋ρ，
Γ３

００ ＝－（ 痹mr －Q痹Q）aρ２ 珋ρ２

＋maρ２ 珋ρ２ －（２mr －Q２ ） raρ３ 珋ρ３ ，
Γ３

０２ ＝－（２mr －Q２ ）aｃｏｓθｃｏｓｅｃθρ２ 珋ρ２，
Γ３

０３ ＝（２mr －Q２ ） ra２ ｓｉｎ２ θρ３ 珋ρ３ －ma２ ｓｉｎ２ θρ２ 珋ρ２ ＋（ 痹mr
－Q痹Q）a２ ｓｉｎ２ θρ２ 珋ρ２ ，

Γ３
１２ ＝aｃｏｓθｃｏｓｅｃθρ珋ρ，

Γ３
１３ ＝rρ珋ρ，

Γ３
２２ ＝raρ珋ρ，

Γ３
２３ ＝（２mr －Q２ ）a２ ｓｉｎθｃｏｓθρ２ 珋ρ２ ＋ｃｏｓθｃｏｓｅｃθ，

Γ３
３３ ＝－（２mr －Q２ ） ra３ ｓｉｎ４θρ３ 珋ρ３ －（ 痹mr －Q痹Q）a３ ｓｉｎ４ θρ２ 珋ρ２

＋ma３ ｓｉｎ４ θρ２ 珋ρ２ ＋raｓｉｎ２ θρ珋ρ．
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