

目 录

版权信息

版 权

版权声明

内容提要

引言 / INTRODUCTION

资源与支持

第1章 神经网络基础

1.1 神经元和层

1.2 神经元的类型

1.2.1 输入和输出神经元

1.2.2 隐藏神经元

1.2.3 偏置神经元

1.2.4 上下文神经元

1.2.5 其他神经元名称

1.3 激活函数

1.3.1 线性激活函数

1.3.2 阶跃激活函数

1.3.3 S型激活函数

1.3.4 双曲正切激活函数

1.4 修正线性单元

1.4.1 Softmax激活函数

1.4.2 偏置扮演什么角色？

1.5 神经网络逻辑

1.6 本章小结

第2章 自组织映射

2.1 自组织映射和邻域函数

2.1.1 理解邻域函数

2.1.2 墨西哥帽邻域函数

2.1.3 计算SOM误差

2.2 本章小结

第3章 霍普菲尔德神经网络和玻尔兹曼机

3.1 霍普菲尔德神经网络

训练霍普菲尔德神经网络

3.2 Hopfield-Tank神经网络

3.3 玻尔兹曼机

玻尔兹曼机概率

3.4 应用玻尔兹曼机

3.4.1 旅行商问题

3.4.2 优化问题

3.4.3 玻尔兹曼机训练

3.5 本章小结

第4章 前馈神经网络

4.1 前馈神经网络结构

用于回归的单输出神经网络

4.2 计算输出

4.3 初始化权重

4.4 径向基函数神经网络

4.4.1 径向基函数

4.4.2 径向基函数神经网络示例

4.5 规范化数据

4.5.1 1-of-n编码

4.5.2 范围规范化

4.5.3 分数规范化

4.5.4 复杂规范化

4.6 本章小结

第5章 训练与评估

5.1 评估分类

5.1.1 二值分类

5.1.2 多类分类

5.1.3 对数损失

5.1.4 多类对数损失

5.2 评估回归

5.3 模拟退火训练

5.4 本章小结

第6章 反向传播训练

6.1 理解梯度

6.1.1 什么是梯度

6.1.2 计算梯度

6.2 计算输出节点增量

6.2.1 二次误差函数

6.2.2 交叉熵误差函数

6.3 计算剩余节点增量

6.4 激活函数的导数

6.4.1 线性激活函数的导数

6.4.2 Softmax激活函数的导数

6.4.3 S型激活函数的导数

6.4.4 双曲正切激活函数的导数

6.4.5 ReLU激活函数的导数

6.5 应用反向传播

6.5.1 批量训练和在线训练

6.5.2 随机梯度下降

6.5.3 反向传播权重更新

6.5.4 选择学习率和动量

6.5.5 Nesterov动量

6.6 本章小结

第7章 其他传播训练

7.1 弹性传播

7.2 RPROP参数

7.3 数据结构

7.4 理解RPROP
7.4.1 确定梯度的符号变化

7.4.2 计算权重变化

7.4.3 修改更新值

7.5 莱文伯格-马夸特算法

7.6 黑塞矩阵的计算

7.7 具有多个输出的LMA

7.8 LMA过程概述

7.9 本章小结

第8章 NEAT、CPPN和HyperNEAT

8.1 NEAT神经网络

8.1.1 NEAT突变

8.1.2 NEAT交叉

8.1.3 NEAT物种形成

8.2 CPPN
CPPN表型

8.3 HyperNEAT神经网络

8.3.1 HyperNEAT基板

8.3.2 HyperNEAT计算机视觉

8.4 本章小结

第9章 深度学习

9.1 深度学习的组成部分

9.2 部分标记的数据

9.3 修正线性单元

9.4 卷积神经网络

9.5 神经元Dropout

9.6 GPU训练

9.7 深度学习工具

9.7.1 H2O
9.7.2 Theano
9.7.3 Lasagne和nolearn
9.7.4 ConvNetJS

9.8 深度信念神经网络

9.8.1 受限玻尔兹曼机

9.8.2 训练DBNN
9.8.3 逐层采样

9.8.4 计算正梯度

9.8.5 吉布斯采样

9.8.6 更新权重和偏置

9.8.7 DBNN反向传播

9.8.8 深度信念应用

9.9 本章小结

第10章 卷积神经网络

10.1 LeNet-5

10.2 卷积层

10.3 最大池层

10.4 稠密层

10.5 针对MNIST数据集的卷积神经网络

10.6 本章小结

第11章 剪枝和模型选择

11.1 理解剪枝

11.1.1 剪枝连接

11.1.2 剪枝神经元

11.1.3 改善或降低表现

11.2 剪枝算法

11.3 模型选择

11.3.1 网格搜索模型选择

11.3.2 随机搜索模型选择

11.3.3 其他模型选择技术

11.4 本章小结

第12章 Dropout和正则化

12.1 L1和L2正则化

12.1.1 理解L1正则化

12.1.2 理解L2正则化

12.2 Dropout

12.2.1 Dropout层
12.2.2 实现Dropout层

12.3 使用Dropout

12.4 本章小结

第13章 时间序列和循环神经网络

13.1 时间序列编码

13.1.1 为输入和输出神经元编码数据

13.1.2 预测正弦波

13.2 简单循环神经网络

13.2.1 埃尔曼神经网络

13.2.2 若当神经网络

13.2.3 通过时间的反向传播

13.2.4 门控循环单元

13.3 本章小结

第14章 构建神经网络

14.1 评估神经网络

14.2 训练参数

14.2.1 学习率

14.2.2 动量

14.2.3 批次大小

14.3 常规超参数

14.3.1 激活函数

14.3.2 隐藏神经元的配置

14.4 LeNet-5超参数

14.5 本章小结

第15章 可视化

15.1 混淆矩阵

15.1.1 读取混淆矩阵

15.1.2 创建混淆矩阵

15.2 t-SNE降维

15.2.1 t-SNE可视化

15.2.2 超越可视化的t-SNE

15.3 本章小结

第16章 用神经网络建模

16.1 Kaggle竞赛

16.1.1 挑战赛的经验

16.1.2 挑战赛取胜的方案

16.1.3 我们在挑战赛中的方案

16.2 用深度学习建模

16.2.1 神经网络结构

16.2.2 装袋多个神经网络

16.3 本章小结

附录A 示例代码使用说明

A.1 系列图书简介

A.2 保持更新

A.3 获取示例代码

A.3.1 下载压缩文件

A.3.2 克隆Git仓库

A.4 示例代码的内容

A.5 如何为项目做贡献

参考资料

版权信息

书名：人工智能算法（卷3）：深度学习和神经网络

ISBN：978-7-115-55231-0

本书由人民邮电出版社发行数字版。版权所有，侵权必究。

您购买的人民邮电出版社电子书仅供您个人使用，未经授权，不得

以任何方式复制和传播本书内容。

我们愿意相信读者具有这样的良知和觉悟，与我们共同保护知识产

权。

如果购买者有侵权行为，我们可能对该用户实施包括但不限于关闭

该帐号等维权措施，并可能追究法律责任。

版　权

著　　　　[美] 杰弗瑞•希顿（Jeffery Heaton）

译　　　　王海鹏

责任编辑　陈冀康

人民邮电出版社出版发行　　北京市丰台区成寿寺路11号

邮编　100164 　电子邮件　315@ptpress.com.cn

网址　http://www.ptpress.com.cn

读者服务热线：(010)81055410

反盗版热线：(010)81055315

http://www.ptpress.com.cn

版权声明

Simplified Chinese translation copyright ©2021 by Posts and

Telecommunications Press. ALL RIGHTS RESERVED.

Artificial Intelligence for Humans, Volume 3: Deep Learning and

Neural Networks by Jeffery Heaton

Copyright © 2015 Jeffery Heaton.

本书中文简体版由作者Jeffery Heaton授权人民邮电出版社出版。未

经出版者书面许可，对本书的任何部分不得以任何方式或任何手段复制

和传播。

版权所有，侵权必究。

内容提要

自早期以来，神经网络就一直是人工智能（Artificial Intelligence，

AI）的支柱。现在，令人兴奋的新技术（如深度学习和卷积）正在将神

经网络带入一个全新的方向。本书将演示各种现实世界任务中的神经网

络，如图像识别和数据科学。我们研究了当前的神经网络技术，包括

ReLU激活、随机梯度下降、交叉熵、正则化、Dropout及可视化等。

本书适合作为人工智能入门读者以及对人工智能算法感兴趣的读者

阅读参考。

引言 / INTRODUCTION

本书是介绍AI的系列图书中的卷3。AI是一个涵盖许多子学科的、

研究广泛的领域。对没有读过本系列图书卷1或卷2的读者，本书简介将

提供一些背景信息。读者无须在阅读本书之前先阅读卷1或卷2。下文介

绍了可从卷1和卷2中获取的信息。

系列图书简介

本系列图书将向读者介绍AI领域的各种热门主题。本系列图书无意

成为巨细无遗的AI教程，但是，本系列每本书都专注于AI的某个特定领

域，让读者熟悉计算机科学领域的一些最新技术。

本系列图书以一种数学上易于理解的方式讲授AI相关概念，这也是

本系列图书英文书名中“for Human”的含义。因此，我会在理论之后给

出实际的编程示例和伪代码，而不仅仅依靠数学公式进行讲解。尽管如

此，我还是要做出以下假设：

假定读者精通至少一门编程语言；

假定读者对大学代数课程有基本的了解；

不要求读者对微积分、线性代数、微分方程与统计学中的公式有太

多了解，我将在必要时介绍它们。

书中示例均已改写为多种编程语言的形式，读者可以将示例适配于

某种编程语言，以满足特定的编程需求。

编程语言

本书中只给出了伪代码，具体示例代码则以Java、C#、R、

C/C++和Python等语言形式提供，此外还有社区支持维护的Scala版本。

社区成员们正在努力将示例代码转换为更多其他的编程语言，说不定当

你拿到本书的时候，你喜欢的编程语言也有了相应的示例代码。访问本

书的GitHub开源仓库可以获取更多信息，同时我们也鼓励大家通过社区

协作的方式来帮助我们完成代码改写和移植工作。如果你也希望加入社

区协作，我们将不胜感激。更多相关的流程信息可以参见本书附录A。

在线实验环境

本系列图书中的许多示例都使用了JavaScript，并且可以利用

HTML5在线运行。移动设备也必须具有HTML5运行能力才能运行这些

程序。所有的线上实验环境资料均可在以下网址中找到：

http://www.aifh.org

这些线上实验环境使你即使是在移动设备上阅读电子书时也能尝试

运行各种示例。

代码仓库

本系列图书中的所有代码均基于开源许可证Apache 2.0发布，相关

内容可以在以下GitHub开源仓库中获取：

https://github.com/jeffheaton/aifh

附带JavaScript实验环境示例的线上实验环境则保存在以下开源仓库

中：

https://www.heatonresearch.com/aifh/

如果你在运行示例时发现其中有拼写错误或其他错误，可以派生

（fork）该项目并将修订推送到GitHub。你也会在越来越多的贡献者中

获得赞誉。有关贡献代码的更多信息，请参见附录A。

本系列图书计划出版的书籍

系列图书出版计划

本系列图书的写作计划如下。

卷0：AI数学入门。

卷1：基础算法。

卷2：受大自然启发的算法。

卷3：深度学习和神经网络。

卷1～卷3将会依次出版；卷0则会作为“提前计划好的前传”，在本

系列图书出版接近尾声之际完成。本系列所有图书都将包含实现程序所

需的数学公式，前传将对较早几卷中的所有概念进行回顾和扩展。在本

书出版后，我还打算编写更多有关AI的图书。

通常，你可以按任何顺序阅读本系列图书。每本书的介绍都将提供

各卷的一些背景资料。这种组织方式能够让你快速跳转到包含你感兴趣

的领域的卷。如果你想在以后补充知识，可以阅读卷2。

其他资源

当你在阅读本书的时候，互联网上还有很多别的资源可以帮

助你。

首先是可汗学院，它是一个非营利性的教育网站，上面收集并整理

了许多讲授各种数学概念的视频。如果你需要复习某个概念，可汗学院

官网上很可能就有你需要的视频讲解，读者可以自行查找。

其次是网站“神经网络常见问答”（Neural Network FAQ）。作为一

个纯文本资源，上面拥有大量神经网络和其他AI领域的相关信息。

此外，Encog项目的维基百科页面也有许多机器学习方面的内容，

并且这些内容并不局限于Encog项目。

最后，Encog的论坛上也可以讨论AI和神经网络相关话题，该论坛

非常活跃，你的问题很可能会得到某个社区成员甚至我本人的回复。

神经网络介绍

神经网络的出现可追溯到20世纪40年代，因此，其有相当长的发展

历史。本书将介绍神经网络的发展历史，因为你需要了解一些术语。激

活函数是其中一个很好的例子，它可以缩放神经网络中神经元的值。阈

值激活函数是研究人员引入了神经网络时的早期选择，而后S型激活函

数、双曲正切激活函数、修正线性单元（Rectified Linear Unit，ReLU）

激活函数等相继被提出。虽然目前大多数文献都建议仅使用ReLU激活

函数，但你需要了解S型激活函数和双曲正切激活函数，才能理解ReLU

激活函数的优势。

只要有可能，我们就会指出要使用神经网络的哪个架构组件。我们

总是会将现在大家接受的架构组件指定为推荐选择，而不是较早的经典

组件。我们将许多这些架构组件放在一起，并在第14章“构建神经网

络”中为你提供一些有关构建神经网络的具体建议。

在神经网络的发展历程中，神经网络曾几次从灰烬中重生。

McCulloch W.和Pitts W.（1943）首先提出了神经网络的概念。但是，他

们没有方法来训练这些神经网络。程序员必须手工制作这些早期神经网

络的权重矩阵。由于这个过程很烦琐，因此神经网络首次被弃用了。

Rosenblatt F.（1958）提出了一种训练算法，即反向传播算法，该

算法可自动创建神经网络的权重矩阵。实际上，反向传播算法有许多神

经元层，可模拟动物大脑的结构，但是，反向传播算法的速度很慢，并

且会随着层数的增加变得更慢。从20世纪80年代到20世纪90年代初期计

算能力的增加似乎有助于神经网络执行任务，但这个时代的硬件和训练

算法无法有效地训练多层神经网络，神经网络又一次被弃用了。

神经网络的再次兴起，是因为Hinton G.（2006）提出了一种全新的

深度神经网络训练算法。高速图形处理单元（Graphics Processing

Unit，GPU）的最新进展，使程序员可以训练具有三层或更多层的神经

网络。程序员逐步意识到深层神经网络的好处，从而促使该技术重新流

行。

为了奠定本书其余部分的基础，我们从分析经典的神经网络开始，

这些经典的神经网络对各种任务仍然有用。我们的分析包括一些概念，

如自组织映射（Self-Organizing Map，SOM）、霍普菲尔德神经网络

（Hopfield neural network）和玻尔兹曼机（Boltzmann machine）。我们

还介绍了前馈神经网络（FeedForward Neural Network，FFNN），并展

示了几种训练它的方法。

具有许多层的前馈神经网络变成了深度神经网络。这本书包含训练

深度网络的方法，如GPU支持。我们还会探索与深度学习相关的技术，

如随机Dropout、正则化和卷积。最后，我们通过一些深度学习的真实

示例来演示这些技术，如预测建模和图像识别。

背景资料

你可以按任何顺序阅读本系列图书，但是，本书确实扩展了卷1和

卷2中介绍的某些主题。本部分内容的目的是帮助你了解神经网络及其

使用方法。大多数人（甚至不是程序员）都听说过神经网络。许多科幻

小说的故事都基于神经网络的思想。因此，科幻作家创造了一些有影响

力但可能不准确的神经网络观点。

大多数行业外的人都认为神经网络是一种人工大脑。根据这种观

点，神经网络可以驱动机器人，或与人类进行智能对话，但是，与神经

网络相比，这个概念更接近AI的定义。尽管AI致力于创建真正的智能机

器，但计算机的当前状态远低于这一目标。人类的智能仍然胜过计算机

的智能。

神经网络只是AI的一小部分。正如神经网络目前的样子，它们执行

的是微小的、高度特定的任务。与人脑不同，基于计算机的神经网络不

是通用的计算设备。此外，术语“神经网络”可能会给人造成困惑，因为

由大脑神经元构成的网络，也被称为神经网络。为了避免这个问题，我

们必须做出重要的区分。

实际上，我们应该将人脑称为生物神经网络（Biological Neural

Network，BNN）。大多数书籍都不会特别区分BNN和人工神经网络

（Artificial Neural Network，ANN），本书也是。当我们提到“神经网

络”这个术语时，指的是ANN而不是BNN。

BNN和ANN具有一些非常基本的相似性。如BNN启发了ANN的数

学构造。生物合理性描述了各种ANN算法。“神经网络”这个术语决定了

ANN算法与BNN算法的高度相似性。

如前所述，程序员设计神经网络来执行一项小任务。完整的应用程

序可能会使用神经网络来完成应用程序的某些部分，但是，整个应用程

序不会只实现一个神经网络。它可能由几个神经网络组成，每个神经网

络都有特定的任务。

模式识别是神经网络可以轻松完成的任务。对于这种任务，你可以

将一个模式传入神经网络，然后它将一个模式传回给你。在最高层面

上，典型的神经网络只能执行这个功能。尽管某些神经网络可能会取得

更大的成就，但绝大多数神经网络以这种方式工作。图1展示了这个层

面上的一个神经网络。

图1　典型的神经网络

如你所见，上述神经网络接收一个模式并返回一个模式。神经网络

是同步运行的，只有在输入后才会输出。这种行为不同于人脑，人脑不

是同步运行的。人脑对输入做出响应，但是它会在任何它愿意的时候产

生输出！

神经网络结构

神经网络由一些层组成，各层的神经元相似。大多数神经网络都至

少具有输入层和输出层，程序将输入模式交给输入层，然后，输出模式

从输出层返回。在输入层和输出层之间是一个黑盒。黑盒是指你不完全

了解神经网络为何输出它的结果。现在，我们还不关心神经网络或黑盒

的内部结构。许多不同的架构定义了输入层和输出层之间的不同交互。

稍后，我们将研究其中一些架构。

输入和输出模式都是浮点数数组。用以下方式表示这些数组。

神经网络输入：[−0.245, 0.283, 0.0]。

神经网络输出：[0.782, 0.543]。

上面的神经网络在输入层中有三个神经元，在输出层中有两个神经

元。即使重构神经网络的内部结构，输入层和输出层中神经元的数量也

不会改变。

要利用该神经网络，你调整表达问题的方式，使得输入是浮点数数

组。同样，问题的解也必须是浮点数数组。归根结底，这种表达是神经

网络唯一可以执行的。换言之，它们接收一个数组，并将其转换为第二

个数组。神经网络不会循环，不会调用子程序，或执行你在传统编程中

可能想到的任何其他任务。神经网络只是识别模式。

你可以认为神经网络是传统编程中将键映射到值的哈希表。它的作

用有点像字典。你可以将以下内容视为一种类型的哈希表：

“hear”→“以耳朵来感知或理解”；

“run”→“比走路更快地前进”；

“write”→“使用工具（作为笔）在表面上形成形状（作为字符或符

号）”。

该表在单词和它们的定义之间创建了映射。编程语言通常称之为哈

希映射或字典。上述哈希表用字符串类型的键来引用另一个值，引用的

值也是相同类型的字符串。如果你以前从未使用过哈希表，那么可以将

它们理解为将一个值映射到另一个值的一种索引形式。换言之，当你为

字典提供一个键时，它会返回一个值。大多数神经网络都以这种方式工

作。一种名为“双向关联记忆”（Bidirectional Associative Memory，

BAM）的神经网络可让你提供值并给出键。

编程时使用的哈希表包含键和值。可以将传入神经网络输入层的模

式视为哈希表的键，将从神经网络输出层返回的模式视为哈希表返回的

值。尽管类比哈希表和神经网络可以帮助你理解这个概念，但是你需要

认识到神经网络不仅仅是哈希表。

如果你提供的单词不是映射中的键，那么前面的哈希表会发生什么

呢？为了回答这个问题，我们将输入键“wrote”。对于这个例子，哈希表

将会返回null。它会以某种方式表明找不到指定的键。但是，神经网络

不会返回null，而是找到最接近的匹配项。它们不仅会寻找最接近的匹

配项，还会修改输出以估计缺失的值。因此，如果你对神经网络输

入“wrote”，那么很可能会收到输入“write”时期望的结果。你也可能会收

到其他键对应的输出，因为没有足够的数据供神经网络修改响应。数量

有限的样本（在这个例子中是3个）会导致出现这种结果。

上面的映射提出了关于神经网络的重要观点。如前所述，神经网络

接收一个浮点数数组并返回另一个数组。这个行为引发了一个问题，即

如何将字符串或文本值放入神经网络。尽管存在解决方案，但对神经网

络而言，处理数字数据比处理字符串要容易得多。

实际上，这个问题揭示了神经网络编程中最困难的一个方面。如何

将问题转换为固定长度的浮点数数组？在下面的示例中，你将看到神经

网络的复杂性。

一个简单的例子

在计算机编程中，习惯提供一个“Hello World”应用程序，它只是显

示文本“Hello World”。如果你已经阅读过有关神经网络的文章，那么肯

定会看到使用异或（XOR）运算符的示例，该运算符示例是神经网络编

程的一种“Hello World”应用程序。在后文，我们将描述比XOR更复杂的

场景，但它是一个很好的示例。我们将从XOR运算符开始，把它当作一

个哈希表。如果你不熟悉XOR运算符，其工作原理类似于AND/OR运算

符。要使AND运算结果为真，双方都必须为真；要使OR运算结果为

真，必须有任何一方为真；要使XOR运算结果为真，双方真假必须互不

相同。XOR的真值表如下：

False XOR False = False
True XOR False = True
False XOR True = True
True XOR True = False

用哈希表表示，则上述真值表表示如下：

[0.0, 0.0] −> [0.0]
[1.0, 0.0] −> [1.0]
[0.0, 1.0] −> [1.0]
[1.0, 1.0] −> [0.0]

这些映射展示了神经网络的输入和理想的预期输出。

训练：有监督和无监督

如果指定了理想的输出，你就在使用有监督训练；如果没有指定理

想的输出，你就在使用无监督训练。有监督训练会让神经网络产生理想

的输出，无监督训练通常会让神经网络将输入数据放入由输出神经元计

数定义的多个组中。

有监督训练和无监督训练都是迭代过程。对于有监督训练，每次迭

代都会计算实际输出与理想输出的接近程度，并将这种接近程度表示为

错误百分比。每次迭代都会修改神经网络的内部权重矩阵，目的是将错

误率降到可接受的低水平。

对于无监督训练，计算错误并不容易。由于没有预期的输出，因此

无法测量无监督的神经网络与理想输出差多少。因为没有理想的输出，

所以你只是进行固定次数的迭代，并尝试训练神经网络。如果神经网络

需要更多训练，那么程序会提供。

上述训练数据的另一个重要方面在于，你可以按任何顺序进行训

练。无论哪种训练方式，对两个0应用XOR（0 XOR 0）的结果将为0。

并非所有神经网络都具有这种特性。对于XOR运算符，我们可能会使用

一种名为“前馈神经网络”的神经网络，其中训练集的顺序无关紧要。在

本书的后面，我们将研究循环神经网络（Recurrent Neural Network，

RNN），它确实需要考虑训练数据的顺序。顺序是简单循环神经网络的

重要组成部分。

刚才，你看到简单的XOR运算符利用了训练数据。现在，我们将分

析一种情况，它使用了更复杂的训练数据。

每加仑的英里数

通常，神经网络问题涉及一些数据，你可以利用这些数据来预测后

来的数据集的值。在训练了神经网络之后，就会得到后来的数据集。神

经网络的功能是根据从过去的数据集中学到的知识，来预测全新数据集

的结果。考虑一个包含以下字段的汽车数

据库：

车重（指车的质量）；

发动机排量；

气缸数；

马力（指以马力为单位的功率）；

混合动力或汽油动力；

每加仑的英里数［指每消耗1加仑（约3.8升）燃油可行驶的路程，

以英里为单位］。

尽管我们过度简化了数据，但并不影响本示例演示如何格式化数

据。假设你已经针对这些字段收集了一些数据，那么你应该能够构建一

个神经网络，来根据其他字段的值来预测某个字段的值。对于这个示

例，我们将尝试预测每加仑的英

里数。

如前所述，我们需要将一个浮点数输入数组映射到浮点数输出数

组，从而定义这个问题。但是，该问题还有一个附加要求，即这些数组

元素中每一个数字的范围应为0～1或者−1～1。这个操作称为归一化。

它获取现实世界的数据，并将其转换为神经网络可以处理的形式。

首先，我们需要确定如何归一化以上数据。请考虑神经网络的架

构。我们共有6个字段，要使用其中5个字段来预测剩余的1个字段。因

此，神经网络将具有5个输入神经元和1个输出神经元。

你的神经网络类似下面这样。

输入神经元1：车重。

输入神经元2：发动机排量。

输入神经元3：气缸数。

输入神经元4：马力。

输入神经元5：混合动力或汽油动力。

输出神经元1：每加仑的英里数。

接着我们还需要归一化数据。为了完成归一化，我们必须为这些字

段的值都考虑一个合理的范围。然后，我们将输入数据转换为0～1的数

字，代表该范围内实际值的位置。考虑以下设置了合理范围的示例。

车重：100～5 000磅（约45～2 268千克）。

发动机排量：0.1～10升。

气缸数：2～12。

马力：1～1 000马力（约735.5～7 355 000瓦）。

混合动力或汽油动力：true或false。

每加仑的英里数：1～500英里（约1.6～804.5千米）。

考虑到当今的汽车，这些范围可能很大，但是，这个特征将使神经

网络的重组最少。我们也希望避免在靠近范围的两端出现太多数据。

为了说明这一范围，我们将考虑归一化车重2 000磅（约907千克）

的问题。这在上述车重范围中为1 900（即2 000−100），而范围的大小

为4 900（即5 000−100），范围大小的占比为0.38（即1 900/4 900）。因

此，我们会将0.38提供给输入神经元，以表示该值。这个过程满足输入

神经元0～1的范围要求。

混合动力或常规动力字段的值为true或false。为了表示该值，我们

用1表示混合动力，用0表示常规动力。我们只需将true或false归一化为1

或0两个值即可。

既然你已经了解了神经网络的一些用法，现在该确定如何为特定问

题选择合适的神经网络了。在随后的内容中，我们提供了各种可用的神

经网络路线图。

神经网络路线指引

本书包含各种类型的神经网络。我们将提供这些神经网络及其示

例，展示特定问题域中的神经网络。并不是所有神经网络都适用于每一

个问题域。作为神经网络程序员，你需要知道针对特定问题使用哪个神

经网络。

这里提供了通往本书其余部分的高级路线指引，它将指导你阅读本

书中你感兴趣的领域。表1展示了本书中的神经网络类型及其适用的问

题域。

表1　神经网络类型和问题域

类型 聚类 回归 分类 预测 机器人 视觉 优化

自组织映射 √√√ √ √

前馈 √√√ √√√ √√ √√ √√

Hopfield √ √ √

玻尔兹曼机 √ √√

深度信念网络 √√√ √√ √√

深度前馈 √√√ √√√ √√ √√√ √√

NEAT √√ √√ √√

CPPN √√√ √√

HyperNEAT √√ √√ √√√ √√

卷积网络 √ √√√ √√√ √√√

埃尔曼网络 √√ √√ √√√

若当网络 √√ √√ √√ √√

循环网络 √√ √√ √√√ √√ √

表1列出的问题域说明如下。

聚类：无监督的聚类问题。

回归：回归问题，神经网络必须根据输入，输出数字。

分类：分类问题，神经网络必须将数据点分为预定义的类别。

预测：神经网络必须及时预测事件，如金融应用程序的信号。

机器人：使用传感器和电机控制的机器人。

视觉：计算机视觉（Computer Vision，CV）问题，要求计算机理

解图像。

优化：优化问题，要求神经网络找到最佳排序或一组值以实现目

标。

勾选标记（√）的数量给出了每种神经网络类型对该特定问题的适

用性。如果没有勾选，则说明无法将该神经网络类型应用于该问题域。

所有神经网络都有一些共同的特征，如神经元、权重、激活函数和

层，它们是神经网络的构建块。在本书的第1章中，我们将介绍这些概

念，并介绍大多数神经网络共有的基本特征。

本书中使用的数据集

本书包含一些数据集，这些数据集让我们能够展示神经网络在实际

数据中的应用。我们选择了几个数据集来介绍如回归、分类、时间序列

和计算机视觉等主题。

MNIST手写数字数据集

本书中有几个示例使用了MNIST手写数字数据集（以下简称

MNIST数据集）。MNIST数据集是一个大型的手写数字数据集，程序

员可以用它来训练各种图像处理系统。这个经典数据集经常与一些神经

网络一起提供。该数据集实质上是神经网络的“Hello World”程序。

MNIST数据集以特殊的二进制格式存储。你可以在互联网上找到这

种格式。本书提供的示例程序可以读取这种格式。

MNIST数据集包含许多手写数字。它还包括60 000个示例的训练集

和10 000个示例的测试集。两个集合上都提供标签，以指示每个数字应

该是什么。MNIST数据集是一个经过大量研究的数据集，程序员经常将

它作为新机器学习算法和技术的基准。此外，研究人员已经发表了许多

有关他们试图实现最低错误率的科学论文。在一项研究中，研究人员使

用卷积神经网络（Convolutional Neural Network，CNN）的分层系统，

设法在MNIST数据集上实现了0.23%的错误率[1]。

图2展示了该数据集的一个样本。

图2　MNIST手写数字样本

我们可以将这个数据集用于分类神经网络。神经网络学会观察图

像，并将它分到10个数字中的适当位置。虽然这个数据集用于基于图像

的神经网络，但是你也可以认为它是传统数据集。这些图像的大小是28

像素×28像素。尽管这些图像令人印象深刻，但本书将从使用常规的神

经网络开始，用784（即28×28）个输入神经元的神经网络来处理这些图

像。你将使用相同类型的神经网络，来处理具有大量输入的所有分类问

题。这样的问题是高维度的。在本书的后面，我们将学习如何使用专门

为图像识别设计的神经网络。与较传统的神经网络相比，这些神经网络

在MNIST数据集上的性能要好得多。

鸢尾花数据集

由于AI经常使用鸢尾花数据集[2]，因此你会在本书中多次看到它。

Ronald Fisher爵士（1936）收集了这些数据，作为判别分析的一个例

子。即使在今天，该数据集在机器学习中也非常流行。

鸢尾花数据集包含150朵鸢尾花的测量值和物种信息，该数据集实

质上可表示为具有以下列或特征的电子表格：

萼片长度；

萼片宽度；

花瓣长度；

花瓣宽度；

鸢尾花的种类。

这里的“花瓣”是指鸢尾花最里面的花瓣，而“萼片”是指鸢尾花最外

面的花瓣。尽管该数据集似乎是长度为5的向量，但种类特征的处理必

须与其他4个特征不同。换言之，向量通常仅包含数字。因此，前4个特

征本质上是数字，而种类特征不是。

这个数据集的主要应用之一是创建一个程序，作为分类器。也就是

说，它将花朵的特征作为输入（萼片长度、花瓣宽度等），并最终确定

种类。对于完整的已知数据集，这种分类将是微不足道的，但我们的目

标是使用未知鸢尾花的数据来查看模型是否可以正确识别物种。

简单的数字编码能将鸢尾花种类转换为单个维度。我们必须使用附

加的维度编码，如1-of-n或等边的（equilateral），以便让物种编码彼此

等距。如果我们要对鸢尾花进行分类，则不希望我们的编码过程产生任

何偏差。

将鸢尾花特征视为更高维度空间中的维度，这非常有意义。将单个

样本（鸢尾花数据集中的行）视为这个搜索空间中的点，靠近的点可能

具有相似之处。通过研究来自鸢尾花数据集的以下3行数据，我们来看

看这些相似之处：

5.1, 3.5, 1.4, 0.2, Iris−setosa
7.0, 3.2, 4.7, 1.4, Iris−versicolor
6.3, 3.3, 6.0, 2.5, Iris−virginica

第1行萼片长度为5.1，萼片宽度为3.5，花瓣长度为1.4，花瓣宽度

为0.2。如果使用1-of-n编码，则以上3行数据将编码为以下3个向量：

[5.1, 3.5, 1.4, 0.2, 1, 0, 0]
[7.0, 3.2, 4.7, 1.4, 0, 1, 0]
[6.3, 3.3, 6.0, 2.5, 0, 0, 1]

在第4章“前馈神经网络”中将介绍1-of-n编码。

汽车MPG数据集

汽车每加仑英里数（Miles Per Gallon，MPG）数据集通常用于回归

问题。该数据集包含一些汽车的属性。利用这些属性，我们可以训练神

经网络来预测汽车的燃油效率。加利福尼亚大学欧文分校（UCI）机器

学习存储库提供了这个数据集。

我们从卡内基梅隆大学维护的StatLib库中获取了这些数据。在1983

年的美国统计协会的展览会上，程序员使用了该数据集，并且没有丢失

任何值。这项研究的作者Quinlan（1993）使用该数据集描述了油

耗。“按每加仑英里数，该数据考虑了城市车辆的油耗，旨在根据3个多

值离散值和5个连续属性进行预测”[3]。

该数据集包含以下属性：

1. mpg（每加仑英里数）：连续
2. cylinders（气缸数）：多值离散值
3. displacement（排量）：连续
4. horsepower（马力） ：连续
5. weight（车重）：连续
6. acceleration（加速）：连续
7. model year（车型年份）：多值离散值
8. origin（来源）：多值离散值
9. car name（车名）：字符串（每个实例唯一）

太阳黑子数据集

太阳黑子是太阳表面的暂时现象。与周围区域相比，其看起

来像是黑点。强烈的磁活动会引起黑子。尽管它们出现的温度是

3 000～4 500 K（约2 727～4 227℃），但与周围物质大约5 780 K （约5

507℃）的温度形成反差，导致它们成为清晰可见的黑点。黑子有规律

地出现和消失，这让它们成为时间序列预测的良好数据集。

图3展示了黑子随时间的活动数。

图3　黑子随时间的活动数

年 月 黑子数 标准差
1749 1 58.0 24.1
1749 2 62.6 25.1
1749 3 70.0 26.6
1749 4 55.7 23.6
1749 5 85.0 29.4
1749 6 83.5 29.2
1749 7 94.8 31.1
1749 8 66.3 25.9
1749 9 75.9 27.7

以上数据提供了观测到的黑子的年、月、黑子数和标准差。许多世

界性的组织都在观测黑子。

XOR运算符

XOR运算符是布尔运算符。程序员经常将XOR的真值表作为一种

非常简单的“Hello World”训练集，用于机器学习。我们将该表称为XOR

数据集。该运算符与XOR奇偶校验运算符相关，该运算符接收3个输入

并具有以下真值表：

0 XOR 0 = 0
1 XOR 0 = 1
0 XOR 1 = 1
1 XOR 1 = 0

在需要手动训练或评估神经网络的情况下，我们会利用XOR运算

符。

Kaggle的Otto集团产品分类挑战赛

在本书中，我们还会利用Kaggle的Otto集团产品分类挑战赛

（Kaggle Otto Group Product Classification Challenge）数据集。Kaggle是

一个平台，促使数据科学家在新数据集上展开竞争。我们使用这个数据

集，根据未知属性将产品分为几类。此外，我们将使用深度神经网络来

解决这个问题。我们还会在本书中讨论一些高级集成技术，你可以将它

们用于Kaggle挑战赛。我们将在第16章中更详细地描述这个数据集。

本书开始将概述大多数神经网络共有的特性。这些特性包括神经

元、层、激活函数和连接。在本书的其余部分，我们将介绍更多的神经

网络体系结构，从而扩展这些主题。

[1]　Schmidhuber，2012。

[2]　Fisher，1936。

[3]　Quinlan，1993。

资源与支持

本书由异步社区出品，社区（https://www.epubit.com/）为你提供相

关资源和后续服务。

提交勘误

作者和编辑尽最大努力来确保书中内容的准确性，但难免会存在疏

漏。欢迎你将发现的问题反馈给我们，帮助我们提升图书的质量。

当你发现错误时，请登录异步社区，按书名搜索，进入本书页面，

点击“提交勘误”，输入勘误信息，点击“提交”按钮即可。本书的作者和

编辑会对你提交的勘误进行审核，确认并接受后，你将获赠异步社区的

100积分。积分可用于在异步社区兑换优惠券、样书或奖品。

与我们联系

我们的联系邮箱是contact@epubit.com.cn。

如果你对本书有任何疑问或建议，请你发邮件给我们，并请在邮件

标题中注明本书书名，以便我们更高效地做出反馈。

如果你有兴趣出版图书、录制教学视频，或者参与图书翻译、技术

审校等工作，可以发邮件给我们；有意出版图书的作者也可以到异步社

区在线提交投稿（直接访问www.epubit.com/selfpublish/submission即

可）。

如果你是学校、培训机构或企业，想批量购买本书或异步社区出版

的其他图书，也可以发邮件给我们。

如果你在网上发现有针对异步社区出品图书的各种形式的盗版行

为，包括对图书全部或部分内容的非授权传播，请你将怀疑有侵权行为

的链接发邮件给我们。你的这一举动是对作者权益的保护，也是我们持

续为你提供有价值的内容的动力之源。

关于异步社区和异步图书

“异步社区”是人民邮电出版社旗下IT专业图书社区，致力于出版精

品IT技术图书和相关学习产品，为作译者提供优质出版服务。异步社区

创办于2015年8月，提供大量精品IT技术图书和电子书，以及高品质技

术文章和视频课程。更多详情请访问异步社区官网

https://www.epubit.com。

“异步图书”是由异步社区编辑团队策划出版的精品IT专业图书的品

牌，依托于人民邮电出版社近30年的计算机图书出版积累和专业编辑团

队，相关图书在封面上印有异步图书的LOGO。异步图书的出版领域包

括软件开发、大数据、AI、测试、前端、网络技术等。

异步社区

微信服务号

第1章　神经网络基础

本章要点：

神经元和层；

神经元的类型；

激活函数；

逻辑。

本书探讨神经网络，以及如何训练、查询、构建和解释神经网络。

我们介绍许多神经网络架构，以及可以训练这些神经网络的大量算法。

训练是一个过程，在这个过程中，神经网络不断调整，实现根据数据进

行预测的目标。本章将介绍一些基本概念，它们与本书中介绍的神经网

络类型最为相关。

深度学习是用于多层神经网络的相对较新的一组训练技术，也是一

个主要主题。它包含几种算法，可以训练复杂类型的神经网络。随着深

度学习的发展，我们现在有了一些有效的方法来训练多层神经网络。

本章将讨论不同神经网络之间的共性。此外，你还将学习神经元如

何形成加权连接，这些神经元如何创建层，以及激活函数如何影响层的

输出。我们从神经元和层开始。

1.1　神经元和层

大多数神经网络结构使用某种类型的神经元。存在许多结构不同的

神经网络，程序员一直在引入实验性的神经网络结构。即便如此，也不

可能涵盖所有的神经网络结构。但是，神经网络实现之间存在一些共

性。如果一个算法被称为神经网络，那么它通常将由单独的、相互连接

的单元组成，尽管这些单元可能被称为神经元，也可能未被称为神经

元。实际上，神经网络处理单元的名称在不同的文献中有所不同，它可

以被称为节点、神经元或单元。

图1-1展示了单个人工神经元的抽象结构。

图1-1　单个人工神经元的抽象结构

人工神经元从一个或多个来源接收输入，该来源可以是其他神经

元，也可以是计算机程序提供给该网络的数据。输入通常是浮点数或二

元值。通常将真（true）和假（false）表示为1和0，从而将二元值输入

编码为浮点数。有时，程序还将二元值输入编码体现为双极性系统，即

将真表示为1，假表示为−1。

人工神经元将每个输入乘以权重。然后，将这些乘积相加，并将和

传递给激活函数。有些神经网络不使用激活函数。公式1-1总结了神经

元的计算输出：

（1-1）

在公式1-1中，变量 和 代表神经元的输入和权重。变量 代表权重

和输入的数量。输入的数量和权重的数量必须总是相同的。每个权重乘

以其各自的输入，然后将这些乘积乘以一个激活函数，该函数由希腊字

母φ（phi）表示。这个过程使神经元只有单个输出。

图1-1展示了只有一个构建块的结构。你可以将许多人工神经元链

接在一起，构建人工神经网络。也可以将人工神经元视为构建块，将输

入和输出圆圈视为连接块。图1-2展示了由3个神经元组成的简单人工神

经网络。

图1-2　简单人工神经网络

图1-2展示了3个相互连接的神经元。这个图的本质是，图1-1减去一

些输入，重复3次然后连接。它总共有4个输入和1个输出。神经元N1和

N2的输出提供给N3，以产生输出O。为计算图1-2的输出，我们执行3次

公式1-1。前两次计算N1和N2，第三次使用N1和N2的输出来计算N3。

神经网络通常不会显示到如图1-2那样的详细程度。为了简化该

图，我们可以省略激活函数和中间输出。简化的人工神经网络如图1-3

所示。

图1-3　简化的人工神经网络

在图1-3中，你会看到神经网络的两个附加组件。首先，考虑输入

和输出，它们显示为抽象的虚线圆。输入和输出可以是更大的神经网络

的一部分。但是，输入和输出通常是特殊类型的神经元，输入神经元从

使用该神经网络的计算机程序接收数据，而输出神经元会将结果返回给

程序。这种类型的神经元称为输入神经元和输出神经元。我们将在1.2.1

小节中讨论这些神经元。

图1-3还展示了神经元的分层排列。输入神经元是第一层，N1和N2

神经元创建了第二层，第三层包含N3，第四层包含O。尽管大多数神经

网络将神经元排列成层，但并非总是如此。Stanley（2002）引入了一种

神经网络架构，称为“增强拓扑神经进化”（NeuroEvolution of

Augmenting Topologies，NEAT）。NEAT神经网络可以具有非常杂乱的

非分层架构。

形成一层的神经元具有几个特征。首先，层中的每个神经元具有相

同的激活函数。但是，不同的层可能具有不同的激活函数。其次，各层

完全连接到下一层。换言之，一层中的每个神经元都与上一层中的每个

神经元有连接。图1-3所示网络不是完全连接的，有几层缺少连接，如I1

和N2不连接。图1-4所示神经网络是图1-3的新版本，它已完全连接，并

多了一个神经元N4。

图1-4　完全连接的神经网络

在图1-4中，你可以看到一个完全连接的多层神经网络。神经网络

总是有输入层和输出层。隐藏层的数量决定了神经网络结构的名称。图

1-4中所示的神经网络是一个两层神经网络。大多数神经网络有0～2个

隐藏层。除非你实现了深度学习策略，否则很少有具有两个以上隐藏层

的神经网络。

你可能还会注意到，箭头始终从输入指向输出，向下或向前。这种

类型的神经网络通常称为“前馈神经网络”。在本书的后面，我们将看到

在神经元之间形成反向循环的循环神经网络。

1.2　神经元的类型

在1.1节中，我们简要介绍了存在不同类型的神经元的思想。现

在，我们将解释书中描述的所有神经元类型。并非每个神经网络都会使

用每种类型的神经元。单个神经元也有可能扮演几种不同神经元类型的

角色。

　1.2.1　输入和输出神经元

几乎每个神经网络都有输入和输出神经元。输入神经元接收来自程

序的神经网络数据。输出神经元将处理后的数据从神经网络返回给程

序。这些输入和输出神经元将由程序分组为单独的层，分组后的层称为

输入和输出层。但是，对于某些神经网络结构，神经元可以同时充当输

入和输出。霍普菲尔德神经网络就是这样的一个示例，其中神经元既是

输入又是输出，我们将在第3章“霍普菲尔德神经网络和玻尔兹曼机”中

讨论。

程序通常将神经网络的输入表示为数组，即向量。向量中包含的元

素数量必须等于输入神经元的数量。例如，具有3个输入神经元的神经

网络可以接收以下输入向量：

[0.5, 0.75, 0.2]

神经网络通常接收浮点数向量作为其输入。同样，神经网络将输出

一个向量，其长度等于输出神经元数量。输出通常是来自单个输出神经

元的单个值。为了保持一致，我们将单输出神经元网络的输出表示为单

个元素的向量。

请注意，输入神经元没有激活函数。如图1-1所示，输入神经元只

不过是占位符，简单地对输入进行加权和求和。此外，如果神经网络具

有既是输入，又是输出的神经元，那么神经网络的输入和输出向量的大

小相同。

　1.2.2　隐藏神经元

隐藏神经元具有两个重要特征。首先，隐藏神经元仅接收来自其他

神经元的输入，例如输入神经元或其他隐藏神经元。其次，隐藏神经元

仅输出到其他神经元，例如输出神经元或其他隐藏神经元。隐藏神经元

可以帮助神经网络理解输入，并形成输出。但是，它们没有直接连接到

输入数据或最终输出。隐藏神经元通常被分组为完全连接的隐藏层。

程序员面临的一个常见问题，就是神经网络中隐藏神经元的数量有

多少。由于这个问题的答案很复杂，因此本书在不止一个小节中，对隐

藏神经元的数量进行了相关讨论。在引入深度学习之前，通常人们建

议，除了单个隐藏层以外，其他任何东西都是多余的[1]。研究证明，单

层神经网络可以用作通用逼近器（universal approximator）。换言之，

只要该神经网络在单层中具有足够的隐藏神经元，它就应该能够学会从

任何输入产生（或近似产生）任何输出。

研究者过去忽视其他隐藏层的另一个原因在于，这些层会阻碍神经

网络的训练。训练是指确定良好权重的过程。在研究者引入深度学习技

术之前，我们根本没有一种有效的方法来训练深度神经网络，即具有大

量隐藏层的神经网络。尽管理论上单隐藏层神经网络可以学习任何内

容，但深度学习有助于表示数据中更复杂的模式。

　1.2.3　偏置神经元

程序员向神经网络添加偏置神经元（bias neurons），以帮助它们学

习模式。偏置神经元的功能类似于总是产生值1的输入神经元。由于偏

置神经元的输出恒定为1，因此它们没有连接到上一层。值1称为偏置激

活，也可以将它设置为1以外的值，但是，1是最常见的偏置激活。并非

所有的神经网络都有偏置神经元。图1-5展示了带有偏置神经元的单层

神经网络。

图1-5　带有偏置神经元的单层神经网络

图1-5所示的神经网络包含3个偏置神经元。除输出层外，每层都包

含一个偏置神经元。偏置神经元允许激活函数的输出发生偏移。在后文

讨论激活函数时，我们将清楚地看到这种偏移发生的方式。

　1.2.4　上下文神经元

上下文神经元用于循环神经网络。这种类型的神经元允许神经网络

保持状态，因此，给定的输入可能并不总是产生完全相同的输出。这种

不一致类似于生物大脑的运作。请考虑当听到喇叭声时，上下文因素如

何影响你的反应。如果你在过马路时听到喇叭声，则可能会感到震惊，

停止行走并朝喇叭声传来的方向看。如果你在电影院观看动作类、冒险

类电影时听到喇叭声，你的反应就不会完全一样。因此，先前的输入为

你提供了处理喇叭声输入的上下文。

时间序列是上下文神经元的一种应用。你可能需要训练神经网络来

学习输入信号，从而执行语音识别或预测安全价格的趋势。上下文神经

元是神经网络处理时间序列数据的一种方法。图1-6展示了上下文神经

元如何在神经网络中排列。

图1-6　上下文神经元

这个神经网络具有单个输入和输出神经元。在输入层和输出层之间

是两个隐藏神经元和两个上下文神经元。除了两个上下文神经元，该神

经网络与本章中先前的神经网络相同。

每个上下文神经元都有一个从0开始的值，并且始终从神经网络的

先前使用中接收隐藏1或隐藏2的副本。图1-6中的两条虚线表示上下文

神经元是直接副本，没有其他权重。其他线表明输出由列出的6个权重

值之一加权。仍然使用公式1-1以相同的方式计算输出。输出神经元的

值将是所有4个输入分别乘以它们的权重后的总和，并应用激活函数的

结果。

有一种神经网络名为简单循环神经网络（Simple Recurrent Neural

Network，SRN），它使用了上下文神经元。若当神经网络（Jordan

neural network）和埃尔曼网络（Elman neural nebwork）是两种最常见的

简单循环神经网络。图1-6展示了埃尔曼神经网络。第13章“时间序列和

循环神经网络”探讨了这两种类型的简单循环神经网络。

　1.2.5　其他神经元名称

组成神经网络的各个单元并不总是称为神经元。研究者有时会将其

称为节点或单元。在本书的后续内容中，我们将探讨深度学习，它利用

了玻尔兹曼机来替代神经元的作用。无论神经元的类型如何，神经网络

几乎总是由这些神经元之间的加权连接构成的。

1.3　激活函数

在神经网络编程中，激活函数或传递函数为神经元的输出建立界

限。神经网络可以使用许多不同的激活函数。我们将在本节中讨论最常

见的激活函数。

为神经网络选择激活函数是一个重要的考虑，因为它会影响输入数

据格式化的方式。在本章中，我们将指导你选择激活函数。第14章“构

建神经网络”将包含该选择过程的更多详细信息。

　1.3.1　线性激活函数

最基本的激活函数是线性函数，因为它根本不改变神经元输出。公

式1-2展示了程序通常如何实现线性激活函数：

（1-2）

如你所见，这个激活函数只是返回神经元输入传递给它的值。图1-

7展示了线性激活函数的图像。

图1-7　线性激活函数

为学习提供数值的回归神经网络，通常会在其输出层使用线性激活

函数。分类神经网络，即为其输入确定合适类别的神经网络，通常在其

输出层使用Softmax激活函数。

　1.3.2　阶跃激活函数

阶跃或阈值激活函数是另一种简单的激活函数。神经网络最初称

为“感知机”（perceptron）。McCulloch和Pitts（1943）引入了最初的感

知机，并使用了如公式1-3一样的阶跃激活函数：

（1-3）

公式1-3为0.5或更高的输入值输出1，为所有其他输入值输出0。阶

跃激活函数通常被称为阈值激活函数，因为它们仅对大于指定阈值的值

返回1（真），如图1-8所示。

图1-8　阶跃激活函数

　1.3.3　S型激活函数

对于仅需要输出正数的前馈神经网络，S型（Sigmoid）激活函数或

逻辑激活函数是非常常见的选择。虽然它使用广泛，但双曲正切激活函

数或ReLU激活函数通常是更合适的选择。我们将在本章后面介绍ReLU

激活函数。公式1-4展示了S型激活函数：

（1-4）

使用S型激活函数以确保值保持在相对较小的范围内，如图1-9所

示。

从图1-9可以看出，大于或小于0的值都会被压缩到0～1的范围内。

图1-9　S型激活函数

　1.3.4　双曲正切激活函数

对于必须输出−1～1的值的神经网络，双曲正切（tanh）激活函数

也是非常常见的激活函数，如公式1-5所示：

（1-5）

双曲正切激活函数图像的形状类似S型激活函数，图像的形状如图

1-10所示。

图1-10　双曲正切激活函数

双曲正切激活函数相对S型激活函数具有诸多优点。这些优点涉及

神经网络训练中使用的导数，它们将在第6章“反向传播训练”中介绍。

1.4　修正线性单元

修正线性单元（ReLU）由Teh和Hinton在2000年引入，在过去几年

中得到了迅速的应用。在ReLU激活函数之前，双曲正切激活函数通常

被视为优先选择的激活函数。由于出色的训练结果，目前大多数最新研

究都推荐ReLU激活函数。因此，大多数神经网络应该在隐藏层上使用

ReLU激活函数，在输出层上使用Softmax或线性激活函数。公式1-6展示

了非常简单的ReLU激活函数：

（1-6）

现在，我们将研究为什么ReLU激活函数通常比隐藏层的其他激活

函数要好。性能提高的部分原因在于ReLU激活函数是线性的非饱和激

活函数。与S型激活函数/逻辑激活函数或双曲正切激活函数不同，

ReLU不会饱和到−1、0或1。饱和激活函数总是朝向并最终获得一个

值。如双曲正切激活函数在 减小时饱和到−1，在 增大时饱和到1。图

1-11展示了ReLU激活函数的图像。

图1-11　ReLU激活函数

最新研究表明，神经网络的隐藏层应使用ReLU激活函数。ReLU激

活函数优于双曲正切激活函数和S型激活函数的原因将在第6章“反向传

播训练”中进行说明。

　1.4.1　Softmax激活函数

我们要学习的最后一个激活函数是Softmax激活函数。与线性激活

函数一样，通常会在神经网络的输出层中找到Softmax激活函数。

Softmax激活函数用于分类神经网络。分类神经网络中，具有最高值的

神经元可以宣称神经网络的输入属于它的分类。因为它是一种更好的方

法，所以Softmax激活函数会强制神经网络的输出表示输入落入每个类

的概率。如果没有Softmax激活函数，则神经元的输出就是数值，值最

高的数表示获胜的类。

为了了解如何使用Softmax激活函数，我们来研究一个常见的神经

网络分类问题。鸢尾花数据集包含针对150种不同鸢尾花的4个测量值。

这些花中的每一种都属于3个鸢尾花物种之一。当你提供花朵的测量值

时，Softmax激活函数允许神经网络为你提供这些测量值属于这3个物种

的概率。如神经网络可能会告诉你，该鸢尾花有80%的概率是setosa，

有15%的概率是virginica，只有5%的概率是versicolour。因为这些是概

率，所以它们的总和必须是100%。不可能同时有80%的概率是setosa、

75%的概率是virginica、20%的概率是versicolour——这种结果是毫无意

义的。

要将输入数据分为3个鸢尾花物种之一，则对于这3个物种中的每一

个，你都需要一个输出神经元。输出神经元并不指定这3个物种各自的

概率。因此，我们期望提供的这些概率总和为100%。而神经网络将告

诉你，花朵属于这3个物种中每一个的概率。要获得概率，请使用公式

1-7中的Softmax函数：

（1-7）

在公式1-7中， 表示正在计算的输出神经元（ ）的索引， 表示该

组/级别中所有神经元的索引。变量 表示输出神经元的数组。请务必注

意，Softmax激活函数的计算方法与本章中的其他激活函数不同。在使

用Softmax作为激活函数时，单个神经元的输出取决于其他输出神经

元。在公式1-7中，你可以观察到其他输出神经元的输出包含在变量

中，而本章中的其他激活函数均未使用 。清单1-1用伪代码实现了

Softmax激活函数。

清单1-1　Softmax激活函数

def softmax(neuron_output):
 sum = 0
 for v in neuron_output:
 sum = sum + v

 sum = math.exp(sum)
 proba = []
 for i in range(len(neuron_output)):
 proba[i] = math.exp(neuron_output[i])/sum
 return proba

请考虑一个训练好的神经网络，它将数据分为三类，如3个鸢尾花

物种。在这种情况下，你将为每个目标分类使用一个输出神经元。请考

虑神经网络要输出以下内容：

Neuron 1: setosa: 0.9

Neuron 2: versicolour: 0.2
Neuron 3: virginica: 0.4

从上面的输出中我们可以清楚地看到，神经网络认为数据代表了

setosa鸢尾花。但是，这些值不是概率。值0.9不表示数据有90%的概率

代表setosa。这些值的总和为1.5。要将它们视为概率，它们的总和必须

为1。该神经网络的输出向量如下：

[0.9, 0.2, 0.4]

如果将此向量提供给Softmax激活函数，则返回以下向量：

[0.47548495534876745, 0.2361188410001125, 0.28839620365112]

以上3个值的总和为1，可以视为概率。由于向量中的第一个值四舍

五入为0.48（48%），因此数据表示setosa的概率为48%。你可以通过以

下方式计算该值：

sum=exp(0.9)+exp(0.2)+exp(0.4)=5.17283056695839
j0=exp(0.9)/sum=0.47548495534876745
j1=exp(0.2)/sum=0.2361188410001125
j2=exp(0.4)/sum=0.28839620365112

　1.4.2　偏置扮演什么角色？

在1.3节中看到的激活函数指定了单个神经元的输出。神经元的权

重和偏置（bias）共同决定了激活的输出，以产生期望的输出。要查看

这个过程如何发生，请考虑公式1-8。它表示了单输入的S型激活神经网

络：

（1-8）

变量 表示神经网络的单个输入。 和 变量指定了神经网络的权重

和偏置。公式1-8是一种组合，包含了指定神经网络的公式1-1和指定S

型激活函数的公式1-4。

通过调整神经元的权重可以调整激活函数的斜率或形状。图1-12展

示了权重变化对S型激活函数输出的影响。

图1-12　调整神经元权重

图1-12展示了使用以下参数的多个S型曲线：

f(x, 0.5, 0.0)
f(x, 1.0, 0.0)
f(x, 1.5, 0.0)
f(x, 2.0, 0.0)

为了生成这些曲线，我们没有使用偏置，这很显然，因为每种情况

下第3个参数都是0。使用4个权重值会在图1-12中产生4条不同的S型曲

线。无论权重如何，当 为0时我们总是得到相同的值0.5，因为当 为0

时所有曲线都到达同一点。当输入接近0.5时，我们可能需要神经网络

产生其他值。

调整偏置会使S型曲线发生移动，这使得当 接近0时，该函数取值

不为0.5。图1-13展示了权重为1.0时，偏置变化对S型激活函数输出的影

响。

图1-13展示了具有以下参数的多条S型曲线：

f(x, 1.0, 1.0)
f(x, 1.0, 0.5)
f(x, 1.0, 1.5)
f(x, 1.0, 2.0)

图1-13　调整神经元偏置

这些函数的权重均为1.0。当我们调整不同的偏置时，S型曲线向左

或向右移动。由于所有曲线在右上角或左下角发生合并，因此并不是完

全的移位。

当我们将偏置和权重放在一起时，它们生成了一条曲线，该曲线创

建了神经元所需的输出。以上曲线仅是一个神经元的输出。在一个完整

的神经网络中，许多不同神经元的输出将合并，以产生复杂的输出模

式。

1.5　神经网络逻辑

作为计算机程序员，你可能熟悉逻辑编程。你可以使用编程运算符

AND、OR和NOT来控制程序的决策方式。这些逻辑运算符通常定义了

神经网络中权重和偏置的实际含义。考虑以下真值表：

0 AND 0 = 0
1 AND 0 = 0
0 AND 1 = 0
1 AND 1 = 1
0 OR 0 = 0
1 OR 0 = 1
0 OR 1 = 1
1 OR 1 = 1
NOT 0 = 1
NOT 1 = 0

真值表指定如果AND运算符的两边均为真，则最终输出也为真。在

所有其他情况下，AND的结果均为假。这个定义非常适合英文单

词“and”。如果你想要一栋风景宜人“且”有大后院的房子，那么这个房

子必须同时满足这两个条件才能选择。如果你想要一间视野开阔“或”后

院很大的房子，那么这个房子只需要满足一个条件就可以了。

这些逻辑语句可能变得更加复杂。请考虑如果你想要一间视野开阔

且后院很大的房子，但是，你对后院较小但在公园附近的房子也会感到

满意。你可以通过以下方式表示这一想法：

([nice view] AND [large yard]) OR ((NOT [large yard]) and [park])

你可以使用以下逻辑运算符来表示前面的语句：

（1-9）

在上面的语句中，OR（ 看起来像字母“v”，AND（ ）看起来像颠

倒的“v”，而NOT（ ）看起来像半个方框。

我们可以使用神经网络来表示AND、OR和NOT的基本逻辑运算

符，如图1-14所示。

图1-14展示了3个基本逻辑运算符的权重和偏置权重。你可以用公

式1-1轻松计算所有这些运算符的输出。请考虑具有两个“真”（1）输入

的AND运算符：

(1 * 1) + (1 * 1) + (−1.5) = 0.5

图1-14　基本逻辑运算符

这里我们用的是阶跃激活函数。因为0.5大于或等于0.5，所以输出

为1，即真。我们可以计算一个输入为假的表达式：

(1 * 1) + (0 * 1) + (−1.5) = −0.5

由于我们采用阶跃激活函数，因此这个输出为0，即假。

我们可以利用这些神经元构建更复杂的逻辑结构。考虑具有以下真

值表的异或运算符：

0 XOR 0 = 0
1 XOR 0 = 1
0 XOR 1 = 1
1 XOR 1 = 0

XOR运算符规定，它的一个输入（但不是两个输入）为真时，结果

为真。如两辆车中的一辆将赢得比赛，但并非两辆都获胜。可以使用基

本的AND、OR和NOT运算符编写XOR运算符，如下所示：

（1-10）

带圆圈的加号是XOR运算符的符号， 和 是要评估的两个输入。如

果你明白XOR运算符的含义是 或 ，但不是同时 和 ，那么上述表达式

的意义就清楚了。图1-15展示了可以表示XOR运算符的神经网络。

图1-15　XOR神经网络

计算上述神经网络需要几个步骤。首先，必须为每个直接连接到输

入的节点计算值。上述神经网络有两个节点。我们将展示用输入[0,1]来

计算XOR的例子。我们首先计算两个最上面的未标记（隐藏）节点：

(0 * 1) + (1 * 1) − 0.5 = 0.5 = True
(0 * 1) + (1 * 1) − 1.5 = −0.5 = False

接下来，我们计算未标记（隐藏）的下部节点：

(0 * −1) + 0.5 = 0.5 = True

最后，我们计算O1：

(1 * 1) + (1 * 1) −1.5 = 0.5 = True

如你所见，你可以手动连接神经网络中的连线以产生所需的输出，

但是，手动创建神经网络非常烦琐。本书后文将介绍几种算法，它们可

以自动确定权重和偏置。

1.6　本章小结

在本章中，我们展示了神经网络由神经元、层和激活函数组成。从

根本上说，神经网络中的神经元本质上可能是输入、隐藏或输出神经

元。输入和输出神经元将信息传入和传出神经网络。隐藏神经元出现在

输入和输出神经元之间，有助于处理信息。

激活函数可缩放神经元的输出。我们也介绍了几种激活函数。两种

最常见的激活函数是S型激活函数和双曲正切激活函数。S型激活函数适

用于只需要正输出的神经网络。双曲正切激活函数支持正输出和负输

出。

神经网络可以构建逻辑表达式，我们展示了如何生成AND、OR和

NOT运算符的权重。使用这3个基本运算符，你可以构建更复杂的逻辑

表达式。我们提供了一个构建XOR运算符的示例。

既然我们已经了解了神经网络的基本结构，我们将在接下来的内容

中探索几种经典的神经网络，以便你可以使用这种抽象结构。经典的神

经网络结构包括自组织映射、霍普菲尔德神经网络和玻尔兹曼机等。这

些经典的神经网络构成了我们在本书中介绍的其他结构的基础。

[1]　Hornik，1991。

第2章　自组织映射

本章要点：

自组织映射；

邻域函数；

无监督训练；

维度。

既然已经探索了第1章介绍的神经网络的抽象性质，接下来你将学

习几种经典的神经网络。本章介绍当今仍然有用的、最早的一种神经网

络。由于神经元可以通过各种方式连接，因此存在许多不同的神经网络

架构，它们基于第1章“神经网络基础”的基本思想。我们从自组织映射

（Self-Organizing Map，SOM）开始研究经典神经网络。

人们利用SOM，将神经网络的输入数据分类。将训练数据和希望将

这些数据分类的组数一同提供给SOM。在训练期间，SOM会将这些数

据分组。特征最相似的数据将被分在一起。这个过程与聚类算法（如K

均值）非常相似。但是，与仅对一组初始数据进行分组的K均值不同，

SOM可以继续对除用于训练的初始数据集之外的新数据进行分类。与本

书中的大多数神经网络不同，SOM是无监督的——你不会告诉它期望训

练数据归入哪些组。SOM会根据你的训练数据简单地确定这些组本身，

然后将未来的所有数据分为相似的组。将来的分类利用了SOM从训练数

据中学到的内容。

2.1　自组织映射和邻域函数

Kohonen（1988）引入了SOM，这是一个由输入层和输出层组成的

神经网络。两层SOM也被称为Kohonen神经网络，在输入层将数据映射

到输出层时起作用。当程序将模式提供给输入层时，如果输出神经元包

含与输入最相似的权重，它就被认为是赢家。通过比较来自每个输出神

经元的权重集之间的欧氏距离，来计算这种相似性，欧氏距离最短者获

胜。计算欧氏距离是下文的重点。

与第1章中讨论的前馈神经网络不同，SOM中没有偏置。它仅具有

从输入层到输出层的权重。此外，它仅使用了线性激活函数。图2-1展

示了SOM。

图2-1　SOM

图2-1中的SOM展示了程序如何将3个输入神经元映射到9个输出神

经元，它们以3×3网格的方式排列。SOM的输出神经元通常排列成网

格、立方体或其他高维构造。因为大多数神经网络中输出神经元的排序

通常根本不表达任何意义，所以这种安排有很大不同。如在大多数神经

网络中，一个输出神经元与另一个输出神经元的接近程度并不重要。但

对于SOM，一个输出神经元与另一个输出神经元的接近程度很重要。计

算机视觉应用程序利用神经元的接近程度来更准确地识别图像。卷积神

经网络（将在第10章“卷积神经网络”中探讨）根据这些输入神经元彼此

之间的接近程度，将神经元分组为重叠的区域。识别图像时，考虑哪些

像素彼此靠近非常重要。程序通过查看彼此附近的像素来识别如边缘、

实心区域和线条之类的模式。

SOM的输出神经元的常见结构如下。

一维：输出神经元排列成一行。

二维：输出神经元排列在网格中。

三维：输出神经元排列成立方体。

现在，我们将看到如何构造一个简单的SOM，它学习识别以RGB

向量的形式给出的颜色。单个红色、绿色和蓝色值的范围可以在−1～

+1。−1表示黑色或没有颜色，而+1表示红色、绿色或蓝色的完整强度。

这些三色分量构成了神经网络输入。

输出是一个2 500个神经元的网格，排列成50行×50列。在这个输出

网格中，该SOM将类似的颜色组织到相近的位置。图2-2展示了这个输

出。

图2-2　输出网格

尽管图2-2在本书的黑白版本中可能不像在彩色电子版中那样清

晰，但是你可以看到相似的颜色彼此组合在一起。单个的、基于颜色的

SOM是一个非常简单的示例，让你能够看到SOM的分组能力。

如何训练SOM？训练过程将更新权重矩阵，它是3×2 500的矩阵。

首先，程序将权重矩阵初始化为随机值。然后，它随机选择15种训练颜

色。

训练将通过一系列迭代进行。与其他神经网络不同，SOM的训练包

含固定数量的迭代。为了训练基于颜色的SOM，我们将使用1 000次迭

代。

每次迭代将从训练集中选择一个随机颜色样本，该样本是RGB颜色

向量的集合，每个向量由3个数字组成。同样，2 500个输出神经元和3

个输入神经元之间的权重是由3个数字组成的向量。随着训练的进行，

程序将计算每个权重向量与当前训练模式之间的欧氏距离。欧氏距离确

定相同尺寸的两个向量之间的差。在这种情况下，两个向量都代表RGB

颜色，由3个数字组成。我们将训练数据中的颜色与每个神经元的3个权

重进行比较。公式2-1给出了欧氏距离的计算：

（2-1）

在公式2-1中，变量 表示训练模式，变量 表示权重向量。对每个

向量分量之间的差取平方，并取所得和的平方根，计算出欧氏距离。该

计算测量了每个权重向量和输入训练模式之间的差异。

程序为每个输出神经元计算欧氏距离，距离最短的神经元称为最佳

匹配单元（Best Matching Unit，BMU）。该神经元将从当前的训练模式

中学到最多的知识，BMU的邻居将学到较少。为了执行此训练，程序

会在每个神经元上循环并确定应训练的程度。靠近BMU的神经元将接

受更多训练。公式2-2可以做出这个决定：

（2-2）

在公式2-2中，变量 （也称为迭代次数）代表时间。该公式的目的

是计算得到权重向量 。通过累加当前权重向量 来确定下

一个权重向量。最终目标是计算当前权重向量与输入向量之间的差异，

这由公式2-2中的子项 完成。训练SOM是使神经元的权重与

训练元素更相似的过程。我们不想简单地将训练元素分配给输出神经元

权重，使它们相同。作为替代，我们计算训练元素和神经元权重之间的

差异，并通过将它乘以两个比率来缩放此差异。用θ（theta）表示的第

一个比率是邻域函数，用α（alpha）表示的第二个比率是单调递减的学

习率。换言之，随着训练的进行，学习率持续下降，不会上升。

邻域函数考虑每个输出神经元与BMU的距离。对于较近的神经

元，邻域函数将返回接近1的值；对于较远的邻域，邻域函数将返回接

近0的值。这个0～1的范围控制了训练近邻和远邻的方式。较近的邻居

将获得更多的权重调整训练。在2.1.1小节中，我们将分析邻域函数如何

调整训练。除了邻域函数外，学习率也缩放了程序调整输出神经元的程

度。

　2.1.1　理解邻域函数

邻域函数确定每个输出神经元应从当前训练模式中接受训练调整的

程度。该函数通常为BMU返回值1，该值表示BMU应该接受最多的训

练，远离BMU的神经元将接受较少的训练。邻域函数用于确定这个权

重。

如果输出神经元仅按一维的结构排列，就应使用简单的一维邻域函

数。该函数将输出视为一长串数字，如一维神经网络可能有100个输出

神经元，这些神经元形成一个长单维数组，由100个值组成。

二维SOM可能同样会使用100个值，并将它们表示为网格，可能是

10行10列。二维SOM实际结构保持不变，神经网络有100个输出神经

元，唯一的区别是邻域函数。一维SOM会使用一维邻域函数，二维会使

用二维邻域函数。函数必须考虑这个附加维度，并将它作为影响返回距

离的因素。

邻域函数还可以是具有三维、四维，甚至更多维度的函数。通常，

邻域函数以向量形式表示，因此维度无关紧要。为了表示维度，领域函

数会采用所有输入的欧氏范数（用两对竖线表示），如公式2-3所示：

（2-3）

对于公式2-3，变量 表示有维度的输入，变量 代表权重向量。一

维向量 只有一个值。一维向量(2−0)的欧氏范数计算如下：

（2-4）

计算二维向量(2−0,3−0)的欧氏范数稍微复杂一点：

（2-5）

对于SOM，最受欢迎的选择是二维邻域函数，一维邻域函数也很常

见，但是，具有3个或3个以上维度的邻域函数较为罕见。实际上，维度

的选择取决于程序员对输出神经元彼此相邻有多少种方式的决定。这个

决定不应草率，因为每个额外的维度都会显著影响所需的内存量和处理

能力。这种额外的处理导致大多数程序员都会为SOM应用程序选择两三

个维度。

可能很难理解为什么你可能拥有3个以上的维度。以下类比说明了3

个维度的局限性。在杂货店里，约翰注意到一包苹果干。当他向左或向

右转动头，在第1维中扫视时，他看到了其他品牌的苹果干。如果他向

上或向下看，在第2维中扫视，他会看到其他类型的零食。第3维度（即

深度）只是给了他更多完全相同的苹果干。他朝前一包苹果干的后面

看，发现了更多库存。但是，没有第4维度，如果有的话，它可以允许

新鲜苹果位于苹果干附近。因为超级市场只有3个维度，所以这种类型

的链接是不可能的。程序员没有这种限制，他们必须决定是否需要额外

的处理时间，以获得更多维度的好处。

高斯函数是邻域函数的流行选择。公式2-6使用欧氏范数来计算任

意维度的高斯函数：

（2-6）

变量 代表高斯函数的输入， 代表高斯函数的中心， 代表宽度。

变量 、 和 都是具有多个维度的向量。图2-3展示了一维高斯函数。

图2-3　一维高斯函数

图2-3说明了为什么高斯函数是邻域函数的流行选择。程序员经常

使用高斯函数来显示正态分布或钟形曲线。如果当前输出神经元是

BMU，则其距离（ 坐标）将为0。因此，训练百分比（ 坐标）为

1（100%）。随着距离向正、负方向增加，训练百分比减小。一旦距离

足够大，训练百分比将接近0。

如果高斯函数的输入向量具有两个维度，则图像如图2-4所示。

图2-4　二维高斯函数

算法如何在神经网络中使用高斯常数？邻域函数的中心（ ）始终

为0，该函数以原点为中心。如果算法将中心从原点移开，则BMU以外

的神经元将获得充分的学习。但你可能不太想将中心移离原点。对于多

维高斯函数，将所有中心设置为0，以便将曲线定位在原点。

剩下的唯一高斯参数是宽度。你应该将此参数设置为稍微小于网格

或数组的整个宽度的值。随着训练的进行，宽度逐渐减小。与学习率一

样，宽度应该单调减小。

　2.1.2　墨西哥帽邻域函数

尽管高斯函数是最流行的，但它并不是唯一可用的邻域函数。雷克

波（Ricker wave）或墨西哥帽（Mexican hat）函数是另一种流行的邻域

函数。与高斯邻域函数一样， 维的向量是墨西哥帽函数的基础，如公

式2-7所示：

（2-7）

与高斯函数基本相同，程序员可以在一个或多个维度上使用墨西哥

帽函数。图2-5展示了一维墨西哥帽函数。

图2-5　一维墨西哥帽函数

你必须意识到，墨西哥帽函数会对距离中心2～4或−2～−4单位的邻

居造成不利影响。如果你的模型试图对附近未命中的位置罚分，那么墨

西哥帽函数是一个不错的选择。

你也可以在两个或更多个维度上使用墨西哥帽函数。图2-6展示了

二维墨西哥帽函数。

与一维墨西哥帽函数一样，二维的墨西哥帽函数也会对附近未命中

的位置造成不利影响。唯一的区别是二维墨西哥帽函数使用二维向量，

与一维变量相比，二维向量看起来更像墨西哥草帽。尽管可以使用超过

两个维度，但是由于我们以三维的方式感知空间，因此很难让这些更多

维度的变体可视化。

图2-6　二维墨西哥帽函数

　2.1.3　计算SOM误差

监督训练通常会报告误差度量，该误差度量会随着训练的进行而减

少。无监督模型（如SOM）无法直接计算误差，因为没有预期的输出，

但是，可以为SOM计算误差的估计值[1]。

我们将误差定义为训练迭代中所有BMU的最长欧氏距离。每个训

练集元素都有其自己的BMU。随着学习的进行，最长的欧氏距离应减

少。结果也表明了SOM训练的成功，因为随着训练的进行，该值将趋于

下降。

2.2　本章小结

在前文中，我们解释了几种经典的神经网络。自从Pitts（1943）引

入神经网络以来，人们已经发明了许多不同的神经网络类型。我们主要

集中在仍有相关性的经典神经网络上，这些神经网络为我们在本书后续

内容中介绍的其他架构奠定了基础。

本章重点介绍了SOM，它是可以对数据进行聚类的无监督神经网

络。SOM的输入神经元个数等于要进行聚类的数据的属性数。输出神经

元个数等于应将数据聚类到的组数。SOM以无监督的方式进行训练。换

言之，其只有数据点被提供给神经网络，没有提供预期的输出。SOM学

习对数据点进行聚类，尤其是与训练过的数据点相似的数据点。

在第3章中，我们将研究另外两种经典的神经网络：霍普菲尔德神

经网络和玻尔兹曼机。这两种神经网络有些相似，因为它们在训练过程

中都使用能量函数。能量函数测量神经网络中的能量。随着训练的进

行，能量将随着神经网络的学习而减少。

[1]　Masters，1993。

第3章　霍普菲尔德神经网络和玻尔兹曼机

本章要点：

霍普菲尔德神经网络；

能量函数；

Hebbian学习；

关联记忆；

优化；

玻尔兹曼机。

本章将介绍霍普菲尔德神经网络和玻尔兹曼机。尽管这两种经典神

经网络都没有在现代AI应用程序中广泛使用，但两者都是现代算法的基

础。玻尔兹曼机构成了深度信念神经网络（Deep Belief Neural

Network，DBNN）的基础，它是深度学习的基本算法之一。霍普菲尔

德神经网络是一种非常简单的神经网络，它具备许多特性，这些特性也

是更复杂的前馈神经网络所具有的。

3.1　霍普菲尔德神经网络

霍普菲尔德神经网络[1]也许是最简单的神经网络，因为它是一个完

全连接的单层自动关联神经网络。换言之，它只有一层，其中每个神经

元都彼此相连。此外，术语“自动关联”是指神经网络在识别出模式后会

返回整个模式，神经网络将补全不完整模式或失真模式。

图3-1展示了只有4个神经元的霍普菲尔德神经网络。四神经元网络

非常方便，因为它足够小，方便可视化，且可以识别一些模式。

图3-1　具有12个连接的霍普菲尔德神经网络

因为霍普菲尔德神经网络中的每个神经元都彼此相连，所以你可能

会假设四神经元网络将包含4×4的矩阵，即16个连接。但是，16个连接

要求每个神经元与其自身和每个其他神经元都连接。在霍普菲尔德神经

网络中，不会有16个连接，其实际的连接数为12。

这些连接被加权并存储在矩阵中。4×4的矩阵将存储图3-1所示的网

络。实际上，这个矩阵的对角线是0，因为没有自连接。本书中的所有

神经网络示例都将使用某种形式的矩阵来存储其权重。

霍普菲尔德神经网络中的每个神经元的状态为真（1）或假

（−1）。这些状态最初是霍普菲尔德神经网络的输入，最终成为神经网

络的输出。要确定霍普菲尔德神经元的状态是−1还是1，请使用公式3-

1：

（3-1）

公式3-1计算神经元 的状态。给定神经元的状态很大程度上取决于

其他神经元的状态。该公式将其他神经元（ ）的权重（ ）和状态（

）相乘并进行累加。本质上，如果此总和大于阈值（θ），则当前神经

元（ ）的状态为+1，否则为−1。阈值通常为0。

由于单个神经元的状态取决于其他神经元的状态，因此该公式计算

神经元的顺序非常重要。程序员经常采用以下两种策略来计算霍普菲尔

德神经网络中所有神经元的状态。

异步：这种策略一次仅更新一个神经元。它随机选择神经元。

同步：它同时更新所有神经元。该方法不太符合现实世界，因为生

物有机体缺乏使神经元同步的全局时钟。

通常，你应该运行一个霍普菲尔德神经网络，直到所有神经元的状

态稳定下来。尽管每个神经元的状态都依赖于其他神经元的状态，但神

经网络通常会收敛到稳定状态。

重要的是要对神经网络收敛到稳定状态的距离有一些指标。你可以

计算霍普菲尔德神经网络的能量值。随着霍普菲尔德神经网络转向更稳

定的状态，该值逐步减小。要评估神经网络的稳定性，可以使用能量函

数。公式3-2展示了能量函数：

（3-2）

本章后面要讨论的玻尔兹曼机也利用了这种能量函数。玻尔兹曼机

与霍普菲尔德神经网络具有许多相似之处。当阈值为0时，公式3-2中等

号右边的第二项就会消失。清单3-1包含实现公式3-2的代码。

清单3-1　霍普菲尔德能量

def energy(weights,state,threshold):
 # First term
 a = 0
 for i in range(neuron_count):
 for j in range(neuron_count):
 a = a + weight[i][j] * state[i] * state[j]

 a = a * -0.5
 # Second term
 b = 0
 for i in range(neuron_count):
 b = b + state[i] * threshold[i]

 # Result
 return a + b

　训练霍普菲尔德神经网络

你可以训练霍普菲尔德神经网络安排其权重，使得该神经网络收敛

到所需模式（也称为训练集）。

这些期望的模式是一个模式列表，对于构成玻尔兹曼机的每个神经

元有一个布尔值。以下数据可能代表具有8个神经元的霍普菲尔德神经

网络的一个训练集，包含4个模式：

1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 1
0 0 0 1 1 0 0 0

以上数据完全是任意的。但是，它们确实代表了训练霍普菲尔德神

经网络的实际模式。训练后，类似于下面的模式应该与训练集中的一个

近似的模式匹配：

1 1 1 0 0 0 0 0

因此，霍普菲尔德神经网络的状态应变更为以下模式：

1 1 0 0 0 0 0 0

你可以通过Hebbian[2]或Storkey[3]学习来训练霍普菲尔德神经网

络。Hebbian学习过程在生物学上是合理的，通常表示为“细胞如果一起

激活，就连接在一起”。换言之，如果两个神经元经常对相同的输入刺

激做出反应，则它们将被连接起来。公式3-3从数学上总结了这种行

为：

（3-3）

常数 代表训练集元素ε（epsilon）的数量。权重矩阵是方阵，包含

等于神经元数量的行和列。对角线元素总是0，因为神经元未与其自身

连接。矩阵中的其他位置将包含一些值，指定训练模式中两个值是+1或

−1的概率。清单3-2包含了实现公式3-3的代码。

清单3-2　霍普菲尔德的Hebbian训练

def add_pattern(weights,pattern,n):
 for i in range(neuron_count):
 for j in range(neuron_count):
 if i==j:
 weights[i][j] = 0
 else:
 weights[i][j] = weights[i][j]
 +((pattern[i] * pattern[j])/n)

我们应用add_pattern方法来添加每个训练元素。参数weights指定权

重矩阵，参数pattern指定每个单独的训练元素，参数n指定训练集中的

元素数量。

公式和代码可能不足以展示从输入模式生成权重的过程。为了让这

个过程可视化，我们在以下网址提供了一个在线JavaScript应用程序：

http://www.heatonresearch.com/aifh/vol3/hopfield.html

考虑将以下数据用于训练霍普菲尔德神经网络：

[1, 0, 0, 1]
[0, 1, 1, 0]

上述数据应生成如图3-2所示的权重矩阵。

图3-2　权重矩阵

要计算上述矩阵，用1除以训练集元素的数量，结果是1/2，即0.5。

值0.5放置在训练集中包含1的每个行列位置上。如第一个训练元素在神

经元#0和#3中的值为1，则将0.5添加到第0行第3列和第3行第0列。对于

其他训练集元素，继续执行相同的过程。

霍普菲尔德神经网络的另一种常见训练算法是Storkey算法。与刚刚

描述的Hebbian算法相比，由Storkey算法训练的霍普菲尔德神经网络的

模式能力更强。Storkey算法比Hebbian算法更复杂。

Storkey算法的第一步是计算一个名为“本地字段”（local field）的

值。利用公式3-4计算该值：

（3-4）

我们针对每个权重元素（ 和 ）计算本地字段值（ ）。和以前一

样，我们使用权重（ ）和训练集元素（ ）。清单3-3提供了计算本地

字段的代码。

清单3-3　计算Storkey本地字段

def calculate_local_field(weights, i, j, pattern):
 sum = 0
 for k in range(len(pattern)):
 if k != i:
 sum = sum + weights[i][k] * pattern[k]
 return sum

公式3-5利用本地字段值计算所需的变化：

（3-5）

清单3-4计算了权重增量的值。

清单3-4　计算权重增量

def add_pattern(weights, pattern):
 sum_matrix = matrix(len(pattern),len(pattern))
 n = len(pattern)
 for i in range(n):
 for j in range(n):
 t1 = (pattern[i] * pattern[j])/n
 t2 = (pattern[i] *
 calculate_local_field(weights,j,i,pattern))/n
 t3 = (pattern[j] *
 calculate_local_field(weights,i,j,pattern))/n
 d = t1-t2-t3;
 sum_matrix[i][j] = sum_matrix[i][j] + d
 return sum_matrix

一旦计算了权重增量，就可以将它们添加到已有的权重矩阵中。如

果还没有权重矩阵，只需让增量权重矩阵成为权重矩阵即可。

3.2　Hopfield-Tank神经网络

在3.1节中，你了解了霍普菲尔德神经网络可以记住模式。除此之

外，它们还可以用于优化问题，如旅行商问题。Hopfield和

Tank（1984）引入了一种特殊的变体，即Hopfield-Tank神经网络，用于

寻找优化问题的解。

Hopfield-Tank神经网络的结构与标准霍普菲尔德神经网络有所不

同。常规霍普菲尔德神经网络中，神经元只能保存两个离散值（0或

1），但是，Hopfield-Tank神经元可以保存0～1的任何数字。Hopfield-

Tank神经网络可保存一个范围内的连续值。另一个重要的区别是

Hopfield-Tank神经网络使用S型激活函数。

要使用Hopfield-Tank神经网络，必须创建专门的能量函数来表达要

解决的每个问题的参数，但是，创建这种能量函数是一项耗时的任务。

Hopfield和Tank（2008）演示了如何为旅行商问题构建能量函数。其他

优化算法，如模拟退火和Nelder-Mead，不需要创建复杂的能量函数。

这些通用优化算法通常比旧的Hopfield-Tank优化算法表现更好。

由于其他算法通常是进行优化的更好选择，因此本书不介绍优化

Hopfield-Tank神经网络。Nelder-Mead和模拟退火在本系列图书卷1《基

础算法》中进行了介绍。第6章“反向传播训练”将回顾随机梯度下降

（Stochastic Gradient Descent，SGD），它是前馈神经网络的最佳训练

算法之一。

3.3　玻尔兹曼机

Hinton和Sejnowski（1985）首次引入了玻尔兹曼机，但是这种神经

网络直到最近才得到广泛使用。受限玻尔兹曼机（Restricted Boltzmann

Machine，RBM）是一种特殊的玻尔兹曼机，是深度学习和深度信念神

经网络的基础技术之一。在本章中，我们将介绍经典的玻尔兹曼机。在

第9章“深度学习”中我们将介绍深度学习和受限玻尔兹曼机。

玻尔兹曼机本质上是一个完全连接的两层神经网络。我们将这些层

称为可视层和隐藏层。可视层类似于前馈神经网络中的输入层。事实

上，尽管玻尔兹曼机具有隐藏层，但它更多地充当了输出层。隐藏层含

义的这种差异，通常是玻尔兹曼机与前馈神经网络之间产生混淆的根

源。玻尔兹曼机在输入层和输出层之间没有隐藏层。图3-3展示了玻尔

兹曼机的非常简单的结构。

图3-3　玻尔兹曼机

图3-3所示的玻尔兹曼机有3个隐藏神经元和4个可视神经元。玻尔

兹曼机是完全连接的，因为每个神经元都与其他每个神经元有连接，但

是，没有神经元与其自身连接。这种连接性区分了玻尔兹曼机与受限玻

尔兹曼机，如图3-4所示。

图3-4　受限玻尔兹曼机

图3-4所示的受限玻尔兹曼机不是完全连接的。所有隐藏神经元都

连接到每个可视神经元，但是，隐藏神经元之间没有连接，可视神经元

之间也没有连接。

与霍普菲尔德神经网络一样，玻尔兹曼机的神经元只能取0或1的二

元值。尽管有一些关于连续玻尔兹曼机的研究，它们能够为神经元分配

十进制数，但几乎所有的研究都集中在二元值的玻尔兹曼机上。因此，

本书不包含有关连续玻尔兹曼机的信息。

玻尔兹曼机也称为生成模型。换言之，玻尔兹曼机不会产生恒定不

变的输出。提供给玻尔兹曼机的可视神经元的值，在考虑到权重后，指

定了隐藏神经元将取值为1（而不是0）的概率。

尽管玻尔兹曼机和霍普菲尔德神经网络具有一些共同的特征，但仍

存在一些重要差异。

霍普菲尔德神经网络受到识别某些错误模式的困扰；

玻尔兹曼机的存储模式容量可以比霍普菲尔德神经网络更大；

霍普菲尔德神经网络要求输入模式不相关；

玻尔兹曼机可以堆叠形成多层。

　玻尔兹曼机概率

当程序查询玻尔兹曼机的隐藏神经元的值是否为1时，它将随机产

生0或1。公式3-6给出该神经元的值为1的概率计算：

（3-6）

公式3-6将计算出一个0～1的数，表示概率。例如，如果生成值是

0.75，则在75%的情况下，神经元将返回1。一旦计算出概率，就可以生

成一个0～1的随机数，如果该随机数低于该概率就返回1，从而产生输

出。

公式3-6返回了神经元 为1（on）的概率，由 处的增量能量（∆ ）

计算得出。该公式还使用了值 ，它代表系统的温度。本章前面的公式

3-2可以计算 （系统总能量代表了系统温度），其中值θ是神经元的偏

置值。

使用公式3-7计算能量变化：

（3-7）

该值是神经元 在1（on）和0（off）之间的能量差，使用代表偏置

的θ计算得出。

尽管单个神经元的值是随机的，但它们通常会处于平衡状态。为了

达到这种平衡，你可以反复计算该神经网络。每一次选择一个单元，用

公式3-6设置其状态。在一定温度下运行足够的时间后，神经网络全局

状态的概率将仅取决于该全局状态的能量。

换言之，整体状态的对数概率与其能量变为线性关系。当玻尔兹曼

机处于热平衡状态时，这种关系是成立的，这意味着全局状态的概率分

布已经收敛。如果我们从高温开始运行该神经网络，并逐渐降低温度，

直到达到低温下的热平衡，那么我们可能会收敛到一个分布，其中能量

水平围绕全局最小值波动。我们称这个过程为模拟退火。

3.4　应用玻尔兹曼机

关于玻尔兹曼机的大多数研究已经转移到受限玻尔兹曼机，我们将

在第9章“深度学习”中进行解释。在本节中，我们将重点介绍玻尔兹曼

机较早的无限制形式，该形式已应用于解决优化和识别问题。我们将从

一个优化问题开始，展示每种类型的示例。

　3.4.1　旅行商问题

旅行商问题（Traveling Sales Problem，TSP）是经典的计算机科学

问题，用传统的编程技术很难解决。可以将人工智能应用于求取TSP的

潜在解。该程序必须确定一组固定城市的顺序，以最大程度地减少途经

的总距离。TSP被称为组合问题。如果你已经熟悉TSP，或者已经在本

系列图书的卷2中阅读了TSP，则可以跳过本节。

TSP需要为旅行商确定最短路径，旅行商必须拜访一定数量的城

市。尽管他可以从任何城市开始和结束，但每个城市只能拜访一次。

TSP有多个变体，其中一些变体允许多次拜访城市，或为城市分配不同

的价值。本节中的TSP只是寻求一条尽可能短的路径，拜访每个城市一

次。图3-5展示了一个TSP中的一种可能路径。

图3-5　旅行商问题

对普通的迭代程序而言，找到最短的路径似乎很容易，但是，随着

城市数量的增加，可能的组合数量也会急剧增加。如果问题涉及1个或2

个城市，则只能选择1条或2条路径。如果问题涉及3个城市，则可能的

路径将增加到6条。以下列表展示了路径数量增长的速度：

1个城市有1条路径
2个城市有2条路径
3个城市有6条路径
4个城市有24条路径
5个城市有120条路径
6个城市有720条路径
7个城市有5 040条路径
8个城市有40 320条路径
9个城市有362 880条路径
10个城市有3 628 800条路径
11个城市有39 916 800条路径
12个城市有479 001 600条路径
13个城市有6 227 020 800条路径
……
50个城市有3.041×1064条路径

在上面的列表中，用于计算总路径的公式是阶乘。将阶乘运算符

（！）作用于城市数 。某个任意值 的阶乘由

给出。当程序必须执行蛮力搜索时，

这些值会变得非常大。TSP是“非确定性多项式时间”（Non-deterministic

Polynomial-time，NP）难题的一个例子。NP难题（NP-hard）非正式地

定义为：“缺乏有效方法验证正确解的所有问题”。当城市超过10个时，

TSP满足这个定义。NP难题的正式定义可以在Computers and

Intractability: A Guide to the Theory of NP-Completeness[4]一书中找到。

动态编程是解决TSP的另一种常用方法，如图3-6的漫画所示。

图3-6　解决TSP的方法（来自xkcd网站）

尽管本书没有全面讨论动态编程，但了解其基本功能还是很有价值

的。动态编程将TSP之类的大问题分解为较小的问题，工作可以被许多

较小的程序复用，从而减少蛮力解所需的迭代次数。

与蛮力解和动态编程不同，遗传算法不能保证找到最佳解。尽管它

将找到一个很好的解，但其可能不是最好的。在3.4.2小节中讨论的示例

程序，利用玻尔兹曼机优化问题。

　3.4.2　优化问题

要将玻尔兹曼机用于优化问题，有必要以适合玻尔兹曼机的二元值

神经元的方式，来表示TSP的解。Hopfield（1984）设计了TSP的编码，

霍普菲尔德神经网络和玻尔兹曼机通常都使用它来表示这个组合问题。

我们将霍普菲尔德神经网络或玻尔兹曼机的神经元排列在正方形网

格上，行和列的数量等于城市的数量。每列代表一个城市，每行对应旅

程中的一个路段。旅程中的路段数等于城市数，从而形成正方形网格。

在矩阵的每一行中，都应该只有一列的值为1。这个值指定了每个行程

段的目的城市。考虑图3-7中所示的城市和路径。

图3-7　城市和路径

因为问题包括4个城市，所以解决方案需要4×4的网格。拜访的第一

个城市是城市#0。因此，程序在第一行的第一列中标记1。同样，第二

次拜访城市#3，在第二行的最后一列中标记1。表3-1展示了完整的路

径。

表3-1　4个城市的编码

目的地 城市#0 城市#1 城市#2 城市#3

目的地#0 1 0 0 0

目的地#1 0 0 0 1

目的地#2 0 1 0 0

目的地#3 0 0 1 0

当然，玻尔兹曼机不会将神经元排列在网格中。为了将上述路径表

示为神经元值的向量，只需将行数值简单地顺序放置即可。也就是说，

矩阵以行方式展平，从而得到以下向量：

[1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0]

为了创建可以为TSP提供解的玻尔兹曼机，程序必须安排权重和偏

置，使得玻尔兹曼机神经元的状态稳定在最小化城市之间总距离的点

上。请记住，上述网格也可能处于许多无效状态。因此，有效的网格必

须具有以下内容：

每行只有一个值1；

每列只有一个值1。

因此，程序需要构造权重，使得玻尔兹曼机在无效状态下不会达到

平衡。清单3-5展示了生成这个权重矩阵的伪代码。

清单3-5　TSP的玻尔兹曼机权重

gamma = 7
Source
for source_tour in range(NUM_CITIES):
 for source_city in range(NUM_CITIES):
 source_index = source_tour * NUM_CITIES + source_city
Target
 for targetTour in range(NUM_CITIES):
 for (int target_city in range(NUM_CITIES):
 target_index = target_tour * NUM_CITIES + target_city

Calculate the weight
 weight = 0
Diagonal weight is 0
 if source_index != target_index:
Determine the next and previous element in the tour.
Wrap between 0 and last element.
 prev_target_tour = wrapped next target tour
 next_target_tour = wrapped previous target tour
If same tour element or city, then -gamma
 if (source_tour == target_tour)
 or (source_city == target_city):
 weight = -gamma
If next or previous city, -gamma
 elif ((source_tour == prev_target_tour)
 or (source_tour == next_target_tour))
 weight = -distance(source_city,target_city)
Otherwise 0
 set_weight(source_index, target_index, weight)
All biases are -gamma/2
 set_bias(source_index, -gamma / 2)

图3-8展示了针对4个城市创建的权重矩阵的一部分。

图3-8　TSP的玻尔兹曼机权重矩阵（4个城市，部分）

根据你所看的本书的版本，可能阅读上述表格有困难。因此，你可

以使用以下网址的JavaScript实用程序，针对任意多个城市生成它：

http://www.heatonresearch.com/aifh/vol3/boltzmann_tsp_grid.html

本质上，权重按以下方式指定。

矩阵对角线赋值为0。在图3-8中显示为“ \”。

源和目标位置相同，设置为−γ（gamma）。在图3-8中显示为 。

源和目标城市相同，设置为−γ。在图3-8中显示为 。

源和目标是下一个/上一个城市，设置为 。在图3-8中显示

为 (,)。

否则，设置为0。

矩阵在行和列之间是对称的。

　3.4.3　玻尔兹曼机训练

3.4.2小节展示了使用硬编码的权重来构造玻尔兹曼机，它能够找到

TSP的解。该程序通过对问题的认识来构造这些权重。要将玻尔兹曼机

应用于优化问题，手动设置权重是必要而困难的步骤。但是，由于

Nelder-Mead和模拟退火更常用于通用算法，因此本书不会包含有关为

一般优化问题构造权重矩阵的内容。

3.5　本章小结

霍普菲尔德神经网络是一种简单的神经网络，可以识别模式和解决

优化问题。你必须为每种需要霍普菲尔德神经网络解决的优化问题创建

特殊的能量函数。基于这种特点，程序员会选择Nelder-Mead或模拟退

火之类的算法，而不是霍普菲尔德神经网络的优化版本。

玻尔兹曼机是一种神经网络架构，它与霍普菲尔德神经网络有许多

共同的特征。但是，与霍普菲尔德神经网络不同，你可以利用玻尔兹曼

机堆叠深度信念神经网络。这种堆叠能力使玻尔兹曼机在实现深度信念

神经网络方面发挥了核心作用，这是深度学习的基础。

在第4章中，我们将研究前馈神经网络，它仍然是最流行的神经网

络之一。第4章将重点介绍使用S型激活函数和双曲正切激活函数的经典

前馈神经网络。新的训练算法、层类型、激活函数和其他创新，让经典

的前馈神经网络可以与深度学习一起使用。

[1]　Hopfield，1982。

[2]　Hopfield，1982。

[3]　Storkey，1999。

[4]　Garey，1979。

第4章　前馈神经网络

本章要点：

分类；

回归；

神经网络的层；

规范化。

本章我们将研究一种最常见的神经网络架构：前馈神经网络。由于

其用途广泛，前馈神经网络架构非常受欢迎。因此，我们将探索如何训

练它，以及它如何处理模式。

“前馈”一词描述了该神经网络如何处理和记忆模式。在前馈神经网

络中，神经网络的每一层都包含到下一层的连接。如这些连接从输入向

前延伸到隐藏层，但是没有向后的连接。这种安排不同于第3章中介绍

的霍普菲尔德神经网络。霍普菲尔德神经网络是完全连接的，它的连接

既向前又向后。在后文，我们将分析前馈神经网络的结构及其记忆模式

的方式。

我们可以使用多种反向传播算法中的各种技术来训练前馈神经网

络，这是一种有监督的训练形式，我们将在第5章中进行详细讨论。本

章重点介绍应用优化算法来训练神经网络的权重。如果你需要有关优化

算法的更多信息，本系列图书的卷1和卷2包含相关内容。尽管可以用几

种优化算法来训练权重，但我们主要将注意力集中在模拟退火上。

优化算法会调整一个数字向量，旨在根据一个目标函数获得良好的

得分。目标函数基于该神经网络的输出与预期输出的匹配程度，为神经

网络提供得分。该得分允许用任何优化算法来训练神经网络。

前馈神经网络类似于我们已经探讨过的神经网络。其从一个输入层

开始，可能连接到隐藏层或输出层。如果连接到隐藏层，则该隐藏层可

以随后连接到另一个隐藏层或输出层。隐藏层可以有任意多层。

4.1　前馈神经网络结构

在第1章“神经网络基础”中，我们讨论了神经网络可以具有多个隐

藏层，并分析了这些层的用途。在本章中，我们将从输出层的结构开

始，聚焦于输入神经元和输出神经元的结构。问题的类型决定了输出层

的结构。分类神经网络将为每个类别提供一个输出神经元，而回归神经

网络将只有一个输出神经元。

　用于回归的单输出神经网络

尽管前馈神经网络可以具有多个输出神经元，但我们将从回归问题

中的单输出神经网络开始。用于回归的单输出神经网络能够预测单个数

值。图4-1展示了一个单输出前馈神经网络。

图4-1　单输出前馈神经网络

这个神经网络将输出一个数值。我们可以通过以下方式使用这种类

型的神经网络。

回归：根据输入计算数值（如特定类型的汽车每加仑可行驶多少英

里）。

二元分类：根据输入确定两个选项（如在给定的特征下，哪个是恶

性肿瘤）。

我们在本章中提供了一个回归示例，该示例利用有关各种汽车模型

的数据，预测汽车的MPG。

有关各种汽车模型的数据来自于汽车MPG数据集，这个数据集的一

小部分示例如下：

mpg,cylinders,displacement,horsepower,weight,acceleration,model_year,origi
n,car_name
18,8,307,130,3504,12,70,1,"chevrolet chevelle malibu"
15,8,350,165,3693,11,70,1,"buick skylark 320"

18,8,318,150,3436,11,70,1,"plymouth satellite"
16,8,304,150,3433,12,70,1,"amc rebel sst"

对于回归问题，神经网络将创建气缸数、排量、马力和车重等列来

预测MPG。这些值是上面数据集示例中使用的所有字段，用于指定每辆

汽车的特征。在这个例子中，目标是预测MPG。但是，我们也可以利用

MPG、汽缸数、马力、车重和加速等来预测排量。

为了用神经网络对多个值执行回归，可以使用多个输出神经元。如

气缸、排量和马力可以预测MPG和车重。尽管多输出神经网络可以对两

个变量进行回归，但我们不建议使用此技术。对于要预测的每个回归结

果，通常使用单独的神经网络可以获得更好的结果。

4.2　计算输出

在第1章“神经网络基础”中，我们探讨了如何计算组成神经网络的

单个神经元的输出。简要回顾一下，单个神经元的输出就是其输入和偏

置的加权和。该和被传递给一个激活函数。公式4-1总结了神经网络的

计算输出：

（4-1）

神经元将输入向量（ ）乘以权重（ ），然后将结果传递给一个

激活函数（φ）。偏置是权重向量（ ）中的最后一个值，添加偏置的

方法是将值1.0连接到输入之后。如考虑具有两个输入和一个偏置的神

经元，如果输入为0.1和0.2，则输入向量如下所示：

[0.1, 0.2, 1.0]

在这个示例中，添加值1.0以支持偏置权重。我们也可以用以下权

重向量来计算该值：

[0.01, 0.02, 0.3]

值0.01和0.02是神经元两个输入的权重，值0.3是偏置的权重。计算

加权和：

(0.1 * 0.01) + (0.2 * 0.02) + (1.0 * 0.3)

然后将计算结果0.305传递给激活函数。

计算整个神经网络的输出本质上是对神经网络中的每个神经元都执

行这个相同的过程。这个过程使你可以从输入神经元一直计算到输出神

经元。你可以为神经网络中的每个连接创建对象，或将这些连接值安排

到矩阵中，从而实现这个过程。

面向对象的编程让你可以为每个神经元及其权重定义一个对象。这

种方法能产生可读性强的代码，但是它有两个重要的问题：

权重存储在许多对象中；

性能受影响，因为需要许多函数调用和内存访问才能将所有权重加

在一起。

在神经网络中，将权重作为单个向量创建很有价值。各种不同的优

化算法可以调整一个向量，让得分函数产生最优的结果。本系列图书卷

1和卷2讨论了这些优化功能。在后文，我们将看到模拟退火如何优化神

经网络的权重向量。

为了创建一个权重向量，我们首先来看一个具有以下特征的神经网

络。

输入层：2个神经元，1个偏置。

隐藏层：2个神经元，1个偏置。

输出层：1个神经元。

这些特征使得该神经网络共有7个神经元。

为了创建该向量，可以用以下方式对这些神经元编号：

Neuron 0: Output 1
Neuron 1: Hidden 1
Neuron 2: Hidden 2
Neuron 3: Bias 2 (set to 1, usually)
Neuron 4: Input 1
Neuron 5: Input 2
Neuron 6: Bias 1 (set to 1, usually)

用图形方式表示该简单神经网络，如图4-2所示。

图4-2　简单神经网络

你可以创建几个其他向量来定义神经网络的结构。这些向量保存索

引值，以便快速访问权重向量。这些向量在这里列出：

layerFeedCounts: [1, 2, 2]
layerCounts: [1, 3, 3]
layerIndex: [0, 1, 4]
layerOutput: [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0]
weightIndex: [0, 3, 9]

每个向量中保存值的顺序是首先输出层，然后向上直到输入层。

layerFeedCounts向量保存每一层中非偏置神经元的计数。该特征实际上

是非偏置神经元的数量。layerOutput向量保存每个神经元的当前值。最

初，所有神经元都从0.0开始，除了偏置神经元从1.0开始。layerIndex向

量保存每个层在layerOuput向量中的起始位置的索引。weightIndex保存

指向权重向量中每一层位置的索引。

权重存储在它们自己的向量中，其结构如下：

Weight 0 : H1−>O1
Weight 1 : H2−>O1
Weight 2 : B2−>O1

Weight 3 : I1−>H1
Weight 4 : I2−>H1
Weight 5 : B1−>H1
Weight 6 : I1−>H2
Weight 7 : I2−>H2
Weight 8 : B1−>H2

一旦安排好向量，计算神经网络的输出就相对容易了。清单4-1可

以完成这种计算。

清单4-1　计算前馈输出

def compute(net, input):
 sourceIndex = len(net.layerOutput)
 - net.layerCounts[len(net.layerCounts) - 1]
 # Copy the input into the layerOutput vector
 array_copy(input, 0, net.layerOutput, sourceIndex,
 net.inputCount)
 # Calculate each layer
 for i in reversed(range(0,len(layerIndex))):
 compute_layer(i)
 # update context values
 offset = net.contextTargetOffset[0]
 # Create result
 result = vector(net.outputCount)
 array_copy(net.layerOutput, 0, result, 0, net.outputCount)
 return result

def compute_layer(net,currentLayer):
 inputIndex = net.layerIndex[currentLayer]
 outputIndex = net.layerIndex[currentLayer - 1]
 inputSize = net.layerCounts[currentLayer]
 outputSize = net.layerFeedCounts[currentLayer - 1]
 index = this.weightIndex[currentLayer - 1]
 limit_x = outputIndex + outputSize
 limit_y = inputIndex + inputSize
 # weight values
 for x in range(outputIndex,limit_x):
 sum = 0;
 for y in range(inputIndex,limit_y):
 sum += net.weights[index] * net.layerOutput[y]
 net.layerSums[x] = sum
 net.layerOutput[x] = sum
 index = index + 1

 net.activationFunctions[currentLayer - 1]
 .activation_function(
 net.layerOutput, outputIndex, outputSize)

4.3　初始化权重

神经网络的权重决定了神经网络的输出。训练过程可以调整这些权

重，使得神经网络产生有用的输出。大多数神经网络训练算法开始都将

权重初始化为随机值。然后，训练通过一系列迭代进行，这些迭代不断

改进权重，以产生更好的输出。

神经网络的随机权重会影响神经网络的训练水平。如果神经网络无

法训练，你可以通过重新设置一组新的随机权重来解决问题。但是，当

你尝试不同的神经网络的架构，并尝试不同的隐藏层和神经元组合时，

这个解决方案可能会令人沮丧。如果添加新层后，神经网络性能得到改

善，你就必须考虑，这种改进是由新层产生的，还是由一组新的权重产

生的。由于存在这种不确定性，我们在权重初始化算法中关注两个关键

属性。

该算法提供良好权重的一致性如何？

该算法提供的权重有多少优势？

权重初始化最常见（但最无效）的方法之一，是将权重设置为特定

范围内的随机值，通常选择−1～+1或−5～+5的数字。如果要确保每次

都获得相同的随机权重集，则应使用种子。种子指定了要使用的一组预

定义随机权重。如种子为1 000，可能会产生0.5、0.75和0.2的随机权

重。这些值仍然是随机出现的，你无法预测，但是当你选择1 000作为

种子时，总是会获得这些值。

并非所有种子都是生而平等的。随机权重初始化有一个问题，即某

些种子创建的随机权重比其他种子更难训练。实际上，权重可能非常糟

糕，而无法进行训练。如果发现无法使用特定的权重集训练神经网络，

则应使用其他种子生成一组新的权重。

由于权重初始化存在的问题，人们围绕它进行了大量研究。多年

来，我们已经考察了这方面的研究，并在Encog项目中添加了6个不同的

权重初始化例程。根据我们的研究，由Glorot和Bengio于2006年引入的

Xavier权重初始化算法可以产生具有合理一致性的良好权重。这种相对

简单的算法使用正态分布的随机数。

要使用Xavier权重初始化，必须了解正态分布的随机数不是大多数

编程语言生成的0～1的典型随机数。实际上，正态分布的随机数以均值

μ（mu）为中心，它通常为0。如果以0为中心（均值），那么你将获得

数量相等的大于0和小于0的随机数。下一个问题是这些随机数将从0偏

离到多远。理论上，你可能得到正随机数和负随机数都接近计算机支持

的最大正数和负数范围。但现实情况是，你很可能会看到一些随机数，

它们与中心的偏差为0～3个标准差。

标准差σ（sigma）参数指定这个标准差的大小。如果你将标准差指

定为10，那么你主要会看到−30～+30的随机数，较接近0的数字具有更

高的选择概率。图4-3展示了正态分布。

图4-3　正态分布

图4-3展示了中心（在这个例子中为0）将以0.4（40%）的概率生

成。另外，在−2或+2个标准差之外，概率降低得非常快。通过定义中心

和标准差的大小，你可以控制生成的随机数的范围。

大多数编程语言都具有生成正态分布的随机数的能力。通常，Box-

Muller算法是这种能力的基础。本书中的示例将使用内置的正态随机数

发生器，或用Box-Muller算法将规则的、均匀分布的随机数转换为正态

分布。本系列图书卷1《基础算法》包含对Box-Muller算法的解释，但

你不需要了解它也可以掌握本书中的思想。

Xavier权重初始化将所有权重设置为正态分布的随机数，这些权重

总是以0为中心。它们的标准差取决于当前权重层存在多少个连接。具

体来说，公式4-2可以确定方差：

（4-2）

公式4-2展示了如何获得所有权重的方差。方差的平方根是标准

差。大多数随机数生成器接受标准差，而不是方差。因此，你通常需要

取公式4-2的平方根。图4-4展示了一层的Xavier初始化过程。

图4-4　一层的Xavier初始化过程

神经网络中的每一层，都要完成这个过程。

4.4　径向基函数神经网络

径向基函数（Radial-Basis Function，RBF）神经网络是Broomhead

和Lowe（1988）引入的一种前馈神经网络。该神经网络可用于分类和

回归。尽管它们可以解决各种问题，但RBF神经网络的受欢迎程度似乎

正在降低。根据其定义，RBF神经网络不能与深度学习结合使用。

RBF神经网络利用一个参数向量（一个指定权重和系数的模型），

来允许输入生成正确的输出。通过调整一个随机参数向量，RBF神经网

络可产生与鸢尾花数据集一致的输出。调整该参数向量以产生所需输出

的过程称为训练。训练RBF神经网络有许多不同的方法。参数向量也代

表了RBF神经网络的长期记忆。

在4.4.1小节中，我们将简要回顾RBF，并描述这些向量的确切组

成。

　4.4.1　径向基函数

由于许多AI算法都利用了径向基函数，因此它们是一个非常重要的

概念。RBF相对其中心对称，该中心通常在 轴上。RBF将在中心达到

其最大值，即峰值。RBF神经网络中典型的峰值通常设置为1，中心会

相应地变化。

RBF可以有许多维度。无论传递给RBF的向量维度是多少，它的输

出总是单个标量值。

RBF在AI中很常见。我们将从最流行的高斯函数开始讲解。图4-5

展示了以0为中心的一维高斯函数的图像。

图4-5　高斯函数

你可能认为上述曲线是正态分布或钟形曲线，而这其实是一个

RBF。RBF（如高斯函数）可以有选择地缩放数值。请考虑图4-5所示函

数，如果你用这个函数缩放一些数值，那么结果将在中心具有最大强

度。从中心向两侧移动时，强度会沿正向或负向减小。

在查看高斯RBF的公式之前，我们必须考虑如何处理多维。RBF接

受多维输入，并计算输入和中心向量之间的距离，从而返回单个距离，

该距离称为 。RBF中心和RBF的输入必须总是具有相同的维度才能进行

计算。一旦计算出 ，就可以确定这个RBF。所有RBF都使用这个计算出

的 。

公式4-3展示了如何计算 ：

（4-3）

在公式4-3中看到的双竖线表示该函数描述的距离或范数。在某些

情况下，这些距离可能会有所不同。但是，RBF通常使用欧氏距离。因

此，我们在本书中提供的示例始终采用欧氏距离。所以， 就是中心与

向量之间的欧氏距离。在本节的每个RBF中，我们将使用该值 。公式4-

4展示了高斯RBF的公式：

（4-4）

一旦计算出 ，就很容易确定RBF。公式4-4中的希腊字母φ始终表示

RBF；常数e表示自然对数的底，约为2.718 28。

　4.4.2　径向基函数神经网络示例

RBF神经网络提供一个或多个RBF的加权求和，这些函数中的每一

个都接收加权的输入，以便预测输出。请将RBF神经网络视为包含参数

向量的长公式。公式4-5展示了计算该网络输出的公式：

（4-5）

请注意，公式4-5中的双竖线表示你必须计算的距离。由于这些符

号未指定要使用的距离算法，因此你可以选择算法。在公式4-5中，

是输入向量， 是RBF的向量中心， 是所选的RBF（如高斯函数），

是每个RBF的向量系数（或权重）， 指定用于加权输入向量的系数。

在示例中，我们将RBF神经网络应用于鸢尾花数据集。图4-6展示

了这种应用的图形表示。

图4-6　应用于鸢尾花数据集的RBF神经网络

上面的RBF神经网络包含4个输入（萼宽、萼长、瓣宽、瓣长），

这些输入指出了每种鸢尾花种类的一些特征。图4-6假设我们对3种不同

的鸢尾花种类使用1-of- 编码。仅对两个输出使用等边编码（equilateral

encoding）也是可能的。简单起见，我们将使用1-of- ，并任意选择3个

RBF。尽管其他RBF允许模型学习更复杂的数据集，但它们也需要更多

的时间来处理数据。

图4-6中的箭头表示公式4-5中的所有系数。在公式4-5中， 表示输

入和RBF之间的箭头。类似地， 表示RBF与求和之间的箭头。此外，

还要注意图4-6中的偏置，它是一个始终返回值1的常函数。由于偏置函

数的输出是恒定的，因此它不需要输入。从偏置到求和的权重指定了方

程的 截距。简而言之，偏置并不总是坏的。这个例子表明，偏置是

RBF神经网络的重要组成部分。偏置节点在神经网络中也很常见。

因为存在多个求和，所以你可以看到分类问题的发展。最高的总和

指定了预测的类别。回归问题意味着该模型将输出单个数值。

你还会注意到，图4-6中在与RBF同一层级的位置包含一个偏置节

点。与RBF不同，偏置节点不接受任何输入，它始终输出常数1。这个

常数1再乘以一个系数，使该系数直接与输出相加，而与输入无关。当

输入为0时，偏置节点将会非常有用，因为尽管输入很小，但偏置节点

也会让RBF层有输出。

RBF神经网络的长期记忆向量有以下几个不同的组件：

输入系数；

输出/求和系数；

RBF宽度标量（在所有维度中均相同）；

RBF中心向量。

RBF神经网络会将所有这些组件保存为单个向量，这个向量将成为

其长期记忆向量。然后，优化算法可以将该向量设置为一些值，从而针

对提供的特征生成正确的鸢尾花种类。本书将介绍几种可以训练RBF神

经网络的优化算法。

总之，本小节对向量、距离和RBF神经网络进行了基本概述。由于

这里的讨论仅包含理解卷3的预备知识，因此关于这些主题更全面的说

明，请参考卷1和卷2。

4.5　规范化数据

在本节中，我们将具体地了解数据规范化是如何执行的。数据通常

不会以你拿到的原始格式提供给神经网络。通常，数据会通过名为“规

范化”的过程，缩放到特定范围。规范化数据的方法有许多。有关完整

的总结，请参阅本系列图书卷1《基础算法》。本章将介绍一些对神经

网络最有用的规范化方法。

　4.5.1　1-of-n编码

如果你有一个分类值，如鸢尾花的种类、汽车的品牌，或MNIST数

据集中的数字标签，就应该使用1-of- 的编码。有时将这种类型的编码

称为“独热”（one-hot）编码。如果以这种方式编码，你需要为问题中的

每个类别使用一个输出神经元。回忆一下本书前言中的MNSIT数据集，

其中有数字0～9的图像。这个问题最常见的编码是带有Softmax激活函

数的10个输出神经元，它们将给出输入是这些数字之一的可能性。使用

1-of- 编码，10个数字可能编码如下：

0 -> [1,0,0,0,0,0,0,0,0,0]
1 -> [0,1,0,0,0,0,0,0,0,0]
2 -> [0,0,1,0,0,0,0,0,0,0]
3 -> [0,0,0,1,0,0,0,0,0,0]
4 -> [0,0,0,0,1,0,0,0,0,0]
5 -> [0,0,0,0,0,1,0,0,0,0]
6 -> [0,0,0,0,0,0,1,0,0,0]
7 -> [0,0,0,0,0,0,0,1,0,0]
8 -> [0,0,0,0,0,0,0,0,1,0]
9 -> [0,0,0,0,0,0,0,0,0,1]

当这些类别没有顺序时，应该总是使用1-of- 编码。这种编码的另

一个示例是汽车品牌。通常，除非你希望通过这种顺序传达某些含义，

否则汽车制造商的列表通常是没有顺序的。如你可以按营业年限对汽车

制造商进行排序。但是，只有在营业年限对你的问题有意义的情况下，

才应进行这种分类。如果确实没有顺序，就应该总是使用1-of- 编码。

因为可以轻松地对数字进行排序，所以你可能想知道，为什么我们

对它们也使用1-of- 编码。原因是数字的顺序并不意味着程序可以识别

它们。数字“1”和“2”彼此相邻的事实无助于程序识别图像。因此，我们

不应使用单个输出神经元，输出已识别数字。数字0～9是类别，而不是

实际的数值。用单个数值来编码类别，这不利于神经网络的决策。

输入和输出都可以使用1-of- 编码。上面的编码示例使用了0和1。

通常，你会使用ReLU激活函数和Softmax激活函数，此时这种编码类型

是正常的。但是，如果你要使用双曲正切激活函数，则应将0的值设为

−1，以匹配双曲正切激活函数的范围（−1～1）。

如果你有大量的类别，则使用1-of- 编码会变得很麻烦，因为每个

类别都必须有一个神经元。在这种情况下，你有几种选择。首先，你可

能会找到一种对这些类别排序的方法。通过这种排序，你的类别可以被

编码为数值，它表示当前类别在排序列表中的位置。

处理大量类别的另一种方法是“逆频文档频率”（Term Frequency-

Inverse Document Frequency，TF-IDF）编码，因为每个类别本质上成为

该类别相对其他类别出现的概率。这样，TF-IDF允许程序将大量类别映

射到单个神经元。TF-IDF的完整讨论超出了本书的范围。但是，它内置

在许多机器学习框架中，这些框架针对R、Python等语言。

　4.5.2　范围规范化

如果你有实数或分类的有序列表，就可以选择范围规范化，因为它

只是将输入数据的范围映射到激活函数的范围内。S型、ReLU和

Softmax激活函数使用0～1的范围，而双曲正切激活函数使用−1～1的范

围。

你可以用公式4-6来规范化数据：

（4-6）

要执行规范化，你需要规范化数据的低值和高值，这两个值分别由

公式4-6中的 和 给出。同样，你需要规范化区间的低值和高值（通常

是0和1），这两个值分别由 和 给出。

有时，你将需要撤销对数字执行的规范化，让它回到非规范化的状

态。公式4-7执行了这个操作：

（4-7）

考虑范围规范化有一种非常简单的方法，即百分比。请考虑以下类

比。你看到一则广告，指出你将获得10美元的商品折扣，这时你必须确

定这笔交易是否值得。如果你要购买一件T恤，这种优惠可能促成一笔

划算的交易。但是，如果你要买车，10美元并不重要。此外，你需要熟

悉美元的当前价值才能做出决定。如果你得知商家提供了10%的折扣，

情况就会改变。因此，10%这个值更有意义。无论你是购买T恤、汽

车，还是房屋，10%的折扣都会对问题产生明显的影响。换言之，百分

比是一种规范化类型。就像在类比中所看到的，将数据规范化到一个范

围有助于神经网络用同样的重要性评估所有输入。

　4.5.3　 分数规范化

分数（ score）规范化是最常见的实数或有序列表的规范化。对

于几乎所有应用程序，都应使用 分数规范化来代替范围规范化。这种

规范化类型基于 分数的统计概念，同样的技术也用于在一条曲线下对

考试进行评分。 分数提供的信息甚至超过百分比。

考虑以下示例。学生A在他的考试中获得了总分的85%，学生B在

他的考试中获得了总分的75%，哪个学生的成绩更好？如果教授只是在

报告得分，那么你可能认为学生A的得分会更高。但是，如果你了解到

学生A的考试很容易，平均得分是95%，就会改变答案。同样，如果你

发现学生B的班级平均得分为65%，也会重新考虑自己的观点。学生B的

考试得分高于平均水平。学生A的得分虽然更高，但他的得分仍低于平

均水平。要真实报告曲线调整后的分数（ 分数），你必须有平均分数

和标准差。公式4-8展示了均值的计算：

（4-8）

你可以通过将所有得分相加并除以分数个数来计算均值µ。这个过

程与取平均相同。有了均值之后，还需要标准差。如果你的平均分数为

50分，那么参加考试的每个人偏离平均分的程度会有所不同。学生偏离

均值的平均数量就是标准差。公式4-9展示了标准差σ的计算：

（4-9）

本质上，求标准差的过程是对每个得分与均值的差进行平方并求

和，然后取总和的平方根。有了标准差后，就可以用公式4-10计算 分

数：

（4-10）

清单4-2展示了计算 分数的伪代码。

清单4-2　计算z分数

Data to score

data = [5, 10, 3, 20, 4]
Sum the values
sum = 0
for d in data:
 sum = sum + d
Calculate mean
mean = float(sum) / len(data)
print("Mean: " + mean)
Calculate the variance
variance = 0
for d in data:
 variance = variance + ((mean-d)**2)
variance = variance / len(data)
print("Variance: " + variance)
Calculate the standard deviation
sdev = sqrt(variance)
print("Standard Deviation: " + sdev)
Calculate zscore
zscore = []
for d in data:
 zscore.append((d-mean)/sdev)
print("Z-Scores: " + str(zscore))

以上代码将产生以下输出：

Mean: 8.4
Variance: 39.440000000000005
Standard Deviation: 6.280127387243033
Z-Scores: [-0.5413902920037097, 0.2547719021193927, -0.8598551696529507, 1
.8470962903655976, -0.7006227308283302]

分数衡量了某个得分与均值的关系。其中0表示得分恰好是均值。

正的 分数表示得分高于均值，负的 分数表示得分低于均值。为了将

分数可视化，请考虑 分数和字母等级之间的映射：

<-2.0 = D+
-2.0 = C-
-1.5 = C
-1.0 = C+
-0.5 = B-
0.0 = B
+0.5 = B+

+1.0 = A-
+1.5 = A
+2.0 = A+

上面列出的映射关系是某个大学实际使用的成绩衡量标准。 分数

到字母等级的映射有很大的不同。大多数教授会将0.0的 分数设置为C

或B，具体取决于教授/大学是否认为C或B代表平均成绩。上面的映射

中B是均值。 分数以0为中心，非常适合神经网络输入，因为它很少会

超过+3或低于−3。

　4.5.4　复杂规范化

神经网络的输入通常称为它的特征向量。在将原始数据映射到神经

网络可以理解形式的过程中，创建特征向量的过程至关重要。将原始数

据映射到特征向量的过程称为编码。要明白这种映射的工作方式，请考

虑汽车MPG数据集：

1. mpg: numeric
2. cylinders: numeric, 3 unique
3. displacement: numeric
4. horsepower: numeric
5. weight: numeric
6. acceleration: numeric
7. model year: numeric, 3 unique
8. origin: numeric, 7 unique
9. car name: string (unique for each instance)

为了对上述数据进行编码，我们将使用MPG作为输出，并将该数据

集作为回归。MPG特征将采用 分数编码，并且它符合我们在输出中使

用的线性激活函数的范围。

我们将弃用汽车名称。汽缸数、型号、年份都用1-of- 编码，其余

字段用 分数编码。以下是得到的特征向量：

Input Feature Vector:
Feature 1: cylinders-2, -1 no, +1 yes
Feature 2: cylinders-4, -1 no, +1 yes
Feature 3: cylinders-8, -1 no, +1 yes
Feature 4: displacement z-score
Feature 5: horsepower z-score
Feature 6: weight z-score
Feature 7: acceleration z-score
Feature 8: model year-1977, -1 no, +1 yes
Feature 9: model year-1978, -1 no, +1 yes
Feature 10: model year-1979, -1 no, +1 yes
Feature 11: origin-1
Feature 12: origin-2
Feature 13: origin-3
Output:
mpg z-score

如你所见，特征向量已从9个原始字段增加到13个特征和一个输

出。针对这些数据的神经网络会有13个输入神经元和单个输出神经元。

假设有1个包含20个神经元隐藏层，采用ReLU激活函数，该神经网络将

如图4-7所示。

图4-7　简单回归神经网络

4.6　本章小结

前馈神经网络是人工智能中最常用的算法之一。在本章中，我们介

绍了多层前馈神经网络和RBF神经网络。分类和回归应用了这两种类型

的神经网络。

前馈神经网络具有定义明确的层。输入层接受来自计算机程序的输

入。输出层将神经网络的处理结果返回给调用程序。在输入层和输出层

之间是隐藏的神经元，它们帮助神经网络识别在输入层提供的模式，并

在输出层产生正确的结果。

RBF神经网络为其隐藏层使用了一系列RBF。除了权重之外，还可

以更改这些RBF的宽度和中心。尽管RBF和前馈神经网络可以近似任何

函数，但是它们的处理方式不同。

到目前为止，我们只看到了如何计算神经网络的值。训练是一个过

程，我们通过该过程调整神经网络权重，使得神经网络输出所需的值。

为了训练神经网络，我们还需要一种评估它的方法。第5章将介绍神经

网络的训练和评估。

第5章　训练与评估

本章要点：

均方差；

敏感性和特异性；

ROC曲线；

模拟退火。

到目前为止，我们已经看到了如何根据权重来计算神经网络的输

出，但是，我们还没有看到这些权重的实际来源。训练是调整神经网络

权重以产生所需输出的过程。训练利用了评估，即根据预期输出评估神

经网络输出的过程。

本章将介绍训练与评估。由于神经网络可以通过许多不同的方式进

行训练与评估，因此我们需要一种一致的方法来对它们进行判断。目标

函数评估神经网络并返回得分，训练会根据得分调整神经网络，以便取

得更好的结果。通常，目标函数希望得分较低，其试图获得较低得分的

过程称为最小化。你可能会设定最大化的问题，此时目标函数需要较高

的得分。因此，你可以将大多数训练算法用于最小化或最大化问题。

你可以使用任何连续的优化算法来优化神经网络的权重，如模拟退

火、粒子群优化（Particle Swarm Optimization，PSO）、遗传算法、爬

山、Nelder-Mead或随机行走等。本章将介绍模拟退火，它是一种简单

的训练算法。但是，除了优化算法外，你还可以利用反向传播算法训练

神经网络。在第6章“反向传播训练”和第7章“其他传播训练”中将介绍几

种算法，它们都基于第6章介绍的反向传播训练算法。

5.1　评估分类

分类是神经网络尝试将输入分为一个或多个类别的过程。评估分类

网络的最简单方法是跟踪被错误分类的训练集数据项的百分比。我们通

常以这种方式对人类考试评分。如你可能在学校参加了仅有选择题题型

的考试，必须为选项A、B、C或D其中之一涂上阴影。如果你在10个问

题的考试中选择了一个错误的选项，得分将是90%。以同样的方式，我

们可以给计算机评分。但是，大多数分类算法不会简单地选择A、B、C

或D。计算机通常将报告每个类别中的置信度百分比，作为分类结果。

图5-1展示了计算机和人类可能如何对考试中的问题1做出回应。

图5-1　人类答案与计算机答案

如你所见，人类应试者将第一个问题标记为“B”。计算机对“B”的信

心为80%（0.8），对“A”的信心为10%（0.1）。计算机将其余的百分比

分布在另外两个选项上。从最简单的意义上讲，如果正确答案为“B”，

则该计算机将获得该问题得分的80%。

如果正确答案为“ D”，则该计算机将仅获得5%（0.05）的得分。

　5.1.1　二值分类

如果神经网络必须在两个选项之间进行选择，就会发生二值分类，

如对/错、是/否、正确/不正确或买入/卖出等。为了理解如何使用二值分

类，我们考虑一个发行信用卡的分类系统。该分类系统必须决定如何响

应新的潜在客户。该系统要么“发行信用卡”，要么“拒绝发行信用卡”。

当你只考虑两个类别时，目标函数的得分是假阳性（False

Positive，FP）预测的数量和假阴性（False Negative，FN）预测的数

量。假阴性和假阳性都是错误的类型，理解它们的差异非常重要。对于

前面的例子，发行信用卡是阳性的。当向某人发行信用卡会带来严重的

信用风险时，就会发生假阳性。当拒绝发给风险很低的人信用卡时，就

会产生假阴性。

在假阳性和假阴性这两个选项中，我们可以两害相权取其轻。对于

大多数发行信用卡的银行，假阳性比假阴性更糟糕。拒绝一个潜在的、

好的信用卡持有人，比接受一个坏信用卡持有人更好，后者会导致银行

进行昂贵的收款活动。

分类问题试图将输入分配给一个或多个类别。二值分类采用单输出

神经网络，将输入分为两类。让我们考虑汽车MPG数据集。

对于汽车MPG数据集，我们可能会为制造于美国的汽车创建分类。

名为origin的字段提供有关汽车总成位置的信息。因此，单输出神经元

将给出一个数字，表明该汽车在美国制造的可能性。

要进行这种预测，你需要更改origin字段，让它保存一个值，这个

值在1到激活函数的低端范围内。如S型激活函数范围的下限为0；对于

双曲正切激活函数，其范围的下限为−1。神经网络将输出一个值，该值

表明汽车在美国或其他地方制造的可能性。值接近1表示汽车来自美国

的可能性更高，值接近0或−1表示汽车来自美国以外地区的可能性更

高。

你必须选择一个判定临界值，将这些预测结果分为美国或非美国。

如果美国为1.0，非美国为0.0，那么我们可以选择0.5作为判定临界值。

因此，输出为0.6的汽车将来自美国，而输出为0.4的汽车将来自非美

国。

这个神经网络在对汽车进行分类时总是会产生错误，美国制造的汽

车可能会产生0.45的输出，由于神经网络的输出低于判定临界值，因此

无法将汽车归入正确的类别。因为我们设计这个神经网络是为了对美国

制造的汽车进行分类，所以该错误称为假阴性。换言之，神经网络表明

该汽车不是美国制造的，但该汽车实际上来自美国，产生了阴性结果，

因此，分为阴性是错误的。这个错误也称为2型错误。

同样，神经网络可能会错误地将非美国的汽车归类为美国的。这种

错误是假阳性或1型错误。更易于产生假阳性的神经网络被称为更具“特

异性（specific）”的神经网络。同样，产生更多假阴性的神经网络被称

为更具“敏感性（sensitive）”的神经网络。图5-2总结了真/假、阳性/阴

性、1型/2型错误，敏感性/特异性之间的关系。

真阳性（TP）/假阳性（FP） 1型错误 测试的敏感性

真阴性（TN）/假阴性 （FN） 2型错误 测试的特异性

图5-2　错误类型之间的关系

设置输出神经元的判定临界值，就是选择敏感性还是特异性谁更重

要。如图5-3所示，可以通过调整判定临界值来使神经网络更具敏感性

或特异性。

图5-3　敏感性与特异性

随着判定临界值线向左移动，神经网络将变得更具特异性。真阴性

（True Negative，TN）区域的尺寸减小使这种特异性的提高显而易见。

相反，随着判定临界值线向右移动，神经网络将变得更具敏感性。真阳

性（True Positive，TP）区域的尺寸减小使这种敏感性的提高很明显。

敏感性的提高通常会导致特异性降低。图5-4展示了旨在使神经网

络非常敏感的判定临界值。

图5-4　敏感判定临界值

也可以对神经网络进行校准，提高特异性，如图5-5所示。

图5-5　特异判定临界值

达到100%的特异性或敏感性不一定是好事。通过简单地预测每个

人都没有患某种疾病，得出医学检验可以达到100%的特异性。该测试

永远不会产生假阳性错误，因为它永远不会给出阳性答案。显然，该测

试没有意义。高度特异性或敏感性的神经网络会产生同样的毫无意义的

结果。我们需要一种方法来评估与判定临界值点无关的神经网络的总有

效性。总预测率（Total Prediction Rate，TPR）结合了真阳性和真阴性

的百分比。公式5-1可以计算TPR：

（5-1）

此外，你可以使用“受试者工作特征”（Receiver Operator

Characteristic，ROC）曲线来可视化TPR，如图5-6所示。

图5-6展示了3种不同的ROC曲线。虚线显示了具有零预测能力的

ROC；点线表示预测能力较好的神经网络；实线表示预测能力接近完美

的神经网络。要解读ROC图，请先看以0%标记的原点。所有ROC曲线

总是从原点开始，然后移动到右上角，在这里真阳性和假阳性均为

100%。

轴显示真阳性率从0%到100%。当你沿 轴向上移动时，真阳性率

和假阳性率都会增加。随着真阳性率的增加，敏感性也增加，但是，特

异性会下降。ROC曲线允许你选择所需的敏感性级别，但它也显示了达

到该敏感性级别必须接受的假阳性率。

图5-6　3种不同的ROC曲线

最差的神经网络（虚线）总是具有50%的总预测率。这样的总预测

率并不比随机猜测更好。要获得100%的真阳性率，必定会有100%的假

阳性率，这仍然会导致一半的预测错误。

以下网址可让你尝试使用简单的神经网络和ROC曲线：

http://www.heatonresearch.com/aifh/vol3/anneal_roc.html

我们可以用模拟退火在上述网址上训练神经网络。每次“退火

期”（annealing epoch）完成时，该神经网络都会改进。我们可以通过均

方差（Mean Squared Error，MSE）计算来衡量这种改进。随着MSE的

下降，ROC曲线向左上角伸展。我们将在后文详细介绍MSE。现在，将

它与预期输出进行比较，只需将它看成对神经网络误差的度量即可。较

低的MSE是理想的。图5-7展示了我们对神经网络进行多次迭代训练后

的ROC曲线。

图5-7　ROC曲线

重要的是要注意，目标并不总是使总预测率最大化。有时，假阳性

比假阴性更好。考虑一个预测桥梁倒塌的神经网络。一方面，假阳性意

味着当桥梁实际安全时，程序会预测倒塌。在这种情况下，检查结构合

理的桥梁会浪费工程师的时间。另一方面，假阴性意味着神经网络预测

桥梁安全时，实际会倒塌。与浪费工程师的时间相比，桥梁倒塌的后果

要糟得多。因此，你应该安排具有很高特异性的神经网络。

要评估神经网络的总体有效性，应考虑曲线下的面积（Area Under

the Curve，AUC）。最佳AUC为1.0，这是一个100%×100%（1.0×1.0）

的矩形，它将曲线下的面积推到最大。解读ROC曲线时，更有效的神经

网络在曲线下方有更多空间。图5-6中显示的曲线与这种评估相符。

　5.1.2　多类分类

如果要预测多个结果，则将需要多个输出神经元。因为单个神经元

可以预测两个结果，所以带有两个输出神经元的神经网络是很少见的。

如果要预测3个或更多结果，则将有3个或更多输出神经元。本系列图书

的卷1《基础算法》展示了一种方法，该方法可以将3个结果编码为两个

输出神经元。

考虑Fisher的鸢尾花数据集。针对3种不同物种的鸢尾花，该数据集

包含了4种不同的测量值。

鸢尾花数据集的样本数据如下所示：

sepal_length,sepal_width,petal_length,petal_width,species

5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolour
6.4,3.2,4.5,1.5,Iris-versicolour
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica

根据4个测量值可以预测这些物种。对于这种预测，这4个测量值的

含义并不重要，重要的是这些测量值将指导神经网络进行预测。图5-8

展示了可以预测鸢尾花数据集的神经网络结构。

图5-8　可以预测鸢尾花数据集的神经网络结构

图5-8所示的神经网络接受4个测量结果并输出3个数字。每个输出

与一个鸢尾花物种相对应。产生最高数值的输出神经元决定了预测的物

种。

　5.1.3　对数损失

分类网络可以从输入数据推导出一个分类。如4个鸢尾花测量值可

以将数据分组为3种鸢尾花。评估分类的一种简单方法，是将它看成仅

有选择题题型的考试，并返回百分比得分。尽管这种方法应用得很普

遍，但是大多数机器学习模型都无法像你在学校那样回答多项选择题。

请考虑可能会在考试中出现的以下问题：

1.鸢尾花setosa会有萼片长5.1厘米、萼片宽3.5厘米、花瓣长1.4厘米、花瓣宽0.2厘米吗
？
A) True
B) False

这正是神经网络在分类任务中必须面对的问题类型。但是，神经网

络不会回答True或False。它会用以下方式回答问题：

True: 80%

上面的响应意味着神经网络有80%的概率确信这朵花是setosa。这

项技术如果可以应用在你的考试上，则会非常方便。如果你不能在是非

题之间做出选择，只需将80%的置信度置于True上即可。得分相对容

易，因为你会得到正确答案相应置信度的得分比例。在这个例子中，如

果True是正确的答案，则该问题将会获得80%的得分。

但是，对数损失（log loss）不是那么简单的。公式5-2[1]是对数损

失的公式：

（5-2）

你应将这个公式仅用作具有两个分类结果的目标函数。其中变量

是神经网络的预测，变量 是已知的正确答案。在这种情况下， 始终为

0或1。训练数据没有概率，神经网络将它分为一类（1）或另一类

（0）。

变量 代表训练集中的元素数量，即测验中的问题数量。我们将结

果除以 ，因为这个过程按惯例求的是平均。我们在该方程前添加负

号，因为对数函数在域0～1上始终为负。这个负号允许最小化训练的正

得分。

你会注意到公式5-2中等号右边的两个项之间用加号（+）隔开。每

个项都包含一个对数函数。因为 为0或1，所以这两个项之一将被0消

除。如果 为0，则第一项为0；如果 为1，则第二项为0。

对于两类预测，如果你对第一类的预测是 ，那么对第二类的预测

是1− 。本质上，如果你对A类的预测为70%（0.7），那么对B类的预测

为30%（0.3）。你的得分会根据你对正确分类的预测对数而增加。如果

神经网络对A类预测为1.0，并且正确答案为A，则你的得分将增加

lg(1)，即0。对于对数损失，我们追求较低的得分，因此正确答案导致

得分为0。以下是神经网络对正确类别的概率估计的一些对数值：

−lg(1.0) = 0；

−lg(0.95) = 0.02；

−lg(0.9) = 0.05；

−lg(0.8) = 0.1；

−lg(0.5) = 0.3；

−lg(0.1) = 1；

−lg(0.01) = 2；

−lg(1.0e−12) = 12；

−lg(0.0) = 无穷大。

如你所见，为正确答案给出低置信度对得分的影响最大。因为lg(0)

是负无穷大，所以我们通常强加一个最小值。当然，以上对数值是针对

单个训练集元素的。我们将对整个训练集的对数值进行求平均。

　5.1.4　多类对数损失

如果对两个以上的结果进行分类，则必须使用多类对数损失

（multi-class log loss，mlogloss）。这个损失函数与刚才描述的二值对

数损失密切相关。公式5-3是多类对数损失的公式：

（5-3）

在公式5-3中， 是训练集元素的数量， 是分类过程的类别数量。

从概念上讲，多类对数损失函数的作用类似于单个对数损失函数。上面

的等式本质上为你提供一个得分，该得分是每个数据集上正确类别预测

的负对数的平均值。公式5-3中最里面的求和作为一个if-then语句，仅允

许 为1.0的正确分类对求和有贡献。

5.2　评估回归

均方差（MSE）计算是评估回归机器学习的最常用方法。大多数神

经网络、支持向量机和其他模型的示例都采用了MSE[2]，如公式5-4所

示：

（5-4）

在公式5-4中， 是理想输出， 是实际输出。均方差的本质是各个

差的平方的均值。因为对单个差求平方，所以差的正负性不影响MSE的

值。

你可以用MSE评估分类问题。为了用MSE评估分类输出，每个分类

的概率都被简单地看成数字输出。对于正确的类，预期的输出就是

1.0，对于其他类，预期的输出则为0。如果第一类是正确的，而其他三

类是错误的，则预期结果向量将如下：

[1.0, 0, 0, 0]

这样，你几乎可以将任何回归目标函数用于分类。各种函数，如均

方根（Root Mean Square，RMS）和误差平方和（Sum of Squares

Error，SSE），都可以用于评估回归，我们在本系列图书卷1《基础算

法》中讨论了这些函数。

5.3　模拟退火训练

要训练神经网络，必须定义它的任务。目标函数（也称为计分或损

失函数）可以生成这些任务。本质上，目标函数会评估神经网络并返回

一个数值，表明该神经网络的有用程度。训练会在每次迭代中修改神经

网络的权重，从而提高目标函数返回的值。

模拟退火是一种有效的优化技术，已在本系列图书卷1中进行了探

讨。在本章中，我们将回顾模拟退火，展示任意向量优化函数如何改善

前馈神经网络的权重。在第6章中，我们将利用可微损失函数，研究更

高级的优化技术。

回顾一下，模拟退火的工作原理是首先将神经网络的权向量赋为随

机值，然后将这个向量看成一个位置，程序会评估从该位置开始的所有

可能移动。要了解神经网络权重向量如何转换为位置，请考虑只有3个

权重的神经网络。在现实世界中，我们用 、 和 坐标来考虑位置。我

们可以将任意位置写成有3个分量的向量。如果我们希望只在其中1个维

度上移动，那么向量总共可以在6个方向上移动。我们可以选择在 、

或 维度上向前或向后移动。

通过在所有可用的维度上向前或向后移动，模拟退火实现其功能。

如果该算法采取了最佳移动，那么将形成简单的爬山算法。爬山只会提

高得分，因此，它也被称为贪心算法。为了达到最佳位置，算法有时需

要移到较低的位置。因此，模拟退火很多时候有进两步、退一步的表

现。

换言之，模拟退火有时会允许移动到具有较差得分的权重配置。接

受这种移动的概率开始很高，而后逐渐降低。这种概率称为当前温度，

它模拟了实际的冶金退火过程。图5-9展示了模拟退火的整个过程。

图5-9　模拟退火的整个过程

前馈神经网络可以利用模拟退火来学习鸢尾花数据集。以下程序展

示了这种训练的输出：

Iteration #1, Score=0.3937, k=1,kMax=100,t=343.5891,prob=0.9998
Iteration #2, Score=0.3937, k=2,kMax=100,t=295.1336,prob=0.9997
Iteration #3, Score=0.3835, k=3,kMax=100,t=253.5118,prob=0.9989
Iteration #4, Score=0.3835, k=4,kMax=100,t=217.7597,prob=0.9988
Iteration #5, Score=0.3835, k=5,kMax=100,t=187.0496,prob=0.9997
Iteration #6, Score=0.3835, k=6,kMax=100,t=160.6705,prob=0.9997
Iteration #7, Score=0.3835, k=7,kMax=100,t=138.0116,prob=0.9996
...
Iteration #99, Score=0.1031, k=99,kMax=100,t=1.16E-4,prob= 2.8776E-7
Iteration #100, Score=0.1031, k=100,kMax=100,t=9.9999E-5,prob= 2.1443E-70
Final score: 0.1031
[0.22222222222222213, 0.6249999999999999, 0.06779661016949151, 0.041666666
66666667] -> Iris-setosa, Ideal: Iris-setosa
[0.1666666666666668, 0.41666666666666663, 0.06779661016949151, 0.041666666
66666667] -> Iris-setosa, Ideal: Iris-setosa
...
[0.6666666666666666, 0.41666666666666663, 0.711864406779661, 0.91666666666
66666] -> Iris-virginica, Ideal: Iris-virginica
[0.5555555555555555, 0.20833333333333331, 0.6779661016949152, 0.75] -> Iri
s-virginica, Ideal: Iris-virginica
[0.611111111111111, 0.41666666666666663, 0.711864406779661, 0.791666666666
6666] -> Iris-virginica, Ideal: Iris-virginica
[0.5277777777777778, 0.5833333333333333, 0.7457627118644068, 0.91666666666
66666] -> Iris-virginica, Ideal: Iris-virginica
[0.44444444444444453, 0.41666666666666663, 0.6949152542372881, 0.708333333
3333334] -> Iris-virginica, Ideal: Iris-virginica
[1.178018083703488, 16.66575553359515, -0.6101619300462806, -3.98946060910
20965, 13.989551673146842, -8.87489712462323, 8.027287801488647, -4.615098
285283519, 6.426489182215509, -1.4672962642199618, 4.136699061975335, 4.20
036115439746, 0.9052469139543605, -2.8923515248132063, -4.733219252086315,
 18.6497884912826, 2.5459600552510895, -5.618872440836617, 4.6388276060920
05, 0.8887726364890928, 8.730809901357286, -6.4963370793479545, -6.4003385
330186795, -11.820235441582424, -3.29494170904095, -1.5320936828139837, 0.
1094081633203249, 0.26353076268018827, 3.935780218339343, 0.88812806048526
64, -5.048729642423418, 8.288232057956957, -14.686080237582006, 3.05830582
9324875, -2.4144038920292608, 21.76633883966702, 12.151853576801647, -3.63
72061664901416, 6.28253174293219, -4.209863472970308, 0.8614258660906541,
-9.382012074551428, -3.346419915864691, -0.6326977049713416, 2.13911183235
93203, 0.44832732990560714, 6.853600355726914, 2.8210824313745957, 1.39018
83615737192, -5.962068350552335, 0.502596306917136]

最初的随机神经网络，多类对数损失得分很高，即30。随着训练的

进行，该值一直下降，直到足够低时训练停止。对于这个例子，一旦错

误降至10以下，训练就会停止。要确定错误的良好停止点，你应该评估

神经网络在预期用途下的运行情况。低于0.5的对数损失通常在可接受

的范围内；但是，神经网络可能无法对所有数据集都达到这个得分。

以下网址展示了经过模拟退火训练的神经网络的示例：

http://www.heatonresearch.com/aifh/vol3/anneal_roc.html

5.4　本章小结

目标函数可以评估神经网络。它们只返回一个数值，该值表示神经

网络的成功程度。回归神经网络通常使用MSE。分类神经网络通常使用

对数损失或多类对数损失函数。这些神经网络可创建自定义的目标函

数。

模拟退火可以优化神经网络。你也可以利用本系列图书卷1和卷2中

介绍的任何优化算法。实际上，你可以通过这种方式优化任意向量，因

为优化算法不依赖于神经网络。在第6章中，你将看到几种专门为神经

网络设计的训练算法。尽管这些训练算法通常更有效，但它们需要可微

的目标函数。

[1]　公式中lg表示以10为底的对数。——编者注

[2]　Draper，1998。

第6章　反向传播训练

本章要点：

梯度计算；

反向传播；

学习率和动量；

随机梯度下降。

反向传播是训练神经网络的最常用方法之一。Rumelhart、Hinton和

Williams（1986）引入了反向传播，该方法到今天仍然很流行。程序员

经常使用反向传播训练深层神经网络，因为在图形处理单元上运行时，

它的伸缩性很好。要了解这种用于神经网络的算法，我们必须探讨如何

训练它，以及它如何处理模式。

经典的反向传播已得到扩展和修改，产生了许多不同的训练算法。

本章中将讨论神经网络最常用的训练算法。我们从经典的反向传播开

始，然后以随机梯度下降结束本章。

6.1　理解梯度

反向传播是梯度下降的一种，许多教科书中通常互换使用这两个术

语。梯度下降是指针对每个训练元素，在神经网络中的每个权重上计算

一个梯度。由于神经网络不会输出训练元素的期望值，因此每个权重的

梯度将为你提示如何修改权重以实现期望输出。如果神经网络确实输出

了预期的结果，则每个权重的梯度将为0，这表明无需修改权重。

梯度是权重当前值下误差函数的导数。误差函数用于测量神经网络

输出与预期输出的差距。实际上，我们可以使用梯度下降，在该过程

中，每个权重的梯度可以让误差函数达到更低值。

梯度实质上是误差函数对神经网络中每个权重的偏导数。每个权重

都有一个梯度，即误差函数的斜率。权重是两个神经元之间的连接。计

算误差函数的梯度可以确定训练算法应增加，还是减小权重。反过来，

这种确定将减小神经网络的误差。误差是神经网络的预期输出和实际输

出之间的差异。许多不同的名为“传播训练算法”的训练算法都利用了梯

度。总的来说，梯度告诉神经网络以下信息：

零梯度——权重不会导致神经网络的误差；

负梯度——应该增加权重以减小误差；

正梯度——应当减小权重以减小误差。

由于许多算法都依赖于梯度计算，因此我们从分析这个过程开始。

　6.1.1　什么是梯度

首先，让我们探讨一下梯度。本质上，训练是对权重集的搜索，这

将使神经网络对于训练集具有最小的误差。如果我们拥有无限的计算资

源，那么只需尝试各种可能的权重组合，来确定在训练期间提供最小误

差的权重。

因为我们没有无限的计算资源，所以必须使用某种快捷方式，以避

免需要检查每种可能的权重组合。这些训练算法利用了巧妙的技术，从

而避免对所有权重进行蛮力搜索。但这种类型的穷举搜索将是不可能

的，因为即使小型网络也具有无限数量的权重组合。

请考虑一幅图像，它展示每个可能权重的神经网络误差。图6-1展

示了单个权重的误差。

图6-1　单个权重的误差

从图6-1中很容易看到，最佳权重是曲线的 ()值最低的位置。问题

是我们只看到当前权重的误差；我们看不到整幅图像，因为该过程需要

穷尽的搜索。但是，我们可以确定特定权重下误差曲线的斜率。在图6-

1中，我们看到误差曲线在 =1.5处的斜率。与误差曲线相切（在 =1.5

处）的直线给出了斜率。在这个例子中，斜率或梯度为−0.562 2。负斜

率表示增大权重会降低误差。

梯度是指在特定权重下误差函数的瞬时斜率。误差曲线在该点的导

数给出了梯度。这条线的倾斜程度告诉我们特定权重下误差函数的陡峭

程度。

导数是微积分中最基本的概念之一。对于本书，你只需要了解导数

在特定点处提供函数的斜率即可。训练技巧和该斜率可以为你提供信

息，用于调整权重，从而降低误差。现在，利用梯度的实用定义，我们

将展示如何计算它。

　6.1.2　计算梯度

我们将为每个权重单独计算一个梯度。我们不仅关注方程，也关注

梯度在具有真实数值的实际神经网络中的应用。图6-2展示了我们将使

用的神经网络——XOR神经网络。

图6-2　XOR神经网络

此外，本书线上资源（见引言）的几个示例中使用了相同的神经网

络。在本章中，我们将展示一些计算，说明神经网络的训练。我们必须

使用相同的起始权重，让这些计算保持一致。但是，上述权重没有什么

特征，是由该程序随机生成的。

前面提到的神经网络是典型的三层前馈神经网络，就像我们之前研

究的那样，圆圈表示神经元，连接圆圈的线表示权重，连接线中间的矩

形给出每个连接的权重。

我们现在面临的问题是，计算神经网络中每个权重的偏导数。当一

个方程具有多个变量时，我们使用偏导数。每个权重均被视为变量，因

为这些权重将随着神经网络的变化而独立变化。每个权重的偏导数仅显

示每个权重对误差函数的独立影响。该偏导数就是梯度。

可以用微积分的链式规则来计算每个偏导数。我们从一个训练集元

素开始。对于图6-2，我们提供[1,0]作为输入，并期望输出是1。你可以

看到我们将输入应用于图6-2。第一个输入神经元的输入为1.0，第二个

输入神经元的输入为0.0。

该输入通过神经网络馈送，并最终产生输出。第4章“前馈神经网

络”介绍了计算输出与总和的确切过程。反向传播既有前向，也有反

向。计算神经网络的输出时，就会发生前向传播。我们仅针对训练集中

的这个数据项计算梯度，训练集中的其他数据项将具有不同的梯度。在

后文，我们将讨论如何结合各个训练集元素的梯度。

现在我们准备计算梯度。下面总结了计算每个权重的梯度的步骤：

根据训练集的理想值计算误差；

计算输出节点（神经元）的增量；

计算内部神经元节点的增量；

计算单个梯度。

我们将在随后的内容中讨论这些步骤。

6.2　计算输出节点增量

为神经网络中的每个节点（神经元）计算一个常数值。我们将从输

出节点开始，然后逐步通过神经网络反向传播。“反向传播”一词就来自

这个过程。我们最初计算输出神经元的误差，然后通过神经网络向后传

播这些误差。

节点增量是我们将为每个节点计算的值。层增量也描述了该值，因

为我们可以一次计算一层的增量。在计算输出节点或内部节点时，确定

节点增量的方法可能会有所不同。首先计算输出节点，并考虑神经网络

的误差函数。在本书中，我们将研究二次误差函数和交叉熵误差函数。

　6.2.1　二次误差函数

神经网络的程序员经常使用二次误差函数。实际上，你可以在网络

上找到许多使用二次误差函数的示例。如果你正在阅读一个示例程序，

但未提及具体的误差函数，那么该程序可能使用了二次误差函数，也称

为MSE函数，我们在第5章“训练和评估”中讨论过。公式6-1展示了MSE

函数：

（6-1）

公式6-1将神经网络的实际输出（ ）与预期输出（ ）进行了比

较。变量 为训练元素的数量乘以输出神经元的数量。MSE将多个输出

神经元处理为单个输出神经元的情况。公式6-2展示了使用二次误差函

数的节点增量：

（6-2）

二次误差函数非常简单，因为它取了神经网络的预期输出与实际输

出之间的差。 ′表示激活函数的导数。

　6.2.2　交叉熵误差函数

二次误差函数有时可能需要很长时间才能正确调整权重。公式6-3

展示了交叉熵误差（Cross-entropy Error，CE）函数：

（6-3）

如公式6-4所示，采用交叉熵误差函数的节点增量计算要比采用

MSE函数简单得多。

（6-4）

交叉熵误差函数通常会比二次误差函数结果更好，因为二次误差函

数会为误差创建一个陡峭的梯度。我们推荐采用交叉熵误差函数。

6.3　计算剩余节点增量

既然已经根据适当的误差函数计算了输出节点的增量，我们就可以

计算内部节点的增量，如公式6-5所示：

（6-5）

我们将为所有隐藏和无偏置神经元计算节点增量，但无须为输入和

偏置神经元计算节点增量。即使我们可以使用公式6-5轻松计算输入和

偏置神经元的节点增量，梯度计算也不需要这些值。你很快会看到，权

重的梯度计算仅考虑权重所连接的神经元。偏置和输入神经元只是连接

的起点，它们从来不是终点。

如果你希望看到梯度计算过程，有几个JavaScript示例显示了这些计

算过程。这些示例可以在以下URL中找到：

http://www.heatonresearch.com/aifh/vol3/

6.4　激活函数的导数

反向传播过程需要激活函数的导数，它们通常确定反向传播过程将

如何执行。大多数现代深度神经网络都使用线性、Softmax和ReLU激活

函数。我们还会探讨S型和双曲正切激活函数的导数，以便理解ReLU激

活函数为何表现如此出色。

　6.4.1　线性激活函数的导数

线性激活函数被认为不是激活函数，因为它只是返回给定的任何

值。因此，线性激活函数有时称为一致激活函数。该激活函数的导数为

1，如公式6-6所示：

（6-6）

如前文所述，希腊字母 表示激活函数，在 右上方的撇号表示我们

正在使用激活函数的导数。这是导数的几种数学表示形式之一。

　6.4.2　Softmax激活函数的导数

在本书中，Softmax激活函数和线性激活函数仅在神经网络的输出

层上使用。如第1章“神经网络基础”所述，Softmax激活函数与其他激活

函数的不同之处在于，其值还取决于其他输出神经元，而不仅仅取决于

当前正在计算的输出神经元。方便起见，公式6-7再次展示了Softmax激

活函数：

（6-7）

向量代表所有输出神经元的输出。公式6-8展示了该激活函数的导

数：

（6-8）

对于上述导数，我们使用了稍微不同的符号。带有草书风格的∂符

号的比率表示偏导数，当你对具有多个变量的方程进行微分时会使用这

个符号。要取偏导数，可以将方程对一个变量微分，而将所有其他变量

保持不变。上部的∂指出要微分的函数。在这个例子中，要微分的函数

是激活函数 。下部的∂表示偏导数的分别微分。在这个例子中，我们正

在计算神经元的输出，所有其他变量均视为常量。微分是瞬时变化率：

一次只有一个变量能变化。

如果使用交叉熵误差函数，就不会使用线性或Softmax激活函数的

导数来计算神经网络的梯度。通常你只在神经网络的输出层使用线性和

Softmax激活函数。因此，我们无须担心它们对于内部节点的导数。对

于使用交叉熵误差函数的输出节点，线性和Softmax激活函数的导数始

终为1。因此，你几乎不会对内部节点使用线性或Softmax激活函数的导

数。

　6.4.3　S型激活函数的导数

公式6-9展示了S型激活函数的导数：

（6-9）

机器学习经常利用公式6-9中表示的S型激活函数。我们通过对S型

函数的导数进行代数运算来导出该公式，以便在其自身的导数计算中使

用S型激活函数。为了提高计算效率，上述激活函数中的希腊字母 表示

S型激活函数。在前馈过程中，我们计算了S型激活函数的值。保留S型

激活函数的值使S型激活函数的导数易于计算。如果你对如何得到公式

6-9感兴趣，可以参考以下网址：

http://www.heatonresearch.com/aifh/vol3/deriv_sigmoid.html

　6.4.4　双曲正切激活函数的导数

公式6-10给出了双曲正切激活函数的导数：

（6-10）

在本书中，我们建议使用双曲正切激活函数，而不是S型激活函

数。

　6.4.5　ReLU激活函数的导数

公式6-11展示了ReLU激活函数的导数：

（6-11）

严格来说，ReLU激活函数在0处没有导数，但是，由于约定，当

为0时，0处的梯度被替换。具有S型和双曲正切激活函数的深层神经网

络可能难以通过反向传播进行训练。造成这一困难的因素很多，梯度消

失问题是最常见的原因之一。图6-3展示了双曲正切激活函数及其梯度/

导数。

图6-3　双曲正切激活函数及其梯度/导数

图6-3表明，当双曲正切激活函数（实线）接近−1和1时，双曲正切

激活（虚线）的导数消失为0。S型和双曲正切激活函数都有这个问题，

但ReLU激活函数没有。图6-4展示了S型激活函数及其消失的导数。

图6-4　S型激活函数及其消失的导数

6.5　应用反向传播

反向传播是一种简单的训练算法，可以利用计算出的梯度来调整神

经网络的权重。该方法是梯度下降的一种形式，因为我们将梯度降到较

低的值。随着程序调整这些权重，神经网络将产生更理想的输出。神经

网络的整体误差应随着训练而下降。在探讨反向传播权重的更新过程之

前，我们必须先探讨更新权重的两种不同方式。

　6.5.1　批量训练和在线训练

我们已经展示了如何为单个训练集元素计算梯度。在本章的前面，

我们对神经网络输入[1,0]并期望输出1的情况计算了梯度。对于单个训

练集元素，这个结果是可以接受的，但是，大多数训练集都有很多元

素。因此，我们可以通过两种方式来处理多个训练集元素，即在线训练

和批量训练。

在线训练意味着你需要在每个训练集元素之后修改权重。利用在第

一个训练集元素中获得的梯度，你可以计算权重并对它们进行更改。训

练进行到下一个训练集元素时，也会计算并更新神经网络。训练将继续

进行，直到你用完每个训练集元素为止。至此，训练的一个迭代或一轮

（epoch）已经完成。

批量训练也利用了所有训练集元素，但是，我们不着急更新所有权

重。作为替代，我们对每个训练集元素的梯度求和。一旦我们完成了对

训练集元素梯度的求和，就可以更新神经网络权重。至此，迭代完成。

有时，我们可以设置批量的大小。如你的训练集可能有10 000个元

素，此时可选择每1 000个元素更新一次神经网络的权重，从而使神经

网络权重在训练迭代期间更新10次。

在线训练是反向传播的最初方式。如果要查看该程序批处理版本的

计算，请参考以下在线示例：

http://www.heatonresearch.com/aifh/vol3/xor_batch.html

　6.5.2　随机梯度下降

批量训练和在线训练不是反向传播的仅有选择。随机梯度下降

（SGD）是反向传播算法中最受欢迎的算法。SGD可以用批量或在线训

练模式工作。在线SGD简单地随机选择训练集元素，然后计算梯度并执

行权重更新。该过程一直持续到误差达到可接受的水平为止。与每次迭

代遍历整个训练集相比，选择随机训练集元素通常会更快收敛到可接受

的权重。

批量SGD可通过选择批量大小来实现。对于每次迭代，随机选择数

量不应超过所选批量大小的训练集元素，因此选择小批量。更新时像常

规反向传播批量处理更新一样，将小批量处理中的梯度相加。这种更新

与常规批量处理更新非常相似，不同之处在于，每次需要批量时都会随

机选择小批量。迭代通常以SGD处理单个批量。批量大小通常比整个训

练集小得多。批量大小的常见选择是600。

　6.5.3　反向传播权重更新

现在，我们准备更新权重。如前所述，我们将权重和梯度视为一维

数组。给定这两个数组，我们准备为反向传播训练的迭代计算权重更

新。公式6-12给出了为反向传播更新权重的公式：

（6-12）

公式6-12计算权重数组中每个元素的权重变化。你也会注意到，公

式6-12要求对来自上一次迭代的权重进行改变。你必须将这些值保存在

另一个数组中。如前所述，权重更新的方向与梯度的符号相反：正梯度

会导致权重减小，反之负梯度会导致权重增大。由于这种相反关系，公

式6-12以负号开始。

公式6-12将权重增量计算为梯度与学习率（以ε表示）的乘积。此

外，我们将之前的权重变化与动量值（以α表示）的乘积相加。学习率

和动量是我们必须提供给反向传播算法的两个参数。选择学习率和动量

的值对训练的表现非常重要。不幸的是，确定学习率和动量主要是通过

反复试验实现的。

学习率对梯度进行缩放，可能减慢或加快学习速度。低于1.0的学

习率会减慢学习速度。如学习率为0.5会使每个梯度减少50%；高于1.0

的学习率将加速训练。实际上，学习率几乎总是低于1。

选择过高的学习率会导致你的神经网络无法收敛，并且会产生较高

的全局误差，而不会收敛到较低值。选择过低的学习率将导致神经网络

花费大量时间实现收敛。

和学习率一样，动量也是一个缩放因子。尽管是可选的，但动量确

定了上一次迭代的权重变化中有百分之多少应该应用于这次迭代。如果

你不想使用动量，只需将它的值指定为0。

动量是用于反向传播的一项技术，可帮助训练逃避局部最小值，这

些最小值是误差图上的低点所标识的值，而不是真正的全局最小值。反

向传播倾向于找到局部最小值，而不能再次跳出来。这个过程导致训练

收敛误差较高，这不是我们期望的。动量可在神经网络当前变化的方向

上对它施加一些力，让它突破局部最小值。

　6.5.4　选择学习率和动量

动量和学习率有助于训练的成功，但实际上它们并不是神经网络的

一部分。一旦训练完成，训练后的权重将保持不变，不再使用动量或学

习率。它们本质上是一种临时的“脚手架”，用于创建训练好的神经网

络。选择正确的动量和学习率会影响训练的效果。

学习率会影响神经网络训练的速度，降低学习率会使训练更加细

致。较高的学习率可能会跳过最佳权重设置，较低的学习率总是会产生

更好的结果，但是，降低训练速度会大大增加运行时间。在神经网络训

练中降低学习率可能是一种有效的技术。

你可以用动量来对抗局部最小值。如果你发现神经网络停滞不前，

则较高的动量值可能会使训练超出其遇到的局部最小值。归根结底，为

动量和学习率选择好的值是一个反复试验的过程。你可以根据训练的进

度进行调整。动量通常设置为0.9，学习率通常设置为0.1或更低。

　6.5.5　Nesterov动量

由于小批量引入的随机性，SGD算法有时可能产生错误的结果。权

重可能会在一次迭代中获得非常有益的更新，但是训练元素的选择不当

会使其在下一个小批量中被撤销。因此，动量是一种资源丰富的工具，

可以减轻这种不稳定的训练结果。

Nesterov动量是Yu Nesterov在1983年发明的一种较新的技术应用，

该技术在他的Introductory Lectures on Convex Optimization: A Basic

Course一书中得到了更新[1]。有时将该技术称为Nesterov的加速梯度下

降。尽管对Nesterov动量的完整数学解释超出了本书的范围，但我们将

针对权重进行详细介绍，以便你可以实现它。本书的示例（包括在线

JavaScript的示例）包含Nesterov动量的实现。此外，本书的线上资源包

含一些针对Nesterov动量权重更新的JavaScript示例程序。

公式6-13基于学习率（ε）和动量（α）计算部分权重更新：

（6-13）

当前迭代用 表示，前一次迭代用 −1表示。这种部分权重更新称为

，最初从0开始。部分权重更新的后续计算基于部分权重更新的先前

值。公式6-13中的偏导数是当前权重下误差函数的梯度。公式6-14展示

了Nesterov动量更新，它代替了公式6-12中展示的标准反向传播权重更

新：

（6-14）

上面的权重更新的计算，是部分权重更新的放大。公式6-14中显示

增量权重已添加到当前权重中。具有Nesterov动量的SGD是深度学习最

有效的训练算法之一。

6.6　本章小结

本章介绍了经典的反向传播和SGD。这些方法都基于梯度下降。换

言之，它们用导数优化了单个权重。对于给定的权重，导数向程序提供

误差函数的斜率。斜率允许程序确定如何更新权重。每个训练算法对斜

率或梯度的解释不同。

尽管反向传播是最古老的训练算法之一，但它仍然是最受欢迎的算

法之一。反向传播就是将梯度添加到权重中，负梯度将增大权重，正梯

度将减小权重。我们通过学习率来缩放权重，防止权重变化过快。0.5

的学习率意味着将权重增加一半的梯度，而2.0的学习率意味着将权重

增加2倍的梯度。

反向传播算法有多种变体，其中一些变体（如弹性传播）颇受欢

迎。第7章将介绍一些反向传播的变体。尽管了解这些变体很有用，但

是SGD仍然是最常见的深度学习训练算法之一。

[1]　Nesterov，2003。

第7章　其他传播训练

本章要点：

弹性传播；

莱文伯格-马夸特算法；

黑塞矩阵。

反向传播算法影响了许多训练算法，如第6章介绍的SGD。对于大

多数训练，SGD算法和Nesterov动量是训练算法的不错选择。但是，还

有其他选择。在本章中，我们研究两种受反向传播思想启发的流行算

法。

要使用这两种算法，你无须了解它们实现的每个细节。本质上，这

两种算法都可以实现与反向传播相同的目标。因此，你可以在大多数神

经网络框架中用它们代替反向传播或SGD。如果发现SGD不收敛，就可

以转向弹性传播（Resilient backPROPagation，RPROP）或莱文伯格-马

夸特算法（Levenberg-Marquardt Algorithm；LM算法，LMA）以进行实

验。但是，如果你对这两种算法的实际实现细节不感兴趣，则可以跳过

本章。

7.1　弹性传播

RPROP与反向传播很类似，反向传播和RPROP都必须首先计算神

经网络权重的梯度。但是，反向传播和RPROP使用梯度的方式有所不

同。Reidmiller和Braun（1993）引入了RPROP算法。

RPROP算法的一个重要特征是它没有必要的训练参数。使用反向传

播时，必须指定学习率和动量。这两个参数会极大地影响你的训练效

果。尽管RPROP确实包含一些训练参数，但你几乎总是可以让它们采用

默认值。

RPROP算法有多个变体。下面列出了一些变体：

RPROP+；

RPROP−；

iRPROP+；

iRPROP−。

我们将重点介绍经典RPROP，正如Reidmiller和Braun（1994）所描

述的。相对于经典RPROP，上面提到的其他4个变体的调整较小。在接

下来几节中，我们将描述如何实现经典的RPROP算法。

7.2　RPROP参数

如前所述，RPROP与反向传播相比有一个优势：你无须提供任何训

练参数即可使用RPROP。但是，这并不意味着RPROP缺少配置设置，

而意味着你通常不需要修改RPROP的默认设置。但是，如果你确实要更

改它们，则可以在以下配置中进行选择设置：

初始更新值；

最大步长。

你在7.4节中会看到，RPROP保留了权重的更新值数组，该值确定

每个权重要改变的量。这种变化与反向传播中的学习率的变化相似，但

是它要好得多，因为随着训练的进行，该算法会调整神经网络中每个权

重的更新值。尽管某些反向传播算法将随着学习的进展而改变学习率和

动量，但大多数算法都对整个神经网络使用单一的学习率。因此，

RPROP算法相对反向传播算法更有优势。

根据初始更新值参数，我们以默认值0.1开始调整这些更新值。通

常，我们不应更改这个默认值。但是，如果我们已经训练了该神经网

络，就可以突破这条规则。在以前训练过的神经网络中，某些初始更新

值会太大，神经网络会倒退许多次迭代才能获得改进。因此，训练过的

神经网络可能会因较小的初始更新值而受益。

对于已经训练好的神经网络，另一种方法是在训练停止后保存更新

值，并将其用于新的训练。使用这个方法，你可以恢复训练，而不会出

现恢复弹性传播训练时通常会看到的初始误差峰值。这个方法仅当你在

训练过的神经网络上继续进行弹性传播训练时才有效。如果你以前使用

不同的训练算法来训练神经网络，就能够从一组更新值中恢复训练。

随着训练的进行，你会用梯度来上下调整这些更新值。最大步长参

数定义了梯度可以取代更新值的最大向上步长。最大步长参数的默认值

为50。你不太可能需要更改这个参数的值。

除了这些参数外，RPROP在处理期间还会保存一些常量。这些常量

的值无法更改，如下：

最小增量（10−6）；

η+（0.5）；

η−（1.2）；

零容忍（10−16）。

最小增量指定了所有更新值可以达到的最小值。如果更新值为0，

则它将永远无法增加到0以上。我们将在7.4节中描述η+和η−。

零容忍定义了一个数字在十分接近0时，就认为它等于0。在计算机

编程中，将浮点数与0进行比较通常是不好的，因为该数字必须恰好等

于0。作为替代，你通常会看到数字的绝对值是否低于一个非常小的足

以被认为是0的数字。

7.3　数据结构

进行RPROP训练时，必须在内存中保留几个数据结构。这些结构都

是浮点数的数组。它们汇总如下：

当前更新值；

上一次权重变化值；

当前权重变化值；

当前梯度；

先前的梯度。

保留当前更新值是为了训练。如果要在某个时间恢复训练，则必须

存储这个更新值数组。每个权重都有一个不能低于最小增量常数的更新

值。同样，这些更新值不能超过最大步长参数。

RPROP必须在两次迭代之间保留几个值。你还必须跟踪上一次权重

增量值。反向传播使动量保持先前的权重增量。RPROP以不同的方式使

用这个增量值，我们将在下文中进行研究。你还需要当前和先前的梯

度。RPROP需要知道从当前梯度到先前的梯度，符号何时变化。这种变

化表明你必须对更新值进行操作。我们将在下文中讨论这些操作。

7.4　理解RPROP

在前面几节中，我们探讨了RPROP必需的参数、常量和数据结构。

本节将向你展示RPROP的迭代。在前文中讨论反向传播时，我们提到了

在线训练和批量训练权重更新方法。但是，RPROP不支持在线训练，因

此RPROP的所有权重更新将以批量训练执行。因此，RPROP的每次迭

代将收到一些梯度，它们是每个训练集的各个梯度的总和。这方面与批

量训练的反向传播一致。

　7.4.1　确定梯度的符号变化

至此，我们得到的梯度与反向传播算法计算出的梯度相同。我们使

用相同的过程来获得RPROP和反向传播中的梯度，因此不赘述。作为第

一步，我们将当前迭代的梯度与前一次迭代的梯度进行比较。如果没有

先前迭代的梯度，那么可以假定先前的梯度为0。

为了确定梯度符号是否已更改，我们将使用符号（sgn）函数。公

式7-1定义了sgn函数：

（7-1）

sgn函数返回提供的数字的符号。如果 小于0，则结果为−1；如果

大于0，则结果为1；如果 等于0，则结果为0。实现sgn函数时，我们通

常使用零容忍，因为浮点运算几乎不可能在计算机上精确地得到0。

为了确定梯度是否改变了符号，我们使用公式7-2：

（7-2）

公式7-2将得出常数 。我们评估这个值为负值、正值或接近0。 为

负值表示梯度的符号已更改；为正值表示梯度的符号没有变化；接近0

表示梯度的符号变化很小，或几乎没有变化。

对于这3个结果，请考虑以下情况：

−1 * 1 = −1 （负，改变从负到正）
1 * 1 = 1 （正，符号没有改变）
1.0 * 0.000001 = 0.000001 （接近0，几乎改变符号，但还没有）

我们已经计算出常数 ，它给出了梯度符号变化的指示，接下来就

可以计算权重变化了。7.4.2小节将对此计算进行讨论。

　7.4.2　计算权重变化

既然已经发现了梯度的符号变化，我们就可以观察到7.4.1小节提到

的3种情况的每一种情况。公式7-3总结了这3种情况：

（7-3）

该公式计算每次迭代的实际权重变化。如果 的值为正，则权重变

化将等于权重更新值的负值。类似地，如果 的值为负，则权重变化将

等于权重更新值的正值。最后，如果 的值接近0，则权重不会改变。

　7.4.3　修改更新值

我们使用7.4.2小节中的权重更新值来更新神经网络的权重。神经网

络中的每个权重都有一个单独的权重更新值，它比反向传播的单个学习

率要好得多。我们在每次训练迭代期间修改这些权重更新值，如公式7-

4所示：

（7-4）

我们可以用类似权重变化的方式来修改权重更新值。和权重一样，

我们让这些权重更新值基于先前计算的值 。

如果 的值为正，则将权重更新值乘以η+。同样，如果 的值为负，

则将权重更新值乘以η−。最后，如果 的值接近0，则不会更改权重更新

值。

7.5　莱文伯格-马夸特算法

LMA是一种非常有效的神经网络训练算法。在许多情况下，LMA

的表现超过了RPROP。因此，每个神经网络程序员都应该考虑这种训练

算法。Levenberg（1940）引入了LMA的基础，而Marquardt（1963）扩

展了其方法。

LMA是一种混合算法，它基于高斯-牛顿法（Gauss-Newton

Algorithm，GNA，以下简称牛顿法）和梯度下降（反向传播）。因

此，LMA结合了牛顿法和反向传播的优势。尽管梯度下降可以保证收

敛到局部最小值，但是它很慢。牛顿法速度很快，但通常无法收敛。通

过使用阻尼系数在两者之间进行插值，我们创建了一种混合方法。为了

理解这种混合方法的工作原理，我们先研究牛顿法。公式7-5展示了牛

顿法：

（7-5）

在公式7-5中，你会注意到几个变量。该公式的结果是，你可以将

增量应用于调整神经网络的权重。变量 代表黑塞矩阵（Hessian

matrix），我们将在7.6节中讨论。变量 代表神经网络的梯度。你还会

注意到变量 的−1“指数”，它代表我们要对变量 和 进行矩阵分解。

我们可以很容易地花整整一章来讨论矩阵分解。但是，考虑到本书

的目的，我们只是将矩阵分解视为黑盒原子算子。因为我们不会解释如

何计算矩阵分解，所以使用了从JAMA软件包中提取的通用代码。许多

数学相关的计算机应用程序都使用了这些通用代码，这些通用代码是从

Fortran程序改编而来的。要执行矩阵分解，可以使用JAMA或其他通用

代码。

尽管存在几种类型的矩阵分解，但我们选择使用LU分解，这需要

一个方阵。由于黑塞矩阵的列数与行数相同，因此采用黑塞矩阵进行分

解效果很好。神经网络中的每个权重都有一行和一列。LU分解针对黑

塞矩阵，它是每个权重输出的二阶偏导数矩阵。LU分解根据梯度来分

解黑塞矩阵，梯度是每个权重的误差的平方。这些梯度与我们在第6

章“反向传播训练”中计算的梯度相同。因为求的是误差的平方，所以在

处理LMA时必须使用误差平方和。

“二阶导数”是一个重要的名词，它是一阶导数的导数。回顾第6

章“反向传播训练”，函数的导数是任意点的斜率。该斜率表示曲线趋近

局部最小值的方向。二阶导数也是一个斜率，它指向最小化一阶导数的

方向。牛顿法和LMA的目标是将所有梯度减小为0。

有趣的是，目标不包括误差。牛顿法和LMA可以忽略误差，因为

它们试图将所有梯度减小到0。实际上，它们并没有完全忽略误差，因

为它们使用误差来计算梯度。

牛顿法会将神经网络的权重收敛到局部最小值、局部最大值或鞍

点。我们通过将所有梯度（一阶导数）最小化来实现这种收敛。在局部

最小值、局部最大值或鞍点，导数将为0。图7-1展示了这3个点的位

置。

图7-1　局部最小值、局部最大值和鞍点

算法实现必须确保排除局部最大值和鞍点。上面的算法通过对黑塞

矩阵和梯度进行矩阵分解来实现。黑塞矩阵通常是估计的矩阵。估计黑

塞矩阵的方法有几种。但是，如果估计不准确，可能会影响牛顿法。

LMA将牛顿法增强为公式7-6：

（7-6）

在公式7-6中，我们添加了一个项，即阻尼系数乘以一个单位矩

阵。阻尼系数用λ表示， 表示单位矩阵，该矩阵是除了主对角线上的元

素均为1外，其他所有元素均为0的方阵。随着λ的增加，黑塞矩阵在公

式7-6中的影响将减弱。随着λ的减小，黑塞矩阵比梯度下降更为重要，

从而允许训练算法在梯度下降和牛顿法之间进行插值。较高的λ有利于

梯度下降，较低的λ值有利于牛顿法。LMA的训练迭代从低λ开始并递

增，直到产生理想的结果。

7.6　黑塞矩阵的计算

黑塞矩阵是一个方阵，其行数和列数等于神经网络中的权重数。该

矩阵中的每个元素代表相对给定权重组合的神经网络输出的二阶导数。

公式7-7展示了黑塞矩阵：

（7-7）

重要的是要注意，黑塞矩阵是关于对角线对称的，可以用来提高计

算性能。公式7-8通过计算梯度来计算黑塞矩阵：

（7-8）

公式7-8的二阶导数即为黑塞矩阵的元素。你可以用公式7-9进行计

算：

（7-9）

如果没有多项式的第二部分，你可以轻松计算出公式7-9。然而，

多项式的第二部分涉及二阶偏导数，并且难以计算。因为该部分并不重

要，所以实际上可以删除它，它的值不会显著影响结果。虽然二阶导数

对单个训练案例可能很重要，但其总体贡献并不重要。公式7-9中多项

式的第二部分要乘以该训练案例的误差。我们假设训练集中的误差是独

立的，并且平均分布在0左右。在整个训练集中，它们应该基本上相互

抵消。因为我们没有使用二阶导数的所有分量，所以我们只有黑塞矩阵

的近似值，但这足以获得良好的训练结果。

公式7-10使用了这种近似，结果如下：

（7-10）

虽然公式7-10只是真正黑塞矩阵的近似值，但与准确性的损失相

比，简化计算二阶导数的算法是值得的。实际上，λ的增加将造成准确

性的损失。

要计算黑塞矩阵和梯度，我们必须确定神经网络输出的一阶偏导

数。有了这些一阶偏导数，利用公式7-10就可以轻松计算黑塞矩阵和梯

度。

神经网络输出的一阶导数的计算与我们计算反向传播梯度的过程非

常相似。主要区别在于后者的计算我们取输出的导数，在标准反向传播

中，我们取误差函数的导数。这里，我们不会复述整个反向传播过程。

第6章“反向传播训练”介绍了反向传播和梯度计算。

7.7　具有多个输出的LMA

LMA的某些实现仅支持单输出神经元，因为LMA的根源来自数学

函数逼近。在数学中，函数通常仅返回单个值。因此，许多书籍和论文

都没有包含对多输出LMA的讨论。但是，你可以使用具有多个输出的

LMA。

支持多输出神经元，涉及在计算其他输出神经元时对黑塞矩阵的每

个单元求和。该过程就像你为每个输出神经元计算了一个单独的黑塞矩

阵，然后对黑塞矩阵求和。Encog[1]使用了这种方法，从而使收敛时间

缩短。

你需要认识到，多个输出不会使用到每个连接。你需要针对每个输

出神经元的权重，独立计算一个更新值。根据你当前正在计算的输出神

经元，会发现其他输出神经元有未使用的连接。因此，在计算其他输出

神经元时，必须将这些未使用的连接中的每一个的偏导数设置为0。

如考虑具有两个输出神经元和3个隐藏神经元的神经网络。这两个

输出神经元中的每一个与隐藏层之间都有4个连接。前3个连接来自3个

隐藏的神经元，第4个连接来自偏置神经元。神经网络的这一部分类似

于图7-2。

图7-2　计算O1

在这里，我们正在计算O1。请注意，O2具有4个连接，必须将它们

的偏导数设置为0。由于我们正在将O1作为当前神经元来计算，因此仅

使用它的正常偏导数。你可以针对每个输出神经元重复这个过程。

7.8　LMA过程概述

到目前为止，我们仅研究了LMA背后的数学原理。要产生效果，

LMA必须是算法的一部分。以下步骤总结了LMA过程：

1. 考虑每个权重，计算神经网络输出的一阶导数。
2. 计算黑塞矩阵。
3. 考虑每个权重，计算误差梯度（ESS）。
4. 将λ设置为一个低值（第一次迭代）或上一次迭代的λ。
5. 保存神经网络的权重。
6. 根据λ、梯度和黑塞矩阵计算权重增量。
7. 将权重增量应用于权重，并评估误差。
8. 如果误差有所改善，结束迭代。
9. 如果误差没有改善，增加λ（直到最大λ），恢复权重，然后返回到步骤6。

如你所见，LMA的过程反复循环，开始时将λ设置为较低的值，然

后在误差率没有改善的情况下缓慢增加。必须在λ的每次更改中保存权

重，以便在误差没有改善的情况下将其恢复。

7.9　本章小结

RPROP解决了简单反向传播的两个局限性。首先，程序为每个权重

分配一个单独的学习率，从而使权重以不同的速度学习。其次，RPROP

认识到，虽然梯度的符号可以很好地指示权重的移动方向，但梯度的大

小并不指示可以移动多远。而且，尽管程序员必须为反向传播确定合适

的学习率和动量，但RPROP会自动设置类似的参数。

遗传算法（Genetic Algorithm，GA）是训练神经网络的另一种方

法。有一个神经网络家族，都在使用GA来训练神经网络的各个方面，

从权重到整个网络结构。这个家族包括NEAT、复合模式生成网络

（Compositional Pattern-Producing Network，CPPN）和HyperNEAT神经

网络等，我们将在第8章中进行讨论。NEAT、CPPN和HyperNEAT使用

的GA不仅仅是另一种训练算法，因为这些神经网络基于本书到目前为

止所研究的前馈神经网络，引入了新的架构。

[1]　Heaton，2015。

第8章　NEAT、CPPN和HyperNEAT

本章要点：

NEAT；

遗传算法；

CPPN；

HyperNEAT。

本章讨论3种紧密相关的神经网络技术：NEAT、CPPN和

HyperNEAT。Kenneth Stanley的EPLEX团队在中佛罗里达大学对这3种

技术进行了广泛的研究。

NEAT是一种通过遗传算法进化神经网络结构的算法。CPPN是一种

进化的神经网络，可以创建其他结构，如图像或其他神经网络。

Hypercube-based NEAT或HyperNEAT（一种CPPN）也进化出其他神经

网络。HyperNEAT训练了这些神经网络后，就可以在它们的尺寸上轻松

处理更高的分辨率。

许多不同的框架都支持NEAT和HyperNEAT。对于Java和C#，我们

建议使用自己的Encog实现。你可以在Kenneth Stanley的网站上找到

NEAT实现的完整列表和HyperNEAT实现的完整列表。

在本章的其余部分，我们将探讨这3种神经网络。

8.1　NEAT神经网络

NEAT是由Stanley和Miikkulainen（2002）开发的神经网络结构。

NEAT使用遗传算法来优化神经网络的结构和权重。NEAT神经网络的

输入和输出与典型的前馈神经网络相同。

NEAT神经网络仅从偏置神经元、输入神经元和输出神经元开始。

通常，没有一个神经元一开始就有连接。当然，完全不连接的神经网络

是没有用的。对于是否确实需要某些输入神经元，NEAT没有任何假

设。不需要的输入被称为与输出统计无关（statistically independent）。

NEAT进化出的最佳基因组通常不会连接到统计无关的输入神经元，从

而发现这种无关性。

NEAT神经网络和普通前馈神经网络的另一个重要区别在于，除了

输入层和输出层之外，NEAT神经网络没有明确定义的隐藏层。NEAT

的隐藏神经元不会将自己组织成清晰描绘的层。NEAT和前馈神经网络

的相似之处在于，它们都使用S型激活函数。图8-1展示了一个进化的

NEAT神经网络。

图8-1　NEAT神经网络

图8-1中的“输入2”从未形成任何连接，因为进化过程确定“输入2”是

不必要的。“隐藏3”和“隐藏2”之间存在一个环式连接（recurrent

connection）。“隐藏4”与其自身具有环式连接。总之，你会注意到，

NEAT神经网络没有清晰的层次划分。

你可以按照与常规加权前馈神经网络完全相同的方式来计算NEAT

神经网络。你可以通过多次运行NEAT神经网络来管理环式连接。做法

是让环式连接输入从0开始，并在每次循环遍历NEAT神经网络时进行更

新。此外，你必须定义一个超参数，指定NEAT神经网络的计算次数。

图8-2展示了环式连接的计算，其中NEAT神经网络被指示循环3次以计

算环式连接。

图8-2　循环计算环式连接

图8-2展示了每个神经元在每个连接上的输出，3次循环，虚线表示

其他连接。简单起见，该图没有权重。图8-2表明，环式连接的输出滞

后一个循环。

对于循环1，环式连接为第一个神经元提供了0，因为从左到右计算

神经元。对于该环式连接，在循环1中没有任何值。对于循环2，环式连

接现在具有输出0.3，这是循环1提供的。循环3遵循相同的模式，将循

环2的输出0.5作为环式连接的输出。由于计算中还会有其他神经元，因

此我们设计了显示在底部的虚线箭头来表示这些神经元的输出值。但

是，该图确实展示了这些环式连接经过了先前的循环。

NEAT神经网络广泛使用了遗传算法，我们在本系列图书第2卷《受

大自然启发的算法》中对遗传算法进行了研究。尽管你无须完全理解遗

传算法也能理解本章中对它们的讨论，但可以根据需要参考第2卷。

NEAT使用典型的遗传算法，如下。

突变：程序选择一个合适的个体来创建一个新个体，该个体与其亲

代相比发生了随机变化。

交叉：程序选择两个合适的个体来创建一个新个体，该个体具有来

自双亲的元素的随机抽样。

所有的遗传算法都将突变和交叉遗传算子与个体解的种群结合在一

起。突变和交叉更可能选择从目标函数获得更高分数的解决方案。在接

下来的8.1.1和8.1.2小节中，我们将探讨NEAT神经网络的突变和交叉。

　8.1.1　NEAT突变

NEAT突变包含可以对亲本基因组进行的几种突变操作。我们在这

里讨论这些操作。

添加神经元：通过选择一个随机连接，我们可以添加神经元。一个

新的神经元和两个连接替换这个随机连接。新的神经元实际上分割

了该连接。程序为两个新连接中的每个连接选择权重，提供与被替

换的连接几乎相同的有效输出。

添加连接：程序选择一个源和一个目标，即两个随机神经元，新的

连接将添加在这两个神经元之间。偏置神经元永远不可能成为目

标，输出神经元不能作为源。在相同的两个神经元之间，相同方向

上的连接永远不会多于一个。

删除连接：可以随机选择要删除的连接。如果与之交互的连接都不

存在，则可以删除该隐藏神经元，它不是输入、输出或单个偏置神

经元。

扰动权重：你可以选择一个随机连接，然后，将其权重乘以正态随

机分布的值，即γ，γ值通常为1或更低。较小的随机数通常会导致

收敛更快。γ值为1或更低将指定单个标准差，取样一个1或更低的

随机数。

你可以增加突变的可能性，使权重扰动更加频繁地发生，从而使适

合的基因组改变其权重，并通过其子代进一步调整。结构突变的发生频

率要低得多。在大多数NEAT实现中，你可以调整每个操作的确切频

率。

　8.1.2　NEAT交叉

NEAT交叉比许多遗传算法要复杂得多，因为NEAT基因组是构成

单个基因组的神经元和连接的编码。大多数遗传算法都假设种群中所有

基因组的基因数量是不变的。实际上，由突变和交叉产生的NEAT中的

子基因组，可能与其亲代的基因数量不同。在实现NEAT交叉操作时，

管理这种数量差异需要一些技巧。

NEAT保留了通过突变对基因组所做的所有更改的数据库。这些更

改称为创新，它们的存在是为了实现突变。每次添加创新时，都会获得

一个ID。这些ID也将用于对创新排序。我们将看到，在两个创新之间进

行选择时，选择ID较低的创新非常重要。

重要的是要意识到创新与突变之间的关系不是一对一的。要实现一

个突变，可能需要多个创新。仅有的两种创新类型是创建神经元和创建

两个神经元之间的连接。一个突变可能来自多个创新，一个突变也可能

没有任何创新。只有增加神经网络结构的突变才会产生创新。下面总结

了前面提到的突变类型可能产生的创新。

添加神经元：一个新的神经元创新和两个新的连接创新。

添加连接：一个新的连接创新。

删除连接：无创新。

扰动权重：无创新。

你还需要注意，如果已经尝试过这种创新，那么NEAT不会重新创

建创新记录。此外，创新不包含任何权重信息，创新只包含结构信息。

通过考虑创新，可以实现两个基因组的交叉，这种特性可以确保

NEAT也保存了所有必要的创新。朴素交叉（就像许多遗传算法所使用

的）可能会将连接与不存在的神经元结合起来。清单8-1用伪代码展示

了完整的NEAT交叉函数。

清单8-1　NEAT交叉

def neat_crossover(rnd,mom,dad):
Choose best genome (by objective function), if tie, choose random
 best = favor_parent(rnd, mom, dad)
 not_best = dad if (best <> mom) else mom
 selected_links = []
 selected_neurons = []
current gene index from mom and dad
 cur_mom = 0
 cur_dad = 0
 selected_gene = None
add in the input and bias, they should always be here

always_count = mom.input_count + mom.output_count + 1
for i from 0 to always_count-1:
 selected_neurons.add(i, best, not_best)
Loop over all genes in both mother and father
 while (cur_mom < mom.num_genes) or (cur_dad < dad.num_genes):
The mom and dad gene object
 mom_gene = None
 mom_innovation = -1
 dad_gene = None
 dad_innovation = -1
grab the actual objects from mom and dad for the specified
indexes
if there are none, then None
 if cur_mom < mom.num_genes:
 mom_gene = mom.links[cur_mom];
 mom_innovation = mom_gene.innovation_id
 if cur_dad < dad.num_genes:
 dad_gene = dad.links[cur_dad]
 dad_innovation_id = dad_gene.innovation_id
now select a gene fror mom or dad. This gene is for the baby
Dad gene only, mom has run out
 if mom_gene == None and dad_gene <> None:
 cur_dad = cur_dad + 1
 selected_gene = dad_gene
Mom gene only, dad has run out
 else if dadGene == null and momGene <> null:
 cur_mom = cur_mom + 1
 selected_gene = mom_gene
Mom has lower innovation number
 else if mom_innovation_id < dad_innovation_id:
 cur_mom = cur_mom + 1
 if best == mom:
 selected_gene = mom_gene
Dad has lower innovation number
 else if dad_innovation_id < mom_innovation_id:
 cur_dad = cur_dad + 1
 if best == dad:
 selected_gene = dad_gene
Mom and dad have the same innovation number
Flip a coin
 else if dad_innovation_id == mom_innovation_id:
 cur_dad = cur_dad + 1
 cur_mom = cur_mom + 1
 if rnd.next_double()>0.5:
 selected_gene = dad_gene
 else:
 selected_gene = mom_gene

If a gene was chosen for the child then process it
If not, the loop continues
 if selected_gene <> None:
Do not add the same innovation twice in a row
 if selected_links.count == 0:
 selected_links.add(selected_gene)
 else:
 if selected_links[selected_links.count-1]
 .innovation_id <> selected_gene.innovation_id {
 selected_links.add(selected_gene)
Check if we already have the nodes referred to in
SelectedGene
If not, they need to be added
 selected_neurons.add(
 selected_gene.from_neuron_id, best, not_best)
 selected_neurons.add(
 selected_gene.to_neuron_id, best, not_best)
Done looping over parent's genes
 baby = new NEATGenome(selected_links, selected_neurons)
 return baby

上面的交叉实现基于Encog实现的NEAT交叉算子。我们提供以上

注释，以解释代码的关键部分。主要的进化发生在父本和母本包含的连

接上。创建子基因组时会带走支持这些连接所需的所有神经元。这段代

码包含一个主循环，它在两个亲本之间循环，从而在每个亲本中选择最

合适的连接基因。亲本双方的连接基因大都被缝合在一起，因此它们可

以找到最合适的基因。由于亲本的长度可能不同，因此在这一过程完成

之前，一个亲本可能会穷尽其基因。

每次通过循环时，都会根据以下标准从父本或母本中选择一个基

因。

如果母本或父本的基因已经用完了，则选择没有用完的另一个。越

过所选的基因。

母本的innovation_id较低时，如果母本的得分最高，则选择母本基

因。无论哪种情况，越过母本的基因。

父本的innovation_id较低时，如果父本的得分最高，则选择父本基

因。无论哪种情况，越过父本的基因。

如果父本母本的innovation_id相同，则随机选择一个，然后越过该

基因。

你可以认为亲本的基因都在很长的磁带上，每个磁带的标记都保持

当前位置。根据上述规则，标记将越过亲本的基因。在某个时候，如果

某个亲本的标记移到了磁带的末端，就意味着该亲本的基因用完了。

　8.1.3　NEAT物种形成

让计算机正确执行交叉是一个棘手的问题。在动植物界，交叉仅发

生在同一物种的成员之间。我们所说的物种到底是什么意思？在生物学

中，科学家将物种定义为可以产生有繁殖能力的后代的种群成员。因

此，马与蜂鸟基因组之间的交叉将灾难性地失败。然而，朴素的遗传算

法肯定会用人工计算机基因组，来尝试一些同样灾难性的事情！

NEAT物种形成算法具有多种变体。实际上，最先进的变体之一可

以用K均值聚类方法，将种群分为预定义数量的聚类。随后，你可以确

定每种物种的相对适应度。程序为每个物种提供了下一代种群数量的百

分比。然后，每个物种的成员将参加虚拟联赛（tournament），以确定

物种中的哪些成员将参与下一代的交叉和突变。

联赛是从物种中选择亲本的有效途径。程序执行一定数量的选拔

赛。通常，我们设置5次选拔赛。对于每次选拔赛，程序将从物种中随

机选择两个基因组。适应性更好的基因组进入下一次选拔赛。该过程对

多线程非常有效，并且在生物学上也似乎是合理的。这种选择方法的优

势在于，获胜者不必击败物种中最好的基因组，它只须击败选拔赛中的

对手。你必须为每个需要的亲本举办联赛。突变需要一个亲本，交叉需

要两个亲本。

除选拔赛外，其他几个因素也决定了用于突变和交叉的物种成员。

该算法总是将一个或多个精英基因组带入下一个物种。精英基因组的数

量是可配置的。程序为较年轻的基因组提供了奖励，让它们有机会尝试

新的创新。不同物种之间发生交叉的可能性很小。

所有这些因素使得NEAT成为非常有效的神经网络。NEAT无须定

义神经网络的隐藏层的结构。缺少严格的隐藏层结构使NEAT神经网络

能够进化出实际需要的连接。

8.2　CPPN

CPPN由Stanley（2007）发明，是人工神经网络的一种变体。CPPN

认识到一个生物学上合理的事实——基因型和表型并不相同。换言之，

基因型是生物体的DNA蓝图，表型是该蓝图实际产生的结果。

实际上，基因组是产生表型的指令，表型比基因型复杂得多。如

8.1节所述，在原始的NEAT中，基因组描述了连接的连接和神经元的神

经元如何产生表型。但是，CPPN不同，因为它创建了一个特殊的NEAT

基因种群，这些基因在两个方面很特殊。首先，CPPN不受常规NEAT的

限制，NEAT始终使用S型激活函数，CPPN可以使用以下任何激活函

数：

剪裁线性（clipped linear）函数；

双极变陡S型（bipolar steepened sigmoid）函数；

高斯函数；

正弦函数；

你可能定义的其他函数。

你可以在图8-3中看到这些激活函数。

图8-3　CPPN使用的激活函数

其次是这些基因组产生的NEAT神经网络不是最终产物，它们不是

表型。但是，这些NEAT基因组确实知道如何创建最终产物。

最终的表型是具有S型激活函数的常规NEAT神经网络。我们只能

将以上4个激活函数用于基因组。最终表型总是具有S型激活函数。

　CPPN表型

CPPN通常与图像结合使用，因为CPPN表型通常是图像。尽管图像

是CPPN的常规产物，但唯一的要求是CPPN可以构成某种东西，从而获

得复合模式生成网络的名称。在某些情况下，CPPN不产生图像。最受

欢迎的非图像生成CPPN是HyperNEAT，将在8.3节中对其进行讨论。

创建一个基因组神经网络来产生表型神经网络，这是一项复杂的工

作，但值得努力。因为我们要处理大量的输入和输出神经元，所以训练

时间可能很长，但是，CPPN具有可伸缩性，可以减少训练时间。

一旦进化了CPPN来创建图像，图像的大小（表型）就无关紧要

了。它可以是320像素×200像素、640像素×480像素，或其他分辨率。

CPPN生成的图像表型将缩放到所需的大小。正如我们将在8.3节中看到

的那样，CPPN为HyperNEAT提供了相同的伸缩性。

现在，我们来看看CPPN（它本身就是NEAT神经网络）如何生成图

像或最终表型。NEAT CPPN应该具有3个输入值：横轴（ ）的坐标、

纵轴（ ）的坐标，以及当前坐标与中心的距离（ ）。输入 提供了针

对对称性的偏置。在生物基因组中，对称性很重要。CPPN的输出对应

坐标和 坐标处的像素颜色。CPPN规范仅确定了如何处理具有单个输出

的灰度图像（表示强度）。对于全彩色图像，可以用针对红色、绿色和

蓝色的输出神经元进行处理。图8-4展示了用于生成图像的CPPN。

图8-4　CPPN用于图像生成

你可以查询上面的CPPN，以获取所需的每个 坐标和 坐标。清单

8-2展示了可生成表型的伪代码。

清单8-2　生成CPPN图像

def render_cppn(net,bitmap):
 for y from 1 to bitmap.height:
 for x from 1 to bitmap.width:
Normalize x and y to -1,1
 norm_x = (2*(x/bitmap.width))-1
 norm_y = (2*(y/bitmap.height))-1
Distance from center
 d = sqrt((norm_x/2)^2
 + (norm_y /2)^2)
Call CPPN
 input = [x,y,d]
 color = net.compute(input)
Output pixel
 bitmap.plot(x-1,y-1, color)

上面的代码只是循环遍历每个像素，并在CPPN中查询该位置的颜

色。将 坐标和 坐标标准化为−1～+1。你可以在Picbreeder网站上查看

这个过程的执行情况。

根据CPPN的复杂程度，这个过程可以生成类似于图8-5所示的图

像。

图8-5　CPPN生成的图像1（图源：Picbreeder）

Picbreeder允许你选择一个或多个亲本为下一代做出贡献。我们选

择了类似嘴部的图像和它右侧的图像。图8-6展示了Picbreeder产生的后

代。

图8-6　CPPN生成的图像2（图源：Picbreeder）

CPPN就像人体一样处理对称性。人体有两只手、两个肾脏、两只

脚和其他身体部位对，人类基因组似乎具有重复特征的层次结构。不存

在创建眼睛或各种组织的指令。从根本上讲，人类基因组不必描述成年

人的每个细节。作为替代，人类基因组仅需概括许多步骤，从而描述如

何构建成年人。这极大地减少了基因组中所需的信息量。

图像CPPN的另一个重要特征在于，你可以用任意分辨率创建图8-6

所示的图像，而无须重新训练。由于 坐标和 坐标被标准化为−1～+1的

值，因此可以使用任意分辨率。

8.3　HyperNEAT神经网络

Stanley、D’Ambrosio和Gauci（2009）发明的HyperNEAT神经网络

是基于CPPN的，但是，HyperNEAT神经网络不用于生成图像，而用于

创建另一个神经网络。与8.2节中的CPPN一样，HyperNEAT可以轻松创

建分辨率更高的神经网络，而无须重新训练。

　8.3.1　HyperNEAT基板

HyperNEAT神经网络的一个有趣的超参数是定义HyperNEAT神经

网络结构的基板。基板为输入和输出神经元定义 坐标和 坐标。标准的

HyperNEAT神经网络通常采用两个平面来实现基板。图8-7展示了

HyperNEAT三明治基板，这是最常见的基板之一。

图8-7　HyperNEAT三明治基板

利用上述基板，HyperNEAT CPPN能够创建表型神经网络。源平面

包含输入神经元，目标平面包含输出神经元。每个神经元的 和 坐标在

−1～+1的范围内。每个源神经元和每个目标神经元之间可能都有权重。

图8-8展示了如何查询CPPN以确定这些权重。

图8-8　CPPN用于HyperNEAT

CPPN的输入包含4个值： 、 、 和 。前两个值 和 指定源平

面上的输入神经元。后两个值 和 指定目标平面上的输出神经元。

HyperNEAT允许根据需要存在许多不同的输入和输出神经元，而无须重

新训练。与CPPN图像可以在−1～+1映射越来越多的像素一样，

HyperNEAT也可以打包更多的输入和输出神经元。

　8.3.2　HyperNEAT计算机视觉

Stanley等人（2009）在最初的HyperNEAT论文中提供的矩形实验表

明，计算机视觉是HyperNEAT的一项出色应用。该实验在计算机的视野

中放置了两个矩形。在这两个矩形中，一个总是比另一个大。训练神经

网络将红色矩形放置在较大矩形的中心附近。图8-9展示了在Encog框架

下运行的该实验。

图8-9　矩形实验（分辨率为11像素×11像素）

从图8-9可以看到，红色矩形直接放置在两个矩形中较大的一个内

部。可以按下“New Case”按钮来移动矩形，程序会准确找到较大的矩

形。这在分辨率为11像素×11像素时效果很好，但是分辨率可以增加到

33像素×33像素。分辨率较大时，无须重新训练，如图8-10所示。

图8-10　矩形实验（分辨率为33像素×33像素）

当分辨率增加到33像素×33像素时，神经网络仍然能够将红色矩形

放置在较大矩形的内部。

8.3.1小节使用的是三明治基板，其输入和输出平面均等于视野的大

小，在这个例子中分辨率是33像素×33像素。输入平面提供了视野，输

出平面中输出最高的神经元，即程序对较大矩形中心的猜测。较大矩形

的位置不会让神经网络产生困惑，这一事实表明，HyperNEAT与第10章

中将看到的卷积神经网络具有相同的特征。

8.4　本章小结

本章介绍了NEAT、CPPN和HyperNEAT。中佛罗里达大学的

Kenneth Stanley的EPLEX团队对这3种技术进行了广泛的研究。NEAT是

一种使用遗传算法自动进化神经网络结构的算法。通常，神经网络结构

可能是神经网络设计最复杂的方面之一。NEAT神经网络可以进化自己

的结构，甚至可以决定哪些输入特征很重要。

CPPN是一种神经网络，经过进化可创建其他结构，如图像或其他

神经网络。图像生成是CPPN的常见任务。Picbreeder网站允许根据该站

点先前生成的图像，来生成新图像。CPPN不仅可以生成图像。

HyperNEAT作为CPPN的一种应用，还可以生成神经网络。

基于Hypercube的NEAT（即HyperNEAT）是一种CPPN，它可以进

化出其他神经网络，一旦训练成功，它们就可以轻松处理更高分辨率的

图像。HyperNEAT允许一个CPPN进化，以生成一些神经网络。生成神

经网络，让你能够引入对称性，并且让你能够更改图像的分辨率，而无

须重新训练。

自神经网络引入以来，已经经历了好几次兴衰。当前，人们的兴趣

在于进行深度学习的神经网络。实际上，深度学习涉及几个不同的概

念。第9章介绍深度信念神经网络，我们将在本书的其余部分扩展该主

题。

第9章　深度学习

本章要点：

卷积神经网络和Dropout；

深度学习工具；

对比散度；

吉布斯采样。

深度学习是神经网络编程中相对较新的进展，它代表了一种训练深

度神经网络的方法。本质上，任何具有两层以上的神经网络都是深度神

经网络。自从Pitts（1943）引入多层感知机（multilayer perceptron）以

来，我们就已经具备创建深度神经网络的能力。但是，直到

Hinton（1984）成为第一个成功训练这些复杂神经网络的研究者之后，

我们才能够有效地训练神经网络。

9.1　深度学习的组成部分

深度学习由许多不同的技术组成，本章概述了这些技术。后文将包

含有关这些技术的更多信息。深度学习通常包括以下特征：

部分标记的数据；

修正线性单元；

卷积神经网络；

神经元Dropout。

以下各节概述了这些技术。

9.2　部分标记的数据

大多数学习算法是有监督的或无监督的。有监督的训练数据集为每

个数据项提供了预期的结果；无监督的训练数据集不提供预期的结果。

预期的结果称为标记。学习的问题在于大多数数据集是带标记的和未带

标记的数据项的混合。

要理解标记和未标记数据之间的区别，请考虑以下真实世界的例

子。当你还是小孩子的时候，在成长过程中可能会看到许多车辆。在生

命的早期，你不知道自己在看轿车、卡车，还是货车，只知道看到的是

某种车辆。你可以将这种接触看成车辆学习过程中无监督的部分。那

时，你学习了这些车辆之间的共同特征。

在学习过程的后期，你将获得标记。当你遇到不同的车辆时，一位

成年人告诉你，你看的是汽车、卡车或货车。无监督的训练为你奠定了

基础，而你会以这些知识为基础获得标记。如你所见，有监督和无监督

的学习在现实生活中非常普遍。深度学习用它自己的方式，结合无监督

和有监督的学习数据，很好地完成了工作。

一些深度学习架构使用不带结果的整个训练集，来处理部分标记的

数据，并初始化权重。你可以在没有标记的情况下，独立训练各个层。

因为你可以并行训练这些层，所以这个过程是可伸缩的。一旦无监督阶

段初始化了这些权重，监督阶段就可以对其进行调整。

9.3　修正线性单元

修正线性单元（ReLU）已成为深度神经网络隐藏层的标准激活函

数，而受限玻尔兹曼机是深度置信神经网络的标准。除了用于隐藏层的

ReLU激活函数外，深度神经网络还将对输出层使用线性或Softmax激活

函数，具体取决于神经网络是支持回归，还是分类。我们在第1章“神经

网络基础”中介绍了ReLU，并在第6章“反向传播训练”中扩展了相关信

息。

9.4　卷积神经网络

卷积是一项经常与深度学习结合的重要技术。Hinton（2014）引入

了卷积，以使图像识别神经网络的工作方式类似于生物系统，并获得了

更准确的结果。卷积的一种方法是稀疏连接，即不会产生所有可能的权

重连接。图9-1展示了稀疏连接。

图9-1　稀疏连接

常规前馈神经网络通常会在两层之间创建所有可能的权重连接。在

深度学习术语中，我们将这些层称为“稠密层”（dense layer）。卷积神

经网络不表示所有可能的权重，但其会共享权重，如图9-2所示。

图9-2　共享权重

如图9-2所示，神经元只是共享3个独立的权重。红线（实线）、黑

线（虚线）和蓝线（虚线）表示各个权重。权重共享使程序可以存储复

杂的结构，同时保持内存使用和计算的效率。

本节概述了卷积神经网络。第10章“卷积神经网络”将用一整章讨论

这种神经网络。

9.5　神经元Dropout

Dropout是一种正则化算法，对深度学习有很多好处。和大多数正

则化算法一样，Dropout可以防止过拟合。你也可以和卷积一样，以逐

层的方式将Dropout应用于神经网络。你必须将一个层指定为Dropout

层。实际上，在神经网络中，你可以将这些Dropout层与常规层和卷积

层混合使用。切勿将Dropout层和卷积层混合在单个层中。

Hinton（2012）引入了Dropout，将其作为一种简单有效的正则化算

法，以减少过拟合。Dropout通过移除Dropout层中的特定神经元来发挥

作用。丢弃这些神经元的行为可防止其他神经元过度依赖于被丢弃的神

经元。程序将删除这些选定的神经元及其所有连接。图9-3说明了这个

过程。

图9-3　Dropout层

图9-3所示的神经网络从上至下包含一个输入层、一个Dropout层和

一个输出层。Dropout层已删除了几个神经元。虚线圆圈表示Dropout算

法删除的神经元，虚线连接线表示Dropout算法删除神经元时删除的权

重。

Dropout和其他形式的正则化都是神经网络领域广泛讨论的主题。

第12章“Dropout和正则化”将介绍正则化，尤其侧重于介绍Dropout。该

章还包含有关L1和L2正则化算法的解释。L1和L2不鼓励神经网络使用

过多的权重，也不鼓励神经网络包含某些不相关的输入。本质上，单个

神经网络通常使用Dropout以及其他正则化算法。

9.6　GPU训练

Hinton（1987）提出了一种非常新颖的算法，来有效地训练深度信

念神经网络。在后文，我们将研究该算法和深度信念神经网络。如前所

述，深度神经网络几乎与神经网络存在的时间一样长。但是，在Hinton

的算法被提出之前，没有有效的算法来训练深度神经网络。反向传播算

法非常慢，梯度消失问题阻碍了训练。

GPU，即计算机中负责图形显示的部分，是研究人员解决前馈神经

网络训练问题的一种方法。由于现代视频、游戏使用了3D图形，因此

我们大多数人都熟悉GPU。渲染这些图形、图像在数学上运算量大，而

且为了执行这些操作，早期的计算机依靠CPU。但是，这种方法效率不

高。现代视频、游戏中的图形系统处理需要专用电路，这种电路集成到

了GPU或视频卡上。本质上，现代GPU是在计算机中运行的计算机。

研究人员发现，根据GPU的处理能力可以将其用于密集的数学任

务，如神经网络训练。除了计算机图形学之外，我们将用于一般计算任

务的GPU称为通用GPU（General-Purpose use of GPU，GPGPU）。当应

用于深度学习时，GPU的表现异常出色。将它与ReLU激活函数、正则

化和常规反向传播算法相结合，可以产生惊人的结果。

但是，GPGPU可能难以使用，因为为GPU编写的程序必须使用名

为C99的编程语言。该语言与常规C语言非常相似，但在许多方面，

GPU所需的C99比常规C语言困难得多。此外，GPU仅擅长特定的任

务，即使是对GPU有利的任务，也因为优化C99代码而变得具有挑战

性。GPU必须平衡几类内存、寄存器，以及数百个处理器内核的同步。

此外，GPU处理有两种相互竞争的标准：CUDA和OpenCL。两种标准

为程序员学习制造了更多的困难。

幸运的是，你无须学习GPU编程，也可以利用它的处理能力。除非

你愿意花费大量的精力，来学习一个复杂且不断发展的领域的细枝末

节，否则我们不建议你学习GPU编程，因为它与CPU编程完全不同。产

生有效的、基于CPU程序的好技术，通常会产生极其低效的GPU程序，

反之亦然。如果你想使用GPU，就应该使用支持它的、已有的软件包。

如果你的需求不适合深度学习软件包，则可以考虑使用线性代数软件

包，如CUBLAS，其中包含许多高度优化的算法，以及针对机器学习通

常需要的线性代数。

高度优化的深度学习框架和快速GPU的处理能力可能是惊人的。

GPU可以凭借强大的处理能力获得出色的结果。2010年，瑞士AI实验室

IDSIA证明，尽管有梯度消失问题，但GPU的出色处理能力，使得反向

传播对深度前馈神经网络来说是可行的[1]。在著名的MNIST手写数字识

别问题上，该方法胜过了所有其他机器学习技术。

9.7　深度学习工具

深度学习的主要挑战之一，是训练神经网络所需的处理时间。我们

经常运行训练算法数小时，甚至数天，以寻找适合数据集的神经网络。

我们在研究和预测模型中使用了几种框架。本书的示例也利用了这些框

架，我们将详细介绍所有这些框架，以供你创建自己的实现。但是，除

非你的目标是进行研究以增强深度学习方法本身，否则使用较为有名的

框架将最适合你。这些框架中的大多数都经过了调整，可以非常快速地

进行训练。

我们可以将本书中的示例分为两种。第一种示例向你展示如何实现

神经网络或训练算法。本书中的大多数示例都是基于算法的，我们将在

最低层面上探讨该算法。

应用示例是本书中包含的第二种示例。这些更高层面的示例说明了

如何使用神经网络和深度学习算法。这些示例通常会使用本节中讨论的

框架之一。通过这种方式，本书在理论和实际应用之间取得了平衡。

　9.7.1　H2O

H2O是一种机器学习框架，支持多种编程语言。尽管H2O是用Java

实现的，但它被设计为一个Web服务。H2O可以与R、Python、Scala、

Java以及可以与H2O的REST API通信的任何语言一起使用。

此外，H2O可以与Apache Spark一起用于大数据和云计算操作。

Sparking Water软件包让H2O可以在跨计算机网络的内存中运行大型模

型。

除了深度学习，H2O还支持其他多种机器学习模型，如对数概率回

归、决策树和梯度提升（gradient boosting）。

　9.7.2　Theano

Theano是Python的数学软件包，类似于广泛使用的Python软件包

NumPy[2]。与NumPy一样，Theano主要关注数学。尽管Theano并未直接

实现深度神经网络，但它提供了程序员创建深度神经网络应用程序所需

的所有数学工具。Theano还直接支持GPGPU。

　9.7.3　Lasagne和nolearn

由于Theano不直接支持深度学习，因此人们在Theano上构建了多个

软件包，以便程序员可以轻松地实现深度学习。Lasagne和nolearn是经

常一起使用的两个包。nolearn是一个Python软件包，它提供了几种机器

学习算法的抽象。通过这种方式，nolearn类似于流行的框架scikit-

learn。scikit-learn广泛关注机器学习，nolearn专门研究神经网络。

Lasagne是nolearn支持的神经网络软件包之一，它提供了深度学习支

持。

你可以在GitHub上找到nolearn软件包。

深度学习框架Lasagne的名称源自意大利美食千层面（lasagna）。

拼写lasagne和lasagna均被视为这种意大利美食的有效拼写。在意大利语

中，lasagne是单数形式，lasagna是复数形式。无论使用哪种拼写，用

lasagna来形容深度学习框架都很形象。图9-4展示了千层面与深度神经

网络一样，由许多层组成。

图9-4　千层面

　9.7.4　ConvNetJS

人们还为JavaScript创建了深度学习支持。ConvNetJS软件包实现了

许多深度学习算法，尤其是在卷积神经网络领域。ConvNetJS的主要目

标是在网站上创建深度学习示例。

9.8　深度信念神经网络

深度信念神经网络（DBNN）是深度学习的最早应用之一。DBNN

就是具有多个层的常规信念神经网络。Neil在1992年提出的信念神经网

络不同于常规的FFNN。Hinton（2007）将DBNN描述为“由多层随机的

潜在变量组成的概率生成式模型。”由于这个技术描述起来很复杂，因

此我们要定义一些术语。

概率：DBNN用于分类，其输出是输入属于每个类别的概率。

生成式：DBNN可以为输入生成合理的、随机创建的值。一些

DBNN文献将这个特征称为“做梦”（dreaming）。

多层：与神经网络一样，DBNN可以由多层组成。

随机的潜在变量：DBNN由玻尔兹曼机组成，这些机器会产生一些

无法直接观察到（潜在）的随机值。

DBNN和FFNN之间的主要区别总结如下。

DBNN的输入必须是二进制数，FFNN的输入必须是十进制数。

DBNN的输出是输入所属的分类，FFNN的输出可以是类（分类）

或数字预测（回归）。

DBNN可以根据给定的结果生成合理的输入，FFNN不能像DBNN

一样表现。

这些是DBNN和FFNN重要的差异。第一点是DBNN的最大限制因

素之一。DBNN仅接收二进制输入，这一事实通常严重限制了它可以解

决的问题类型。你还需要注意，DBNN只能用于分类，而不能用于回

归。换言之，DBNN可以将股票分为购买、持有或出售等类别，但它无

法提供有关库存的数字预测，如未来30天内可能达到的数量。如果需要

这些特征中的任何一个，则应考虑使用常规的深度前馈神经网络。

与FFNN相比，DBNN最初似乎有些局限性。但是，它们确实具有

根据给定输出生成合理的输入的能力。最早的DBNN实验之一是让

DBNN使用手写样本将10个数字分类。这些数字来自MNIST手写数字数

据集。用MNIST手写数字对DBNN进行训练，它就能产生每个数字的新

表示，如图9-5所示。

图9-5　DBNN生成的数字

以上数字摘自Hinton（2006）的深度学习论文。第一行显示了

DBNN从其训练数据生成的各种不同的0。

RBM是DBNN的中心。提供给DBNN的输入通过一系列堆叠的RBM

传递，它们构成了神经网络的各层。创建附加的RBM层会导致DBNN更

深。尽管我们没有对RBM进行监督，但是希望对最终的DBNN进行监

督。为了完成监督，我们添加了一个最终的对数概率回归层，以区分类

别。对于Hinton的实验（见图9-6），类别是10个数字。

图9-6　DBNN

图9-6展示了一个DBNN，使用的超参数与Hinton的实验相同。超参

数指定了神经网络的架构，如层数、隐藏的神经元计数和其他设置。呈

现给DBNN的每个数字图像大小均为28×28（即784）维的向量。这些图

像是单色的（即黑白的），每个像素都可以用一个比特来表示，与

DBNN的所有输入均为二进制的要求兼容。上面的神经网络具有三层堆

叠的RBM，分别包含500个神经元、500个神经元和2 000个神经元。

以下各小节讨论用于实现DBNN的多种算法。

　9.8.1　受限玻尔兹曼机

第3章“霍普菲尔德神经网络和玻尔兹曼机”包含了对玻尔兹曼机的

讨论，这里不赘述。本章介绍玻尔兹曼机的受限版本——RBM，并堆

叠这些RBM以获得深度。第3章的图3-4展示了RBM。RBM与玻尔兹曼

机的主要区别在于，RBM可见（输入）神经元和隐藏（输出）神经元

具有仅有的连接。在堆叠RBM的情况下，隐藏神经元将成为下一层的

输出。图9-7展示了如何将两台RBM堆叠在一起。

图9-7　堆叠的RBM

我们可以计算RBM的输出，可以利用第3章“霍普菲尔德神经网络和

玻尔兹曼机”中的公式3-6进行计算。唯一的区别在于，现在我们有两台

RBM堆叠在一起。RBM1接收传递到其可见神经元的3个输入；隐藏神

经元将其输出直接传递到RBM2的两个输入（可见神经元）。请注意，

两个RBM之间没有权重，RBM1中H1和H2神经元的输出直接从RBM2传

递给I1和I2。

　9.8.2　训练DBNN

训练DBNN的过程需要许多步骤。尽管这个过程背后的数学原理可

能有些复杂，但是你无须了解训练DBNN的每个细节也可以使用它们。

你只需要了解以下要点。

DBNN接受有监督和无监督训练。

在无监督部分，DBNN使用训练数据而没有标记，这使DBNN可以

混合使用监督数据和无监督数据。

在有监督部分，仅使用带有标记的训练数据。

在无监督部分，每个DBNN层都经过独立训练。

可以在无监督部分（通过线程）训练DBNN层。

在无监督部分完成之后，通过有监督对数概率回归来优化层的输

出。

顶层对数概率回归层预测输入所属的分类。

有了这些知识，你就可以跳到本章9.8.8小节的深度信念应用。如果

你想了解DBNN训练的具体细节，请继续阅读。

图9-8总结了DBNN训练的步骤。

图9-8　DBNN训练

　9.8.3　逐层采样

在单层上执行无监督训练时，第一步是计算直到该层的DBNN的所

有值。你将针对每个训练集进行这种计算，DBNN将为你提供当前正在

训练的层的采样值。采样是指神经网络根据概率随机选择一个真/假

值。

你需要理解，抽样使用随机数为你提供结果。由于这种随机性，你

不会总是获得相同的结果。如果DBNN确定隐藏神经元为真的概率为

0.75，那么有75%的时间你将获得真值。逐层采样与第3章“霍普菲尔德

神经网络和玻尔兹曼机”中用于计算玻尔兹曼机的输出的方法非常相

似。我们将使用第3章中的公式3-6来计算概率。唯一的不同是，我们将

使用公式3-6给出的概率来生成随机样本。

逐层采样的目的是产生一个二进制向量，提供给对比散度算法

（contrastive divergence algorithm）。在训练每个RBM时，我们总是将

前一个RBM的输出作为当前RBM的输入。如果我们要训练第一个

RBM（最接近输入），只需将训练输入向量用于对比散度。该过程允

许对每个RBM进行训练。DBNN的最终Softmax层在无监督阶段未受训

练，最后的对数概率回归阶段将训练Softmax层。

　9.8.4　计算正梯度

一旦逐层训练完了每个RBM层，我们就可以利用“上下算法”（up-

down algorithm）或对比散度算法。完整的算法包括以下步骤，这些步

骤将在后文中介绍。

计算正梯度；

吉布斯采样；

更新权重和偏置；

有监督的反向传播。

和第6章“反向传播训练”中介绍的许多基于梯度下降的算法一样，

对比散度算法也基于梯度下降。它使用函数的导数来寻找让该函数产生

最小输出的函数输入。在对比散度过程中估计了几个不同的梯度，我们

可以使用这些估计值代替实际梯度计算，因为实际梯度太复杂而无法计

算。对于机器学习，采用估计值通常就足够了。

另外，我们必须通过将可见神经元传播到隐藏神经元来计算隐藏神

经元的平均概率。该计算是上下算法中的“向上”部分。公式9-1执行以

下计算：

（9-1）

公式9-1计算每个隐藏神经元的平均概率（ ）。 上方的短横表示

它是一个平均值，正号标记表示我们正在计算算法中正向（即“向上”）

部分的平均值。偏置会添加到所有可见神经元的加权和的S型激活函数

值中。

接下来，必须为每个隐藏神经元采样一个值。利用刚计算出的平均

概率，该值将随机分配为true（1）或false（0）。公式9-2完成了这种采

样：

（9-2）

公式9-2假设 是0～1的一个均匀随机数。均匀随机数意味着该范围

内的每个可能的数字都有相等的被选择概率。

　9.8.5　吉布斯采样

负梯度的计算是上下算法的“向下”阶段。为了完成这种计算，该算

法使用吉布斯采样来估计负梯度的平均值。Geman D.和Geman S.

（1984）引入了吉布斯采样，并以物理学家Josiah Willard Gibbs命名。

该技术通过循环迭代 次来完成，以提高估计的质量。每次迭代执行两

个步骤：

（1）采样可见神经元提供给隐藏神经元；

（2）采样隐藏神经元提供给可见神经元。

对于吉布斯采样的第一次迭代，我们从9.8.4小节获得的正隐藏神经

元样本开始。我们将从采样可见神经元的平均概率［即步骤（1）］。

接下来，我们将利用这些可见的隐藏神经元，对隐藏的神经元进行采样

［即步骤（2）］。这些新的隐藏概率是负梯度。对于下一次迭代，我

们将使用负梯度代替正梯度。这个过程在每次迭代中重复，并产生更好

的负梯度。公式9-3完成了对可见神经元的采样：

（9-3）

公式9-3实质上是公式9-1取反的结果。在这里，我们使用隐藏值确

定可见平均值。然后，正如对正梯度所做的，我们使用公式9-4采样一

个负概率：

（9-4）

公式9-4假设 是0～1的一个均匀随机数。

公式9-3和公式9-4只是吉布斯采样步骤的一半。这些方程式实现了

步骤（1），它们在给定隐藏神经元的情况下对可见神经元进行了采

样。接下来，我们必须完成步骤（2）。给定可见的神经元，我们必须

对隐藏神经元进行采样。这个过程与9.8.4小节“计算正梯度”非常相似。

但这一次，我们要计算负梯度。

刚刚计算出的可见神经元的样本可以获得隐藏平均值，如公式9-5

所示：

（9-5）

和以前一样，平均概率可以采样一个实际值。在这种情况下，我们

使用隐藏平均值来采样一个隐藏值，如公式9-6所示：

（9-6）

吉布斯采样过程继续进行。负的隐藏样本可以在每次迭代中进行处

理。一旦计算完成，你将拥有以下6个向量：

隐藏神经元的正平均概率；

隐藏神经元的正采样值；

可见神经元的负平均概率；

可见神经元的负采样值；

隐藏神经元的负平均概率；

隐藏神经元的负采样值。

这些值将更新神经网络的权重和偏置。

　9.8.6　更新权重和偏置

所有神经网络训练的目的都是更新权重和偏置。这种调整使神经网

络能够学习执行希望它执行的任务。这是DBNN训练过程中无监督部分

的最后一步。在这个步骤中，将更新单层（玻尔兹曼机）的权重和偏

置。如前所述，各个玻尔兹曼层是独立训练的。

权重和偏置会独立更新。公式9-7展示了如何更新权重：

（9-7）

学习率（ε）指定应该采用计算出的变化的比率。较高的学习率将

使学习速度更快，但它们可能会跳过一组最佳权重。较低的学习率将使

学习速度更慢，但结果的质量可能更高。值 代表当前训练集元素。因

为 是向量（数组），所以 用“|| ||”标识其长度。公式9-7还使用了正平

均隐藏概率、负平均隐藏概率和负采样值。

公式9-8以类似的方式计算偏置：

（9-8）

公式9-8使用了来自正向阶段的采样隐藏值、来自负向阶段的平均

隐藏值，以及输入向量。权重和偏置更新后，训练的无监督部分就完成

了。

　9.8.7　DBNN反向传播

到目前为止，DBNN训练一直侧重于无监督训练。DBNN仅使用训

练集输入（ 值），即使数据集提供了预期的输出（ 值），无监督的训

练也没有使用它。现在，使用预期的输出来训练DBNN。在最后阶段，

我们仅使用数据集中包含预期输出的数据项。这个步骤允许程序将

DBNN与数据集一起使用，而其中每个数据项不一定具有预期的输出。

我们将该数据称为部分标记的数据集。

DBNN的最后一层就是针对每个分类的神经元。这些神经元具有前

一个RBM层输出的权重。这些输出神经元都使用S型激活函数和Softmax

层。Softmax层确保每个类的输出总和为1。

采用常规的反向传播训练最后一层。最后一层实质上是前馈神经网

络的输出层，前馈神经网络从顶层RBM接收其输入。第6章“反向传播训

练”包含了对反向传播的讨论，因此不赘述。DBNN的主要思想是，层

次结构允许每一层解释下一层的数据。这种层次结构使学习可以遍及各

个层。较高的层学习更多的抽象概念，而较低的层由输入数据形成。在

实践中，与常规的反向传播训练前馈神经网络相比，DBNN可以处理更

复杂的模式。

　9.8.8　深度信念应用

本小节介绍一个简单的DBNN示例。这个示例就是接受一系列输入

模式及其所属的分类。输入模式如下所示：

[[1, 1, 1, 1, 0, 0, 0, 0],
 [1, 1, 0, 1, 0, 0, 0, 0],
 [1, 1, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 1, 1, 1],
 [0, 0, 0, 0, 1, 1, 0, 1],
 [0, 0, 0, 0, 1, 1, 1, 0]]

我们提供每个训练集元素的预期输出。这些信息指定了上述每个元

素所属的分类，如下所示：

[[1, 0],
 [1, 0],
 [1, 0],
 [0, 1],
 [0, 1],
 [0, 1]]

本书示例中提供的程序将创建具有以下配置的DBNN。

输入层的大小：8。

隐藏的第1层：2。

隐藏的第2层：3。

输出层的大小：2。

首先，我们训练每个隐藏层。然后，我们在输出层执行对数概率回

归。该程序的输出如下所示：

Training Hidden Layer #0
Training Hidden Layer #1
Iteration: 1, Supervised training: error = 0.2478464544753616
Iteration: 2, Supervised training: error = 0.23501688281192523
Iteration: 3, Supervised training: error = 0.2228704042138232
...
Iteration: 287, Supervised training: error = 0.001080510032410002
Iteration: 288, Supervised training: error = 7.821742124428358E-4
[0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0] -> [0.9649828726012807, 0.0350171
2739871941]
[1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0] -> [0.9649830045627616, 0.0350169
95437238435]
[0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0] -> [0.03413161595489315, 0.965868
3840451069]
[0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0] -> [0.03413137188719462, 0.965868
6281128055]

如你所见，该程序首先训练了隐藏层，然后进行了288次回归迭

代。在迭代过程中，误差水平显著下降。最后，样本数据查询了神经网

络。神经网络响应是在我们上面指定的两个类别中输入样本出现在每个

类别中的概率。

如神经网络报告了以下元素：

[0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0]

其中，元素属于1类的概率约为96%，而属于2类的概率只有约4%。

针对每个分类报告的两个概率之和必须为100%。

9.9　本章小结

本章概述了深度学习的许多组成部分。深度神经网络是包含两个以

上隐藏层的所有神经网络。尽管深度神经网络与多层神经网络存在的时

间一样长，但是直到现在，它们仍缺乏良好的训练算法。新的训练技

术、激活函数和正则化正使得训练深度神经网络变得可行。

过拟合是机器学习中许多领域的常见问题，神经网络也不例外。正

则化可以防止过拟合。大多数形式的正则化都涉及在训练发生时修改神

经网络的权重。对于深度神经网络，Dropout是一种非常常见的正则化

技术，它会随着训练的进行而移除神经元。这种技术可防止神经网络过

度依赖任何一个神经元。

我们以DBNN作为本章的结尾，该神经网络对可能被部分标记的数

据进行了分类。首先，标记数据和无标记数据都可以在无监督训练的情

况下初始化神经网络的权重。使用这些权重，对数概率回归层可以根据

标记的数据调整网络。

在本章中，我们还讨论了CNN。这种神经网络使权重神经在神经网

络中的各个神经元之间共享。这种神经网络让CNN可以处理计算机视觉

中非常常见的重叠特征类型。本章仅提供了CNN的一般概述，我们将在

第10章中更详细地研究CNN。

[1]　Ciresan et al., 2010。

[2]　J. Bergstra, O. Breuleux, F. Bastien, et al., J. Bergstra, O. Breuleux, F.

Bastien, 2012。

第10章　卷积神经网络

本章要点：

稀疏连接；

共享权重；

最大池化。

CNN是一种神经网络技术，它已深刻地影响了计算机视觉领域。

Fukushima（1980）引入了卷积神经网络的原始概念，LeCun、Bottou、

Bengio和Haffner（1998）大大改进了这个概念。通过这项研究，Yann

LeCun引入了著名的LeNet-5神经网络架构。本章介绍具有LeNet-5风格

的卷积神经网络。

尽管主要是在计算机视觉领域使用CNN，但该技术在这个领域之外

也有一些应用。你需要认识到，如果要在非可视数据上使用CNN，则必

须找到一种对数据进行编码的方法，让它可以模拟可视数据的属性。

CNN有点类似于我们在第2章“自组织映射”中讨论的SOM。向量元

素的顺序对训练至关重要。相比之下，大多数不是CNN或SOM的神经

网络都将其输入数据看成值的长向量，在这个向量中传入特征的排列顺

序是无关紧要的。对于这些类型的神经网络，训练神经网络后就无法更

改传入特征的排列顺序。换言之，CNN和SOM不遵循输入向量的标准

处理。

SOM将输入排列成网格。这种安排对图像效果很好，因为互相邻近

的像素对彼此很重要。显然，图像中像素的顺序很重要。人体就是这类

顺序的一个相关例子——对于脸部的设计，我们习惯于眼睛彼此靠近。

同样地，类似SOM的神经网络坚持这样的像素顺序。因此，它们在计算

机视觉领域中有许多应用。

尽管SOM和CNN相似，都采用了将输入映射到2D网格，甚至更高

维度的对象（如3D盒子）的方式，但CNN将图像识别提升到了更高的

水平。CNN的这一进步缘于对生物眼睛的多年研究。换言之，CNN利

用重叠的输入视野（field）来模拟生物眼睛的特征。在这项突破之前，

人工智能一直无法复制生物视觉的功能。

过去，缩放、旋转和噪声为AI计算机视觉研究带来了挑战。在下面

的例子中，你可以看到生物眼睛的复杂性。一个朋友举起一张纸，上面

写着一个很大的数字。当你的朋友离你越来越近时，这个数字仍然可以

被识别。当你的朋友旋转纸张时，你仍然可以识别该数字。最后，你的

朋友通过在纸上画上线条，产生噪声，你仍然可以识别该数字。如你所

见，这些例子演示了生物眼睛的高级功能，让你可以更好地了解CNN的

研究突破。也就是说，在计算机视觉领域，该神经网络能处理缩放、旋

转和噪声。

10.1　LeNet-5

我们可以将LeNet-5架构用于图形、图像的分类。采用这种架构的

神经网络类似于我们在前几章中讨论的前馈神经网络。数据从输入流向

输出。但是，LeNet-5神经网络包含几种不同的层类型，如图10-1所示。

图10-1　LeNet-5神经网络[1]

前馈神经网络和LeNet-5神经网络之间存在几个重要区别。

前馈神经网络传递向量，LeNet-5神经网络传递3D立方体数据集。

LeNet-5神经网络包含多种层类型。

计算机视觉是LeNet-5的主要应用。

我们也探讨了这些网络之间的许多相似之处。最重要的相似之处在

于，我们可以使用相同的基于反向传播的技术来训练LeNet-5。所有优

化算法都可以训练前馈或LeNet-5神经网络的权重。具体来说，你可以

使用模拟退火、遗传算法和粒子群优化进行训练。LeNet-5经常使用反

向传播训练。

以下三种类型的层构成了最初的LeNet-5神经网络：

卷积层；

最大池层；

稠密层。

其他神经网络框架会添加与计算机视觉有关的其他层类型。但是，

我们不会探讨超出LeNet-5以外的内容。添加新的层类型是扩大现有神

经网络研究的一种常用方法。第12章“Dropout和正则化”将介绍一种附

加的层类型，该类型旨在通过添加一个Dropout层来减少过拟合。

现在，我们将讨论集中在与CNN相关的层类型上。我们从卷积层开

始。

10.2　卷积层

我们要探讨的第一层是卷积层。我们从一些超参数开始，它们是在

支持CNN的大多数神经网络框架中必须为卷积层指定的：

滤波器（filter）数量；

滤波器大小；

卷积步长（stride）；

填充（padding）；

激活函数/非线性。

卷积层的主要目的是检测特征，如边缘、线条、颜色斑点和其他视

觉元素。滤波器可以检测到这些特征。我们为卷积层提供的滤波器越

多，它可以检测到的特征就越多。

滤波器是扫描图像的方形对象。较小的网格可以代表网格的各个像

素。你可以将卷积层视为一个较小的网格，它在图像的每一行上从左向

右扫描。还有一个超参数可以指定方形滤波器的宽度和高度。图10-1展

示了这个配置，其中你可以看到6个卷积滤波器扫描图像网格。

卷积层与它的上一层（即图像网格）之间具有权重。每个卷积层上

的每个像素都是一个权重。因此，卷积层与其上一层（即图像视野）之

间的权重数如下：

[Filter Size] * [Filter Size] * [Number of Filters]

如果10个滤波器的尺寸都为5（即代表5×5），则共有250个权重。

你需要理解卷积滤波器如何扫描上一层的输出或图像网格。图10-2

展示了一个卷积滤波器。

图10-2　卷积滤波器

图10-2展示的卷积滤波器，大小为4，填充大小为1。填充大小决定

了滤波器扫描区域中的零边界。即使图像实际大小为8×7，额外的填充

也为滤波器扫描提供了9×8的虚拟图像大小。步长指定卷积滤波器每次

扫描将停在什么位置。卷积滤波器向右移动，按步长中指定的单元格数

前进。一旦到达最右边，卷积滤波器将移回最左边，然后向下移动一个

步长，然后再次向右移动。

上述过程存在与步长大小相关的一些限制。显然，步长不能为0。

如果将步长设置为0，则卷积滤波器将永远不会移动。此外，步长和卷

积滤波器的大小都不能大于前面的网格。对于宽度为 的图像，步长 、

填充 和滤波器宽度 还有其他限制。具体来说，卷积滤波器必须能从最

左上的边界开始，移动一定步长，然后到达最右下的边界。公式10-1展

示了卷积滤波器穿过图像必须走的步数：

（10-1）

步数必须是整数。换言之，它不能有小数位。调整填充（ ）的目

的是使公式10-1得到整数结果。

当卷积滤波器扫描图像时，我们可以使用相同的权重集。这个过程

允许卷积层共享权重，并大大减少所需的处理量。这样，你就可以在一

系列移动的位置上识别图像，因为相同的卷积滤波器会扫描整个图像。

卷积层的输入和输出都是3D盒子。对于卷积层的输入，盒子的宽

度和高度等于输入图像的宽度和高度，盒子的深度等于图像的颜色深

度。对于RGB图像，深度为3，即红色、绿色和蓝色的分量。如果卷积

层的输入是另一层，那么它也是3D盒子，但是，该3D盒子的大小将取

决于该层的超参数。

和神经网络中的所有其他层一样，卷积层输出的3D盒子的大小由

该层的超参数决定。盒子的宽度和高度均等于滤波器大小，深度等于滤

波器的数量。

10.3　最大池层

最大池层将3D盒子缩小采样（downsample）为更小的新盒子。通

常，总是可以在卷积层之后立即放置一个最大池层。图10-1展示了紧接

在C1和C3层之后的最大池层。这些最大池层逐渐缩小了穿过它们的3D

盒子的大小。这种技术可以避免过拟合[2]。

池化层具有以下超参数：

空间范围（ ）；

步长（ ）。

与卷积层不同，最大池层不使用填充。此外，最大池层没有权重，

因此训练不会影响它们。这些层仅对3D盒子输入进行缩小采样。

最大池层生成的3D盒子的宽度的计算如公式10-2所示：

（10-2）

最大池层生成的3D盒子的高度的计算与公式10-2类似：

（10-3）

最大池层生成的3D盒子的深度，等于输入接收的3D盒子的深度。

最大池层超参数最常见的设置是 = 2和 = 2。空间范围（ ）指定

将2×2的盒子缩小为单个像素。在这4个像素中，具有最大值的像素将在

新网格中代表2×2的单个像素。由于大小为4的正方形被大小为1的正方

形替代，因此丢失了75%的像素信息。图10-3展示了这种转换，6×6的

网格变为3×3的网格。

图10-3　最大池化（f = 2、s = 2）

当然，图10-3将每个像素显示为单个数字。灰度图像具有这种特

征。对于RGB图像，我们通常取3个数字的平均值，以确定哪个像素具

有最大值。

10.4　稠密层

LeNet-5神经网络中的最后一个层是稠密层（dense layer）。该层类

型与我们在前馈神经网络中看到的层类型完全相同。稠密层将上一层输

出的3D盒子中的每个元素（神经元）连接到稠密层中的每个神经元，

对生成的向量使用激活函数。LeNet-5神经网络通常使用ReLU激活函

数。我们也可以用S型激活函数，尽管这种技术不太常见。稠密层通常

包含以下超参数：

神经元计数；

激活函数。

神经元计数指定组成该层的神经元数。激活函数指示要使用的激活

函数的类型。稠密层可以采用许多不同种类的激活函数，如ReLU、S型

或双曲正切激活函数。

LeNet-5神经网络通常会包含几个稠密层作为其最终层。LeNet-5中

的最后一个稠密层实际上执行了分类。每个类别或图像类型应有一个输

出神经元进行分类。如果神经网络用于区分狗、猫和鸟，就会有3个输

出神经元。你可以将一个最终的Softmax函数应用于最终层，将输出神

经元视为概率。Softmax允许每个神经元提供图像代表每个类别的概

率。由于现在输出的神经元是概率，因此Softmax确保它们的总和为

1（100%）。要复习Softmax，你可以阅读第4章“前馈神经网络”。

10.5　针对MNIST数据集的卷积神经网络

在第6章“反向传播训练”中，我们使用MNIST手写数字作为使用反

向传播的示例。在本节中，我们将举一个改进MNIST手写数字识别的例

子，建立一个深度卷积神经网络。卷积神经网络是一种深度神经网络，

其层数比第4章中的前馈神经网络要多。该神经网络的超参数如下。

输入：接受[1,96,96]的盒子。

卷积层：滤波器= 32，滤波器大小= [3,3]。

最大池层：[2,2]。

卷积层：滤波器= 64，滤波器大小= [2,2]。

最大池层：[2,2]。

卷积层：滤波器= 128，滤波器大小= [2,2]。

最大池层：[2,2]。

稠密层：500个神经元。

输出层：30个神经元。

该神经网络使用非常常见的模式，每个卷积层之后跟一个最大池

层。另外，滤波器的数量从输入层到输出层逐渐递增，从而允许在输入

视野附近检测到较少数量的基本特征，如边缘、线条和小形状等。连续

的卷积层将这些基本特征汇总为更大、更复杂的特征。最终，稠密层可

以将这些高级特征映射到实际15位特征的每个 坐标和 坐标。

训练卷积神经网络需要花费大量时间，尤其当你不使用GPU处理

时。截至2015年7月，并非所有框架都对GPU处理提供同样的支持。目

前，将Python与基于Theano的神经网络框架（如Lasagne）结合使用可提

供最佳结果。许多正在改进深度卷积神经网络的研究人员也正在与

Theano合作。因此，Theano很可能会先于其他语言的其他框架对GPU处

理提供支持。

在这个示例中，我们结合使用了Theano与Lasagne。本书的示例下

载可能还会有针对该示例的其他语言版本，具体取决于这些语言的可用

框架。在GPU上训练基于Theano的卷积神经网络来进行数字特征识别，

所需的时间少于在CPU上训练的时间，因为GPU对卷积神经网络帮助极

大。具体的性能提升根据硬件和平台而有所不同。卷积神经网络和常规

ReLU神经网络之间的精确性比较如下：

ReLU:
Best valid loss was 0.068229 at epoch 17.
Incorrect 170/10000 (1.7000000000000002%)
ReLU+Conv:
Best valid loss was 0.065753 at epoch 3.
Incorrect 150/10000 (1.5%)

如果将卷积神经网络的结果与第4章中的标准前馈神经网络进行比

较，你会发现卷积神经网络的表现更好。卷积神经网络能够识别数字中

的子特征，从而让它的表现超过标准前馈神经网络。当然，这些结果会

有所不同，具体取决于所使用的平台。

10.6　本章小结

卷积神经网络是在计算机视觉中应用非常广泛的技术。它们让神经

网络能够检测要素的层次结构，如由线条和小形状等简单的特征形成的

层次结构，从而教会神经网络识别由更简单的特征组成的复杂模式。深

度卷积神经网络会占用相当大的处理能力。一些框架允许使用GPU处理

来增强性能。

Yann LeCun推出了最常见的卷积神经网络LeNet-5。这种神经网络

由稠密层、卷积层和最大池层组成。稠密层的工作方式与传统前馈神经

网络完全相同，最大池层可以对图像进行缩小采样并去除细节，卷积层

检测图像视野中任何部分的特征。

为神经网络确定最佳架构的方法有很多。第8章“NEAT、CPPN和

HyperNEAT”介绍了一种神经网络算法，该算法可以自动确定最佳架

构。如果使用前馈神经网络，则很可能会通过剪枝和模型选择来确定架

构，我们将在第11章中进行讨论。

[1]　LeCun，1998。

[2]　Krizhevsky、Sutskever和Hinton，2012。

第11章　剪枝和模型选择

本章要点：

神经网络剪枝；

模型选择；

随机搜索与网格搜索。

从前文我们得知，你可以利用各种训练算法，更好地调整神经网络

的权重。实际上，这些算法调整神经网络的权重是为了降低神经网络的

误差。我们通常将神经网络的权重称为神经网络模型的参数。一些机器

学习模型可能具有权重以外的参数，如对数概率回归将系数作为参数。

当我们训练模型时，所有机器学习模型的参数都会改变，但是，这

些模型还有一些在训练算法期间不变的超参数。对于神经网络，超参数

指定了神经网络的架构。神经网络超参数的例子包括隐藏层和隐藏神经

元的数量。

在本章中，我们将研究两种可以实际修改或为神经网络的结构提供

建议的算法。剪枝通过分析每个神经元对神经网络输出的贡献来进行。

如果特定神经元与另一神经元的连接不会显著影响神经网络的输出，则

删除该连接。通过这个过程，对输出仅产生少量影响的连接和神经元将

被删除。

本章介绍的另一种算法是模型选择。剪枝从已经训练好的神经网络

开始，而模型选择会创建并训练许多具有不同超参数的神经网络。然

后，程序选择产生神经网络的超参数，以达到最佳验证得分。

11.1　理解剪枝

剪枝是使神经网络更高效的过程。与本书已经讨论过的训练算法不

同，剪枝不会改善神经网络的训练误差。剪枝的主要目的是减少使用神

经网络所需的处理量。另外，剪枝有时可以通过消除神经网络的复杂

性，产生正则化效果。这种正则化有时可以减少神经网络中的过拟合。

过拟合的减少可以帮助神经网络在训练集以外的数据上表现得更好。

剪枝通过分析神经网络的连接来进行。剪枝算法查找可以从神经网

络中删除的单个连接和神经元，使它更有效地运行。通过删除不需要的

连接，可以使神经网络执行得更快，并尽可能减少过拟合。在接下来

11.1.1和11.1.2小节中，我们将研究如何剪枝连接和神经元。

　11.1.1　剪枝连接

剪枝连接是大多数剪枝算法的核心。该程序分析神经元之间的各个

连接，以确定哪些连接对神经网络的有效性影响最小。连接不是程序剪

枝的唯一目标。程序分析剪枝的连接后，还可以剪枝单个神经元。

　11.1.2　剪枝神经元

剪枝主要集中在神经网络各个神经元之间的连接上。如果要剪枝单

个神经元，我们必须检查每个神经元和其他神经元之间的连接。如果一

个特定的神经元被弱连接完全包围，就没有理由保留该神经元。如果我

们应用11.1.1小节中讨论的标准，就会得到没有连接的神经元，因为程

序已剪掉了该神经元的所有连接。然后程序可以剪掉这种类型的神经

元。

　11.1.3　改善或降低表现

剪枝神经网络可能会改善其表现。对神经网络权重矩阵的任何修

改，总会对神经网络识别的准确率产生某些影响。对神经网络影响很小

或没有影响的连接，实际上可能会降低神经网络识别模式的准确率。消

除这个弱连接可以改善神经网络的整体输出。

不幸的是，剪枝还可能降低神经网络的有效性。因此，必须坚持在

剪枝前后分析神经网络的有效性。由于效率高是剪枝的主要好处，因此

你必须谨慎评估处理时间上的改进与降低神经网络的有效性相比，是否

值得。在本章的编程示例中，我们将在剪枝之前和之后评估神经网络的

总体有效性。该分析将使我们了解剪枝过程对神经网络有效性的影响。

11.2　剪枝算法

现在，我们将仔细地查看剪枝的方式。首先，剪枝检查先前训练过

的神经网络的权重矩阵。然后，剪枝算法将尝试删除神经元而不破坏神

经网络的输出。图11-1展示了用于选择性剪枝的算法流程。

图11-1　选择性剪枝算法流程

如你所见，选择性剪枝算法采取了试错的方式。选择性剪枝算法尝

试从神经网络中删除神经元，直到它无法删除其他神经元，而不降低神

经网络的表现。

要进行此流程，选择性剪枝算法将循环遍历每个隐藏的神经元。对

于遇到的每个隐藏神经元，程序都会评估带有或不带有指定神经元的神

经网络的误差水平。如果错误率超过预定水平，程序将保留该神经元并

评估下一个神经元。如果错误率没有明显提高，则程序将删除该神经

元。

该程序评估完所有神经元后，将重复该流程。这个循环一直持续到

程序遍历隐藏神经元一次，而不删除任何神经元。这个流程完成后，便

会获得一个新的神经网络，该神经网络的表现与原始神经网络相当，但

具有更少的隐藏神经元。

11.3　模型选择

模型选择的过程，是程序员尝试寻找产生最佳神经网络或其他机器

学习模型的一组超参数的过程。在本书中，我们提到了许多不同的超参

数，它们是你必须提供给神经网络框架的参数。神经网络的部分超参数

列举如下：

隐藏层数；

卷积层、池化层和Dropout层的顺序；

激活函数的类型；

隐藏的神经元数量；

池化层和卷积层的结构。

在阅读有关超参数的内容时，你可能一直想知道，如何才知道要设

置哪些超参数。不幸的是，没有简单的答案。如果存在确定这些设置的

简便方法，那么程序员将构建能够自动为你设置这些超参数的神经网络

框架。

虽然我们将在第14章“构建神经网络”中提供更多有关超参数的信

息，但你仍然需要使用本章中介绍的模型选择过程。不幸的是，模型选

择非常耗时。在我们实际参加的上一次Kaggle比赛中，曾花费了90%的

时间进行模型选择。通常，建模的成功与你花在模型选择上的时间密切

相关。

　11.3.1　网格搜索模型选择

网格搜索是一种反复试验的蛮力算法。对于这种算法，必须指定要

使用的超参数的每个组合。你必须谨慎选择，因为为了实现搜索，迭代

次数会迅速增加。通常，你必须指定要搜索的超参数。这种指定可能如

下所示。

隐藏的神经元：2～10，步长2。

激活函数：tanh、S型和ReLU。

第一项指出，网格搜索应尝试搜索2～10的隐藏神经元计数，步长

为2，从而得出以下结果：2、4、6、8和10（总共5种可能性）。第二项

指出，我们还应该针对每个神经元计数尝试采用激活函数tanh、S型和

ReLU。5种可能性乘以3种可能性，因此该过程总共进行了15次迭代。

这些可能性在下面列出：

Iteration #1: [2][sigmoid]
Iteration #2: [4][sigmoid]
Iteration #3: [6][sigmoid]
Iteration #4: [8][sigmoid]
Iteration #5: [10][sigmoid]
Iteration #6: [2][ReLU]
Iteration #7: [4][ReLU]
Iteration #8: [6][ReLU]
Iteration #9: [8][ReLU]
Iteration #10: [10][ReLU]
Iteration #11: [2][tanh]
Iteration #12: [4][tanh]
Iteration #13: [6][tanh]
Iteration #14: [8][tanh]
Iteration #15: [10][tanh]

每种可能性称为一个轴（axis）。这些轴会旋转着遍历所有可能的

组合。你可以想象汽车的里程表，来更加形象地想象这个过程。最左侧

的转盘（即轴）旋转得最快。它的计数范围是0～9。一旦达到9，并且

需要转到下一个数字，它将转回0，并且左边的下一个位置向前转动一

个数字。除非下一个位置也为9，否则左边的转盘将继续转。在某个时

候，里程表上的所有数字都为9，整个设备将转回0。最后的转动发生

时，将完成网格搜索。

大多数框架允许两种轴类型。第一种类型是带有步长的数字范围；

第二种类型是值的列表，如上面的激活函数。以下JavaScript示例允许你

尝试使用自己的一组轴来查看所产生的迭代次数：

http://www.heatonresearch.com/aifh/vol3/grid_iter.html

清单11-1展示了转动几组值的所有迭代所需的伪代码。

清单11-1　网格搜索

The variable axes contains a list of each axis
Each axes (in axes) is a list of possible values
for that axis
Current index of each axis is zero, create an array
of zeros
indexes = zeros(len(axes))
done = false
while not done:
Prepare vector of current iteration’s
hyper-parameters
 iteration = []
 for i from 0 to len(axes)
 iteration.add(axes [i][indexes[i]])
Perform one iteration, passing in the hyper-parameters
that are stored in the iteration list. This function
should train the neural network according to the
hyper-parameters and keep note of the best trained
network so far
 perform_iteration(iteration)
Rotate the axes forward one unit, like a car's
odometer
 indexes[0] = indexes[0] + 1;
 var counterIdx = 0;
roll forward the other places, if needed
 while not done and indexes[counterIdx]>=
 len(axes [counterIdx]):
 indexes[counterIdx] = 0
 counterIdx = counterIdx + 1
 if counterIdx>=len(axes):
 done = true
 else:
 indexes[counterIdx] = indexes[counterIdx] + 1

上面的代码使用两个循环来遍历每组可能的超参数。当程序仍在生

成超参数时，第一个循环就会继续。每次循环，该循环都会将第一个超

参数增加到下一个值。第二个循环检测第一个超参数是否已翻转。内部

循环将继续前进到下一个超参数，直到不再发生翻转为止。一旦所有超

参数都翻转过来，该过程就完成了。

如你所见，网格搜索很快就会导致大量迭代。考虑是否要在5个层

上搜索隐藏神经元的最佳数量，每个层上最多允许200个神经元。这个

过程导致200的5次幂（即3 200亿）次迭代。因为每次迭代都涉及训练

神经网络，所以迭代可能需要几分钟、几小时，甚至几天来执行。

在执行网格搜索时，多线程和网格处理可能是有益的。通过线程池

运行迭代可以大大加快搜索速度。线程池的大小应该等于计算机的核心

数。这种特征允许具有8个核心的计算机同时在8个神经网络上工作。同

时运行多个迭代时，单个模型的训练必须是单线程的。许多框架将使用

所有可用的核心来训练单个神经网络。当你要训练大量的神经网络时，

应该总是考虑并行训练多个神经网络，以便每个神经网络都使用多个计

算机核心。

　11.3.2　随机搜索模型选择

也可以使用随机搜索进行模型选择。随机搜索方法不是系统地尝试

每个超参数组合，而是为超参数选择随机值。对于数字范围，你不再需

要指定步长，随机模型选择将在指定的起点和终点之间选择连续范围的

浮点数。对于随机搜索，程序员通常指定时间或迭代限制。下面展示了

使用上面同样的轴进行的随机搜索，但仅限于10次迭代：

Iteration #1: [3.298266736790538][sigmoid]
Iteration #2: [9.569985574809834][ReLU]
Iteration #3: [1.241154231596738][sigmoid]
Iteration #4: [9.140498645836487][sigmoid]

Iteration #5: [8.041758658131585][tanh]
Iteration #6: [2.363519841339439][ReLU]
Iteration #7: [9.72388393455185][tanh]
Iteration #8: [3.411276006139815][tanh]
Iteration #9: [3.1166220877785236][sigmoid]
Iteration #10: [8.559433702612296][sigmoid]

如你所见，第一个轴（即隐藏的神经元计数）采用浮点值。你可以

通过将神经元计数四舍五入到最接近的整数来解决这个问题。我们还建

议避免重复测试相同的超参数。因此，该程序应保留以前尝试过的超参

数的列表，以便不会重复使用先前尝试过的超参数，这些尝试过的超参

数属于一个较小的范围。

以下网址利用JavaScript展示了随机搜索的实际效果：

http://www.heatonresearch.com/aifh/vol3/random_iter.html

　11.3.3　其他模型选择技术

模型选择是一个非常活跃的研究领域，因此，有许多创新的方法来

实现它。你可以将超参数视为值的向量，并将为这些超参数找到最佳神

经网络得分的过程视为目标函数，从而将搜索超参数视为优化问题。我

们在本系列图书的前两卷中研究了许多优化算法。这些算法如下：

蚁群优化（Ant Colony Optimization，ACO）；

遗传算法；

基因编程；

爬山；

Nelder-Mead；

粒子群优化；

模拟退火。

尽管算法列表很长，但现实是这些算法中的大多数都不适合模型选

择，因为模型选择的目标函数计算起来很耗时。训练一个神经网络，并

确定给定的一组超参数对神经网络的训练有多好，可能需要几分钟、几

小时，甚至几天的时间。

如果你希望将优化功能应用于模型选择，则Nelder-Mead（有时是

爬山）是最好的选择。这些算法试图最小化对目标函数的调用。对于超

参数搜索，调用目标函数非常昂贵，因为必须训练神经网络。一种优化

的好方法是生成一组超参数，用作Nelder-Mead的起点，并让Nelder-

Mead来改善这些超参数。Nelder-Mead是超参数搜索的不错选择，因为

它对目标函数的调用相对较少。

模型选择是Kaggle数据科学竞赛中很常见的部分。根据比赛的讨论

和报告，大多数参与者使用网格和随机搜索进行模型选择，Nelder-

Mead也很受欢迎。另一种日益流行的技术是贝叶斯优化，如Snoek、

Larochelle和Adams（2012）所述。用Python实现的这个算法称为

Spearmint，你可以在GitHub搜索来找到它。

贝叶斯优化是一种相对较新的模型选择技术，我们直到最近才开始

对它进行研究。因此，本书不包含对它更深入的研究，将来的版本可能

会包含有关这项技术的更多信息。

11.4　本章小结

正如你在本章中学到的，可以对神经网络进行剪枝。剪枝神经网络

会删除连接和神经元，使神经网络更有效率。执行速度、连接数和错误

率都是效率的衡量标准。尽管神经网络必须有效识别模式，但提高效率

是剪枝的主要目标。有几种不同的算法可以剪枝神经网络。在本章中，

我们研究了其中两种算法。如果你的神经网络已经运行得足够快，那么

必须评估剪枝是否合理。即使效率很重要，你也必须权衡提高效率与权

衡神经网络有效性。

模型选择在神经网络开发中起着重要作用。超参数用来对隐藏的神

经元数、层数和激活函数等进行设置。模型选择被用来找到将产生最佳

训练神经网络的超参数集。各种算法可以搜索超参数的可能设置，并找

到最佳设置。

剪枝有时会减少神经网络的过拟合。这种过拟合的减少通常只是剪

枝过程的副产品。减少过拟合的算法称为正则化算法。剪枝有时会产生

正则化效果，此外还有一整套算法可以减少过拟合，它们被称为正则化

算法。在第12章中，我们将专注探讨这些算法。

第12章　Dropout和正则化

本章要点：

正则化；

L1和L2正则化；

Dropout层。

正则化是一种减少过拟合的技术。如果神经网络尝试记住训练数

据，而不是从中学习，就会发生过拟合。人类也会产生过拟合。在探讨

神经网络意外产生过拟合之前，我们先探讨人类如何遭受过拟合的困

扰。

程序员经常参加认证考试，以证明他们在给定编程语言上的能力。

为了帮助程序员准备这些考试，测试者通常会提供模拟考试。考虑一个

程序员，他开始不停地参加模拟考试：学习更多内容，然后参加认证考

试。在某个时候，程序员已经记住了很多模拟考试题，而不是学习解决

单个问题所必需的技术。现在程序员已经对模拟考试产生了过拟合。当

该程序员参加实际考试时，他的实际分数可能会比他在模拟考试中获得

的分数低。

一台计算机也可能过拟合。尽管神经网络在其训练数据上得分很

高，但是这个结果并不意味着同一神经网络在训练集以外的数据上得分

很高。正则化是可以减少过拟合的技术之一。存在许多不同的正则化技

术，它们大多数的工作方式是分析，并可能修改神经网络在训练时的权

重。

12.1　L1和L2正则化

L1和L2正则化是两种常见的正则化技术（或称算法），可以减少

过拟合的影响[1]。这两种算法都可以与一个目标函数一起使用，也可以

作为反向传播算法的一部分。在这两种情况下，通过添加另一个目标函

数，正则化算法将附加到训练算法中。

这两种算法都通过在神经网络训练中增加权重罚分来起作用。这种

罚分鼓励神经网络将权重保持在较小的值。L1和L2以不同方式计算这

种罚分。对于基于梯度下降的算法（如反向传播），你可以将这种罚分

计算添加到计算出的梯度中。对于基于目标函数的训练（如模拟退

火），罚分与目标得分相反。

L1和L2的不同之处在于它们对权重大小的罚分方式。L1迫使权重

变为类似于拉普拉斯分布的模式，L2迫使权重变为类似于高斯分布的模

式，如图12-1所示。

图12-1　L1与L2

如你所见，L1算法对权重的容忍度从0开始提高，L2算法的容忍度

则较差。在12.1.1和12.1.2小节中，我们将重点介绍L1和L2之间的其他

重要区别。你还需要注意，L1和L2都是仅基于权重来计算罚分的，它

们不计算偏置的罚分。

　12.1.1　理解L1正则化

你应该使用L1正则化来使神经网络变得稀疏。换言之，L1算法会

将许多权重连接到0附近。当权重接近0时，程序会将它从神经网络中删

除。删除带权重的连接将创建一个稀疏的神经网络。

特征选择是稀疏神经网络的有用的副产品。特征是训练集提供给输

入神经元的值。一旦输入神经元的所有权重都达到0，则神经网络训练

会确定该特征是不必要的。如果你的数据集具有大量不需要的输入特

征，那么L1正则化可以帮助神经网络检测和忽略不必要的特征。

公式12-1展示了由L1执行的罚分计算：

（12-1）

本质上，程序员必须平衡两个相互竞争的目标。他们必须决定，为

神经网络取得低分和正则化权重，哪个价值更大。两种结果都有价值，

但是程序员必须选择相对重要性。如果以正则化为主要目标，那么λ1值

确定L1正则化目标比神经网络的误差更重要。当λ1的值为0时，表示完

全不考虑L1正则化。在这种情况下，较低的神经网络误差更为重要。当

λ1的值为0.5时，表示L1正则化的重要性是误差目标的一半。典型的L1

值低于0.1（10%）。

L1执行的主要计算是计算所有权重的绝对值（如“| |”所示）的总

和。偏置不相加。

如果使用的是优化算法（如模拟退火），就可以简单地将公式12-1

返回的值组合到得分中。你应该以某种方式将这个值与得分结合起来，

以免产生负面影响。如果你试图使得分最小，那么应加上L1的值；同

样，如果你试图使得分最大，那么应减去L1的值。

如果将L1正则化与基于梯度下降的训练算法（如反向传播）一起使

用，那么需要使用稍有不同的误差项，如公式12-2所示：

（12-2）

公式12-2与公式12-1几乎相同，除了增加了除以 。 代表训练集评

估的次数。如果有100个训练集元素和3个输出神经元，那么 为300。我

们除以这个数字是因为，程序对这100个元素中的每个元素都有3个值进

行评估且程序在每次训练评估时都会应用公式12-2。这个特性与公式12-

1形成对比，公式12-1在每次训练迭代中只会应用一次。

要使用公式12-2，我们需要取相对权重的偏导数。公式12-3展示了

公式12-2的偏导数：

（12-3）

我们将这个值加到由梯度下降算法计算的每个权重梯度上。仅对权

重执行这个加法，偏置不变。

　12.1.2　理解L2正则化

如果你不太关心创建稀疏网络，而更关心低权重，就应该使用L2正

则化。较低的权重通常会减少过拟合。

公式12-4展示了L2执行的罚分计算：

（12-4）

和L1算法类似，λ2值决定了L2正则化目标与神经网络的误差的相对

重要性。典型的L2值低于0.1（10%）。L2执行的主要计算是所有权重

的平方之和，偏置不相加。

如果使用的是优化算法（如模拟退火），就可以简单地将公式12-4

返回的值组合到得分中。你应该以某种方式将这个值与得分结合起来，

以免产生负面影响。如果你试图使得分最小，那么应加上L2的值；同

样，如果你试图使得分最大，那么应减去L2的值。

如果将L2正则化与基于梯度下降的训练算法（如反向传播）一起使

用，那么需要使用稍有不同的误差项，如公式12-5所示：

（12-5）

公式12-5与公式12-4几乎相同，只是不同于L1，我们采用权重的平

方。要使用公式12-5，我们需要取相对权重的偏导数。公式12-6展示了

公式12-5的偏导数：

（12-6）

我们将这个值加到由梯度下降算法计算的每个权重梯度上。仅对权

重执行这个加法，偏置不变。

12.2　Dropout

Hinton、Srivastava、Krizhevsky、Sutskever和

Salakhutdinov（2012）引入了Dropout正则化算法。尽管Dropout的工作

方式不同于L1和L2，但它实现了相同的目标，即减少过拟合。但是，

该算法实际上是通过（至少暂时）去除神经元和连接来完成任务的。与

L1和L2不同，Dropout不增加权重罚分，且不直接寻求训练更小的权

重。

Dropout的工作方式，是在部分训练期间，让神经网络的一些隐藏

神经元不可用。丢弃部分神经网络，使剩下被训练的部分，即使当丢弃

的神经元不存在时，仍能获得良好的成绩。这减少了神经元之间的连

接，从而减少了过拟合。

　12.2.1　Dropout层

大多数神经网络框架将Dropout实现为单独的层。Dropout层用作普

通的、稠密连接的神经网络层。与其他神经网络层的唯一区别是，在训

练过程中，Dropout层将定期丢弃某些神经元。你可以在常规前馈神经

网络上使用Dropout层。实际上，它们也可以成为LeNet-5神经网络中的

层，就像我们在第10章“卷积神经网络”中探讨的那样。

Dropout层的常见超参数如下：

神经元计数；

激活函数；

Dropout概率。

Dropout层中神经元计数和激活函数超参数的工作方式，与第10

章“卷积神经网络”提到的稠密层中的相应参数的工作方式完全相同。神

经元计数表示指定Dropout层中神经元的数量。Dropout概率表示在训练

迭代过程中神经元丢弃的可能性。和对稠密层所做的一样，程序为

Dropout层指定了激活函数。

　12.2.2　实现Dropout层

程序将Dropout层实现为可以消除其中某些神经元的稠密层。不同

于对Dropout层的普遍看法，程序不会永久删除这些丢弃的神经元。

Dropout层在训练过程中不会丢弃任何神经元，并且在训练后仍将具有

完全相同数量的神经元。通过这种方式，程序仅暂时掩盖了一些神经

元，而不是丢弃它们。

图12-2展示了如何将Dropout层与其他层放置在一起。

图12-2　Dropout层与其他层放置在一起

图12-2所示的神经网络中，丢弃的神经元及其连接用虚线表示。输

入层有两个输入神经元和一个偏置神经元。第二层是稠密层，有3个神

经元和一个偏置神经元。第三层是Dropout层，有6个普通神经元，但程

序已丢弃了其中的50%。当程序删除这些神经元时，它既不计算，也不

训练它们。但是，最终的神经网络将使用所有这些神经元作为输出。如

前所述，程序仅暂时丢弃一些神经元。

在随后的训练迭代中，程序从Dropout层选择不同的神经元集。尽

管我们选择了50%的Dropout概率，但计算机不一定会丢弃3个神经元。

就像我们为每个候选丢弃神经元掷了一枚硬币，选择该神经元是否丢

弃。你必须知道，程序永远不会删除偏置神经元。只有Dropout层上的

普通神经元可能被选择。

训练算法的实现会影响神经元的丢弃过程。Dropout设置经常在每

个训练迭代或批次中更改一次。程序还可以提供一些间隔迭代，其中所

有神经元都存在。一些神经网络框架提供了其他超参数，以允许你准确

指定这种间隔的频率。

为什么Dropout能够减少过拟合？这是一个常见的问题。答案是，

Dropout可以减少两个神经元之间相互依赖发展的机会。当一个神经元

丢弃时，两个产生依赖性的神经元将无法有效运行。因此，神经网络不

再依赖于每个神经元的存在，并据此进行训练。这个特征会降低记忆提

供给它的信息的能力，从而导致泛化（generalization）。

通过在神经网络上强制一个自助法（bootstrapping）的过程，

Dropout减少了过拟合。自助法是一种很常见的集成学习（ensemble）技

术。我们将在第16章“用神经网络建模”中更详细地讨论集成学习。集成

学习是一种机器学习技术，它结合了多个模型，从而产生比单个模型更

好的结果。集成学习是一个源自“音乐合奏”（musical ensemble）的术

语。在音乐合奏中，听众最终听到的音乐是许多乐器的组合。

自助法是最简单的集成技术之一。使用自助法的程序员只需训练一

些神经网络来执行完全相同的任务。但是，由于存在某些训练技术和神

经网络权重初始化中使用的随机数，因此这些神经网络中的每一个的表

现都会有所不同。权重差异会导致表现差异。这种神经网络集成的输出

就是各个成员加在一起的平均输出。通过不同训练的神经网络的共识，

来减少过拟合。

Dropout的工作原理类似于自助法。你可以认为，丢弃的一组不同

神经元构成的神经网络，是集成学习中的不同成员。随着训练的进行，

程序将以这种方式创建更多的神经网络，但是，Dropout不需要与自助

法相同的处理量。创建的新神经网络是临时的，它们仅在训练迭代中存

在。Dropout的最终结果也是单个神经网络，而不是要对一组神经网络

取平均值。

12.3　使用Dropout

在本节中，我们将继续使用本书的MNIST手写数字数据集。我们在

本书的简介中探讨了该数据集，并在几个示例中使用了它。

本节的示例使用训练集来拟合Dropout神经网络。程序随后在经过

训练的神经网络上评估测试集，以查看结果。神经网络的Dropout版本

和非Dropout版本都有要探讨的结果。

Dropout神经网络使用以下超参数。

激活函数：ReLU。

输入层：784（28×28）。

隐藏层1：1 000。

Dropout层：500个单元，50%。

隐藏层2：250。

输出层：10（因为有10个数字）。

我们通过实验选择了上面的超参数。我们将输入神经元的数量取到

下一个整数单位，将隐藏层1设置为1 000。接下来的三层每次将这个数

量限制为上一层的一半。将Dropout层放在两个隐藏层之间，这可以最

大程度地降低错误率。我们也尝试了将它放置在隐藏层1之前和隐藏层2

之后。大多数过拟合发生在两个隐藏层之间。

我们将以下超参数用于常规神经网络。这个过程与Dropout神经网

络基本相同，不同之处在于，额外的隐藏层代替了Dropout层。

激活函数：ReLU。

输入层：784（28×28）。

隐藏层1：1 000。

隐藏层2：500。

隐藏层3：250。

输出层：10（因为有10个数字）。

结果显示如下：

ReLU:
Best valid loss was 0.068229 at epoch 17.
Incorrect 170/10000 (1.7000000000000002%)

ReLU+Dropout:
Best valid loss was 0.065753 at epoch 5.
Incorrect 120/10000 (1.2%)

如你所见，Dropout神经网络实现的错误率比本书前面的纯ReLU神

经网络更好。通过减少过拟合，Dropout神经网络获得了更好的得分。

你还应该注意到，尽管非Dropout神经网络确实获得了更好的训练成

绩，但它的测试结果并不理想，这表明存在过拟合。当然，这些结果具

体取决于所使用的平台。

12.4　本章小结

我们介绍了几种可以减少过拟合的正则化技术。当神经网络记住输

入和预期输出时，由于程序尚未学会泛化，因此会发生过拟合。许多不

同的正则化技术可以使神经网络学习泛化。我们探讨了L1、L2和

Dropout。L1和L2的工作方式类似，即对较大的权重施加罚分。这些罚

分的目的是降低神经网络的复杂性。Dropout采用一种完全不同的方

法，即随机删除各种神经元，并迫使训练继续使用部分神经网络。

L1算法会罚分较大的权重，并迫使许多权重接近0。我们认为要从

神经网络中删除包含零值的权重。这种操作产生了一个稀疏的神经网

络。如果删除了输入神经元和下一层之间的所有加权连接，就可以假定

连接到该输入神经元的特征不重要。特征选择是根据输入特征对神经网

络的重要性来选择输入特征的过程。L2算法会罚分较大的权重，但它产

生的神经网络不会像L1算法产生的神经网络那样稀疏。

Dropout在专门设计的Dropout层中随机丢弃神经元。从神经网络中

删除的神经元并没有像剪枝时那样消失，而是让丢弃的神经元暂时从神

经网络中屏蔽。在每次训练迭代期间，丢失的神经元的集合都会发生变

化。Dropout会强制神经网络在神经元被移除后继续运行。这使得神经

网络难以记忆和过拟合。

到目前为止，我们在本书中仅探讨了前馈神经网络。在这种类型的

神经网络中，连接只是从输入层前进到隐藏层，最后到输出层。递归神

经网络允许向后连接到先前的层。我们将在第13章分析这种类型的神经

网络。

此外，我们聚焦使用神经网络识别模式。我们还可以教神经网络预

测未来的趋势。为神经网络提供一系列基于时间的值，可以使它能够预

测后续值。在第13章中，我们还会演示预测神经网络。我们将这种类型

的神经网络称为时间神经网络。循环神经网络通常可以进行时间预测。

[1]　Ng，2004。

第13章　时间序列和循环神经网络

本章要点：

时间序列；

埃尔曼神经网络；

若当神经网络；

深度循环神经网络。

本章将探讨时间序列编码和循环神经网络。这两个主题从逻辑上来

讲适合放在一起，因为它们都用于处理随时间变化的数据。时间序列编

码用于表示随时间推移，神经网络产生的数据。有许多不同的方法来编

码神经网络产生的数据。这种编码是必需的，因为前馈神经网络对给定

的输入向量将始终产生相同的输出向量。循环神经网络不需要对时间序

列数据进行编码，因为它们能够自动处理随时间变化的数据。

一周中温度的变化是时间序列数据的一个例子。如果我们知道今天

的温度是25摄氏度，明天的温度是27摄氏度，那么循环神经网络和时间

序列编码提供了另一种选择来预测一周中的正确温度。相反，对于给定

的输入，传统的前馈神经网络将始终以相同的输出进行响应。如果前馈

神经网络经过训练可以预测明天的温度，那么它对25的响应应该为27。

即当给出25时，它会始终输出27，这一事实可能会妨碍它进行预测。当

然，27摄氏度的温度不会总是跟随着25摄氏度。神经网络最好考虑到要

预测的这一天的前几天的温度，也许上周的气温能帮助我们更准确地预

测明天的温度。因此，循环神经网络和时间序列编码代表两种不同的方

法，来解决随时间推移表示神经网络数据的问题。

到目前为止，我们研究过的神经网络始终具有前向连接。输入层始

终连接到第一个隐藏层，每个隐藏层始终连接到下一个隐藏层，最终的

隐藏层始终连接到输出层。这种连接层的方式是将这些神经网络称

为“前馈”的原因。循环神经网络没有那么严格，因为其允许反向连接。

循环连接将一层中的神经元连接到上一层或神经元本身。大多数循环神

经网络架构都在循环连接中保持状态。前馈神经网络不保持任何状态。

循环神经网络的状态充当了神经网络的一种短期记忆，因此，循环神经

网络对于给定的输入将不会总是产生相同的输出。

13.1　时间序列编码

正如我们在前几章中所看到的，神经网络特别擅长识别模式，这有

助于它们预测数据的未来模式。我们将预测未来模式的神经网络称为预

测性或时间性神经网络。这些预测性神经网络可以预测未来的事件，如

股票市场趋势和太阳黑子周期。

许多不同类型的神经网络都可以预测未来模式。在本节中，前馈神

经网络将尝试学习数据中的模式，以便能够预测将来的值。和应用于神

经网络的所有问题一样，预测是聪明地确定如何针对一个问题，来配置

输入，并解释输出神经元的问题。因为本书中前馈神经网络的类型对于

给定的输入始终会产生相同的输出，所以我们需要确保对输入进行正确

的编码。

存在多种方法可以为神经网络编码时间序列数据。滑动窗口算法是

最简单和最受欢迎的编码算法之一。但是，更复杂的算法需要考虑以下

因素：

权重旧值不如新值重要；

随时间平滑/平均；

其他领域特定的（如财务）指标。

我们将重点介绍采用时间序列的滑动窗口算法的编码方法。滑动窗

口算法的工作方式，是将数据分为代表过去和未来的两个窗口。你必须

指定两个窗口的大小。如果要用股票的每日收盘价来预测将来的价格，

就必须确定要检查多久的过去和预测多久的将来。你可能希望使用最近

5个收盘价来预测未来两天的收盘价，在这种情况下，你将拥有一个包

含5个输入神经元和两个输出神经元的神经网络。

　13.1.1　为输入和输出神经元编码数据

考虑一个简单的数字序列，如下所示：

1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1

通过该序列预测数字的神经网络可能会使用3个输入神经元和一个

输出神经元。以下训练集的预测窗口大小为1，过去窗口大小为3：

[1,2,3] -> [4]
[2,3,4] -> [3]
[3,4,3] -> [2]
[4,3,2] -> [1]

如你所见，神经网络准备按顺序接收几个数据样本。然后，输出神

经元将预测序列会如何继续。设想你现在可以输入由3个数字组成的任

何序列，神经网络将预测第4个数字。每个数据点称为一个时间片，因

此，每个输入神经元代表一个已知的时间片，输出的神经元代表未来的

时间片。

神经网络还可以预测未来的多个值。以下训练集的预测窗口大小为

2，过去窗口大小为3：

[1,2,3] -> [4,3]
[2,3,4] -> [3,2]
[3,4,3] -> [2,1]
[4,3,2] -> [1,2]

前面两个示例只有一个数据流。也可以使用多个数据流进行预测。

如你可以使用股票价格及其成交量来预测其未来价格。考虑以下两个数

据流：

流#1: 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1
流#2: 10, 20, 30, 40, 30, 20, 10, 20, 30, 40, 30, 20, 10

你可以使用流#1和流#2预测流#1。你只需要在流#1的值旁边添加流

#2的值，训练集就可以执行这种计算。以下训练集的预测窗口大小为

1，过去窗口大小为3：

[1,10,2,20,3,30] -> [4]
[2,20,3,30,4,40] -> [3]
[3,30,4,40,3,30] -> [2]
[4,40,3,30,2,20] -> [1]

同样的技术适用于任意数量的流。在这种情况下，流#1帮助预测自

己。如你可以用IBM和Apple的股价来预测Microsoft的股价。该技术使

用3个流。我们预测的流不必在提供数据以形成预测的流之中。

　13.1.2　预测正弦波

本小节中的示例相对简单，我们展示了一个预测正弦波的神经网

络。这从数学上讲是可以预测的，且程序员可以轻松理解正弦波，以及

它随时间的变化。这些性质使它成为预测神经网络的很好的示例。

通过绘制三角正弦函数可以看到正弦波。图13-1展示了正弦波。

图13-1　正弦波

使用三角正弦函数训练神经网络时，反向传播将调整权重来模拟正

弦波。首次运行正弦波示例时，你将看到训练过程的输出。正弦波预测

器训练过程的典型输出如下：

Iteration #1 Error:0.48120350975475823
Iteration #2 Error:0.36753445768855236
Iteration #3 Error:0.3212066601426759
Iteration #4 Error:0.2952410514715732
Iteration #5 Error:0.2780102928778258
Iteration #6 Error:0.26556861969786527
Iteration #7 Error:0.25605359706505776
Iteration #8 Error:0.24842242500053566
Iteration #9 Error:0.24204767544134156
Iteration #10 Error:0.23653845782593882
...
Iteration #4990 Error:0.02319397662897425
Iteration #4991 Error:0.02319310934886356
Iteration #4992 Error:0.023192242246688515
Iteration #4993 Error:0.02319137532183077
Iteration #4994 Error:0.023190508573672858
Iteration #4995 Error:0.02318964200159761
Iteration #4996 Error:0.02318877560498862
Iteration #4997 Error:0.02318790938322986
Iteration #4998 Error:0.023187043335705867
Iteration #4999 Error:0.023186177461801745

最初，错误率很高，为48%。到第二次迭代时，错误率迅速下降到

36.7%。到第4 999次迭代时，错误率已降至2.3%。该程序设计为在第5

000次迭代之前停止，这成功地将错误率降低到小于0.03。

更多的训练迭代将产生更低的错误率，但是，通过限制迭代次数，

能让程序在几分钟内在普通计算机上完成。在Intel i7计算机上执行该程

序大约需要两分钟。

训练完成后，将正弦波提供给神经网络进行预测。下面可以看到这

种预测的输出：

5:Actual=0.76604:Predicted=0.7892166200864351:Difference= 2.32%
6:Actual=0.86602:Predicted=0.8839210963512845:Difference= 1.79%
7:Actual=0.93969:Predicted=0.934526031234053:Difference= 0.52%
8:Actual=0.9848:Predicted=0.9559577688326862:Difference= 2.88%
9:Actual=1.0:Predicted=0.9615566601973113:Difference=3.84%
10:Actual=0.9848:Predicted=0.9558060932656686:Difference= 2.90%
11:Actual=0.93969:Predicted=0.9354447787244102:Difference= 0.42%
12:Actual=0.86602:Predicted=0.8894014978439005:Difference= 2.34%
13:Actual=0.76604:Predicted=0.801342405700056:Difference= 3.53%
14:Actual=0.64278:Predicted=0.6633506809125252:Difference= 2.06%
15:Actual=0.49999:Predicted=0.4910483600917853:Difference= 0.89%
16:Actual=0.34202:Predicted=0.31286152780645105:Difference= 2.92%
17:Actual=0.17364:Predicted=0.14608325263568134:Difference= 2.76%
18:Actual=0.0:Predicted=-0.008360016796238434:Difference= 0.84%
19:Actual=-0.17364:Predicted=-0.15575381460132823:Difference= 1.79%
20:Actual=-0.34202:Predicted=-0.3021775158559559:Difference= 3.98%
...
490:Actual=-0.64278:Predicted=-0.6515076637590029:Difference= 0.87%
491:Actual=-0.76604:Predicted=-0.8133333939237001:Difference= 4.73%
492:Actual=-0.86602:Predicted=-0.9076496572125671:Difference= 4.16%
493:Actual=-0.93969:Predicted=-0.9492579517460149:Difference= 0.96%
494:Actual=-0.9848:Predicted=-0.9644567437192423:Difference= 2.03%
495:Actual=-1.0:Predicted=-0.9664801515670861:Difference= 3.35%
496:Actual=-0.9848:Predicted=-0.9579489752650393:Difference= 2.69%
497:Actual=-0.93969:Predicted=-0.9340105440194074:Difference= 0.57%
498:Actual=-0.86602:Predicted=-0.8829925066754494:Difference= 1.70%
499:Actual=-0.76604:Predicted=-0.7913823031308845:Difference= 2.53%

如你所见，我们提供了每个元素的实际值和预测值。我们针对前

250个元素训练了神经网络，但是，神经网络能够预测超过前250个元素

的值。你还会注意到，实际值和预测值之间的差异很少超过3%。

滑动窗口不是编码时间序列的唯一方法。其他时间序列编码方法对

于特定领域可能非常有用。如存在许多技术指标，可帮助我们找到股

票、债券和货币对等证券价值的模式。

13.2　简单循环神经网络

循环神经网络不会强迫连接只从一层流到下一层，从输入层流到输

出层。当神经元和以下类型的神经元之一形成连接时，就出现了循环连

接：

该神经元本身；

同一级的神经元；

上一级的神经元。

循环连接的目标永远不能是输入神经元或偏置神经元。

循环连接的处理可能有挑战性。由于循环连接会产生无限循环，因

此神经网络必须通过某种方式知道何时停止。进入无限循环的神经网络

不会有用。为了防止无限循环，我们可以使用以下3种方法来计算循环

连接：

上下文神经元；

计算固定迭代次数的输出；

计算输出，直到神经元输出稳定为止。

使用上下文神经元的神经网络，我们称之为SRN。上下文神经元是

一种特殊的神经元，它会记住其输入，并在下次我们计算神经网络时，

将该输入作为其输出。如果我们向上下文神经元提供0.5作为输入，它

将输出0。上下文神经元在第一次调用时始终输出0，但是，如果我们向

上下文神经元提供输入0.6，那么输出将是0.5。我们从不对上下文神经

元的输入连接加权重，但可以和对神经网络中的任何其他连接一样，对

上下文神经元的输出连接加权重。图13-2展示了典型的上下文神经元。

图13-2　上下文神经元

上下文神经元允许我们在单次前馈过程中计算神经网络。上下文神

经元通常分层出现。如图13-3所示，上下文层中的神经元数量总是与其

源层中的神经元数量相同。

图13-3　上下文层

从图13-3所示的层中可以看到，标记为“隐藏1”和“隐藏2”的两个隐

藏神经元直接连接到两个上下文神经元。这些连接上的虚线表示它们不

是加权连接。这些无权重的连接永远不会是稠密的。如果这些连接是稠

密的，则“隐藏1”将同时连接到“上下文1”和“上下文2”。但是，直接连接

只是将每个隐藏神经元连接到其对应的上下文神经元。两个上下文神经

元与两个隐藏神经元形成稠密的加权连接。最后，两个隐藏神经元还与

下一层的神经元形成稠密的连接。这两个上下文神经元将在下一层中形

成到单个神经元的两个连接，到两个神经元的4个连接，到3个神经元的

6个连接，依此类推。

你可以通过许多不同的方式，将上下文神经元与神经网络的输入

层、隐藏层和输出层组合在一起。在接下来的13.2.1和13.2.2小节中，我

们将探讨两种常见的SRN架构。

　13.2.1　埃尔曼神经网络

1990年，Elman引入了一种神经网络，可以为时间序列提供模式识

别。对于用来预测的每个数据流，这种神经网络类型都有一个输入神经

元，你尝试预测的每个时间片都有一个输出神经元。单个隐藏层位于输

入层和输出层之间。上下文层中的神经元从隐藏层输出中获取其输入，

然后反馈到同一隐藏层中。因此，上下文层始终具有与隐藏层相同数量

的神经元，如图13-4所示。

图13-4　埃尔曼SRN

埃尔曼神经网络是SRN的良好通用架构。你可以将任意数量的输入

神经元与任意数量的输出神经元配对，并使用正常加权连接，即两个上

下文神经元与两个隐藏神经元完全连接。两个上下文神经元从两个无权

重连接（虚线）接收它们的状态，这两个连接分别来自两个隐藏神经

元。

　13.2.2　若当神经网络

1993年，Jordan引入了神经网络来控制电子系统。这种风格的SRN

类似于埃尔曼神经网络。但是，上下文神经元的输入来自输出层，而不

是隐藏层。我们也将若当神经网络中的上下文单元称为状态层。它们之

间有一个循环连接，该连接上没有其他节点，如图13-5所示。

图13-5　若当SRN

若当神经网络需要相同数量的上下文神经元和输出神经元。因此，

如果我们有一个输出神经元，那么若当神经网络将只有一个上下文神经

元，这时这种相同数量可能会产生问题，因为你只有一个单一上下文

（single-context）神经元。

埃尔曼神经网络比若当神经网络适用的问题更广泛，因为较大的隐

藏层创建了更多的上下文神经元。由于它抓住了先前迭代中隐藏层的状

态，因此，埃尔曼神经网络可以记住更复杂的模式。由于隐藏层代表特

征检测器的第一行，因此该状态永远不会是双极性的（bipolar）。

此外，如果我们增加隐藏层的大小以解决更复杂的问题，那么还会

通过埃尔曼神经网络获得更多的上下文神经元。若当神经网络无法产生

这种效果。要使用若当神经网络创建更多上下文神经元，我们必须添加

更多输出神经元，但我们不能在不更改问题定义的情况下添加输出神经

元。

何时使用若当神经网络是一个常见问题。程序员最初为机器人研究

开发了这种神经网络。专为机器人技术设计的神经网络通常将输入神经

元连接到传感器，将输出神经元连接到执行器（通常是电动机）。由于

每个电动机都有自己的输出神经元，因此与预测单个值的回归神经网络

相比，机器人的神经网络通常具有更多的输出神经元。

　13.2.3　通过时间的反向传播

你可以使用多种方法训练SRN。由于SRN是神经网络，因此你可以

使用任何优化算法来训练它的权重，如模拟退火、粒子群优化、Nelder-

Mead或其他算法。常规的基于反向传播的算法也可以训练SRN。

Mozer（1995）、Robinson和Fallside（1987），以及Werbos（1988）各

自发明了专门为SRN设计的算法。程序员称这个算法为通过时间的反向

传播（Back Propagation Through Time，BPTT）。Sjoberg、Zhang、

Ljung等（1995）确定，与常规优化算法（如模拟退火）相比，通过时

间的反向传播可提供出色的训练表现。与标准反向传播相比，通过时间

的反向传播对局部最小值的敏感度更高。

通过时间的反向传播的工作方式，是将SRN展开为常规的神经网

络。为了展开SRN，我们构建了一个神经网络，该神经网络表明我们希

望回到多久的过去。我们从构建的神经网络开始，该神经网络包含当前

时间的输入，称为 。接下来，我们根据上下文神经元的输入，用构建

的神经网络替换上下文层。我们继续操作，达到所需的时间片数量，并

将最终的上下文神经元替换为0。图13-6展示了两个时间片。

图13-6　展开为两个时间片

这种展开可以继续深入。图13-7展示了3个时间片。

图13-7　展开为3个时间片

你可以将这个抽象概念应用于实际的SRN。图13-8展示了具有两个

输入层、两个隐藏层、一个输出层的埃尔曼神经网络，展开为两个时间

片。

图13-8　埃尔曼神经网络展开为两个时间片

如你所见，有 （当前时间）和 （过去一个时间片）的输入。底

部神经网络停在隐藏神经元处，因为你不需要隐藏神经元以外的所有内

容来计算上下文输入。底部神经网络结构成为顶部神经网络结构的上下

文。当然，底部神经网络结构也可以有与其隐藏神经元相连的上下文。

但是，由于上面的输出神经元对上下文没有帮助，因此只有顶部神经网

络结构（当前时间）才有一个上下文。

也可以展开若当神经网络。图13-9展示了具有两个输入层、两个隐

藏层、一个输出层的若当神经网络，展开为两个时间片。

图13-9　若当神经网络展开为两个时间片

与埃尔曼神经网络不同，你必须计算整个若当神经网络才能确定上

下文。我们可以一直计算到输出神经元的前一个时间片（底部神经网

络）。

要训练SRN，我们可以使用常规的反向传播来训练展开的神经网

络。在迭代结束时，我们对所有展开部分的权重取平均值，以获得SRN

的权重。清单13-1描述了通过时间的反向传播算法。

清单13-1　通过时间的反向传播

def bptt(a, y)
a[t] is the input at time t. y[t] is the output
 .. unfold the network to contain k instances of f
 .. see above figure..
 while stopping criteria no met:
x is the current context
 x = []
 for t from 0 to n – 1:
t is time. n is the length of the training sequence
 .. set the network inputs to x, a[t], a[t+1], ..., a[t+k-1]
 p = .. forward-propagation of the inputs

 .. over the whole unfolded network
error = target - prediction
 e = y[t+k] - p
 .. Back-propagate the error, e, back across
 .. the whole unfolded network

 .. Update all the weights in the network
 .. Average the weights in each instance of f together,
 .. so that each f is identical
compute the context for the next time-step
 x = f(x)

　13.2.4　门控循环单元

尽管循环神经网络从未像常规前馈神经网络那样流行，但针对它的

研究仍在积极继续。Chung、Hyun和Bengio（2014）引入了门控循环单

元（Gated Recurrent Unit，GRU），目的是通过解决循环神经网络的某

些固有局限性，使循环神经网络与深度神经网络协同工作。GRU是神经

元，其作用与本章前面看到的上下文神经元相似。

正如Chung、Hyun和Bengio（2015）所展示的那样，训练循环神经

网络捕捉长期依赖关系很困难，因为梯度要么趋于消失（大部分时

间），要么趋于爆炸（很少，但会产生严重影响）。

截至2015年本书（英文版）发布时，GRU引入不到一年。由于

GRU处于研究的前沿，目前大多数主要的神经网络框架都不包括它们。

如果你想试验GRU，基于Python Theano的框架Keras包含它们。你可以

在GitHub找到Keras框架。

尽管我们通常使用Lasagne，但Keras是许多基于Theano的Python框

架之一，它也是最早支持GRU的框架之一。本节包含对GRU的简要描

述，我们将根据需要更新本书的示例，以支持该技术。请参阅本书的示

例代码，以获取有关GRU示例可用性的最新信息。

GRU使用两个门来克服这些限制，如图13-10所示。

图13-10　GRU

这两个门分别表示为 （更新门）和 （重置门）。值 和 表示激活

（输出）和候选激活。重要的是要注意，开关指定了范围，而不是简单

地打开或关闭。

GRU与传统循环神经网络之间的主要区别在于，整个上下文值不会

像在SRN中那样每次迭代时都更改其值，而由更新门控制对发生的上下

文激活的更新程度。此外，程序还提供了一个重置门，可以重置上下

文。

13.3　本章小结

本章介绍了几种使用神经网络处理时间序列数据的方法。如果提供

相同的输入，前馈神经网络会产生相同的输出。因此，前馈神经网络被

认为是确定性的。在给定一系列输入的情况下，这种性质使前馈神经网

络无法产生输出。如果你的应用程序必须提供基于一系列输入的输出，

那么有两种选择。你可以将时间序列编码为输入特征向量，也可以使用

循环神经网络。

对时间序列数据进行编码是一种在特征向量中捕获时间序列信息的

方法，该特征向量被馈送到前馈神经网络。对时间序列数据进行编码有

许多方法。我们重点介绍了滑动窗口算法。这个算法指定了两个窗口：

第一个窗口确定了多久的过去用于预测，第二个窗口确定了多久的未来

需要预测。

循环神经网络是处理时间序列数据的另一种方法。循环神经网络不

需要编码，因为它能够记住神经网络的先前输入。这种短期记忆使神经

网络能够及时看到模式。SRN使用上下文神经元来记住先前计算中的状

态。我们探讨了埃尔曼SRN和若当SRN。此外，我们引入了一种非常新

的神经元，称为GRU。这种神经元不会像埃尔曼神经网络和若当神经网

络那样立即更新其上下文值。而由两个门控制其更新程度。

超参数定义了神经网络的结构，并最终决定了它对特定问题的有效

性。在本书的前几章中，我们介绍了超参数，如隐藏层和神经元计数、

激活函数，以及神经网络的其他控制属性。确定正确的超参数集通常是

一项反复试错的艰巨任务。但是，某些自动化过程可以让这个过程更容

易。此外，一些经验法则有助于构建这些神经网络。在第14章中，我们

将介绍这些方面的内容和自动化过程。

第14章　构建神经网络

本章要点：

超参数；

学习率和动量；

隐藏结构；

激活函数。

如前几章所述，超参数指神经网络等模型中的众多需要设置的参

数。激活函数、隐藏的神经元计数、层结构、卷积、最大池化和

Dropout都是神经网络超参数的例子。找到最佳的超参数集似乎是一项

艰巨的任务，而且，对AI程序员来说，这确实是最耗时的任务之一。但

是不用担心，本章将为你提供有关神经网络架构的最新研究的摘要。我

们也会展示如何进行实验，以帮助你确定适合自己神经网络的最佳架

构。

我们将通过两种方式提出架构建议。第一种方式，我们会报告AI领

域的科学文献的建议。这些建议包括引文，以便你查看原始论文。但

是，我们会努力以一种通俗易懂的方式介绍论文的关键概念。第二种方

式，我们将通过实验，运行几种竞争的架构，并报告结果。

要记住，一些明确而固定的规则，并不能决定每个项目的最佳架

构。每个数据集都是不同的，每个数据集的最佳神经网络也是不同的。

因此，你必须进行一些试验，以确定适合你的神经网络架构。

14.1　评估神经网络

评估神经网络从随机权重开始。另外，一些训练算法也使用随机

值。综合考虑，为了进行比较，我们正在面对大量的随机问题。随机数

种子是解决这个问题的常见方法。但是，假设我们正在评估具有不同神

经元数量的神经网络，那么一样的种子也不能保证对等的比较。

让我们将一个具有32个连接的神经网络与另一个具有64个连接的神

经网络进行比较。尽管种子保证了前32个连接保持相同的值，但现在有

32个多出来的连接将具有新的随机值。此外，如果仅在两个初始权重集

之间保留随机种子，那么第一个神经网络中的32个权重可能不在第二个

神经网络中的相同位置。

为了比较架构，我们必须执行几次训练并平均最终结果。由于这些

额外的训练运行会增加程序的总运行时间，因此过多的运行很快变得不

切实际。选择确定性的训练算法（不使用随机数的训练算法）也可能是

有益的。我们在本章中进行的实验将使用5次训练运行和RPROP训练算

法。RPROP是确定性的，5次训练运行是随意选择的，这可以提供合理

的一致性。使用第4章“前馈神经网络”中介绍的Xavier权重初始化算法，

也有助于提供一致的结果。

14.2　训练参数

训练算法本身有一些参数必须调整。我们不会将与训练相关的参数

视为超参数，因为在训练了神经网络后，这些参数并不明显。你可以检

查训练好的神经网络，轻松确定存在哪些超参数。对神经网络进行简单

检查，即可发现所使用的神经元数量和激活函数，但是，无法确定训练

参数，如学习率和动量。训练参数和超参数都极大地影响了神经网络能

够取得的错误率。但是，我们只能在实际训练期间使用训练参数。

下面列出了神经网络的3个最常见的训练参数：

学习率；

动量；

批次大小。

并非所有的学习算法都有这些参数。此外，随着学习的进展，你可

以更改为这些参数选择的值。我们将在后续小节中讨论这些训练参数。

　14.2.1　学习率

学习率让我们能够确定每次训练迭代让权重值走多远。单峰问题很

容易解决，如通过提高学习率可以快速得到解。多峰问题则更加困难，

快速学习可能会忽略一个好的解。除了程序的运行时间会变长以外，选

择较小的学习率没有其他缺点。图14-1展示了在简单（单峰）和复杂

（多峰）问题上学习率如何变化。

图14-1　学习率

图14-1展示了权重和神经网络得分之间的关系。随着程序增加或减

少单个权重，得分也会改变。单峰问题通常很容易解决，因为它的图只

有一个凹凸，即最优解。在这个例子中，我们认为得分高即意味着错误

率低。

多峰问题有许多凹凸，即可能的最优解。如果问题很简单（单

峰），则较高的学习率是最佳选择，因为这样你可以将得分提高很多。

但是，对于多峰问题，较高的学习率没有好结果，因为该学习率无法找

到两个最优解。

Kamiyama、Iijima、Taguchi等（1992）指出，大多数文献使用的学

习率为0.2，动量为0.9。通常，这种学习率和动量可以是很好的起点。

实际上，许多示例确实使用了这些值。研究人员认为，公式14-1很有可

能获得更好的结果。

（14-1）

其中，变量α是动量，ε是学习率， 是与隐藏神经元有关的常数。

研究表明，动量的调整（在14.2.2小节中讨论）和学习率是相关的。我

们通过隐藏神经元的数量定义常数 。较少数量的隐藏神经元应使用较

大的 。在我们自己的实验中，由于难以选择 的具体值，因此我们不

直接使用该方程。以下计算展示了基于动量和 的几种学习率。

K=0.500000, alpha=0.200000 -> epsilon=0.400000
K=0.500000, alpha=0.300000 -> epsilon=0.350000
K=0.500000, alpha=0.400000 -> epsilon=0.300000
K=1.000000, alpha=0.200000 -> epsilon=0.800000
K=1.000000, alpha=0.300000 -> epsilon=0.700000
K=1.000000, alpha=0.400000 -> epsilon=0.600000
K=1.500000, alpha=0.200000 -> epsilon=1.200000
K=1.500000, alpha=0.300000 -> epsilon=1.050000
K=1.500000, alpha=0.400000 -> epsilon=0.900000

较低的 值表示较高的隐藏神经元计数。因此，随着该列表的下

移，隐藏的神经元数量会减少。如你所见，对于所有动量α为0.2的情

况，随着隐藏神经元数量的减少，建议的学习率ε提高。因此，学习率

与动量成反比，即一个增加时，另一个应该减少。隐藏的神经元数量控

制着动量和学习率偏离的速度。

　14.2.2　动量

动量是一种学习属性，即使梯度指示权重变化应该反向，它也会使

权重继续沿其当前方向变化。图14-2展示了动量和局部最优的关系。

图14-2　动量和局部最优

正梯度促使权重减小。权重曾沿着负梯度“下山”，但现在已落入山

谷，即局部最优状态。现在，当达到局部最优状态的另一侧时，梯度将

变为0，而后变为正。动量使权重继续沿该方向变化，并可能从当前山

谷中逃逸，找到右侧更低的点。

为了准确地理解学习率和动量的实现方式，请回顾第6章“反向传播

训练”中的公式6-12，方便起见，这里再次将它列出，作为公式14-2：

（14-2）

该公式说明了我们如何计算训练迭代 的权重变化。这种变化是两

个项的总和，两个项分别受学习率ε和动量α支配。梯度是错误率对权重

的偏导数。梯度的符号决定了应该增加还是减小梯度。学习率只是告诉

反向传播程序应将这种梯度应用于权重变化的百分比。程序总是将这种

更改应用于最初的权重，然后保持它，用于下次迭代。动量α随后确定

程序应对这次迭代应用的上次迭代的权重变化的百分比。动量允许上次

迭代的权重变化一直延续到当前迭代。因此，权重变化保持其方向。这

个过程实质上使它具有了“动量”。

Jacobs（1988）发现，随着训练的进行，学习率应该降低。另外，

如前所述，Kamiyama等（1992）判断，随着学习率的下降，动量应该

增加。在神经网络训练中，学习率的降低和动量的增加是非常普遍的模

式。高学习率使神经网络可以开始探索更大的搜索空间区域。降低学习

率会迫使神经网络停止探索，并开始利用搜索空间的更局部的区域。此

时，动量增加有助于防止在这个较小的搜索空间区域中出现局部最小

值。

　14.2.3　批次大小

批次大小指定了在实际更新权重之前必须计算的训练集元素的数

量。程序在更新权重之前，对单个批次的所有梯度求和。批次大小为

1，表示针对每个训练集元素更新权重。我们将这个过程称为在线训

练。程序通常将批次大小设置为完整批次训练的训练集的大小。

一个好的起点是批次大小等于整个训练集的10%。你可以增加或减

少批次大小，以查看它对训练效率的影响。通常，神经网络的权重比训

练集元素少得多。因此，将批次大小减至原来的一半甚至四分之一，不

会对标准反向传播中的迭代运行时间产生太大影响。

14.3　常规超参数

除了刚刚讨论的训练参数外，我们还必须考虑超参数。它们比训练

参数重要得多，因为它们决定了神经网络的最终学习能力。学习能力低

的神经网络无法通过进一步的训练克服这一缺陷。

　14.3.1　激活函数

目前，程序在神经网络内部使用两种主要的激活函数。

S型激活函数：Sigmoid和双曲正切（tanh）。

线性激活函数：ReLU。

一直以来，S型激活函数是神经网络的支柱，但现在它们正让位于

ReLU激活函数。两种最常见的S型激活函数是Sigmoid激活函数和双曲

正切激活函数。该名称可能会引起混淆，因为S型既指实际的一种激活

函数，又指一类激活函数。实际的Sigmoid激活函数的范围是0～1，而

双曲正切激活函数的范围是−1～1。我们先探讨双曲正切与Sigmoid曲线

（激活函数）的关系。图14-3叠加展示了这两个激活函数。

图14-3　Sigmoid和tanh激活函数

从图14-3中可以看出，双曲正切激活函数的伸展范围比Sigmoid激

活函数的伸展范围大得多。你对这两个激活函数的选择将影响数据标准

化的方式。如果在神经网络的输出层上使用双曲正切激活函数，则必须

在−1～1归一化期望结果。类似地，如果在输出层中使用Sigmoid激活函

数，则必须在0～1归一化期望结果。你应该将这两个激活函数的输入标

准化为−1～1。对于Sigmoid和双曲正切激活函数值，高于+1的 （输

入）将饱和到+1（ ）。当 低于−1时，Sigmoid激活函数将饱和到0()，

而双曲正切激活函数会饱和到−1(）。

Sigmoid激活函数在负方向上饱和到0可能对训练有问题。因此，

Kalman和Kwasny（1992）在所有情况下都建议使用双曲正切激活函数

而不是Sigmoid激活函数。该建议与许多文献资料一致。但是，该论点

仅限于在S型激活函数之间的选择。越来越多的研究表明，在所有情况

下，ReLU激活函数均优于S型激活函数。

Zeiler等（2014），Maas、Hannun、Awni和Ng（2013），以及

Glorot、Bordes和Bengio（2013）都建议使用ReLU激活函数，而不是S

型激活函数。第9章“深度学习”介绍了ReLU激活函数的优点。在本节

中，我们将探讨ReLU与Sigmoid激活函数比较的实验，我们使用了具有

1 000个神经元的隐藏层的神经网络。我们针对MNIST数据集运行了该

神经网络。显然，我们调整了输入和输出神经元的数量以匹配该问题。

我们以不同的随机权重，对每个激活函数运行了5次，并记录了最佳结

果：

Sigmoid:
Best valid loss was 0.068866 at epoch 43.

Incorrect 192/10000 (1.92%)
ReLU:
Best valid loss was 0.068229 at epoch 17.
Incorrect 170/10000 (1.7000000000000002%)

以上是上述每个神经网络在一个验证集上的准确率。如你所见，

ReLU激活函数确实具有最低的错误率，并且在较少的训练迭代/时期内

就实现了。当然，根据所使用的平台不同，这些结果会有所不同。

　14.3.2　隐藏神经元的配置

隐藏神经元的配置已成为常见的问题。神经网络程序员常常想知

道，到底如何构建他们的神经网络。在撰写本书时，对Stack Overflow

的快速扫描显示，有50多个与隐藏神经元配置有关的问题。

尽管答案可能有所不同，但大多数答案是建议程序员“试验并找出

答案”。根据通用逼近定理，单层神经网络理论上可以学习任何模

式[1]。因此，许多研究人员建议仅使用单层神经网络。尽管单层神经网

络可以学习任何模式，但通用逼近定理并未说明该过程对神经网络很容

易。既然我们拥有训练深度神经网络的有效技术，那么通用逼近定理就

不再那么重要了。

要明白隐藏神经元及其数量的影响，我们将针对一层和两层神经网

络进行一项实验。我们将尝试两层隐藏神经元的每种组合，神经元数量

最多达到50个。该神经网络将使用ReLU激活函数和RPROP算法。在

Intel i7四核上运行该实验需要30多个小时。图14-4展示了两层神经网络

的热图。

图14-4　两层神经网络的热图（第一个实验）

实验报告的最佳配置是隐藏层1中有35个神经元，隐藏层2中有15个

神经元。重复该实验，得到的结果将有所不同。图14-4在左下角展示了

最佳训练的神经网络，如较黑的正块所示。这表明神经网络偏爱较大的

隐藏层1和较小的隐藏层2。热图显示了不同配置之间的关系。我们在隐

藏层2上使用了较少的神经元，从而获得了更好的结果。发生这种情况

是因为神经元计数限制了信息流到输出层。这种方法与对自动编码器的

研究一致，在自动编码器中，连续变小的层迫使神经网络对信息进行泛

化，而不是过拟合。一般来说，基于这里的实验，我们建议至少使用两

个隐藏层，并依次减小这些层。

14.4　LeNet-5超参数

LeNet-5卷积神经网络引入了附加的层类型，这为神经网络的构建

带来了更多选择。卷积层和最大池化层都为超参数带来了其他选择。第

10章“卷积神经网络”包含了LeNet-5神经网络引入的超参数的完整列

表。在本节中，我们将回顾最近的科学论文中提出的LeNet-5架构建

议。

关于LeNet-5神经网络的大多数文献都支持在每个卷积层后紧接最

大池层。理想情况下，几个卷积层/最大池层会降低每个步骤的分辨

率。第10章“卷积神经网络”包含了这种演示。但是，最近的文献似乎表

明根本不应该使用最大池层。

2014年11月7日，Reddit网站邀请了Geoffrey Hinton博士参加“问我

任何问题”（Ask Me Anything，AMA）会议。Hinton博士是深度学习和

神经网络领域最重要的研究者之一。在AMA会议期间，Hinton博士被问

到了最大池层的问题。

总体上，Hinton博士首先回答：“卷积神经网络中使用的池化操作

是一个很大的错误，其运行良好的事实则是一场灾难。”然后，他继续

进行技术说明，说明为什么不应该使用最大池化。在本书（英文版）出

版时，他的回答是相当新的，而且有争议。因此，我们建议你尝试使用

带或不带最大池层的卷积神经网络，因为它们的未来似乎不确定。

14.5　本章小结

对神经网络程序员来说，选择一组好的超参数是最困难的任务之

一。隐藏神经元的数量、激活函数和层结构，都是程序员必须调整或微

调的神经网络超参数的例子。所有这些超参数都会影响神经网络学习模

式的整体能力。因此，你必须正确选择它们。

当前最新文献建议使用ReLU激活函数代替S型激活函数，因为

ReLU激活函数与深度神经网络更兼容。如果要使用S型激活函数，则大

多数文献都建议你使用双曲正切激活函数，而不是Sigmoid激活函数。

隐藏层和神经元的数量也是神经网络的重要超参数。通常建议后续

的隐藏层包含的神经元数量要少于前一层。这种调整的作用是限制来自

输入的数据，并迫使神经网络泛化，而不是记忆。记忆会导致过拟合。

我们不将训练参数视为超参数，因为它们不会影响神经网络的结

构。但是，你仍然必须选择适当的训练参数集。学习率和动量是神经网

络最常见的两个训练参数。通常，你应该先将学习率设置得较高，然后

随着训练的进行而降低学习率。你应该让动量与学习率朝相反方向移

动。

在本章中，我们研究了如何构建神经网络。尽管我们提供了一些一

般性建议，但数据集通常会影响神经网络的构建。因此，你必须分析数

据集。我们将在第15章介绍t-SNE降维算法。通过该算法，你可以让数

据集以图形方式可视化，发现在针对该数据集构建神经网络时发生的问

题。

[1]　Hornik，1991。

第15章　可视化

本章要点：

混淆矩阵；

PCA；

t-SNE。

常常有人问我们以下有关神经网络的问题：“我已经构建了一个神

经网络，但是当我训练它时，错误率永远达不到可接受的水平。我该怎

么办？”调查的第一步是确定是否发生以下常见错误：

正确的输入和输出神经元数量；

数据集正确归一化；

神经网络的一些致命设计决策。

显然，你必须具有正确数量的输入神经元，以匹配数据的标准化方

式。同样，对于回归问题，你应该有单个输出神经元；对于分类问题，

通常应该对每个类别都有一个输出神经元。你应该规范化输入数据，以

使其适合你使用的激活函数。类似的致命错误，如没有隐藏层，或学习

率为0，可能会造成糟糕的情况。

在排除了所有这些错误后，就必须查看数据。对于分类问题，你的

神经网络可能难以区分某些分类。为帮助你解决这个问题，有一些可视

化算法，可让你查看神经网络可能遇到的问题。本章中介绍的两种可视

化技术将揭示以下数据问题：

容易与其他分类混淆的分类；

带噪声的数据；

分类之间的差异。

我们将在后续内容中描述每个问题，并提供一些可能的解决方案。

通过两种复杂性递增的算法，我们将介绍这些潜在的解决方案。可视化

主题不仅对数据分析很重要，也是本书的读者选择的主题，本书通过

Kickstarter活动获得了最初的资助。本项目最初的653个支持者从多个有

竞争力的项目主题中选择了可视化。因此，我们将展示两种可视化。这

两个示例都将使用本书前面几章研究过的MNIST手写数字数据集。

15.1　混淆矩阵

经过MNIST数据集训练的神经网络，应该能够根据手写数字预测实

际写下的数字。有些数字更容易与其他数字混淆。任何分类神经网络都

有可能对数据进行错误分类。混淆矩阵可以衡量这些错误分类。

　15.1.1　读取混淆矩阵

混淆矩阵总是表示为正方形网格。行数和列数都将等于问题中的分

类数。对于MNIST数据集，这是一个10×10的网格，如图15-1所示。

混淆矩阵使用列来表示预测结果，使用行来表示预期结果。如果查

看第0行第0列，会看到数字1 432。这个结果意味着神经网络有1 432次

正确地预测了“0”。如果查看第3行第2列，你会发现“2”有49次预测，而

正确结果应该是“3”。发生这样的问题是因为容易将手写的“3”误认

为“2”，特别是当笔迹潦草的人写下数字时。混淆矩阵可让你查看哪些

数字常常相互混淆。混淆矩阵的另一个重要特征是从(0,0)到(9,9)的对角

线。如果程序正确地训练了神经网络，那么最大的数字应该在对角线

上。因此，完美训练的神经网络只会在对角线上有数字。

图15-1　MNIST混淆矩阵

　15.1.2　创建混淆矩阵

可以按照以下步骤创建混淆矩阵。

将数据集分为训练集和验证集。

在训练集上训练神经网络。

将混淆矩阵设置为全零。

循环验证集中的每个元素。

对于每个元素，增加对应的矩阵元素：行 = 预期结果，列 = 预测结

果。

返回混淆矩阵。

清单15-1用伪代码展示了这个过程。

清单15-1　创建混淆矩阵

x - contains dataset inputs
y - contains dataset expected values (ordinals, not strings)
def confusion_matrix(x,y,network):
Create square matrix equal to number of classifications
 confusion = matrix(network.num_classes, network.num_classes)
Loop over every element
 for i from 0 to len(x):
 prediction = net.compute(x[i])
 target = y[i]
 confusion[target][prediction] = confusion[target][prediction] + 1
Return result
 return confusion

混淆矩阵是数据分类问题的经典可视化方法之一。你可以将它们用

于任何分类问题，而不仅仅是神经网络。

15.2　t-SNE降维

t分布随机近邻嵌入（t-Distributed Stochastic Neighbor Embedding，

t-SNE）是程序员经常用于可视化的一种降维算法。我们将首先定义降

维，并展示其在可视化和问题简化方面的优势。

数据集的维度是程序用于预测的输入（ ）的数量。经典鸢尾花数

据集具有4个维度，因为我们在4个维度上测量鸢尾花。第4章“前馈神经

网络”中介绍了鸢尾花数据集。MNIST手写数字是28×28灰度像素的图

像，这将导致数据集共有784（28×28）个输入神经元。因此，MNIST数

据集具有784维。

对于降维，我们需要提出以下问题：“我们是否真的需要784维，还

是可以将这个数据集投影到更少的维度中？”投影在制图中非常普遍。

我们可以直接观察到，地球至少存在于3个维度中。地球唯一真实的三

维地图是球体，但是，地球仪不便于存储和运输。对于不适合放置球体

的空间，地球的平面（2D）表示形式很有用，只要它仍然包含我们所

需的信息。我们可以通过多种方式将地球投影到2D曲面上。

Johann Heinrich Lambert于1772年引入了兰勃特投影。从概念上

讲，该投影的工作原理是在地球的某个区域放置一个圆锥体，并将球面

图像投影到圆锥面上。圆锥体展开后，你将获得一个平面（2D）地

图。靠近圆锥体尖端的位置精度较高，靠近圆锥体底部的位置精度较

低。

兰勃特投影并不是投影地球并生成地图的唯一方法，Gerardus

Mercator于1569年提出了墨卡托投影（Mercator projection）。该投影的

工作原理是将一个圆柱体在赤道周围环绕地球。赤道上的精度最高，两

极附近的精度则最低。通过检查两个投影中格陵兰岛的相对大小，可以

看到这个特征。除上述两种投影方式外，还存在许多其他投影方式。每

种方式都旨在以对不同应用有用的方式显示地球。

上面的投影并非是严格的平面地图，因为它们利用其他方面（如颜

色）创建了第3个维度。地图投影可以用颜色传达其他信息，如海拔、

地面覆盖，甚至是政治区域。计算机投影也利用了颜色，我们将在

15.2.1小节中介绍。

　15.2.1　t-SNE可视化

如果我们可以用降维算法将MNIST数据集的764维降低到2维或3

维，那么就可以可视化数据集。降为2维很受欢迎，因为文章或书籍可

以轻松记录可视化效果。重要的是要记住，3D可视化实际上不是3D，

因为在撰写本书时，真正的3D显示器极为罕见。3D可视化将渲染到2D

显示器上。因此，有必要在整个空间中“飞翔”，看看可视化的各个部分

到底是怎样的。这种在空间中的飞翔与计算机视频、游戏非常相似，在

计算机视频、游戏中，你必须完全围绕被查看的物体飞翔，才能看到场

景的所有方面。即使在现实世界中，你也无法同时看到手持物体的正面

和背面，必须用手旋转物体才能看到它的所有面。

Karl Pearson在1901年发明了最常见的降维算法之一。主成分分析

（Principal Component Analysis，PCA）创建了与要降低的维数匹配的

主成分。例如降至2D将有2个主成分。从概念上讲，PCA尝试将较高维

度的数据项打包到主成分中，以使数据的可变性最大化。通过在降维后

的空间保持高维空间中的远距离值，PCA可以实现该功能。图15-2展示

了将MNIST数据集降低为2D的PCA。

图15-2　MNIST数据集的2D PCA可视化

第一个主成分是 轴（左右）。如你所见，点阵将蓝色圆点（1）放

置在最左侧，将红色圆点（0）放置在右侧。手写数字1和0最容易区

分，即它们具有最大的可变性。第二个主成分是 轴（上下）。在顶

部，你会看到绿色（2）和棕色（3），它们看起来有些相似。底部是紫

色（4）、灰色（9）和黑色（7），它们看起来也很相似。然而，这两

组之间的差异很大：从4、9和7区分2和3更为容易。

颜色对图15-2非常重要。如果你阅读的是本书的黑白版本，那么此

图可能没有太大意义。颜色代表PCA分类的数字。你必须注意，PCA和

t-SNE均无监管，因此，它们不知道输入向量的身份。换言之，它们不

知道程序选择了哪个数字。程序会添加颜色，以便我们可以看到PCA对

数字的分类结果有多好。如果图15-2在你阅读的版本中是黑白的，那么

可以看到，该程序没有将数字分成许多不同的组。因此，我们可以得出

结论，PCA不能很好地用作聚类算法。

图15-2也有很多噪声，因为点在较大区域中重叠。定义最明确的区

域是蓝色，那里是“1”。你还可以看到紫色（4）、黑色（7）和灰色

（9）容易混淆。此外，棕色（3）、绿色（2）和黄色（8）可能会搞

错。

PCA分析所有数据点的成对距离并保留较大距离。如前所述，如果

在PCA中两个点相距较远，则它们将保持相距较远。但是，我们不得不

质疑距离的重要性。考虑一下图15-3，它显示了两个似乎有些接近的

点。

图15-3　螺旋上看起来两个点的接近程度

有问题的点是由一条线连接的两个红色的实心点。当用直线连接

时，这两个点有些接近。但是，如果程序遵循数据中的模式，则这些点

实际上相距很远，正如所有的点遵循的实心螺旋线所示。PCA将尝试使

这两个点保持接近，如图15-3所示。van der Maaten和Hinton（2008）发

明的t-SNE算法工作原理有所不同。图15-4展示了与PCA具有相同数据

集的t-SNE可视化。

图15-4　MNIST数据集的2D t-SNE可视化

MNIST数据集的t-SNE显示的不同数字的视觉效果清晰得多。同

样，程序添加了颜色以指示数字处于的位置。但即使是黑白图，你也会

在聚类之间看到某种划分（彼此靠近的数字具有相似之处）。虽然t-

SNE可视化噪声大大降低，但是你仍然可以看到一些红色的点（0）散

落在黄色的聚类（8）和青色的聚类（6），以及其他聚类中。你可以使

用t-SNE算法为Kaggle数据集生成可视化效果。我们将在第16章“用神经

网络建模”中探讨这个过程。

大多数现代编程语言都有t-SNE的实现。

　15.2.2　超越可视化的t-SNE

尽管t-SNE主要是用于减小可视化降维的算法，但是特征工程

（feature engineering）也使用它。该算法甚至可以充当模型组件。当你

创建附加的输入特征时，就是在进行特征工程。特征工程有一个非常简

单的例子：在考虑健康保险申请人时，你基于体重和身高特征，创建了

一个名为体重指数（Body Mass Index，BMI）的附加特征，如公式15-1

所示：

（15-1）

BMI非常容易计算，却允许人们结合体重和身高来确定某人的健康

状况。这样的特征有时也可以帮助神经网络。你可以利用数据点在2D

或3D空间中的位置，来创建一些附加特征。

在第16章“用神经网络建模”中，我们将讨论针对Otto集团的Kaggle

竞赛构建神经网络。针对该竞赛的前十名的解决方案中，有几种使用了

t-SNE设计的特征。对于这项挑战，你必须将数据点组织成9个分类。一

个数据项与3D t-SNE投影上的9个分类中的每一个最近邻的距离，是一

个有益的特征。要计算这个特征，我们只需将整个训练集映射到t-SNE

空间，并获得每个特征的3D t-SNE坐标。然后，我们利用当前数据点与

这9个分类中的每个分类的最近邻的欧氏距离，生成9个特征。最后，程

序将这9个字段与原来提供给神经网络的92个字段合并。

作为可视化或作为其他模型输入的一部分，t-SNE算法为程序提供

了大量信息。程序员可以使用这些信息来查看数据的结构，并且模型可

以获得有关数据结构的更多详细信息。t-SNE的大多数实现还适用于大

型数据集或非常高维的数据集。在构建神经网络来分析数据之前，应考

虑t-SNE可视化；训练神经网络并分析其结果时，可以使用混淆矩阵。

15.3　本章小结

可视化是神经网络编程的重要组成部分。每个数据集都对机器学习

算法或神经网络提出了独特的挑战。可视化可以解决这些挑战，使你可

以设计方法来解决数据集中的已知问题。在本章中，我们展示了两种可

视化技术。

混淆矩阵是机器学习分类中非常常见的可视化技术。它总是方阵，

行和列等于问题中的分类数。行代表期望值，列代表神经网络实际分类

的值。行号和列号相等的对角线代表神经网络正确分类特定类别的次

数。一个训练得好的神经网络沿对角线将具有最大的数量。其他矩阵元

素计算每个预期类别和实际值之间发生错误分类的次数。

尽管通常会在程序生成神经网络后运行混淆矩阵，但是你可以预先

进行降维可视化，以暴露数据集中可能存在的一些问题。你可以使用t-

SNE算法将数据集的维度降为2D或3D，但是，它在高于3D的维度上变

得不那么有效。使用2D降维，你可以创建内容丰富的散点图，以显示

多个分类之间的关系。

在第16章中，我们将介绍Kaggle竞赛，作为综合前面讨论的许多主

题的一种方式。我们将以t-SNE可视化作为最初的显示。此外，我们将

利用Dropout层，减少神经网络的过拟合。

第16章　用神经网络建模

本章要点：

数据科学；

Kaggle；

集成学习。

在本章中，我们介绍一个有关建模的结业项目、一种面向业务的人

工智能方法，以及数据科学的某些方面。数据科学家Drew

Conway（2013）将数据科学领域定义为黑客技能、数学和统计知识，

以及实质性专业知识的综合领域。图16-1描述了这个定义。

图16-1　Conway的数据科学维恩图

黑客技能本质上是计算机编程的子集。尽管数据科学家不一定需要

IT专业人员的基础结构知识，但是这些技术、技能让他们能够创建简

短、有效的程序来处理数据。在数据科学领域，信息处理称为数据整

理。

数学和统计知识涵盖统计、概率和其他推理方法。实质性知识描述

了业务知识，以及对实际数据的理解。如果仅将这些主题中的两个结合

在一起，你就不会拥有数据科学的所有组件，如图16-1所示。换言之，

数学和统计知识实质性专业知识的结合只是传统研究。仅有这两项技能

并不足以完全包含数据科学所需的能力（即机器学习）。

本系列图书涉及黑客技能、数学和统计知识，即图16-1中的两个圆

圈。此外，它教你创建自己的模型，与数据科学相比，它与计算机科学

领域更相关。通常很难获得实质性专业知识，因为它取决于利用数据科

学应用程序的行业。如果你想在保险业中应用数据科学，则实质性专业

知识是指该行业中公司的实际业务运营。

16.1　Kaggle竞赛

为了提供一个数据科学的结业项目，我们将利用Kaggle的Otto集团

产品分类挑战赛（Kaggle Otto Group Product Classification Challenge）。

Kaggle是举办数据科学竞赛的平台。你可以访问Kaggle的网站，并从中

找到Otto集团产品分类挑战赛的相关内容。

Otto集团产品分类挑战赛是我们参加的第一场（也是目前唯一一

场）非教程的Kaggle竞赛。在最终获得前10%的成绩之后，我们达到了

Kaggle Master认证的一项标准。一个团队要成为Kaggle Master，必须进

入一项竞赛的前10名，以及其他两项竞赛的前10%。图16-2展示了我们

在排行榜上的竞赛结果。

图16-2　Otto集团产品分类挑战赛的结果

图16-2所示结果显示了几点信息：

我们处于全部参赛者中的第331位（9.4%）。

在过去的一天，我们下降了三位。

我们的多类对数损失分数为0.428 81。

截至2015年5月18日，我们提交了52次。

我们简要介绍一下Otto集团产品分类挑战赛。有关完整的说明，请

参阅Kaggle竞赛网站。全球最大的邮购公司和目前最大的电子商务公司

之一的Otto 集团提出了这一挑战。由于该集团在许多国家/地区销售过

许多产品，因此他们希望利用93个特征（列）将这些产品分为9个类

别。这93列代表计数，通常为0。

数据已完全经过编辑（隐藏信息）。参赛者不知道这9个类别，也

不知道93个特征背后的含义。他们只知道特征是整数。与大多数Kaggle

竞赛一样，这一竞赛为参赛者提供了测试和训练数据集。对于训练数据

集，参赛者拿到了结果，即正确答案；对于测试集，他们只有93个特

征，他们必须提供结果。

竞赛按以下方式划分了测试集和训练集。

测试数据：14.4万行。

训练数据：6.1万行。

在竞赛期间，参赛者不向Kaggle提交他们的实际模型。作为替代，

他们根据测试数据提交模型的预测。因此，他们可以使用任何平台进行

这些预测。在这个竞赛中，有9个类别，因此参赛者提交了一个有9个数

字的向量，表明这9个类别中的每一个是正确答案的概率。

向量中具有最高概率的答案就是所选类别。如你所见，这场竞赛不

像在学校的选择题考试，学生必须以A、B、C或D提交答案。作为替

代，Kaggle参赛者必须按以下方式提交答案。

A：80%的概率。

B：16%的概率。

C：2%的概率。

D：2%的概率。

如果学生可以像Kaggle竞赛那样提交答案，大学考试就不会那

么“恐怖”。在许多选择题考试中，学生对其中两个答案有信心，并排除

了其余两个。类似于Kaggle竞赛的选择题考试将允许学生为每个答案分

配一个概率，并且他们可以获得部分分数。在上面的示例中，如果A是

正确答案，则学生将获得80%的分数。

但是，实际的Kaggle竞赛得分要稍微复杂一些。该程序使用基于对

数的方式对答案进行评分，如果参赛者为正确答案分配的概率较低，则

他们将面临很重的罚分。你可以从以下提交的逗号分隔值（Comma-

Separated Values，CSV）文件中看到Kaggle的格式：

1,0.0003,0.2132,0.2340,0.5468,6.2998e-05,0.0001,0.0050,0.0001,4.3826e-05
2,0.0011,0.0029,0.0010,0.0003,0.0001,0.5207,0.0013,0.4711,0.0011
3,3.2977e-06,4.1419e-06,7.4524e-06,2.6550e-06,5.0014e-07, 0.9998,5.2621e-0
6,0.0001,6.6447e-06
4,0.0001,0.6786,0.3162,0.0039,3.3378e-05,4.1196e-05, 0.0001,0.0001,0.0006
5,0.1403,0.0002,0.0002,6.734e-05,0.0001,0.0027,0.0009, 0.0297,0.8255

如你所见，每行以一个数字开头，该数字指定要回答的数据项。上

面的示例显示了第1项到第5项的答案。接下来的9个值是为每个产品类

别分配的概率。这些概率的总和必须为1（100%）。

　16.1.1　挑战赛的经验

要在Kaggle中取得成功，你需要了解以下主题和相应的工具。

深度学习：使用H2O和Lasagne。

梯度提升机（Gradient Boosted Machine，GBM）：使用XGBoost。

集成学习：使用NumPy。

特征工程：使用NumPy和scikit-learn。

GPU：对深度学习非常重要。最好使用支持它的深度学习程序包，

如H2O、Theano或Lasagne。

t-SNE可视化：非常适合进行高维可视化和创建特征。

集成：非常重要。

对于我们提交的文件，我们使用了Python和scikit-learn。但是，你

可以使用任何能够生成CSV文件的语言。Kaggle实际上不会运行你的代

码，他们只给提交文件打分。Kaggle最常用的两种编程语言是R语言和

Python，这两种语言都有强大的数据科学框架可用。R语言实际上是用

于统计分析的领域特定语言（Domain-Specific Language，DSL）。

在这项挑战中，我们从GBM参数调优和集成学习中学到了最多的

知识。GBM有很多超参数需要调整，因此我们在调整GBM方面变得很

精通。我们GBM的单项得分不输给前10%的团队的得分。但是，本章中

的解决方案将仅使用深度学习，GBM超出了本书的范围。在本系列图

书的未来版本中，我们计划探讨GBM。

尽管计算机程序员和数据科学家通常可能会使用单个模型（如神经

网络），但Kaggle的参赛者需要使用多个模型才能在竞争中取得成功。

组合模型产生的结果，要优于每个模型独自生成的结果。

我们在第15章“可视化”中探讨了t-SNE，在本次竞赛中，我们首次

使用了t-SNE。该模型的工作原理类似于PCA，因为它可以降维，但

是，数据点分开的方式使得这种可视化通常比PCA更清晰。该程序通过

随机近邻嵌入过程来实现清晰的可视化。图16-3展示了用t-SNE可视化

的Otto集团产品分类挑战赛的数据。

图16-3　t-SNE可视化的数据

　16.1.2　挑战赛取胜的方案

Kaggle竞争很激烈。我们参加挑战赛的主要目的是学习，但是，我

们也希望最后能取得前10%的成绩，以便迈出成为Kaggle Master的第一

步。跻身前10%很困难，在挑战赛的最后几周，其他参赛者几乎每天都

可能将我们淘汰出局。最后三天的排名变动特别大。在给出我们的解决

方案之前，我们先向你展示取胜的解决方案。以下说明基于公开发布的

有关取胜解决方案的信息。

Otto集团产品分类挑战赛的取胜者是Gilberto Titericz和Stanislav

Semenov。他们作为一个团队参赛，并使用了三级集成，如图16-4所

示。

图16-4　取胜的解决方案

取胜的方案同时使用了R语言和Python。第1层总共使用了33种不同

的模型。这33个模型中的每个模型都将其输出提供给第2层的3个模型。

此外，该程序还生成了8个计算出的特征。一个特征是根据其他特征计

算得出的。特征的一个简单例子可能是BMI，该指数是根据个人的身高

和体重计算得出的。BMI提供了单独身高和体重可能无法提供的结果。

第2层结合了以下3个模型。

XGBoost：梯度提升。

Lasagne神经网络：深度学习。

ADABoost：极端随机树（extra trees）。

这3个模型使用了33个模型的输出和8个特征作为输入。这3个模型

的输出就是前面讨论的9个数的概率向量。这就好像每个模型都被独立

使用，从而产生了一个有9个数的向量，很适合作为提交给Kaggle的答

案。该程序用第3层来平均这些输出向量，这就是一个加权。如你所

见，挑战赛的取胜者使用了庞大而复杂的集成。Kaggle中大多数取胜的

解决方案都遵循类似的模式。

关于他们如何构建这个模型的完整讨论超出了本书的范围。老实

说，这样的讨论也超出了我们目前对集成知识的学习。尽管这些复杂的

集成对Kaggle非常有效，但对一般数据科学而言，它们并不总是必需

的。这些类型的模型是黑盒子中最黑的，且无法解释模型预测背后的原

因。

但是，了解这些复杂模型对于研究很有吸引力，并且本系列图书的

未来版本可能会包含有关这些结构的更多信息。

　16.1.3　我们在挑战赛中的方案

到目前为止，我们仅使用单一模型系统。这些模型包含“内置”的集

成，如随机森林和GBM。但是，我们可以创建这些模型的更高层次的

集成。我们总共使用了20个模型，其中包括10个深度神经网络和10个

GBM。我们的深度神经网络系统提供了一个预测，而GBM提供了另一

个预测。该程序以简单的比率将这两个预测混合在一起。然后，我们对

结果预测向量进行归一化，以使总和等于1（100%）。图16-5展示了我

们的集成模型。

图16-5　我们的集成模型

你可以在GitHub上搜索jeff kaggle-otto-group来找到我们的解决方

案，其是用Python编写的。

16.2　用深度学习建模

为了不超出本书的范围，我们将根据我们的条目展示Kaggle竞赛的

一个解决方案。由于GBM超出了本书的主题范围，因此我们将聚焦于

使用深度神经网络。为了介绍集成学习，我们将使用装袋（bagging）

的方法，将10个经过训练的神经网络组合在一起。像装袋这样的集成方

法，通常会使10个神经网络的集成得分高于单个神经网络。

　16.2.1　神经网络结构

对于这个神经网络，我们使用了由稠密层和Dropout层组成的深度

学习结构。由于这个结构不是图像神经网络，因此我们没有使用卷积层

或最大池层。这些层类型要求紧邻的输入神经元彼此具有一定的相关

性。但是，构成数据集的93个输入可能不相关。图16-6展示了该深度神

经网络的结构。

图16-6　参加挑战赛的深度神经网络的结构

如你所见，神经网络的输入层有93个神经元，它们对应数据集中的

93个输入列。3个稠密层分别具有256、128和64个神经元。此外，两个

Dropout层分别有256个和128个神经元，Dropout概率为20%。输出是一

个Softmax层，对9个输出组进行了分类。我们将神经网络的输入数据归

一化，以获取其 分数。

我们的策略是分别在两个稠密层之间使用一个Dropout层。我们为

第一个稠密层选择的神经元数量为2的幂，在这个例子中，我们使用2的

8次幂（256）。然后，我们每次将其除以2，依次得到接下来的两个稠

密层。这个过程分别得到256、128，最后是64。对第一个稠密层使用数

量为2的幂的神经元，加上另外两个依次除以2的稠密层，这种模式效果

很好。随着实验的继续，我们在第一个稠密层尝试了2的其他次幂。

我们用SGD训练了神经网络。该程序将训练数据分为验证集和训练

集。SGD训练仅使用训练数据集，但它监视验证集的误差。我们进行训

练，直到验证集的误差在200次迭代中都没有得到改善为止。至此，训

练停止了，程序在200次迭代中选择了训练最好的神经网络。我们将这

个过程称为尽早停止，这有助于减少过拟合。当神经网络不再提高验证

集的得分时，可能会发生过拟合。

运行神经网络将产生以下输出：

Input (None, 93) produces 93 outputs
dense0 (None, 256) produces 256 outputs
dropout0 (None, 256) produces 256 outputs
dense1 (None, 128) produces 128 outputs
dropout1 (None, 128) produces 128 outputs
dense2 (None, 64) produces 64 outputs
output (None, 9) produces 9 outputs
epoch train loss valid loss train/val valid acc
------- ------------ ------------ ----------- -----------
 1 1.07019 0.71004 1.50723 0.73697
 2 0.78002 0.66415 1.17447 0.74626
 3 0.72560 0.64177 1.13061 0.75000
 4 0.70295 0.62789 1.11955 0.75353
 5 0.67780 0.61759 1.09750 0.75724
...
 410 0.40410 0.50785 0.79572 0.80963
 411 0.40876 0.50930 0.80260 0.80645
Early stopping.
Best valid loss was 0.495116 at epoch 211.
Wrote submission to file las-submit.csv.
Wrote submission to file las-val.csv.
Bagged LAS model: 1, score: 0.49511558950601003, current mlog: 0.379456064

667434, bagged mlog: 0.379456064667434
Early stopping.
Best valid loss was 0.502459 at epoch 221.
Wrote submission to file las-submit.csv.
Wrote submission to file las-val.csv.
Bagged LAS model: 2, score: 0.5024587499599558, current mlog: 0.3805030323
0483773, bagged mlog: 0.3720715012362133
 epoch train loss valid loss train/val valid acc
------- ------------ ------------ ----------- -----------
 1 1.07071 0.70542 1.51785 0.73658
 2 0.77458 0.66499 1.16479 0.74670
...
 370 0.41459 0.50696 0.81779 0.80760
 371 0.40849 0.50873 0.80296 0.80642
 372 0.41383 0.50855 0.81376 0.80787
Early stopping.
Best valid loss was 0.500154 at epoch 172.
Wrote submission to file las-submit.csv.
Wrote submission to file las-val.csv.
Bagged LAS model: 3, score: 0.5001535314594113, current mlog: 0.3872396776
865103, bagged mlog: 0.3721509601621992
...
Bagged LAS model: 4, score: 0.4984386022067697, current mlog: 0.3971068842
3724777, bagged mlog: 0.37481605169768967
...

通常，神经网络会逐渐减少其训练误差和验证误差。如果你运行这

个示例，可能会看到不同的输出，这取决于编写示例的编程语言。上面

的输出来自Python和Lasagne/nolearn框架。

重要的是要理解为什么会有验证误差和训练误差。大多数神经网络

训练算法会将训练数据分为训练集和验证集。对于训练集，这部分数据

可能占80%；对于验证集，这部分数据可能占20%。神经网络将使用

80%的数据进行训练，然后将误差报告为训练误差。你还可以使用验证

集生成误差，即验证误差。因为验证误差代表未经神经网络训练的数据

的误差，所以它是最重要的度量。随着神经网络的训练，即使神经网络

过拟合，训练误差也将继续下降，但是，一旦验证误差停止下降，神经

网络就可能开始过拟合。

　16.2.2　装袋多个神经网络

装袋是将多个模型集成在一起的一种简单而有效的方法。本章的示

例程序独立地训练了10个神经网络。每个神经网络将产生自己的9个概

率集合，这些集合对应Kaggle提供的9个类别。装袋就是取Kaggle提供

的这9个类中每个类的平均值。清单16-1提供了实现装袋的伪代码。

清单16-1　装袋神经网络

Final results is a matrix with rows = to rows in training set
Columns = number of outcomes (1 for regression, or class count for class
ification)
final_results = [][]
for i from 1 to 5:
 network = train_neural_network()
 results = evaluate_network(network)
 final_results = final_results + results

Take the average
final_weights = weights / 5

我们对Kaggle提供的测试数据集进行了装袋。尽管该测试提供了93

列，但它没有告诉我们它们所属的分类。我们必须生成一个文件，其中

包含要回答的数据项ID，然后是9个概率。在每一行上，概率之和应为

1（100%）。如果我们提交的文件的总和不等于1，那么Kaggle将会缩

放我们的值，使它们的总和等于1。

为了看看装袋的效果，我们向Kaggle提交了两个测试文件，第一个

测试文件是我们训练的第一个神经网络；第二个测试文件是所有10个神

经网络装袋的平均值。结果如下。

最佳单一神经网络：0.379 4。

5个装袋神经网络：0.371 7。

如你所见，装袋神经网络得分比单个神经网络更高。完整的结果如

下所示：

Bagged LAS model: 1, score: 0.4951, current mlog: 0.3794, bagged mlog: 0.3
794
Bagged LAS model: 2, score: 0.5024, current mlog: 0.3805, bagged mlog: 0.3
720
Bagged LAS model: 3, score: 0.5001, current mlog: 0.3872, bagged mlog: 0.3
721
Bagged LAS model: 4, score: 0.4984, current mlog: 0.3971, bagged mlog: 0.3
748
Bagged LAS model: 5, score: 0.4979, current mlog: 0.3869, bagged mlog: 0.3
717

如你所见，第一个神经网络的多类对数损失（结果中current mlog）

误差为0.379 4。第5章“训练与评估”中讨论了多类对数损失测量指标。

装袋得分相同，因为我们只有一个神经网络。当我们将第二个神经网络

与第一个神经网络装袋时，发生了惊人的事情。前两个神经网络的当前

得分分别是0.379 4和0.380 4。当我们将它们装袋在一起时，得到了

0.372 0，低于两个神经网络的得分。将这两个神经网络的权重平均后得

到的新神经网络要优于两者。最终，我们得到的装袋得分为0.371 7，这

比之前的单个神经网络（当前）得分都要好。

16.3　本章小结

在本章中，我们展示了如何将深度学习应用于实际问题。我们训练

了一个深度神经网络，为Kaggle的Otto集团产品分类挑战赛生成提交文

件。我们使用稠密层和Dropout层来构建这个神经网络。

我们可以利用集成将多个模型组合为一个模型。通常，生成的集成

模型将比单个集成方法获得更好的得分。我们还研究了如何将10个神经

网络装袋在一起，并生成Kaggle可接受的CSV文件。

在分析了神经网络和深度学习之后，我们希望你学到了有用的新知

识。如果你对本书有任何意见，请来信告知。将来，我们计划编写本系

列图书的其他卷，以包含更多技术。因此，我们有兴趣知道，你希望我

们在将来的卷中探讨哪些技术。你可以通过以下网站与我们联系：

http://www.jeffheaton.com

附录A　示例代码使用说明

A.1　系列图书简介

这些示例代码都是还在写作中的系列图书的组成部分，可以访问本

书引言中给出的网址，关注系列图书的写作和出版状态。本系列图书包

括以下几卷：

卷0：AI数学入门；

卷1：基础算法；

卷2：受大自然启发的算法；

卷3：深度学习和神经网络。

A.2　保持更新

本附录介绍如何获取本系列图书的示例代码。

这可能是本系列图书中变化最快的一部分了，各种编程语言总是在

变化并且不断推出新的版本，我会适时更新这些代码，同时修复一些已

知问题，因此最好使用最新版本的示例代码。

由于示例代码更新较快，因此如果以文件形式提供，可能会很快过

时，所以建议你前往下述网址下载最新版本文件：

https://github.com/jeffheaton/aifh

A.3　获取示例代码

本书的示例代码提供多种编程语言的实现，并且大多数分卷的主要

代码包都包含Java、C#、C/C++、Python和R语言形式。卷2发行时，包

括Java、C#、Python和Scala，自图书发行以来，可能已经添加了其他语

言的版本。社区也可能会补充其他语言的对应实现。所有示例代码均可

在下述GitHub开源库找到：

https://github.com/jeffheaton/aifh

进入仓库后，有两种不同的方法可以下载示例代码。

　A.3.1　下载压缩文件

GitHub有一个图标，如图A-1所示，可以下载包含本系列图书所有

示例代码的ZIP 压缩文件—— 一个压缩文件就包含全部代码，也因此该

文件内容变化会很快，你最好在阅读每一分卷之前都下载最新版本的文

件。下载请访问下述网址：

https://github.com/jeffheaton/aifh

即可看到图A-1所示的下载链接。

　A.3.2　克隆Git仓库

如果你的计算机上安装了版本控制软件Git，那么所有示例代码都

可以通过Git获取。下面这行命令即可把示例代码克隆到本地。（所

谓“克隆”其实就是复制传输整个库文件的过程。）

git clone https://github.com/jeffheaton/aifh.git

还可以通过下面这行命令拉取最新的更新：

git pull

如果你需要一份Git指南，可以访问Git官网。

图A-1　GitHub对应代码仓库页面

A.4　示例代码的内容

用下载文件的方法获取示例代码，则本系列图书的所有示例代码都

在一个压缩文件中。

打开文件就可以看到图A-2所示的内容。

图A-2　下载的示例代码文件

其中LICENSE.txt文件内容是示例代码所用的开源许可证的信息，

本系列图书所有示例代码均基于开源许可证Apache 2.0发布，这是一个

自由且开源的软件许可证。该许可证意味着我不保留对该文件的版权，

同时你还可以将其中的文件用于商业项目，而不需要获得进一步的许

可。

本书源代码可以免费获取，但书籍内容不行。这些书都属于我以各

种形式售卖的商品，虽然我都以无数字版权管理（Digital Rights

Management，DRM）的形式发布，但你无权重新发布具体的书籍内

容，不管是 PDF格式、MOBI 格式、EPUB 格式还是其他任何格式，一

律不行。你的支持是我最大的动力，也是本系列图书能够顺利完成的保

证。

下载文件中包含两个 README 文件q[1]。其中 README.md 是一

个 包含图片和格式化文本的 Markdown 文件，README.txt 则是一个纯

文本文件，二者包含的信息都差不多。要了解更多关于Markdown文件

的信息，请访问下述网址：

https://help.github.com/articles/github-flavored-markdown

在下载好的示例代码文件中，在好几个文件夹中都可以看到

README文件，其中最上层文件夹中的README文件包含的是关于本

系列图书的信息。

你还可以看到文件中包含每一分卷单独的文件夹，分别名为vol1、

vol2等。你看到的可能不是全部的卷目文件夹，因为整个系列还没有写

完。每个分卷文件夹的结构都一样，如你打开卷1对应的文件夹，看到

的会是图A-3所示的内容。

图A-3　卷 1 对应文件夹的内容

在这个文件夹中，可以看见两个 README 文件，其中包含的是关

于这一卷的信息。在 README 文件中，最重要的信息就是示例代码的

当前状态。因为社区经常会提交示例代码，所以部分示例代码可能并不

完全，这时该卷对应的README文件就可以提供这一重要信息。此

外，每一卷的 README 文件中还包含了该卷对应的勘误表和常见问题

解答。

你应该也看到了一个名为chart.R 的文件，其中包含的是我用于创建

本书中很多图表的源代码。我使用 R 语言创建了本书中几乎全部的图

表，该文件则让读者能够看到图表背后蕴含的公式。由于这部分 R 代码

仅仅用于我的写作过程，因此我也就没有把这个文件转换为其他语言。

如果我创建图表时使用的是其他编程语言，如Python，那你看到的就应

该是一个名为 chart.py 的文件，其中包含对应的 Python 代码。

你还可以看到，卷 1 中包含了用C、C#、Java、Python 和R等语言

编写的示例代码，这些都是我力求提供完整代码的主要语言，但同时你

也可以看到后来补充的其他语言。再强调一遍，一定要核对README

文件中关于语言移植的最新信息。

图A-4展示了一个典型的语言包中的内容。

图A-4　Java语言包

注意 README文件，各个语言文件夹内的 README 文件非常重

要。图A-4中的README 文件内容是在 Java 环境中使用示例代码的指

引。如果使用书中某种语言的示例代码时出现问题，首先就应该看看

README文件。图A-4中的其他文件都是Java文件夹中独有的，

README文件提供了更多相关细节。

A.5　如何为项目做贡献

你想把示例代码转换为另一种新的语言吗？你有发现什么疏漏、拼

写错误或是别的问题吗？我想可能是有的。现在，只要在该项目基础上

分叉出一个分支，并在GitHub上推送提交修订，你就可以成为这个不断

增长的项目协作者群体中的一员。

整个过程始于“派生”（fork）操作。你创建了一个GitHub账户并分

叉了一个AIFH项目，这样就产生了一个新项目，相当于是AIFH项目的

副本。然后用与克隆AIFH主项目差不多的方式来克隆你的新项目，对

新项目做出改动之后，就可以提交一个“拉取请求”（pull request）。在

收到你的请求之后，我就会审核你的改动或是补充，并将其合并

（merge）到主项目中。

关于在GitHub上进行协作的更多、更详细的内容，请参见下述网

址：

https://help.github.com/articles/fork-a-repo

[1]　实际上现在只有README.md 文件了。——译者注

参考资料

这里列出与本书内容相关的参考资料。

[1]　Ackley H, Hinton E, Sejnowski J. A learning algorithm for

Boltzmann machines[J]. Cognitive Science, 1985: 147-169.

[2]　Bergstra J, Breuleux O, Bastien F, et al. Theano: a CPU and GPU

math expression compiler[C]// Proceedings of the python for scientific

computing conference, 2010: 18-24.

[3]　Broomhead D, Lowe D. Multivariable functional interpolation and

adaptive networks[J]. Complex Systems, 1988, 2(3), 321-355.

[4]　Chung J, Gulcehre C, Cho K, et al. Empirical evaluation of gated

recurrent neural networks on sequence modeling[J]. arXiv, 2014.

[5]　Elman J L. Finding structure in time[J]. Cognitive Scienc, 1990, 14

(2): 179-211.

[6]　Fukushima K. Neocognitron: A self-organizing neural network

model for a mechanism of pattern recognition unaffected by shift in

position[J]. Biological Cybernetics, 1980, 36: 193-202.

[7]　Garey M R, Johnson D S. Computers and intractability; a guide to

the theory of np-completeness[M]. New York: W. H. Freeman & Co, 1990.

[8]　Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural

networks[J]. Journal of Machine Learning Research, 2011, 15: 315-323.

[9]　Hebb D. The organization of behavior: a neuropsychological

theory[M]. Mahwah N.J.: L. Erlbaum Associates, 2002.

[10]　Hinton G E, Srivastava N, Krizhevsky A, et al. Improving neural

networks by preventing co-adaptation of feature detectors[J]. Computer

Science, 2012, 3(4): 212-223.

[11]　Anderson J A, Rosenfeld E. Neurocomputing: Foundations of

research[M]. Cambridge, MA: MIT Press, 1988.

[12]　Hopfield J J, Tank D W. “Neural” computation of decisions in

optimization problems[J]. Biological Cybernetics, 1985, 52: 141-152.

[13]　Hornik K. Approximation capabilities of multilayer feedforward

networks[J]. Neural Networks, 1991, 4 (2), 251-257.

[14]　Jacobs R A. Increased rates of convergence through learning rate

adaptation[J]. Neural Networks, 1988, 1 (4), 295-307.

[15]　Jacobs R, Jordan M. Learning piecewise control strategies in a

modular neural network architecture[J]. IEEE Transactions on Systems, Man

and Cybernetics, 1993, 23 (2), 337-345.

[16]　Jordan M I. Serial order: A parallel distributed processing

approach[J]. Institute for Cognitive Science Report, University of California,

1986: 8604.

[17]　Kalman B, Kwasny S. Why TANH: choosing a sigmoidal

function[C]// International Joint Conference on Neural Networks. 1992, 4:

571-581.

[18]　Kamiyama N, Iijima N, Taguchi A, et al. Tuning of learning rate

and momentum on back-propagation[C]// ICCS.ISITA’92 Communications

on the move, 1992, 2, 528-532.

[19]　Keogh E, Chu S, Hart D, et al. Segmenting time series: A survey

and novel approach[M]// Data mining in time series databases. World

Scientific Publishing Company, 1993: 1-22.

[20]　Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification

with deep convolutional neural networks[J]. Advances in neural information

processing systems, 2012, 25(2).

[21]　LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning

applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):

2278-2324.

[22]　Maas A L, Hannun A Y, Ng A Y. Rectifier nonlinearities

improve neural network acoustic models[C]// International conference on

machine learning. 2013.

[23]　Van der Maaten L, Hinton G. Visualizing high-dimensional data

using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(2), 2579-

2605.

[24]　Marquardt D. An algorithm for least-squares estimation of

nonlinear parameters[J]. SIAM Journal on Applied Mathematics, 1963,

11(2), 431-441.

[25]　Matviykiv O, Faitas O. Data classification of spectrum analysis

using neural network. Lviv Polytechnic National University, 2012.

[26]　McCulloch W, Pitts W. A logical calculus of the ideas immanent

in nervous activity[J]. Bulletin of Mathematical Biology, 1943, 5 (4), 115-

133.

[27]　Mozer M C. Backpropagation[M]. Hillsdale, NJ, USA: L.

Erlbaum Associates Inc, 1995.

[28]　Nesterov, Y. Introductory lectures on convex optimization: a

basic course[M]. Kluwer Academic Publishers, 2004.

[29]　Ng A Y. Feature selection, l1 vs. l2 regularization, and rotational

invariance[C]// The Twenty First International Conference on Machine

Learning. New York, NY, USA: ACM, 2004.

[30]　Neal R M. Connectionist learning of belief networks[J]. Artificial

Intelligence, 1992, 56 (1): 71-113.

[31]　Riedmiller M, Braun H. A direct adaptive method for faster

backpropagation learning: The RPROP algorithm[C]// IEEE international

conference on neural networks. 1993: 586-591.

[32]　Robinson A J, Fallside F. The utility driven dynamic error

propagation network. Cambridge: Cambridge University Engineering

Department, 1987.

[33]　Rumelhart D E, Hinton G E, Williams R J. Neurocomputing:

Foundations of research[M]. Cambridge, MA, USA: MIT Press, 1988.

[34]　Schmidhuber J. Multi-column deep neural networks for image

classification[C]// Proceedings of the 2012 IEEE conference on computer

vision and pattern recognition. Washington, DC, USA: IEEE Computer

Society, 2012: 3642-3649.

[35]　Sjberg J, Zhang Q, Ljung L, et al. Nonlinear black-box modeling

in system identification: a unified overview[J]. Automatica, 1995, 31: 1691-

1724.

[36]　Snoek J, Larochelle H, Adams R P. Practical bayesian

optimization of machine learning algorithms[M]// Advances in neural

information processing systems 25. Curran Associates, Inc, 2012: 2951-2959.

[37]　Stanley K O, Miikkulainen R. Evolving neural networks through

augmenting topologies[J]. Evolutionary Computation, 2002, 10 (2): 99-127.

[38]　Stanley K O, D, Ambrosio D B, Gauci J. A hypercube based

encoding for evolving large-scale neural networks[J]. Artificial Life, 2009, 15

(2), 185-212.

[39]　Teh Y W, Hinton G E. Rate-coded restricted Boltzmann machines

for face recognition[M]// Nips. MIT Press, 2000: 908-914.

[40]　Werbos P J. Generalization of backpropagation with application

to a recurrent gas market model[J]. Neural Networks, 1988, 1.

[41]　Zeiler M D, Ranzato M, Monga R, Mao M Z, et al. On rectified

linear units for speech processing[C]// IEEE International Conference on

Acoustic, Speech and Signal Processing, 2013: 3517-3521.

	版权信息
	版 权
	版权声明
	内容提要
	引言 / INTRODUCTION
	资源与支持
	第1章 神经网络基础
	1.1 神经元和层
	1.2 神经元的类型
	1.2.1 输入和输出神经元
	1.2.2 隐藏神经元
	1.2.3 偏置神经元
	1.2.4 上下文神经元
	1.2.5 其他神经元名称

	1.3 激活函数
	1.3.1 线性激活函数
	1.3.2 阶跃激活函数
	1.3.3 S型激活函数
	1.3.4 双曲正切激活函数

	1.4 修正线性单元
	1.4.1 Softmax激活函数
	1.4.2 偏置扮演什么角色？

	1.5 神经网络逻辑
	1.6 本章小结

	第2章 自组织映射
	2.1 自组织映射和邻域函数
	2.1.1 理解邻域函数
	2.1.2 墨西哥帽邻域函数
	2.1.3 计算SOM误差

	2.2 本章小结

	第3章 霍普菲尔德神经网络和玻尔兹曼机
	3.1 霍普菲尔德神经网络
	训练霍普菲尔德神经网络

	3.2 Hopfield-Tank神经网络
	3.3 玻尔兹曼机
	玻尔兹曼机概率

	3.4 应用玻尔兹曼机
	3.4.1 旅行商问题
	3.4.2 优化问题
	3.4.3 玻尔兹曼机训练

	3.5 本章小结

	第4章 前馈神经网络
	4.1 前馈神经网络结构
	用于回归的单输出神经网络

	4.2 计算输出
	4.3 初始化权重
	4.4 径向基函数神经网络
	4.4.1 径向基函数
	4.4.2 径向基函数神经网络示例

	4.5 规范化数据
	4.5.1 1-of-n编码
	4.5.2 范围规范化
	4.5.3 分数规范化
	4.5.4 复杂规范化

	4.6 本章小结

	第5章 训练与评估
	5.1 评估分类
	5.1.1 二值分类
	5.1.2 多类分类
	5.1.3 对数损失
	5.1.4 多类对数损失

	5.2 评估回归
	5.3 模拟退火训练
	5.4 本章小结

	第6章 反向传播训练
	6.1 理解梯度
	6.1.1 什么是梯度
	6.1.2 计算梯度

	6.2 计算输出节点增量
	6.2.1 二次误差函数
	6.2.2 交叉熵误差函数

	6.3 计算剩余节点增量
	6.4 激活函数的导数
	6.4.1 线性激活函数的导数
	6.4.2 Softmax激活函数的导数
	6.4.3 S型激活函数的导数
	6.4.4 双曲正切激活函数的导数
	6.4.5 ReLU激活函数的导数

	6.5 应用反向传播
	6.5.1 批量训练和在线训练
	6.5.2 随机梯度下降
	6.5.3 反向传播权重更新
	6.5.4 选择学习率和动量
	6.5.5 Nesterov动量

	6.6 本章小结

	第7章 其他传播训练
	7.1 弹性传播
	7.2 RPROP参数
	7.3 数据结构
	7.4 理解RPROP
	7.4.1 确定梯度的符号变化
	7.4.2 计算权重变化
	7.4.3 修改更新值

	7.5 莱文伯格-马夸特算法
	7.6 黑塞矩阵的计算
	7.7 具有多个输出的LMA
	7.8 LMA过程概述
	7.9 本章小结

	第8章 NEAT、CPPN和HyperNEAT
	8.1 NEAT神经网络
	8.1.1 NEAT突变
	8.1.2 NEAT交叉
	8.1.3 NEAT物种形成

	8.2 CPPN
	CPPN表型

	8.3 HyperNEAT神经网络
	8.3.1 HyperNEAT基板
	8.3.2 HyperNEAT计算机视觉

	8.4 本章小结

	第9章 深度学习
	9.1 深度学习的组成部分
	9.2 部分标记的数据
	9.3 修正线性单元
	9.4 卷积神经网络
	9.5 神经元Dropout
	9.6 GPU训练
	9.7 深度学习工具
	9.7.1 H2O
	9.7.2 Theano
	9.7.3 Lasagne和nolearn
	9.7.4 ConvNetJS

	9.8 深度信念神经网络
	9.8.1 受限玻尔兹曼机
	9.8.2 训练DBNN
	9.8.3 逐层采样
	9.8.4 计算正梯度
	9.8.5 吉布斯采样
	9.8.6 更新权重和偏置
	9.8.7 DBNN反向传播
	9.8.8 深度信念应用

	9.9 本章小结

	第10章 卷积神经网络
	10.1 LeNet-5
	10.2 卷积层
	10.3 最大池层
	10.4 稠密层
	10.5 针对MNIST数据集的卷积神经网络
	10.6 本章小结

	第11章 剪枝和模型选择
	11.1 理解剪枝
	11.1.1 剪枝连接
	11.1.2 剪枝神经元
	11.1.3 改善或降低表现

	11.2 剪枝算法
	11.3 模型选择
	11.3.1 网格搜索模型选择
	11.3.2 随机搜索模型选择
	11.3.3 其他模型选择技术

	11.4 本章小结

	第12章 Dropout和正则化
	12.1 L1和L2正则化
	12.1.1 理解L1正则化
	12.1.2 理解L2正则化

	12.2 Dropout
	12.2.1 Dropout层
	12.2.2 实现Dropout层

	12.3 使用Dropout
	12.4 本章小结

	第13章 时间序列和循环神经网络
	13.1 时间序列编码
	13.1.1 为输入和输出神经元编码数据
	13.1.2 预测正弦波

	13.2 简单循环神经网络
	13.2.1 埃尔曼神经网络
	13.2.2 若当神经网络
	13.2.3 通过时间的反向传播
	13.2.4 门控循环单元

	13.3 本章小结

	第14章 构建神经网络
	14.1 评估神经网络
	14.2 训练参数
	14.2.1 学习率
	14.2.2 动量
	14.2.3 批次大小

	14.3 常规超参数
	14.3.1 激活函数
	14.3.2 隐藏神经元的配置

	14.4 LeNet-5超参数
	14.5 本章小结

	第15章 可视化
	15.1 混淆矩阵
	15.1.1 读取混淆矩阵
	15.1.2 创建混淆矩阵

	15.2 t-SNE降维
	15.2.1 t-SNE可视化
	15.2.2 超越可视化的t-SNE

	15.3 本章小结

	第16章 用神经网络建模
	16.1 Kaggle竞赛
	16.1.1 挑战赛的经验
	16.1.2 挑战赛取胜的方案
	16.1.3 我们在挑战赛中的方案

	16.2 用深度学习建模
	16.2.1 神经网络结构
	16.2.2 装袋多个神经网络

	16.3 本章小结

	附录A 示例代码使用说明
	A.1 系列图书简介
	A.2 保持更新
	A.3 获取示例代码
	A.3.1 下载压缩文件
	A.3.2 克隆Git仓库

	A.4 示例代码的内容
	A.5 如何为项目做贡献

	参考资料

