

版权信息

书名：Python期货量化交易实战

ISBN：978-7-115-52696-0

本书由人民邮电出版社发行数字版。版权所

有，侵权必究。

您购买的人民邮电出版社电子书仅供您个人使

用，未经授权，不得以任何方式复制和传播本书内

容。

我们愿意相信读者具有这样的良知和觉悟，与

我们共同保护知识产权。

如果购买者有侵权行为，我们可能对该用户实

施包括但不限于关闭该帐号等维权措施，并可能追

究法律责任。

版 权

著　　　　酆士昌　刘承彦

改　　编　席松鹤

审　　校　王海平

责任编辑　胡俊英

人民邮电出版社出版发行　　北京市丰台区成

寿寺路11号

邮编　100164 　电子邮件　

315@ptpress.com.cn

网址　http://www.ptpress.com.cn

http://www.ptpress.com.cn

读者服务热线：(010)81055410

反盗版热线：(010)81055315

版权声明

原著书名《Python：期货演算法交易事务121

个关键技巧详解》

本书中文繁体版本版权由台湾博硕文化股份有

限公司（DrMaster Press Co., Ltd）获作者酆士昌、

刘承彦授权独家出版发行，中文简体版本版权由博

硕文化股份有限公司（DrMaster Press Co., Ltd）获

作者同意授权人民邮电出版社有限公司独家出版发

行。

内容提要

如今，要想在企业和投资金融领域保持竞争

力，只是精通电子表格和计算器已经远远不够，传

统工具和数据集已经无法满足我们的需要。本书将

用Python编程来解决期货量化交易的问题，并通过

110多个技巧介绍实际的解决方案。

本书基于台湾期货交易所的案例进行讲解，从

数据分析的角度切入，以技巧的形式深入数据背

后，让读者从基本的期货交易规则开始，了解相关

的技术指标，并能够熟练使用Python编程走上量化

交易之路。

本书既适合期货领域的从业人员学习，也适合

想进入金融领域的程序员参考。

序言1

Python是一种面向对象的解释型语言，具备优

异的运算能力与执行性能，以及多样的扩展类库，

是编写量化交易程序常用的语言之一。由于操作简

单、易于上手，Python已成为程序交易切入的方便

工具。

量化交易将主观交易的想法具体量化，也就是

写成明确的规则，并转为程序语言。一般交易者往

往无法明确地提供量化的规则，而程序员对于金融

交易普遍陌生，无法深入交易的业务领域。再者，

多数交易者使用看盘软件，采用规范的图表与统计

后的数据，对交易所原始的报价往往不知该如何处

理。因此，量化交易是结合金融交易、程序设计与

数据分析三大领域的新兴产业，进入的门槛较高。

鉴于此，我们从数据分析的角度切入，以一个

个的示例让读者了解概念，并帮助他们照着案例实

操，由最基本的期货交易规则开始，逐步切入程序

设计来计算技术指标，进而进行历史回测，最后通

过下单函数进行程序交易。本书旨在通过案例的逐

步演练，降低学习的门槛，带领读者进入程序交易

的殿堂。

本书使用Python作为程序开发的语言。书中的

内容均可实操，并且搭配下单程序，可连接群益期

货进行实盘交易。

最后，由于本人所知有限，虽求尽善尽美，但

疏误之处在所难免，恳请读者不吝指正。

酆士昌

序言2

本书介绍由Python编写的程序化交易解决方

案。程序化交易涉及多个领域的专业技能，单是财

经或信息领域已很难熟悉，因此本书提供了一些交

易的观念和方法，让读者可以迅速地切入程序化交

易实操。

就解释型语言来说，Python拥有出色的运算效

率，也有丰富的第三方类库，在许多应用领域都有

出色的解决方案，是一款值得大家学习的程序设计

语言。

就程序化交易来说，它的优势是能够克服人性

的缺点。在交易中，人性的弱点是很难被忽略的，

如贪婪、恐惧、陶醉等，这些都是阻碍稳定交易的

因素。程序往往可以克服这些缺点，从中找出一套

好的交易模型，并且将风险控制在可接受范围内，

产生令人满意的交易。此外，程序化交易也能解决

投资人花费大量时间追踪盘势的现状，以往每天需

要花费数小时盯盘，现在只要确定程序正常运行，

就可以稳定地进行交易。

最后，谢谢我的父母，他们总是给我鼓励；感

谢各位朋友、亲戚的支持；感谢我的良师兼益友酆

士昌，他伴随着我成长，甚至改变了我的人生道

路。

刘承彦

资源与支持

本书由异步社区出品，社区

（https://www.epubit.com/）为您提供相关资源和后

续服务。

配套资源

本书提供配套资源，请在异步社区本书页面中

点击 ，跳转到下载界面，按提示进行操作即

可。注意：为保证购书读者的权益，该操作会给出

相关提示，要求输入提取码进行验证。

提交勘误

作者和编辑尽最大努力来确保书中内容的准确

性，但难免会存在疏漏。欢迎您将发现的问题反馈

给我们，帮助我们提升图书的质量。

当您发现错误时，请登录异步社区，按书名搜

索，进入本书页面，点击“提交勘误”，输入勘误信

息，点击“提交”按钮即可。本书的作者和编辑会对

您提交的勘误进行审核，确认并接受后，您将获赠

异步社区的100积分。积分可用于在异步社区兑换

优惠券、样书或奖品。

与我们联系

我们的联系邮箱是contact@epubit.com.cn。

如果您对本书有任何疑问或建议，请您发邮件

给我们，并请在邮件标题中注明本书书名，以便我

们更高效地做出反馈。

如果您有兴趣出版图书、录制教学视频，或者

参与图书翻译、技术审校等工作，可以发邮件给我

们；有意出版图书的作者也可以到异步社区在线提

交投稿（直接访问

www.epubit.com/selfpublish/submission即可）。

如果您是学校、培训机构或企业，想批量购买

本书或异步社区出版的其他图书，也可以发邮件给

我们。

如果您在网上发现有针对异步社区出品图书的

各种形式的盗版行为，包括对图书全部或部分内容

的非授权传播，请您将怀疑有侵权行为的链接发邮

件给我们。您的这一举动是对作者权益的保护，也

是我们持续为您提供有价值的内容的动力之源。

关于异步社区和异步图书

“异步社区”是人民邮电出版社旗下IT专业图书

社区，致力于出版精品IT技术图书和相关学习产

品，为作译者提供优质出版服务。异步社区创办于

2015年8月，提供大量精品IT技术图书和电子书，

以及高品质技术文章和视频课程。更多详情请访问

异步社区官网https://www.epubit.com。

“异步图书”是由异步社区编辑团队策划出版的

精品IT专业图书的品牌，依托于人民邮电出版社近

30年的计算机图书出版积累和专业编辑团队，相关

图书在封面上印有异步图书的LOGO。异步图书的

出版领域包括软件开发、大数据、AI、测试、前

端、网络技术等。

异步社区

微信服务号

第1章　Python的基本语法

Python是一款非常流行的程序语言，广泛地应

用于各个领域，并与其他语言、数据库或信息队列

有良好的交互方式。Python本身是解释型的语言，

运行效率非常高。用Python编写交易程序，必须先

从基础的语法开始学习。

Python与一般编程语言不同的地方在于，一般

编程语言通过括号来定义代码块，而Python是通过

缩进来定义代码块。

技巧1 【概念】Python的诞生与发展

Python是一款解释型[1]的开源编程语言，并且

有完整的函数库。Python的应用领域相当广泛，一

般常见的应用都可以用Python解决。基于上述原

因，加上运行效率高等优势，Python成为广泛使用

的程序语言。

Python的创始人Guido van Rossum一开始为了

打发时间而开发了一款脚本语言，当时是以ABC语

言为模板的，但ABC语言并不普及（因为它并非开

源的程序语言）。为了避免发生类似的问题，

Guido van Rossum开发了Python，并且将Python与

其他语言（包括C语言）做了完美的结合。

直至今日，Guido van Rossum仍然决定着

Python的整体发展。Python可以被简单地定义为脚

本语言，就像shell脚本这种Linux平台下的解释型语

言一样，但实际上Python已应用于许多大规模的软

件开发中，例如Google的搜索引擎。

Python另一个强大的特点在于它的可扩展特

性。Python并不是将所有功能都集中在标准库中，

它还拥有相当丰富的工具、API以及第三方类库，

也可以通过C语言来开发扩展模块。

技巧2 【操作】安装Python的基本环境

本技巧将介绍如何在Windows操作系统上安装

Python。本书以Python 3.7版本为例介绍其安装过

程。

步骤01　在Python官方网站中的Windows下载

专区，单击下载“Latest Python 3 Release –

Python3.7.3”[2]，如图1-1所示。

图1-1

步骤02　进入下载页面后，选择32位或64位的

Python进行下载，如图1-2所示。

图1-2

步骤03　当下载完成后，启动安装程序，选

中“Install for all users”单选项，单击“Customize

installation”按钮，如图1-3所示。

图1-3

步骤04　设置路径为“C:\Python37”，并单

击“Install”按钮，如图1-4所示。

图1-4

步骤05　Python的安装进度界面如图1-5所示。

图1-5

步骤06　安装完成后，单击“Close”按钮，如图

1-6所示。

图1-6

步骤07　安装完成后，在安装路径下会有

Python启动程序，如图1-7所示。

图1-7

步骤08　在“开始”菜单中，也有Python启动的

快捷方式。选择“IDLE(Python 3.7 64-bit)”，如图1-8

所示。

图1-8

步骤09　打开IDLE（Python GUI）启动程序，

如图1-9所示。

图1-9

在Python GUI与Windows CMD中启动Python的

差别在于，Python GUI提供的功能选项较多，因此

若通过Python GUI开发，将有更多的选项可供使

用。

技巧3 【操作】Python语言的基本操作

Python在Windows中提供了Python.exe启动程

序，用户可以直接通过该启动程序编写程序代码。

下面介绍Python的基本操作。

1．启动Python

启动Python有两种方式：双击Python启动程序

图标，弹出Python的命令窗口；或者在Windows

CMD中执行Python，直接进入Python的命令窗口。

通过双击Python启动程序（或Python GUI）图

标，打开Python命令窗口，即可在命令窗口中使用

Python，可参考技巧2的介绍。

接着，在Windows CMD中执行Python，进入

Python的安装路径，执行过程如下：

C:\Python37>python
Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 22:22:05)
 [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for mo
re information.
>>>

每次启动Python都要切换目录相当麻烦，所以

可以将Python的安装路径设置到默认的环境变量

中，这样Python启动程序在任何路径下都可以直接

被执行，设置环境变量的详细步骤可以参考技巧

4。

2．退出Python

退出Python的方式有两种：一种是通过

Windows的组合键Ctrl+C直接退出，另外一种是通

过exit函数来退出。下面分别介绍这两种方法。

在Python GUI中通过Windows组合键Ctrl+Z来

关闭Python：

>>>
^Z
C:\Python37>

在Python GUI或Python的命令窗口中通过exit()

函数或quit()函数来关闭Python：

>>> exit()
C:\Python37>

技巧4 【操作】执行Python语言的方式

Python属于解释型的程序设计语言，不需要编

译，只需通过Python执行程序翻译给系统执行。执

行Python有以下两种方式。

直接通过Python命令窗口来编写程序代码。

编写“.py”文档，然后执行Python指令来启用。

其中，第二种方式又分为两种用法。Python提

供了Python、Pythonw两种执行文档，两者的差异

在于：Python文档会显示当前程序所应该显示的结

果；而Pythonw文档则不会显示出当前程序应该显

示的结果，属于无声执行，适用于常驻程序。

这两种方式都通过Windows CMD来执行，但

若每次执行都必须切换目录至安装路径则十分麻

烦，因此本技巧先介绍设置环境变量的方法。

通过set命令，可以暂时设置环境变量，关机后

则会失效。

手动进入系统设置环境变量，永久生效。

下面依次介绍两种设置环境变量的方法。

1．通过set命令设置环境变量

首先，我们要了解设置的是PATH环境变量，

可以通过Windows CMD直接设置。

设置方式是通过命令set来进行，每个路径用英

文分号“;”区分，然后将Python安装路径加在最后

面，命令如下：

set PATH=%PATH%;＂python 安装路径＂

设置过程如下：

C:\Python37>set PATH=%PATH%;"C:\Python37"

设置完成后，接着运行查询指令“set Path”，若

设置成功，则安装路径会出现在整个环境变量的结

尾，如下所示：

C:\Python37>set Path
Path=c:\Rtools\bin;c:\Rtools\mingw_32\bin;C:\Windows\sy
stem32;C:\Windows;C:\
Windows\System32\Wbem;C:\Windows\System32\WindowsPowerS
hell\v1.0\;C:\Program Files
 (x86)\NVIDIA Corporation\PhysX\Common;C:\WINDOWS\syste
m32;C:\WINDOWS;C:\WINDOWS\
System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.
0\;C:\Program Files\R\
R-3.4.1\bin;C:\Users\jack\AppData\Local\Microsoft\Windo
wsApps; C:\Python37;
PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WS
H;.MSC

2．手动设置环境变量，开机后自动生效

步骤01　找到“我的电脑”快捷方式，单击鼠标

右键，接着单击“属性”命令，如图1-10所示。

图1-10

步骤02　进入“属性”界面后，选择“高级系统

设置”选项，如图1-11所示。

图1-11

步骤03　进入“系统属性”界面后，打开“高

级”选项卡，然后单击“环境变量”按钮，如图1-12所

示。

图1-12

步骤04　选择“系统变量”中的“Path”选项，单

击“编辑”按钮，如图1-13所示。

图1-13

步骤05　在“变量值”右侧框内的字符串末尾加

一个英文的分号，再补充“C:\Python37”（见图1-

14），并陆续单击“确定”按钮直至设置完成。

图1-14

说明　

在本书中的操作说明中，如果出现的提

示符号为“>”或“C:\Python37>”，就表示该程

序须在命令提示符或PowerShell中执

行“python程序.py”；如果出现的提示符号

为“>>>”，就表示须在Python命令窗口或

Python GUI下执行示例语法。

技巧5 【操作】Python的基本运算与数学
函数

基本运算包括四则运算和一些简单的数学函

数，而常见的数学函数有绝对值、平方与开方、三

角函数与指数、对数等。

1．加减乘除——+、−、*、/

Python中提供的基本运算有加、减、乘、除，

分别为“+”“−”“*”“/”。下面通过简单的操作来进行

介绍。

>>> 1 + 2
3
>>> 7 - 4
3
>>> 7 * 3
21
>>> 21 / 3
7.0

变量间的运算方式类似，如下所示：

>>> x=3
>>> y=4
>>> x+y
7
>>> x-y
-1

2．整除——//

整除是Python中比较特别的运算，又称为地板

（floor）除法。

下面通过简单的操作来进行介绍：

>>> 3.0/2
1.5
>>> 3.0//2
1.0

整除会将计算出来的浮点型（float）结果的小

数点后面的部分无条件舍去；若值为整型（int）结

果，则无影响。

变量间的运算方式类似，如下所示：

>>> x=14.0
>>> y=3
>>> x/y
4.666666666666667
>>> x//y
4.0

3．幂——**

Python提供了幂运算，例如x的y次幂可以用语

法表示为x**y，示例如下：

>>> 4**3
64

使用变量进行幂运算，示例如下：

>>> x=3
>>> y=4
>>> x**y
81

4．取模——%

在Python中，可以进行取模运算，例如x除以y

的余数的表达式为x%y，示例如下：

>>> 300%10
0
>>> 300%11
3
>>> 12%1
0

使用变量进行取模运算，如下所示：

>>> x=14
>>> y=3
>>> x%y

2

5．生成随机数——random

Python提供了random模块，但该模块不在标准

函数库中，所以必须在使用相关函数前导入random

模块。

下面介绍random模块和几个常用函数的用法。

导入random模块，并随机生成0～99中的任意

值：

>>> import random
>>> random.randint(0,99)
95
>>> random.randint(0,99)
47

随机生成0～101中2的倍数：

>>> random.randrange(0, 101, 2)
28
>>> random.randrange(0, 101, 2)

78

随机生成0~101中3的倍数：

>>> random.randrange(0, 101, 3)
57
>>> random.randrange(0, 101, 3)
75

随机生成一个小于1并且大于0的值：

>>> random.random()
0.24863617521706927

6．转换数值类型——int、float

在Python中，可以通过函数强制转换数值类

型，示例如下：

>>> int(3.1) #小数位数转整数位会无条件舍去
3
>>> x=4.2
>>> int(x)
4
>>>
>>> float(3)
3.0

>>> float(3.7) #小数位数转整浮点位数会完整转出
3.7

与C语言相比，Python不仅限于整数与浮点数

之间的转换，也可以通过字符串转换为数值，示例

如下：

>>> x ="1.2"
>>> float(x)
1.2

7．四舍五入函数——round

在Python中，可以通过该函数强制转换数值类

型，示例如下：

>>> round(4.5654455) #若没有填入位数参数，
则初始值为0
5
>>> round(4.5654455,3) #输入位数参数3，则代
表四舍五入至小数第3位
4.565
>>> round(4.5654455,4)
4.5654

使用变量进行四舍五入，如下所示：

>>> x=4/3
>>> round(x)
1

8．小于等于某数的最大整数——floor

在Python中，可以通过floor函数取得小于等于

一个数的最大整数。由于floor函数在math模块中，

因此必须先导入该模块才可以使用，示例如下：

>>> import math
>>> math.floor(4.56778)
4
>>> math.floor(4)
4
>>> math.floor(-3.44556)
-4

使用变量进行操作，如下所示：

>>> x=3.45
>>> y=-4.56
>>> math.floor(x)
3

>>> math.floor(y)
-5

9．大于等于某数的最小整数——ceil

在Python中，可以通过ceil函数来取得大于等

于某个数的最小整数。由于ceil函数在math模块

中，因此必须先导入该模块才可以使用，示例如

下：

>>> import math
>>> math.ceil(4)
4
>>> math.ceil(4.1)
5
>>> math.ceil(-3)
-3
>>> math.ceil(-3.3)
-3

使用变量进行操作，如下所示：

>>> x=3.45
>>> y=-4.56
>>> math.ceil(y)
-4
>>> math.ceil(x)

4

10．开平方——sqrt

在Python中，可以通过sqrt函数来进行开平方

运算。由于sqrt函数在math模块中，因此必须先导

入该模块才可以使用，示例如下：

>>> import math
>>> math.sqrt(16)
4.0
>>> math.sqrt(81)
9.0

使用变量进行操作，如下所示：

>>> x=100
>>> math.sqrt(x)
10.0

11．绝对值函数——abs

在Python中，可以通过abs函数来求绝对值，示

例如下：

>>> abs(100)
100
>>> abs(-100.0)
100.0

使用变量进行操作，如下所示：

>>> x=-1.354523
>>> abs(x)
1.354523

12．指数函数——exp

在Python中，可以通过exp函数来求ex。由于

exp函数在math模块中，因此使用前必须先导入该

模块，示例如下：

>>> import math
>>> math.exp(2)
7.38905609893065
>>> math.exp(10)
22026.465794806718

13．对数函数——log、log10

在Python中，可以通过log与log10函数来计算

对数，其中log是以e为底的对数，log10是以10为底

的对数。由于log函数在math模块中，因此必须先导

入该模块才可以使用，示例如下：

>>> import math
>>> math.log(4)
1.3862943611198906
>>> math.log(6)
1.791759469228055

14．三角函数——sin、cos、tan

在Python中，也有三角函数。由于三角函数在

math模块中，所以必须先导入该模块才可以使用，

示例如下：

>>> import math
>>> math.sin(10)
-0.5440211108893698
>>> math.cos(10)
-0.8390715290764524
>>> math.tan(10)
0.6483608274590866

15．最大值——max

在Python中，可以通过max函数来求一组数中

的最大值，示例如下：

>>> max(-1,1,2,3,4,5,6)
6

使用变量进行操作，如下所示：

>>> x=(1,2,3,4,5,6,7)
>>> max(x)
7

16．最小值——min

在Python中，可以通过min函数来取得一组数

中的最小值，示例如下：

>>> min(-1,1,2,3,4,5,6)
-1

使用变量进行操作，如下所示：

>>> x=(1,2,3,4,5,6,7)
>>> min(x)
1

技巧6 【操作】基本变量的使用

本技巧将依次介绍与变量以及矩阵相关的操

作。

1．变量的声明——=

Python与大多数编程语言相同，可通过“=”进

行变量声明，将等号右边的值赋给左边的变量，示

例如下：

>>> x
1
>>> x=(1,2,3) #将元组值赋给x变量
>>> x
(1, 2, 3)
>>> x=[1,2,3] #将列表值赋给x变量
>>> x
[1, 2, 3]

2．变量的删除——del

在Python中，需通过del命令将变量删除，示例

如下：

>>> x
[1, 2, 3]
>>> del x
>>> x
TracebacK(most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined

3．运算赋值——+=、-=、=、/=、//=、*=、%=

Python继承了C语言的方式，也拥有运算赋值

的功能，可以有效地减少程序代码的编写，示例如

下：

>>> x=1
>>> x
1
>>> x+=1 #等同于x=x+1
>>> x
2
>>> x-=1 #等同于x=x-1
>>> x
1
>>> x*=3 #等同于x=x*3

>>> x
3
>>> x/=3 #等同于x=x/3
>>> x
1.0

幂运算赋值示例如下：

>>> x=3
>>> x**=3 #等同于x=x**3
>>> x
27

整除运算赋值示例如下：

>>> x
27
>>> x//=4 #等同于x=x//4
>>> x
6

4．显示当前变量——dir、globals、locals

在Python中，dir显示变量，globals显示全局变

量，locals显示局部变量，示例如下：

>>> dir()

['__builtins__', '__doc__', '__name__', '__package__',
'random', 'x', 'y']
>>> globals()
{'__builtins__': <module '__builtin__' (built-in)>, 'ra
ndom': <module 'random'
from 'C:\Program Files\python\lib\random.py'>, '__packa
ge__': None, 'x': 14, 'y': 3, '__name__': '__main__', '
__doc__': None}
>>> locals()
{'__builtins__': <module '__builtin__' (built-in)>, 'ra
ndom': <module 'random'
 from 'C:\Program Files\python\lib\random.py'>, '__pack
age__': None, 'x': 14, 'y': 3, '__name__': '__main__',
'__doc__': None}

5．查询变量的类型——type

在Python中，type函数能够显示出当前变量的

类型。变量类型主要分为数字（number）、字符串

（string）、列表（list）、元组（tuple）、字典

（dictionary）5种。

其中，数字又分为4种。可使用type函数查看几

种数据类型，示例如下：

>>> x=1

>>> type(x)
<type 'int'>
>>> x=1.0
>>> type(x)
<type 'float'>
>>> x="123"
>>> type(x)
<type 'str'>
>>> x=[1,2,3]
>>> type(x)
<type 'list'>
>>> x=(1,2,3)
>>> type(x)
<type 'tuple'>
>>> x={}
>>> type(x)
<type 'dict'>

技巧7 【操作】元组、列表与字典的应用

在Python中，没有矩阵这种数据类型，但是有

元组、列表与字典这3种类型。其中，元组与列表

很相似，都是用来存储数据的序列，也都支持多维

的序列（矩阵）；唯一不同之处就是元组在定义完

成后，是不允许更改其内部值的，而列表可以更改

其内部值。字典在对象中加上了索引值。

下面通过一个示例来介绍元组与列表的差异。

>>> x=[1,2,3]
>>> x[2]=4 #列表对象可以被修改
>>> x
[1, 2, 4]
>>> x=(1,2,3)
>>> x[2]=4 #元组对象无法被修改
TracebacK(most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignm
ent

下面分别介绍3种对象的应用。

1．元组（tuple）

元组定义以后不得更改其内部元素。下面介绍

元组的基本用法。

（1）定义元组

元组是用小括号来定义对象的，示例如下：

>>> x=(1,2,3,4,5,6) #定义一维的元组
>>> x

(1, 2, 3, 4, 5, 6)
>>> x=((1,2),(3,4),(5,6)) #定义二维的元组
>>> x
((1, 2), (3, 4), (5, 6))

也可以在一行中定义多个变量，示例如下：

>>> x,y = (1,2,3),(3,4,5)
>>> x
(1, 2, 3)
>>> y
(3, 4, 5)

（2）删除元组变量

通过del可以删除元组，示例如下：

>>> x=((1,2),(3,4),(5,6))
>>> x
((1, 2), (3, 4), (5, 6))
>>> del x
>>> x
TracebacK(most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined

（3）访问元组

在Python元组对象中，索引值都是从0开始

的。访问元组的示例如下：

>>> x=((1,2),(3,4),(5,6))
>>> x
((1, 2), (3, 4), (5, 6))
>>> x[0]
(1, 2)
>>> x[0][0]
1

（4）元组计算

元组计算是指将元组进行组合或复制。若要进

行数值计算，则需取出元组内的值再进行计算，示

例如下：

>>> x=(1,2,3)
>>> y=(7,8,9)
>>> x+y #两个元组组合
(1, 2, 3, 7, 8, 9)
>>> x*3 #元组倍数复制
(1, 2, 3, 1, 2, 3, 1, 2, 3)

（5）在函数中的应用

元组也可以用于max、min函数中，示例如

下：

>>> x
(1, 2, 3)
>>>
>>> max(x)
3
>>> min(x)
1

（6）在判断中的应用

Python提供了in指令，用来判断该元素是否在

tuple中，示例如下：

>>> x
(1, 2, 3)
>>> 3 in x
True
>>> 4 in x
False

（7）在循环中的应用

Python的元组对象可以直接用来进行循环计

算。用户可以利用这个特性来编写程序代码，示例

如下：

>>> x
(1, 2, 3)
>>> for i in x:
... print (i)
...
1
2
3

2．列表（list）

列表是Python中定义列表的语法。与元组的不

同在于，列表可以变更内部元素值。下面介绍list的

基本用法。

（1）定义列表

列表是用中括号来定义对象的，示例如下：

>>> x=[1,2,3,4,5,6]
>>> x
[1, 2, 3, 4, 5, 6]

>>> x=[[1,2],[4,5],[7,8]]
>>> x
[[1, 2], [4, 5], [7, 8]]

也可以在一行中定义多个列表变量，示例如

下：

>>> x,y=[1,2,3],[6,7,8]
>>> x
[1, 2, 3]
>>> y
[6, 7, 8]

（2）删除列表变量

通过del可以删除列表，示例如下：

>>> x=[[1,2],[4,5],[7,8]]
>>> x
[[1, 2], [4, 5], [7, 8]]
>>> del x
>>> x
Traceback(most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined

（3）访问列表

在Python列表对象中，列表的索引是从0开始

的。下面介绍如何访问列表，示例如下：

>>> x
[1, 2, 3]
>>> x[0]
1
>>> x[:2]
[1, 2]
>>> x=[[1,2],[4,5],[7,8]]
>>> x[0][0]
1
>>> x[1][1]
5

（4）计算列表

这里所指的计算是将列表组合或复制。若要进

行数值计算，则需先取出列表内的值再进行计算，

操作如下：

>>> x,y=[1,2,3],[6,7,8]
>>> x+y
[1, 2, 3, 6, 7, 8]
>>> x*3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

（5）函数应用

由于可以更改列表的元素，因此可以使用相对

较多的函数。

① append函数可以将参数添加到列表的尾部，

示例如下：

>>> x=[45,72,65,21,87]
>>> x
[45, 72, 65, 21, 87]
>>> x.append(100)
>>> x
[45, 72, 65, 21, 87, 100]

② count函数可以计算该值在列表中的个数，

示例如下：

>>> x
[45, 72, 65, 21, 87, 100]
>>> x.count(5)
0
>>> x.count(65)
1

③ extend函数可以将多个列表汇总起来，示例

如下：

>>> x
[45, 72, 65, 21, 87, 100]
>>>
>>> x.extend([44,55])
>>> x
[45, 72, 65, 21, 87, 100, 44, 55]

④ index函数可以获取特定元素在列表当中的

位置，示例如下：

>>> x
[45, 72, 65, 21, 87, 100, 44, 55]
>>> x.index(65)
2
>>> x.index(100)
5

⑤ remove函数可以删除列表里面的特定元素，

示例如下：

>>> x
[1, 2, 3, 4, 5]
>>> x.remove(4)
>>> x

[1, 2, 3, 5]

⑥ reverse函数可以将整个列表的内容反转，示

例如下：

>>> x
[1, 2, 3, 5]
>>> x.reverse()
>>> x
[5, 3, 2, 1]

⑦ sort函数可以将整个列表按照从小到大的顺

序排序，示例如下：

>>> x
[5, 3, 2, 1]
>>> x.sort()
>>> x
[1, 2, 3, 5]

（6）在判断中的应用

Python提供了in指令，可以判断该元素是否在

列表中，示例如下：

>>> x=[1,2,3,4,5,6,7]
>>> 5 in x
True
>>> 8 in x
False

（7）在循环中的应用

Python的列表对象可以直接用来进行循环计

算。用户可以利用这个特性来编写程序代码，示例

如下：

>>> x=[1,2,3,4,5,6,7]
>>> sum=0
>>> for i in x:
... sum+=i #缩进
...
>>> sum
28

（8）列表解析式

列表解析式能够通过简短的程序代码，将一个

列表转换为另一个列表。简单来说，有点像在取该

列表的子集合，但又不全然如此。在列表解析式中

还可以进行栈位的判断、计算，实际上可以实现的

功能相当多。

从操作上来说，就是通过循环来进行列表的判

断和计算，但列表解析式不需要通过换行就可以实

现循环。但就功能上来说，还是有某些限制，例如

不能在列表解析式中进行嵌套循环。

列表解析式常用于读取文件、数据筛选等。示

例如下：

>>> content = [line for line in open('Futures_20170815
_I020.csv')] #读取文件内容[3]

>>> content[1:10]
['8450010,8450009,TXFH7,128,10310,732,732,202,349\n', '
8450011,8450010,TXFH7,128,
10309,4,736,206,350\n', '8450011,8450010,TXFH7,128,1030
9,1,737,207,351\n',
'8450011,8450010,TXFH7,128,10310,1,738,208,352\n', '845
0011,8450010,TXFH7,128,
10310,1,739,209,353\n', '8450011,8450010,TXFH7,128,1030
9,2,741,210,354\n',
'8450011,8450011,TXFH7,128,10309,1,742,211,355\n', '845
0013,8450011,TXFH7,128,
10310,1,743,212,356\n', '8450013,8450011,TXFH7,128,1031
0,1,744,213,357\n']

>>> I020 = [line.strip('\n').split(",") for line in co
ntent][1:]
>>> I020[1:10]
[['8450011', '8450010', 'TXFH7', '128', '10309', '4', '
736', '206', '350'],
['8450011', '8450010', 'TXFH7', '128', '10309', '1', '7
37', '207', '351'],
['8450011', '8450010', 'TXFH7', '128', '10310', '1', '7
38', '208', '352'],
['8450011', '8450010', 'TXFH7', '128', '10310', '1', '7
39', '209', '353'],
['8450011', '8450010', 'TXFH7', '128', '10309', '2', '7
41', '210', '354'],
['8450011', '8450011', 'TXFH7', '128', '10309', '1', '7
42', '211', '355'],
['8450013', '8450011', 'TXFH7', '128', '10310', '1', '7
43', '212', '356'],
['8450013', '8450011', 'TXFH7', '128', '10310', '1', '7
44', '213', '357'],
['8450013', '8450012', 'TXFH7', '129', '10310', '2', '7
49', '214', '362']]

3．字典（dictionary）

字典是带有索引的列表，在每个值之前都会加

上索引，所以大多数操作都会通过索引来进行取

值。

（1）定义字典

字典用大括号来定义，示例如下：

>>> x={'one':123,'two':345,'three':567}
>>> x
{'one': 123, 'two': 345, 'three': 567}

（2）删除字典变量

用del可以删除字典，示例如下：

>>> x
{'one': 123, 'two': 345, 'three': 567}
>>> del x
>>> x
Traceback(most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined

（3）访问字典

基于字典的存储结构只能通过index访问，示例

如下：

>>> x={'one':123,'two':345,'three':567}
>>> x
{'one': 123, 'two': 345, 'three': 567}

>>> x['one']
123
>>> x['three']
567
>>> x[0]
Traceback(most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 0

（4）函数应用

① len函数可以查看字典对象的长度，示例如

下：

>>> x
{'one': 123, 'two': 345, 'three': 567}
>>> len(x)
3

② copy函数可以复制相同的字典对象，示例如

下：

>>> x.copy()
{ 'one': 123, 'two': 345, 'three': 567}

③ clear函数可以清除字典对象，示例如下：

>>> x.clear()
>>> x
{}

④ items函数可以将字典转换成list对象，示例

如下：

>>> x.items()
dict_items([('one', 123), ('two', 345), ('three', 567)])

技巧8 【操作】使用Python的第三方库

许多模块并非是Python的基本模块，当程序开

发者需要时，可以另外下载扩展应用的模块，如

pymysql、pandas。本技巧将介绍如何安装并使用

Python的第三方库。

导入模块需要通过import指令进行。下面以导

入math模块为例进行说明，执行过程如下：

>>> import math
>>>

math是Python的基本模块，所以不用额外安装

即可导入。

导入第三方库，如pymysql（Python连接

MySQL的模块），在未安装的情况下会发生以下情

况：

>>> import pymysql
Traceback(most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named pymysql

这时需要先安装该模块。在安装模块前，必须

先安装Python管理模块的程序“pip”，安装pip后才可

以安装Python的模块，概念有点像Ubuntu的

APT“Advanced Packaging Tool”，通过它来安装系

统的模块。下面介绍如何安装pip。

如果是从官网上下载安装的Python，其中已经

包含了pip，不需要另外安装，但要

把“C:\Python37\Scripts”加进系统默认路径（环境变

量）下，系统默认的设置可参考技巧4。

接着就可以执行pip命令了，要查看是否配置

正确，可在CMD中执行pip命令，过程如下：

>pip
Usage:
 pip <command> [options]
Commands:
 install Install packages.
 download Download packages.
 uninstall Uninstall packages.
 freeze Output installed packages in
requirements format.
 list List installed packages.
 show Show information about instal
led packages.
 checK Verify installed packages hav
e compatible dependencies.
 search Search PyPI for packages.
 wheel Build wheels from your requir
ements.
 hash Compute hashes of package arc
hives.
 completion A helper command used for com
mand completion.
 help Show help for commands.

若出现命令的参数说明，则表示正确执行了该

命令。

接着安装pymysql模块，通过系统管理员启动

Windows CMD，执行以下命令：

pip install pymysql

执行过程如下：

接着，进入Python命令窗口中，导入

pymysql：

>>> import pymysql
>>>

若没有出现错误信息，则表示导入成功。

技巧9 【操作】字符串处理的应用

本技巧介绍Python中常用的字符串处理函数。

1．len——查询字符串长度

len函数可用于查询字符串长度，示例如下：

>>> str="i am a cat"
>>> len(str)
10

2．join——将元素通过特定符号组合

join函数用于将不同元素组合成一个大字符

串，示例如下：

>>> seq=" " #tab符号
>>> cc=('1','2','3','4')
>>> seq.join(cc) #Python中通过’\t’来展示
tab
'1\t2\t3\t4'

3．strip——将特定字符从字符串首部、尾部删除

strip函数的示例如下：

>>> str.strip()
'i am a cat'
>>> str.strip("a")
' am a cat'
>>> str.strip("at")
' am a c'

4．lstrip——将特定字符从字符串首部删除

lstrip函数的示例如下：

>>> str="i am a cat"
>>> str.lstrip("a")
' am a cat'
>>> str.lstrip("at")
' am a cat'

5．rstrip——将特定字符从字符串尾部删除

rstrip函数的示例如下：

>>> str="i am a cat"

>>> str.rstrip("a")
'i am a cat'
>>> str.rstrip("at")
'i am a c'

6．swapcase——转换英文字母大小写

swapcase函数的示例如下：

>>> str="I am A cat"
>>> str.swapcase()
'i AM a CAT’

7．lower、upper——将英文字母转换成小写、大
写

lower函数用于将英文字母转换成小写形式，

upper函数用于将英文字母转换成大写形式，示例

如下：

>>> str="I am A cat"
>>> str.lower()
'i am a cat'
>>> str.upper()
'I AM A CAT'

8．max、min——查看字符串中的最大值、最小
值

max函数用于查看字符串中的最大值，min函

数用于查看字符串中的最小值，示例如下：

>>> str="i am a cat"
>>> max(str)
'c'
>>> min(str)
' '

9．zfill——将字符串用0填满至特定宽度

用zfill函数补齐15个字符，示例如下：

>>> str='TTT'
>>> str.zfill(15)
'000000000000TTT'

10．replace——替换字符串中的特定字符

下面replace函数的示例是以空白替换H字符：

>>> str='HUJRYEHDGSJKER'

>>> str.replace('H'," ")
' UJRYE DGSJKER'

11．split——将字符串按照特定符号进行分割

split函数的示例如下：

>>> str='HUJRYEHDGSJKER'
>>> str.split('J')
['HU', 'RYEHDGS', 'KER']

12．splitlines——将字符串按照换行符进行分割

下面splitlines函数的示例是以逗号来进行分

割：

>>> >>> str="111\n333\n532\n7456\n234\n122"
>>> str.splitlines()
['111', '333', '532', '7456', '234', '122']

技巧10 【操作】时间函数应用

Python提供了time模块来解决时间处理的问

题，本技巧将详细介绍time模块中的函数应用。

若读者要了解Python的时间格式，则可先参考

技巧19，再回来了解时间函数的应用。下面介绍

time模块中的函数应用。

1．time.time——获取当前时间秒数

通过time.time函数可以获取当前的时间秒数

（从1970/01/01 00:00开始计算，直至目前的总秒

数），示例如下：

>>> import time
>>> time.time()
1505975715.899
>>> time.time()
1505975719.699

获取当前时间后，可以与其他时间进行比较，

示例如下：

>>> import time
>>> start=time.time()

>>> time.time() –start
8.256999969482422

以上结果代表两次执行的时间差为8秒多。

2．time.localtime——获取当前时间元组

localtime函数的示例如下：

>>> import time
>>> time.localtime()
time.struct_time(tm_year=2017, tm_mon=9, tm_mday=21, tm
_hour=14, tm_min=46, tm_sec=
23, tm_wday=3, tm_yday=264, tm_isdst=0)
>>> time.localtime()[1]
9
>>> time.localtime()[3]
14

3．time.clock——获取当前时间秒数

clock函数的示例如下：

>>> import time
>>> time.clock()
2896.8592524024843
>>> time.clock()
3035.481912434893

4．time.ctime——将秒数转换成字符串

ctime函数可以用于获取当前时间，并且将秒数

转换成字符串，示例如下：

>>> import time
>>> time.ctime()
'Fri Sep 22 10:51:54 2017'
>>> time0=time.time()
>>> time.ctime(time0)
'Thu Sep 21 14:54:38 2017'

5．time.mktime——将时间元组转换成秒数

mktime函数可用于时间的格式转换，示例如

下：

>>> import time
>>> t = (2017, 2, 17, 17, 3, 38, 1, 48, 0)
>>> time.mktime(t)
1487322218.0
>>> time.mktime(time.localtime())
1505977263.0
>>> time.mktime(time.localtime())
1505977266.0

6．time.gmtime——将秒数转换成时间元组

gmtime函数可用于将秒数转换成为时间元组，

示例如下：

>>> import time
>>> time.gmtime(time.time())
time.struct_time(tm_year=2017, tm_mon=9, tm_mday=21, tm
_hour=7, tm_min=4, tm_sec=
28, tm_wday=3, tm_yday=264, tm_isdst=0)
>>>

mktime与gmtime可搭配使用，示例如下：

>>> t = (2017, 2, 17, 17, 3, 38, 1, 48, 0)
>>> time.mktime(t)
1487322218.0
>>> time.gmtime(time.mktime(t))
time.struct_time(tm_year=2017, tm_mon=2, tm_mday=17, tm
_hour=9, tm_min=3, tm_sec= 38, tm_wday=4, tm_yday=48, t
m_isdst=0)
>>>

7．time.strftime——将时间元组转换成特定格式
的字符串

strftime函数的示例如下：

>>> import time
>>> time0 = (2017, 2, 17, 17, 3, 38, 1, 48, 0)
>>> time0 = time.mktime(time0)
>>> print (time.strftime("%b-%d-%Y %H:%M:%S", time.gmti
me(time0)))
Feb-17-2017 09:03:38

8．time.strptime——将字符串转换成时间对象

strptime函数的示例如下：

>>> import time
>>> time.strptime("12:30:25","%H:%M:%S")
time.struct_time(tm_year=1900, tm_mon=1, tm_mday=1, tm_
hour=12, tm_min=30, tm_sec=25, tm_wday=0, tm_yday=1, tm
_isdst=-1)
>>>

9．time.sleep——秒数延迟

sleep是常用的函数。以下示例将展示sleep函数

的用法：

>>> import time
>>> time.time()
1505977722.531
>>> time.sleep(3)

>>> time.time()
1505977725.542
>>>

技巧11 【程序】文档的读取与写入

Python对文件的控制，设计得相当完善，可以

通过open、close、write、read、rename、remove控

制文件的打开、关闭、写入、读取、重命名与移

除。

1．open——打开文件

Python提供的open内置函数可以直接打开文

件，并且如果设置了适当的权限，就可以对文件进

行读写。读取及写入在后面的技巧中会讲解。

打开文件的示例如下：

>>> file= open('123.txt','w+')
>>> file.name #读取后，可以查询文件名称
'123.txt'
>>> file.closed #读取后，可以查询是否关闭读

取文件
False
>>> file.mode #读取后，可以查询对文件的权
限
'w+'

open函数能通过简洁的语法将文件内容存入

Python的数组中，示例如下：

>>> [line for line in open('123.txt')]
['123456789']

该用法是通过列表的特性直接将文件通过循环

存入数组中。

2．close——关闭文件

Python提供的close函数可以直接关闭文件，示

例如下：

>>> file.name
'123.txt'
>>> file.closed
False
>>> file.close()
>>> file.name

'123.txt'
>>> file.closed
True

3．write——写入文件

write函数可以直接对文件进行写入，示例如

下：

>>> file= open('123.txt','w+')
>>> file.write("123456789/n")
>>> file.close()

4．read——读取文件

read函数可以直接对文件内容进行读取，示例

如下：

>>> file= open('123.txt','r')
>>> file.read()
'123456789/n'
>>> file.close()

5．rename——重命名文件

rename函数可以直接修改文件的名称，但需要

导入os模块，示例如下：

>>> import os
>>> os.rename('123.txt','456.txt')

6．remove——移除文件

remove函数可以直接移除文件，但需要导入os

模块，示例如下：

>>> import os
>>> os.remove('456.txt')

技巧12 【操作】MySQL数据库的基本操

作[4]

1．建立和删除数据库

建立数据库的语法如下：

CREATE DATABASE 数据库名称

示例如下：

> CREATE DATABASE sampledatabases;
Query OK, 1 row affected (0.01 sec)
> show databases; #查看是否创建成功
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sampledatabases |
+--------------------+
4 rows in set (0.00 sec)

删除数据库的语法如下：

DROP DATABASE 数据库名称

示例如下：

> DROP DATABASE sampledatabases;
Query OK, 0 rows affected (0.06 sec)
> show databases; #查看是否刪除成功
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
+--------------------+
3 rows in set (0.00 sec)

创建和删除数据库一般由数据管理者执行。一

般的数据库用户没有相关权限，是无法执行创建和

删除数据库的。

2．建立表

建立表比建立数据库还要复杂一点，因为建立

表必须定义表名、列、数据类型。考虑到每列的实

际用途以及需求都会做不同的设计，若是一般的小

额整数数值则会用简单的数据类型（如INT），而

不同的数据类型都有不同的功能以及不同的占用空

间。如果在数据库中每列的数据类型配置得当，就

会提高查找数据库的效率。

建立表的语法如下：

CREATE TABLE 表名称（

列名称 数据类型，

列名称 数据类型，

列名称 数据类型

…）;

在列名称和数据类型中间必须加上一个空格。

下面通过示例介绍表的建立，语句如下：

create table student0101(

ID int,

name varchar(10),

height varchar(10),

weight varchar(10));

输出如下：

> create table student0101(
 -> ID int,
 -> name varchar(10),
 -> height varchar(10),
 -> weight varchar(10));
Query OK, 0 rows affected (0.58 sec)

上面所展示的语句可以新增带有4列的数据

表，使用了INT和VARCHAR两种数据类型，INT为

数值类型，VARCHAR为可变长度的字符串类型。

查看列类型，执行语句如下：

> describe student0101;
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| ID | int(11) | YES | | NULL | |
| name | varchar(10) | YES | | NULL | |
| height | varchar(10) | YES | | NULL | |
| weight | varchar(10) | YES | | NULL | |
+--------+-------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

这里通过数据表student（见表1-1）来介绍数据

表的操作。

表1-1　student表

ID name height weight

102404248 jack 180 80

102404246 hizeba 170 90

102404247 panpan 165 50

102404225 zichang 165 65

3．SELECT简介

查询是数据库常用的功能之一，由SELECT与

FROM组成：SELECT后接要搜寻的列或通配符星

号（*），FROM后接要搜寻的数据表。

查找多列时，列与列之间用逗号“,”分隔；当要

查找数据表全部的列时，需使用通配符星号

（*）。

查询数据的语法如下：

SELECT * FROM 数据表名称;

示例如下：

SELECT * FROM student;

输出如下：

> SELECT * FROM student;
+-----------+---------+--------+--------+
| ID | name | height | weight |
+-----------+---------+--------+--------+
| 102404248 | jack | 180 | 80 |
| 102404246 | hizeba | 170 | 90 |
| 102404247 | panpan | 165 | 50 |
| 102404225 | zichang | 165 | 65 |
+-----------+---------+--------+--------+
4 rows in set (0.00 sec)

技巧13 【程序】使用Python访问MySQL

本技巧是扩展Python数据库的访问应用。从

Python中存取MySQL数据库有许多模块，本技巧通

过pymysql库来进行介绍。

说明　

安装pymysql库可参考技巧8，在此不另

外进行介绍。

当安装完成后，需先导入库才可以使用。语法

如下：

import pymysql

若要存取数据库，就必须与数据库建立连接。

在pymysql库中，必须通过connect函数来建立连接

的对象，之后通过连接的对象来对数据库下指令。

下面介绍如何通过pymysql对数据库存取对

象，通过数据库进行存取，读者也可以自行建立数

据库进行存取。

在pymysql中执行SELECT、INSERT等动作，

操作过程大致相同，只要在execute执行语句中输入

SQL查询语句即可。下面介绍操作过程。

首先确认数据库中有数据库和使用者后，先建

立连接：

conn = pymysql.connect(host='IP地址',

port=端口号, user="使用者" ,passwd="密码",

db="数据库")

在建立连接后，接着建立游标，接下来的操

作，都是由该对象来完成。

cur = conn.cursor()

接着执行查询语句：

cur.execute("SQL查询语句")

将查询结果依序显示出来：

for row in cur:

print(row)

关闭游标：

cur.close()

关闭连接：

conn.close()

技巧14 【操作】数据的分割与合并

本技巧将阐述如何操作Python中的数组，也就

是列表对象，毕竟本书是介绍Python的金融案例操

作，回测的部分会与大数据相结合，这时就必须要

了解如何使用列表。

前面有涉及列表如何使用的简单叙述，这里进

一步叙述常用的应用，即存取、分割和合并。

1．访问

在Python中，列表对象的赋值是通过中括号来

进行的。首先介绍简单的用法，即获取单一值，示

例如下：

>>> x = [1,2,3,4,5,6,7,8,9]
>>> x[0]
1
>>> x[1]
2
>>> x[-2]
8

通过冒号“:”可以获取连续多个值。若一个数组

有9个值，可以取1～3个值，也可以取4～9个值，

示例如下：

>>> x
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x[:3]
[1, 2, 3]
>>> x[3:]
[4, 5, 6, 7, 8, 9]
>>> x[:-2]
[1, 2, 3, 4, 5, 6, 7]
>>> x[-2:]

[8, 9]

还可以获取特定倍数间隔的值。例如，当目前

数组有9个值，可以获取2的倍数索引的值，示例如

下：

>>> x
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x[::2]
[1, 3, 5, 7, 9]
>>> x[::3]
[1, 4, 7]

2．分割

若要分割字符串，可以参考技巧9的strsplit函

数；若要分割列表，可以通过上述方式来将索引值

进行分割，但仅局限于索引值，没有办法依照条件

来进行分割。例如，在R语言中就提供了subset函数

来进行矩阵切割。

Python列表中的数据切割通过循环来进行简易

的判断，语法如下：

自定义变量 for 自定义变量 in 特定列表

if 条件判断语句

操作如下：

>>> x
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> [i for i in x if i > 5]
[6, 7, 8, 9]

3．合并

Python中的数组合并就是列表的合并，可以通

过“+”运算符进行list相加，也可以通过append进行

列表新增，还可以通过extend进行list合并。

（1）通过“+”对列表进行相加，示例如下：

>>> x=[1,2,3,4]
>>> y=[5,6,7,8]
>>> x+y
[1, 2, 3, 4, 5, 6, 7, 8]

（2）通过append函数在列表尾部添加新值，

示例如下：

>>> x=[45,72,65,21,87]
>>> x
[45, 72, 65, 21, 87]
>>> x.append(100)
>>> x
[45, 72, 65, 21, 87, 100]

（3）通过extend函数可以将多个列表整合起

来，示例如下：

>>> x
[45, 72, 65, 21, 87, 100]
>>> x.extend([44,55])
>>> x
[45, 72, 65, 21, 87, 100, 44, 55]

技巧15 【程序】判断表达式与示例

判断表达式分为逻辑判断表达式和条件判断表

达式，下面介绍两者的使用方式。

1．逻辑判断表达式

Python中的逻辑判断表达式如表1-2所示。

表1-2　逻辑判断表达式

逻辑判断表达式名称 逻辑判断表达式符号

大于、大于等于 >、>=

小于、小于等于 <、<=

等于、不等于 =、!=

与（and） and

或（or） or

下面分别介绍各种逻辑判断表达式。

（1）大于、大于等于

示例如下：

>>> x=10
>>> x>10
False
>>> x>=10
True

（2）小于、小于等于

示例如下：

>>> x=10
>>> x
False
>>> x<=10
True

（3）等于、不等于

示例如下：

>>> x=10
>>> y=9

>>> x==y
False
>>> x!=y
True

（4）与（and）

示例如下：

>>> x
10
>>> y
9
>>> x==9 and y==9
False
>>> x==10 and y==9
True
>>>

（5）或（or）

示例如下：

>>> x
10
>>> y
9
>>> x==9 or y==10
False

>>> x==10 or y==9
True
>>> x==10 or y==1
True
>>> x==9 or y==9
True

2．条件判断表达式

介绍完逻辑判断表达式后，接着介绍条件判断

表达式。条件判断表达式通过判断指定的条件去做

接下来的运算。条件判断表达式主要有if else和

switch，下面介绍二者的使用方法。

if else的常用用法分为几种，普通的用法是在if

后输入条件表达式并用冒号分割：若条件成立，为

TRUE，则执行第一个指定操作；若条件不成立，

则进行第二个指定操作。示例如下：

>>> x
10
>>> if x==10: #第一个指定动作
... x+=10
... else: #第二个指定动作

... x-=10

...
>>> x
20

在Python中，if else的语法如下：

if 判断条件1：

　　…

elif 判断条件2

　　…

示例如下：

>>> x
20
>>> if x ==20:
... x+=10
... elif x==10:
... x-=10

...
>>> x
30

技巧16 【程序】循环语句与示例

在Python中，常用的循环有for和while，下面介

绍循环的控制语句（break、continue、pass）。

以往许多编程语言都是通过大括号将循环的程

序代码括起来的，但在Python中则是通过缩进

（ident）来定义循环内的程序代码。

说明　

缩进的方式一般是通过Space键或Tab键

来完成的。

1．for循环

在for循环控制结构中，基本语法如下：

for 循环变量in向量：

　 {运算式}

上述基本语法中的循环变量是循环中一个专属

的变量，会通过循环来改变值，常用变量名称是i，

当然也可以使用o、e等其他变量名称。当循环结束

时，循环变量不会继续存在于Python环境中。

循环结构中的运算式可以从简单到复杂，依照

每个人的需求来编写运算式，可以是简单的函数、

四则运算乃至复杂的运算分析。

在刚开始写循环语句时，必须注意如果在循环

中用到新的变量，就必须先声明该变量。通常是变

量声明定义在循环外，因为定义在循环内可能会影

响运算。

下面通过一个简单的示例来介绍Python循环。

在Python中，可以通过逗号分隔对象并且将其运用

在循环中，循环变量会通过向量内的每个值去循

环。下面将循环变量的值通过print函数显示出来：

>>> for i in 1,2,3,4 :
... print ("No.",i)
...
No. 1
No. 2
No. 3
No. 4

for循环通过向量循环的做法不只有上述方法，

也可以用列表、元组对象变量作为循环因子。下面

定义向量并通过循环显示出来。

>>> x = [1,2,3,4,5,6,7,8,9,10]
>>> for i in x :
... print ("No.",i)
...

No. 1
No. 2
No. 3
No. 4
No. 5
No. 6
No. 7
No. 8
No. 9
No. 10

当然，也可以让循环具有不规则性（不是单纯

地让数值从1到10），比如显示奇数。

>>> x = [1,2,3,4,5,6,7,8,9,10]
>>> for i in x[::2] :
... print ("No.",i)
...
No. 1
No. 3
No. 5
No. 7
No. 9

以上示例都是介绍for循环中循环变量的变化。

下面开始介绍循环中的运算式。下面这个循环的功

能是将x变量进行10次计算，通过i计算1+2+3+…

+10的值为55。

>>> x
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> y
0
>>> for i in x:
... y+=i
... print (y)
...
1
3
6
10
15
21
28
36
45
55

下面对上述循环增加一点变化，加入逻辑判

断，并且作出处理。x从1到10，但是当i值为7时略

过该循环，进行下一次计算，示例如下。

>>> x
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> y
0
>>> for i in x:
... if i == 7:
... continue
... y+=i

... print (y)

...
1
3
6
10
15
21
29
38
48

2．while循环

while循环是Python中除了for之外的另一个重要

循环，基本原理很简单，就是制定一个判断原则

（逻辑表达式），并遵循这个原则来对子语句进行

循环。while和for循环的差异在于，while是通过逻

辑判断进行循环，for则是通过制定一个有限变量或

向量对象来进行循环。

while循环控制结构的基本语法如下：

while 判断表达式:

程序代码

首先，与for一样写出一个简单的循环，了解

while循环的架构。

>>> x=0
>>> while x<=7:
... print (x)
... x+=1
...
0
1
2
3
4
5
6
7
>>> x
8

while的特性是容易阅读。在上面的示例中，

当x的值超过7时就会跳出循环，不再进行任何计

算。在使用while循环时，必须小心地指定循环表达

式，因为如果指定不好就可能会无限循环。

无限循环的条件表达式结果永远为1（系统辨

识为TRUE），使循环无法停止。下面给出无限循

环的一个简单示例。

>>> x =0
>>> while 1 :
... print (x)
... x+=1
...
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

15
16
......

了解到while循环的概念后，就可以进行四则运

算了。只要符合判断条件，就会一直重复执行运

算，直到不符合为止。示例如下：

>>> x=1
>>> y=0
>>> while x<= 10:
... y+=x
... x+=1
...
>>> y
55

在while循环中，可以通过while判断表达式来

决定循环，也可以通过break和continue这两个语句

来改变while的循环功能。下面介绍while搭配

continue的用法。

>>> x=0
>>> while x
... x+=1
... if x==5 :

... continue

... print(x)

...
1
2
3
4
6
7
8
9
10

从上述示例的结果可以看到，当x值为5时跳至

下一循环，不显示5。

3．break和continue

break语句可以跳出循环，可以依照不同的需求

来使用。

break与continue的不同在于，break会直接跳出

循环，不再执行下一个循环，而continue是跳出当

前循环，并执行下一个循环。

4．pass不执行任何操作

pass与break、continue的不同之处在于，pass没

有实际作用，只是用来编写空的循环主体，并不执

行任何动作。

[1]　高级语言和低级语言是对计算机而言的名词：

低级语言接近机器语言，计算机易懂而人们难学；

高级语言则相反，人们容易学习但计算机需要花更

多时间理解处理。因此，高级语言容易入门，但处

理性能较差。

[2]　本书提供的源码既可以在Python 2.7上运行，

也可以在Python 3.7上运行。——译者注

[3]　在读取文件内容时，本示例所引用的csv文件

位于C:\Python37，若读者将csv文件保存于其他位

置，请在代码中加入csv文件的存储路径。

[4]　本技巧要提前安装MySQL数据库。

第2章　建立自己的工具函数

从许多应用层面上来说，Python对于编程新手

是很友善的。对于开发者而言，最重要的是如何建

立自己的工具函数集，以便在之后编写程序时能够

更有效率。本章将介绍如何建立自己的Python工具

集，以便在数据分析与逻辑判断上更便捷、更直

观。

技巧17 【概念】建立函数的方法

在编写任何程序代码时，我们都会将常用的功

能写成函数，以便在编写之后的程序时可以直接调

用，简化冗长的程序代码。

本书多数的运算操作都是通过Python中的函数

来执行的。Python有许多功能不同的函数，分布在

不同的库中，如计算、生成图表、统计等。

函数在任何语言中都是提供转换功能的，可将

输入值转换为输出值：

输入值x→输出值f(x)

在Python中，函数定义的方式如下：

def 函数名称(输入值):
 # 缩进
 ...
 ...
 ...
 return 输出值

函数中的输入值与输出值并非必需的。例如：

首先进入Python环境，定义一个函数：

>>> def printHello():
... print ("Hello")
...

函数printHello并不需要输入值，只要调用它

（输入printHello()），就会执行这个函数（输出

Hello），如下所示：

>>> printHello()
Hello

接着定义一个基本的计算函数（有输入参

数），当输入x和y时，能够计算从x到y的和：

>>> def mySum(x,y):
... rs=0
... for i in range(x,y+1):
... rs+=i
... return rs
...
>>>

当调用mySum并给定两个正整数（如输入

mySum (4,10)）时，就会执行这个函数（由4加到

10）：

>>> mySum(4,10)
49

技巧18 【程序】在函数库中建立多个函
数

本技巧介绍的是建立属于自己的函数库，将多

个函数建立在同一个Python程序中。换言之，当执

行该程序时，就会产生我们定义的所有函数，便于

在之后的程序中调用。

Python可以建立一套专属于使用者的环境，并

导入自己的Python函数。我们可以通过编写文件格

式为.py的文档来建立自己的函数库。编写完成后，

只要在Python中执行相应的命令就可以调用。

下面介绍如何在函数库中建立函数。

我们可以将导入的模块、环境的设置写入

Python文档中。下面直接给出简单的设置文档介

绍。

※文件名：sample_execfile.py

import os
import sys
import math
os.chdir('D:\\data')

设置文件内仅导入模块和工作目录。完成编写

文档后，进入Python中就可以调用sample_

execfile.py文件了。

>>> exec(open('sample_execfile.py').read())
>>> dir()
['__builtins__', '__doc__', '__name__', '__package__',
'math', 'os', 'sys']
>>> os.getcwd()
'D:\\data'

这是一个简单的示例，如果想要导入自己编写

的函数，就需要自己定义函数了，可参阅技巧17。

因为自己定义函数的应用范围相当广泛，所以

通过简单的示例让读者了解基本做法，更深层次的

应用则是依照每个人不同的需求而去做加强。

※文件名：cumsum.py

def cumsum(x):
 y=[]
 sum=0
 for i in x:
 sum+=i
 y.append(sum)
 return y

导入并执行，过程如下：

>>> exec(open('cumsum.py').read())
>>> x=[2,3,5,7,3,5]
>>> cumsum(x)
[2, 5, 10, 17, 20, 25]

技巧19 【概念】了解时间格式

在Python中，已经有完整的模块可以处理时间

格式了，其中有time、datetime和calendar模块提供

的相关解决方案。

在Python中，用来存储时间的格式有两种：一

种为tick时间格式，另一种为时间元组。tick格式表

示1970/01/01 0点0分至当前的秒数。元组在第1章

中已有介绍，也就是类似数组的格式，时间元组则

通过数组的方式存储每一个时间单位的数值。

1．tick时间格式

tick格式可以通过time函数获取，示例如下：

>>> ticks = time.time()
>>> ticks
1505973883.949 ——————————1970/1/1的0点0分至当前的秒数
>>> time.ctime(ticks)
Thu Sep 21 14:04:43 2017'

2．时间元组格式

若要定义时间元组，则必须依次按照以下列定

义值：

年（4位数）、月、日、时、分、秒、日（周）、日（年）、是否采
用DST

时间元组操作的示例如下：

>>> t = (2009, 2, 17, 17, 3, 38, 1, 48, 0)
>>> t = time.mktime(t)
>>> t
1234861418.0
>>> time.gmtime(t)
time.struct_time(tm_year=2009, tm_mon=2, tm_mday=17, tm
_hour=9, tm_min=3, tm_sec=38, tm_wday=1, tm_yday=48, tm
_isdst=0)

知道了两种类别的使用方式后，就可以运用其

特性来进行日期数据的计算或运用了。

3．字符串转时间（strptime）

strptime函数用来将字符串转换成时间格式，

示例如下：

>>> time.strptime("09:30:20","%H:%M:%S")
time.struct_time(tm_year=1900, tm_mon=1, tm_mday=1, tm_
hour=9, tm_min=30, tm_sec=
20, tm_wday=0, tm_yday=1, tm_isdst=-1)
>>> time.strptime("2017/09/30 09:30:20","%Y/%m/%d %H:%M
:%S")
time.struct_time(tm_year=2017, tm_mon=9, tm_mday=30, tm
_hour=9, tm_min=30,
tm_sec=20, tm_wday=5, tm_yday=273, tm_isdst=-1)

说明　

这里必须留意，时间单位最小到秒，若

要转换小于秒的时间单位，则必须通过

datetime模块中的strptime函数。后面会介绍

datetime模块。

通过strptime转换出来的结果为时间元组，将

它转换为秒数，示例如下：

>>> time.mktime(time.strptime("2017/09/30 09:30:20","%Y
/%m/%d %H:%M:%S"))
1506735020.0
>>> time.mktime(time.strptime("09:30:20","%H:%M:%S"))
TracebacK(most recent call last):
 File "<stdin>", line 1, in <module>
OverflowError: mktime argument out of range

没有指定到日期的时间元组是没有办法转换成

tick时间格式的。若要进行单纯的日内时间转换则

可参考技巧20和技巧21。

4．datetime进阶应用

在Python中，datetime时间模块可以帮助我们

进行更有效的时间计算。

在后面的示例中，会通过datetime模块进行时

间判断，原因是期货交易所公布信息的时间间隔最

小到百分之一秒，time模块并不支持这个微小的时

间单位，而datetime中的时间格式最小可以支持到

微秒（micro second），也就是百万分之一秒。

time模块所支持的最小时间单位是s（秒），例

如12:30:30；datetime模块可以支持到ms（微秒）。

下面对datetime、strptime函数的操作进行介绍。

>>> import datetime
>>> datetime.datetime.strptime("12:30:30.43","%H:%M:%S.
%f")
datetime.datetime(1900, 1, 1, 12, 30, 30, 430000)

转换之后，可以进行时间大小的判断。如果没

有日期参数，会统一由1900/1/1来默认填值，所以

从日内交易的角度来说，该函数是可以直接用来进

行时间判断的。示例如下：

>>> import datetime
>>> datetime.datetime.strptime("12:30:30.43","%H:%M:%S.
%f") > datetime.datetime.strptime("12:30:30.44","%H:%M:
%S.%f")
False
>>> datetime.datetime.strptime("12:30:30.43","%H:%M:%S.
%f") < datetime.datetime.strptime("12:30:30.44","%H:%M:
%S.%f")
True

以上是将时间字符串通过strptime转换为时间

格式后进行比较，会返回True或False。

若要进行datetime时间格式的计算，则可通过

timedelta函数来进行。timedelta的参数为“日”“秒”，

示例如下：

>>> x=datetime.datetime.strptime("12:30:30.43","%H:%M:%
S.%f")
>>> x
datetime.datetime(1900, 1, 1, 12, 30, 30, 430000)

>>> x + datetime.timedelta(0,1) #加上1
秒
datetime.datetime(1900, 1, 1, 12, 30, 31, 430000)
>>> x - datetime.timedelta(0,1) #减去1
秒
datetime.datetime(1900, 1, 1, 12, 30, 29, 430000)

说明　

注意，必须要是datetime格式才能进行

timedelta函数计算。

技巧20 【程序】时间转换秒数函数

在我们所提供的数据中，时间格式为

HHMMSSSS，最小单位为0.01s，而时间格式中没

有特殊符号区分。例如，8451122就是上午8点45分

11秒，而13284567就是下午1点28分45秒。

在Python内部的时间处理模块中，时间格式都

必须通过时间与日期搭配；而在日内交易回测的计

算中，并不注重日期格式的判断处理。本技巧将提

供自行处理时间的方法。

本示例所提供的时间转换秒数函数是通过时间

格式为HHMMSSSS来进行转换的。若通过其他时

间格式转换，就必须微调程序代码。

以下是时间转换秒数的函数程序代码，输入值

必须为8位时间字符串，结果会返回总秒数：

def TimetoNumber(time):
 time=time.zfill(8)
 sec=int(time[:2])*360000+int(time[2:4])*6000+int(time[
4:6])*100+int(time[6:8])
 return sec

该函数为了适应7位字符（8450830）和8位字

符（13300000）的输入情况，将时间数据输入后会

先补齐8位数（zfill），接着才进行秒数转换。

执行过程如下：

>>> def TimetoNumber(time):
... time=time.zfill(8)
... sec=int(time[:2])*360000+int(time[2:4])*6000+in
t(time[4:6])*100+int
(time[6:8])
... return sec
...
>>> TimetoNumber('8450830')
3150830
>>> TimetoNumber('13300000')
4860000

技巧21 【程序】秒数转换时间函数

接着上一个技巧，将时间转换成秒数后，也可

以将秒数转换成时间，这两个函数搭配的时机是要

进行时间计算的时候。例如，目前是9点45分，要

加上30分钟，如果是通过时间格式直接相加就会变

成9点75分，是错误的。必须将时间先换成秒数，

通过秒数相加后再转换为时间格式，这才是正确的

做法。

正确的时间计算流程如下：

时间格式9450000→转换为秒数3510000→加上

秒数270000→秒数总和为3780000→转换回时间格

式10300000。

以下是秒数转换成时间的函数程序代码，输入

值必须为数值（总秒数），结果返回8位时间字符

串：

def NumbertoTime(sec):
 TOS=str(sec%100).zfill(2)
 TTime=sec/100
 TS=str(TTime%60).zfill(2)
 TTime=TTime/60
 TM=str(TTime%60).zfill(2)
 TTime=TTime/60
 TH=str(TTime%60).zfill(2)
 return TH+TM+TS+TOS

执行过程如下：

>>> def NumbertoTime(sec):
... TOS=str(sec%100).zfill(2)
... TTime=sec//100

... TS=str(TTime%60).zfill(2)

... TTime=TTime//60

... TM=str(TTime%60).zfill(2)

... TTime=TTime//60

... TH=str(TTime%60).zfill(2)

... return TH+TM+TS+TOS

...
>>> NumbertoTime(3150830)
'08450830'

技巧22 【程序】固定时间内的高开低收
量

在策略开发中，将常用的功能做成函数，在之

后的编写程序中就能够减少许多麻烦。计算固定时

间的高开低收量能够应用在许多方面，比如计算K

线值、取当前的高开低收等。

现在我们就试着思考应该如何在庞大的数据量

中取得高开低收量。首先必须把固定时间区段数据

取出，接着我们会通过循环来进行数据筛选，然后

会将固定时间区段数据进行处理，取得高开低收

量。以下通过示例来介绍如何获取固定时间区段内

的高开低收量。

以下程序代码通过列表来进行数据获取，在

Python中可以通过该方式直接对列表对象做条件判

断，有点类似于获取子集合的概念（可参考技巧

7）。

文件名：22.py

取I020，依照逗号分隔，并将分隔符号去除
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020.csv')][1:]
 取得特定时间的价格数据

p= [int(line[4]) for line in I020 if int(line[0])>85900
00 and int(line[0])<9000000]
取得特定时间的总量数据
q= [int(line[6]) for line in I020 if int(line[0])>85900
00 and int(line[0])<9000000]
列出高开低收量
print (p[0],p[-1],min(p),max(p),q[-1]-q[0])

执行过程如下：

>>> I020 = [line.strip('\n').split(",") for line in op
en('Futures_20170815_
I020.csv')][1:]

>>>
>>> p= [int(line[4]) for line in I020 if int(line[0])>8
590000 and int(line[0])
<9000000]
>>> q= [int(line[6]) for line in I020 if int(line[0])>8
590000 and int(line[0])
<9000000]
>>>
>>> print (p[0],p[-1],min(p),max(p),q[-1]-q[0])
10309 10312 10308 10313 905
>>>

技巧23 【程序】获取指定时间的价格与
数量

在过去的金融数据中，要获取某个时间点的当

前价量，只通过单一时间的条件判断很可能会产生

错误。因为并不是每个时间点都会有成交信息，所

以在获取当前价格时必须去获取当前时间以前最新

的一笔数据。举个例子：要获取9点整的当前价

量，就要获取时间“9000000”当下的值，因为这个

时间可能不会有成交信息，所以必须取时

间“9000000”以前的数据，并且读取该区段最新的

一笔数据。

本例将获取9点整的最新成交价，所以程序会

取9点整以前的数据，并且取得最后一笔数据作为

当前最新的成交价，程序如下：

文件名：23.py

取I020，依照逗号分隔，并将分隔符号去除
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020. csv')][1:]
取得特定时间前的价格数据
p= [int(line[4]) for line in I020 if int(line[0])<90000
00]
取得特定时间前的总量数据
q= [int(line[6]) for line in I020 if int(line[0])<90000
00]
print (p[-1],q[-1])

>>> I020 = [line.strip('\n').split(",") for line in op
en('Futures_20170815_I020.
csv')][1:]
>>>
>>> p= [int(line[4]) for line in I020 if int(line[0])<9
000000]
>>> q= [int(line[6]) for line in I020 if int(line[0])<9
000000]
>>>
>>> print (p[-1],q[-1]) #9点整的最新当前价和当前总

量
10312 12904

技巧24 【程序】计算移动平均价格

对于金融交易者来说，MA是常使用的指标，

而计算MA也就成了必备的一项技能。

要计算我们所提供的逐笔数据格式，就必须自

己计算MA才能绘制出配合MA线的图表。另外，在

回测、即时的算法程序中也都必须自行计算MA

值。

在计算MA值以前，必须先定义周期（周期就

是计算的时间区段，如时、分、秒），接着定义长

度。常用的MA长度为5/10/20等。MA长度越长，

MA线的波动度越低。

以往我们看到的MA都是依据分K线图来搭配

绘制，但是本书提供的示例为逐笔撮合数据，所以

计算的方式会依据前n−1分钟的收盘价加上最新的

一笔成交价做计算。

定义完成后，就可以开始通过Python计算MA

值了。以10分钟MA为例，程序代码如下：

文件名：24.py

时间转数值
def TimetoNumber(time):
 time=time.zfill(8)
 sec=int(time[:2])*360000+int(time[2:4])*6000+int(time[
4:6])*100+int(time[6:8])
 return sec
取I020，依照逗号分隔，并将分隔符号去除
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020.csv')][1:]
定义相关变量
MAarray = []
MA = []
MAValue = 0
STime = TimetoNumber('08450000')
Cycle = 6000
MAlen = 10
开始进行MA计算
for i in I020:
 time=i[0]
 price=int(i[4])
 if len(MAarray)==0:
 MAarray+=[price]

 else:
 if TimetoNumber(time)<STime+Cycle:
 MAarray[-1]=price
 else:
 if len(MAarray)==MAlen:
 MAarray=MAarray[1:]+[price]
 else:
 MAarray+=[price]
 STime = STime+Cycle
MAValue=float(sum(MAarray))/len(MAarray)
MA.extend([[time,MAValue]])
print (time,MAValue)

通过CMD执行Python命令，执行过程如下：

>>>python 24.py
8471781 10302.0
8471781 10302.0
8471793 10302.0
8471843 10302.0
8471843 10302.3333333
8471856 10302.3333333
8471868 10302.3333333
8471881 10302.3333333
8471906 10302.3333333
8471931 10302.3333333
8471943 10302.6666667
8471943 10302.6666667
8471981 10302.3333333
8471981 10302.3333333
8471981 10302.0

若直接进入Python逐行执行该技巧程序，则执

行完成后可以通过MA对象查看数据，操作如下：

>>> MA[0:10]
[['8450010', 10310.0], ['8450011', 10309.0], ['8450011'
, 10309.0], ['8450011',
10310.0], ['8450011', 10310.0], ['8450011', 10309.0], [
'8450011', 10309.0], ['8450013', 10310.0], ['8450013',
10310.0], ['8450013', 10310.0]]

第3章　Python的图表绘制

Python虽说是一款大数据分析语言，善于进行

数据处理以及分析计算，但产生的结果往往是纯文

字显示，对于信息接收者来说或许稍微乏味了点，

这时就需要用图表的辅助了。

本章将会依据金融技术指标图表的需求进行介

绍，如折线图、直方图、K线图等，通过绘图的方

式来了解金融脉动。

在Python中，没有内置的绘图函数库，必须安

装额外的包。本章将通过matplotlib包来讲解图表绘

制。

技巧25 【操作】安装绘图包

matplotlib是Python的绘图包，其中包含大量的

绘图工具，可以通过它进行多种图表的绘制。数据

可视化也是Python在科学领域中迅速发展的原因之

一。

开启管理者权限的CMD，安装matplotlib包，

安装命令如下：

pip install matplotlib

说明　

通过pip安装包，详情请参考技巧8。

安装过程如下：

>pip install matplotlib
Collecting matplotlib
 Downloading matplotlib-2.0.2-cp27-cp27m-win_amd64.whl
 (8.6MB)
 100% | ████████████████████████████████ | 8.6MB 129
kB/s
Collecting six>=1.10 (from matplotlib)
 Downloading six-1.11.0-py2.py3-none-any.whl
Collecting pytz (from matplotlib)
 Downloading pytz-2017.2-py2.py3-none-any.whl (484kB)
 100% | ████████████████████████████████ | 491kB 1.7
MB/s
Collecting cycler>=0.10 (from matplotlib)
 Downloading cycler-0.10.0-py2.py3-none-any.whl
Collecting python-dateutil (from matplotlib)
 Downloading python_dateutil-2.6.1-py2.py3-none-any.wh
l (194kB)
 100% | ████████████████████████████████ | 194kB 2.4
MB/s
Collecting pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=1.5.6 (fr
om matplotlib)
 Downloading pyparsing-2.2.0-py2.py3-none-any.whl (56k
B)
 100% | ████████████████████████████████ | 61kB 2.1M
B/s
Collecting numpy>=1.7.1 (from matplotlib)
 Downloading numpy-1.13.1-cp27-none-win_amd64.whl (7.6
MB)
 100% | ████████████████████████████████ | 7.6MB 146
kB/s
Collecting functools32 (from matplotlib)
 Downloading functools32-3.2.3-2.zip
Building wheels for collected packages: functools32
 Running setup.py bdist_wheel for functools32 ... done

 Stored in directory: C:\Users\jack\AppData\Local\pip\
Cache\wheels\3c\d0\09\
cd78d0ff4d6cfecfbd730782a7815a4571cd2cd4d2ed6e69d9
Successfully built functools32
Installing collected packages: six, pytz, cycler, pytho
n-dateutil, pyparsing,
numpy, functools32, matplotlib
Successfully installed cycler-0.10.0 functools32-3.2.3.
post2 matplotlib-2.0.2
numpy-1.13.1 pyparsing-2.2.0 python-dateutil-2.6.1 pytz
-2017.2 six-1.11.0

安装完成后，就可以在Python中导入该包了，

过程如下：

>>> import matplotlib
>>> #若无错误信息，代表该包被
正确导入

技巧26 【概念】折线图与MA的关联性

价格折线图本身是以成交价作为y轴、时间作

为x轴所绘制出来的图形。以期货来说，成交价格

波动大，所以在观察期货价格波动规则时，不易通

过单一的价格折线图找到规律，这时就可以搭配

MA指标来进行分析。下面通过SMA来介绍MA。

MA的全名为移动平均线，也就是通过最近的

价格进行平均，MA的定义会分为周期与时间单

位，常用的周期为“分”，所以10分MA也就代表通

过前10分钟内每分钟的收盘价来计算出平均数。

MA可分为多种类型，常用的是SMA（Simple

Moving Average，简单移动平均），也就是通过所

有时间单位的收盘价进行平均。EMA（Exponential

Moving Average，指数移动平均）与SMA的规则不

同，EMA认为时间较近的值相对于时间较远的值更

为重要，所以给予较大的权重。相比起来，若期货

涨幅较大，EMA指数反应较快，但对于交易市场而

言，有可能因为误判趋势而太早进场，导致止损出

场。各种指标各有利弊，应结合形势进行分析。

价格折线与MA线关联有多种看法，当价格大

于MA值，代表许多人将筹码压在平均值上，代表

人们希望用更佳的价格平仓，所以持续看涨；相

反，也有许多人认为价格最终会回归平均值，所以

会逆势操作。当我们认为MA指标没有办法构成价

格买卖的条件时，会通过其他指标或大盘行情加以

判断。

通常如果当前价格突破MA指标，就代表趋势

正在进行，所以也有许多交易者会将MA穿越当作

交易策略的买进卖出点，我们在后面章节的交易策

略技巧中也会提到。

技巧27 【程序】绘制价格折线图

用Python绘制价格折线图需要获取成交价格的

数据。期货交易所通过I020表来进行成交价格揭

示，我们会将成交价格的数据进行图表绘制。

在Python中，绘制时间序列的函数plot_date与

一般的plot函数相同，差别仅在于当x轴或y轴单位

为时间格式时用plot_date函数绘图时能够直接显示

时间格式。

通过plot绘制图形时，可以设置绘制图形的风

格，包含颜色、线图的种类。例如，“r-”代表红色

（red）的实线图、“bo”代表蓝色（blue）的点图。

下面介绍plot绘制的线型（见表3-1）。

表3-1　plot绘制的线型

种类 说明

. 点图

- 实线图

-. 点线图

: 点图

-- 虚线图

o 圆点

s 方块

^、>、< 向上三角形、向右三角形、向左三角形

空白键 空白

None 空值

绘制价格折线图，程序代码如下：

文档名：27.py

-*- coding: UTF-8 -*-

导入相关包及函数
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import datetime

取得成交信息
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020. csv')][1:]
将时间字符串转换至时间格式
Time = [datetime.datetime.strptime(line[0],"%H%M%S%f")
 for line in I020]

通过mdates.date2num函数将datetime时间格式转换为绘图专用
的时间格式
Time1 = [mdates.date2num(line) for line in Time]
价格由字符串转为数值
Price = [int(line[4]) for line in I020]

定义图表对象
ax = plt.figure(1) #第一张图片
ax = plt.subplot(111) #该张图片仅一个图案
以上两行可简写为如下一行
fig,ax = plt.subplots()

绘制图案
plot_date(x轴对象, y轴对象, 线风格)
ax.plot_date(Time1, Price, 'k-')
定义title
plt.title('Price Line')

定义x轴
hfmt = mdates.DateFormatter('%H:%M:%S')
ax.xaxis.set_major_formatter(hfmt)

显示绘制图表
plt.show()

绘制图表，如图3-1所示。

图3-1

技巧28 【程序】绘制一个与MA重叠的图
表

绘制完价格折线图后，就需要绘制价格折线配

合MA指标图。在技巧27中介绍了plot 函数，本技

巧将会介绍如何在一个图表中叠加图形。

MA计算在技巧24中有详细介绍，以下示例将

会对该程序进行MA计算后绘制图表。

要新增MA线，需要通过lines函数叠加图形。

在绘制MA之前，要先参考技巧24（MA的计算），

在计算完成后就可以开始绘制MA线了。

文件名：28.py

-*- coding: UTF-8 -*-

导入相关包及函数
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import datetime

时间转数值函数
def TimetoNumber(time):
 time=time.zfill(8)
 sec=int(time[:2])*360000+int(time[2:4])*6000+int(time[
4:6])*100+int(time[6:8])
 return sec

导入成交信息
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020. csv')][1:]

定义MA相关变量
MAarray = []
MA = []
MAValue = 0
STime = TimetoNumber('08450000')
Cycle = 6000
MAlen = 10

开始进行MA计算
for i in I020:
 time=i[0]

 price=int(i[4])
 if len(MAarray)==0:
 MAarray+=[price]
 else:
 if TimetoNumber(time)<STime+Cycle:
 MAarray[-1]=price
 else:
 if len(MAarray)==MAlen:
 MAarray=MAarray[1:]+[price]
 else:
 MAarray+=[price]
 STime = STime+Cycle
 MAValue=float(sum(MAarray))/len(MAarray)
 MA.extend([MAValue])

将时间字符串转换至时间格式
Time = [datetime.datetime.strptime(line[0],"%H%M%S%f")
 for line in I020]
通过mdates.date2num函数，将datetime时间格式转换为绘图专
用的时间格式
Time1 = [mdates.date2num(line) for line in Time]
价格由字符串转为数值
Price = [int(line[4]) for line in I020]

定义图表对象
ax = plt.figure(1) #第一张图片
ax = plt.subplot(111) #该张图片仅一个图案
以上两行可简写为如下一行
fig,ax = plt.subplots()

定义title
plt.title('Price&MA Line')
绘制价格折线图
ax.plot_date(Time1, Price, 'k-')
绘制MA折线图
ax.plot_date(Time1, MA, 'r-')

定义x轴
hfmt = mdates.DateFormatter('%H:%M:%S')
ax.xaxis.set_major_formatter(hfmt)

显示绘制图表
plt.show()

绘制图表，如图3-2所示，其中较浅色（平

滑）的线为MA线。

图3-2

技巧29 【概念】委托档的意义与用法

在期货交易所的报价表格中，有一个表为商品

累计委托量信息（I030），该表的表头如下：

时间,商品,委托买笔数,委托买手数,委托

卖笔数,委托卖手数

期货分为买、卖方，而每次委托下单都是1笔

委托手数，手数则由交易者自订，最高限制为每笔

单100手[1]。例如：

8305131,TXFH7,129,388,146,479

这笔数据所代表的意思是，目前时间为8点30

分51.31秒，委托买笔为129 笔，委托买手数为388

手，委托卖笔为146笔，委托卖手数为479手。这笔

数据也隐含另外一个意思，只要分别将买卖的总手

数除以总笔数，就代表平均买的手数为3.01手，卖

的平均手数为3.28 手，卖方的平均手数较高，代表

空方平均每笔订单的交易量较高，可能是交易大

户，此时可以将委托簿信息整合为策略的趋势判

断。

技巧30 【程序】价格折线和委托总量差
图

了解委托的用法及其意义以后，就可以开始绘

制委托相关的图了。本技巧介绍的是委托量差图。

委托量差就是将委托的买方总量与卖方总量相减。

例如，买方总量为10 000，卖方总量为12 000，此

时的委托则为卖方多2 000。

根据一整天的委托数据来看，走势与价格折线

图有什么关系呢？下面通过绘制折线图来观察一

下。

在Python中，一个图表要绘制多图形，可以通

过add_subplot函数来实现。add_subplot函数的参数

是3个数字，分别表示“总行数”“总列数”“第几个图

表”。例如，add_subplot (2,1,1)代表该图形

为“2”行“1”列图表中的第“1”个图形。

add_subplot(2,1,1)也可以由add_subplot(211)简写来

取代。

下面是示意程序代码，可以通过该程序代码来

进行多图形绘制。

定义图表对象
fig = plt.figure(1)
定义第一张图案在图表的位置
ax1 = fig.add_subplot(211)
ax1.plot()

定义第二张图案在图表的位置
ax2 = fig.add_subplot(212)
ax2.plot()

以下是绘制折线图和走势折线图的程序代码。

文件名：30-1.py

-*- coding: UTF-8 -*-

导入相关包及函数
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import datetime

导入成交信息
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020.csv')][1:]
将时间字符串转换至时间格式
MTime = [datetime.datetime.strptime(line[0],"%H%M%S%f"
) for line in I020]
通过mdates.date2num函数，将datetime时间格式转换为绘图专
用的时间格式
MTime1 = [mdates.date2num(line) for line in MTime]
将价格由字符串转为数值
Price = [int(line[4]) for line in I020]

定义图表对象
fig = plt.figure(1)
定义第一张图案在图表的位置
ax1 = fig.add_subplot(211)
绘制价格折线图
ax1.plot_date(MTime1, Price, 'b-')

导入委托信息
I030 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I030. csv')][1:]
将时间字符串转换至时间格式
OTime = [datetime.datetime.strptime(line[0],"%H%M%S%f"
) for line in I030]
通过mdates.date2num 函数，将datetime 时间格式转换为绘图
专用的时间格式
OTime1 = [mdates.date2num(line) for line in OTime]
计算委托总量差
Amount = [int(line[3])-int(line[5]) for line in I030]

定义第二张图案在图表的位置
ax2 = fig.add_subplot(212)
绘制委托价格总量差图
ax2.plot_date(OTime1, Amount, 'r-')

定义x轴时间格式
hfmt = mdates.DateFormatter('%H:%M:%S')
ax1.xaxis.set_major_formatter(hfmt)
ax2.xaxis.set_major_formatter(hfmt)

plt.show()

绘制图表，如图3-3所示。

图3-3

由于台湾期货交易所的委托信息是从8:30开始

揭晓（祖国大陆地区的期货交易所日盘交易的连续

交易数据从9:00开始揭晓），所以读者可以发现图

3-3中的两个图形x轴并没有完全对齐，若要将两张

图表x轴对齐，则必须将I030的资料进行筛选，请参

考以下程序代码。

文件名：30-2.py

-*- coding: UTF-8 -*-

导入相关包及函数
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import datetime

导入成交信息
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020.csv')][1:]
将时间字符串转换至时间格式
MTime = [datetime.datetime.strptime(line[0],"%H%M%S%f"
) for line in I020]
通过mdates.date2num函数，将datetime时间格式转换为绘图专
用的时间格式
MTime1 = [mdates.date2num(line) for line in MTime]
价格由字符串转数值
Price = [int(line[4]) for line in I020]
定义图表对象
fig = plt.figure(1)

定义第一张图案在图表的位置
ax1 = fig.add_subplot(211)

绘制价格折线图
ax1.plot_date(MTime1, Price, 'b-')

导入委托信息
I030 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I030.csv')][1:]
I030 = [line for line in I030 if int(line[0]) > 845000
0]
将时间字符串转换至时间格式
OTime = [datetime.datetime.strptime(line[0],"%H%M%S%f"
) for line in I030]
通过mdates.date2num函数，将datetime时间格式转换为绘图专
用的时间格式
OTime1 = [mdates.date2num(line) for line in OTime]
计算委托总量差
Amount = [int(line[3])-int(line[5]) for line in I030]

定义第二张图案在图表的位置
ax2 = fig.add_subplot(212)

绘制委托价格总量差图
ax2.plot_date(OTime1, Amount, 'r-')
定义x 轴时间格式
hfmt = mdates.DateFormatter('%H:%M:%S')
ax1.xaxis.set_major_formatter(hfmt)
ax2.xaxis.set_major_formatter(hfmt)

plt.show()

绘制图表，如图3-4所示。

图3-4

两张图表时间轴对齐后，图表的相对应关系就

更容易识别了。

技巧31 【程序】绘制委托比重线图

委托的比重线有两种定义方式，一种是通过委

托的平均手数来绘制，另一种则是直接通过委托的

总委托手数来绘制。读者可以依照自己的看法绘制

不同的指标。

本例通过绘制委托的平均手数来绘制，绘制的

程序代码如下：

文件名：31.py

-*- coding: UTF-8 -*-

导入相关包及函数
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import datetime

导入成交信息
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020.csv')][1:]
将时间字符串转换至时间格式
MTime = [datetime.datetime.strptime(line[0],"%H%M%S%f"
) for line in I020]
通过mdates.date2num函数，将datetime时间格式转换为绘图专
用的时间格式
MTime1 = [mdates.date2num(line) for line in MTime]
价格由字符串转为数值
Price = [int(line[4]) for line in I020]

定义图表对象
fig = plt.figure(1)
定义第一张图案在图表的位置
ax1 = fig.add_subplot(211)
绘制价格折线图
ax1.plot_date(MTime1, Price, 'b-')

导入委托信息

I030 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I030.csv')][1:]
I030 = [line for line in I030 if int(line[0]) > 845000
0]
将时间字符串转换至时间格式
OTime = [datetime.datetime.strptime(line[0],"%H%M%S%f"
) for line in I030]
通过mdates.date2num函数，将datetime时间格式转换为绘图专
用的时间格式
OTime1 = [mdates.date2num(line) for line in OTime]
计算委托买方平均手数
BRatio = [float(line[3])/int(line[2]) for line in I030
]
计算委托卖方平均手数
SRatio = [float(line[5])/int(line[4]) for line in I030
]

定义第二张图案在图表的位置
ax2 = fig.add_subplot(212)
绘制委托价格总量差图
ax2.plot_date(OTime1, BRatio, 'r-')
ax2.plot_date(OTime1, SRatio, 'g-')

定义x轴时间格式
hfmt = mdates.DateFormatter('%H:%M:%S')
ax1.xaxis.set_major_formatter(hfmt)
ax2.xaxis.set_major_formatter(hfmt)

plt.show()

绘制图表，如图3-5所示。

图3-5

从平均委托买卖的数值中，有没有发现什么端

倪呢？请搭配成交价格线图一同研究。

技巧32 【程序】绘制价格线图和量能图

量能图简单来说就是一段时间间隔内的量，那

为什么称为“量能图”呢？因为通常交易市场在发动

趋势时，交易量会增大去创造更大的价格浮动，就

图表的角度来看，交易量与价格波动有绝对的关

系，因此被称为“量能图”。

价格线图在技巧27中已经做过介绍，本技巧介

绍如何计算特定期间的量。首先需了解期货交易所

项目的数据，期货交易所显示的数据中与成交量有

关的表头有单笔成交量、总量。在这个技巧中，通

过总量可以直接与上一个时间点的总量相减，这个

方式就会比将每笔成交量加总有效率，也不用担心

数据不齐全的问题了。

量能图通过直方图来呈现，在Python中是通过

matplotlib包中的bar函数来实现。bar函数常用的参

数分别为“x轴对象”“y轴对象”“宽度”。

本技巧将两个图表绘制在一张图上，所以会通

过add_subplot 函数来实现，在技巧30中有对该函数

的介绍。

进行量能图的绘制，程序代码如下：

文件名：32.py

-*- coding: UTF-8 -*-

导入相关包及函数
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import datetime

时间转数值
def TimetoNumber(time):
 time=time.zfill(8)
 sec=int(time[:2])*360000+int(time[2:4])*6000+int(time[
4:6])*100+int(time[6:8])
 return sec

导入成交信息
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020.csv')][1:]

定义量能变量
STime = TimetoNumber('08450000')
Cycle = 6000 #周期为60秒
lastAmount = 0
Qty=[]

计算每分钟的量能
for i in I020:
 time=i[0]
 amount=int(i[6])
 if TimetoNumber(time)<STime+Cycle:
 continue
 else:
 Qty.extend([[time,amount-lastAmount]])

 STime+=Cycle
 lastAmount = amount

将时间字符串转换至时间格式
MTime = [datetime.datetime.strptime(line[0],"%H%M%S%f"
) for line in I020]
通过mdates.date2num函数，将datetime时间格式转换为绘图专
用的时间格式
MTime1 = [mdates.date2num(line) for line in MTime]
价格由字符串转为数值
Price = [int(line[4]) for line in I020]
定义图表对象
fig = plt.figure(1)

定义第一张图案在图表中的位置
ax1 = fig.add_subplot(211)
绘制价格折线图
ax1.plot_date(MTime1, Price, 'b-')

将时间字符串转换至时间格式
QTime=[datetime.datetime.strptime(line[0],"%H%M%S%f")
for line in Qty]
通过mdates.date2num 函数，将datetime 时间格式转换为绘图
专用的时间格式
QTime1 = [mdates.date2num(line) for line in QTime]
取出量能的list
QValue=[line[1] for line in Qty]

定义第二张图案在图表的位置
ax2 = fig.add_subplot(212)
通过直方图来进行量能绘制
ax2.bar(QTime, QValue,width=0.0005)
通过直线图，也能够达成相同效果，程序如下
ax2.vlines(QTime,[0],QValue)

定义x 轴时间格式

hfmt = mdates.DateFormatter('%H:%M:%S')
ax1.xaxis.set_major_formatter(hfmt)
ax2.xaxis.set_major_formatter(hfmt)

plt.show()

绘制图表，如图3-6所示。

图3-6

若通过vlines函数来进行量能图绘制（在32.py

中有提供，可以自行取消注释来执行），vlines的

函数参数为“x轴对象”“y轴起始点”“y轴对象”，效果

如图3-7所示。

图3-7

技巧33 【概念】上下五档的含义与量能
变化

上下五档属于委托信息，但上下五档价和委托

信息是两个独立披露的表格。委托簿显示的信息为

市场的买卖方手数及笔数，上下五档则是显示目前

市场买卖成交的最佳上下五档价，也就是说，目前

市场上的买卖方认同的价位以上及以下的五档价。

举例来说，目前成交价为10 000点，上五档价可能

落在10 001～10 005点，下五档可能落在9 999～9

995点。

上五档价格代表目前有人委托了限价卖单，并

且价格高于目前市场成交价，而下五档价量代表目

前有人委托了限价买单，并且价格低于市场成交

价。

通常，许多投资人会根据上下五档价的变动来

决定进场以及出场的时机。上下五档价格如图3-8

所示。

图3-8

另外，交易所提供委托簿的数据已经囊括了上

下五档量。

内外盘也是通过上下五档价格来计算指标，上

五档称为“外盘”，下五档称为“内盘”，在后面章节

中会提到如何计算内外盘量。

技巧34 【程序】绘制上下五档的量能分
布表

期货交易所的上下五档价显示在表格I080，所

以本技巧将会通过I080的数据来进行介绍。

在绘制上下五档的量能图时，要先读取I080，

接着将上下五档的量分别进行加总，再进行图表绘

制。

从单独的量能分布图或许没办法直接看出与价

格的对应关系，所以我们会将价格折线图加上去，

看看是否有相对的关系。

若要同时绘制价格折线图与上下五档量能变化

图，就必须同时分别取I020、I080 的信息，并进行

绘制，程序代码如下：

文件名：34.py

-*- coding: UTF-8 -*-

导入相关包及函数
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import datetime

导入成交信息
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020. csv')][1:]
导入上下五档价量信息
I080 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I080. csv')][1:]
I080 = [line for line in I080 if int(line[0])>8450000
]

将时间字符串转换至时间格式
MTime = [datetime.datetime.strptime(line[0],"%H%M%S%f"
) for line in I020]
通过mdates.date2num 函数，将datetime 时间格式转换为绘图

专用的时间格式
MTime1 = [mdates.date2num(line) for line in MTime]
价格由字符串转为数值
Price = [int(line[4]) for line in I020]

定义图表对象
fig = plt.figure(1)
定义第一张图案在图表的位置
ax1 = fig.add_subplot(211)

绘制价格折线图
ax1.plot_date(MTime1, Price, 'b-')

将时间字符串转换至时间格式
UpDnTime=[datetime.datetime.strptime(line[0],"%H%M%S%f
") for line in I080]
通过mdates.date2num函数，将datetime时间格式转换为绘图专
用的时间格式
UpDnTime1 = [mdates.date2num(line) for line in UpDnTim
e]
取得下五档委托总量
DnQty=[(int(line[3])+int(line[5])+int(line[7])+int(lin
e[9])+int(line[11]))*-1 for line in I080]
取得上五档委托总量
UpQty=[int(line[13])+int(line[15])+int(line[17])+int(l
ine[19])+int(line[21]) for line in I080]

定义第二张图案在图表的位置
ax2 = fig.add_subplot(212)
绘制上下五档量能图
ax2.vlines(UpDnTime1,[0],UpQty,'r')
ax2.vlines(UpDnTime1,DnQty,[0],'g')

定义x轴时间格式
hfmt = mdates.DateFormatter('%H:%M:%S')
ax1.xaxis.set_major_formatter(hfmt)

ax2.xaxis.set_major_formatter(hfmt)

plt.show()

执行程序后，如图3-9所示。

图3-9

技巧35 【程序】绘制上下五档平均价格
走势图

期货交易所的上下五档价都显示在表格I080

中，所以本技巧将会通过I080的数据来进行处理与

图表绘制。我们先读取I080，接着将上下五档的价

格搭配量进行加权平均，再进行图表绘制。

若要同时绘制价格折线图与上下五档平均价格

变化图，就必须同时分别取I020、I080的信息，并

进行绘制，程序代码如下：

文件名：35.py

-*- coding: UTF-8 -*-

导入相关包及函数
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import datetime

导入成交信息
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020. csv')][1:]
导入上下五档价格信息
I080 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I080. csv')][1:]
I080 = [line for line in I080 if int(line[0])>8450000
]

将时间字符串转换至时间格式
MTime = [datetime.datetime.strptime(line[0],"%H%M%S%f"
) for line in I020]
通过mdates.date2num 函数，将datetime 时间格式转换为绘图
专用的时间格式
MTime1 = [mdates.date2num(line) for line in MTime]

价格由字符串转为数值
Price = [int(line[4]) for line in I020]

定义图表对象
fig = plt.figure(1)
定义第一张图案在图表的位置
ax1 = fig.add_subplot(111)
绘制价格折线图
ax1.plot_date(MTime1, Price, 'b-')

将时间字符串转换至时间格式
UpDnTime=[datetime.datetime.strptime(line[0],"%H%M%S%f
") for line in I080]
通过mdates.date2num 函数，将datetime 时间格式转换为绘图
专用的时间格式
UpDnTime1 = [mdates.date2num(line) for line in UpDnTim
e]
获取下五档加权平均价
DnAvgP=[(int(line[2])*int(line[3])+int(line[4])*int(l
ine[5])+int(line[6])*int(line[7])+int(line[8])*int(line
[9])+int(line[10])*int(line[11])) / (int(line[3])+int(
line[5])+int(line[7])+int(line[9])+int(line[11])) for l
ine in I080]
获取上五档加权平均价
UpAvgP=[(int(line[12])*int(line[13])+int(line[14])*int
(line[15])+int(line[16])*int(line[17])+int(line[18])*in
t(line[19])+int(line[20])*int(line[21])) /(int(line[13
])+int(line[15])+int(line[17])+int(line[19])+int(line[2
1])) for line in I080]

进行上下平均价格线图绘制
ax1.plot_date(UpDnTime1, DnAvgP, 'g-')
ax1.plot_date(UpDnTime1, UpAvgP, 'r-')

定义x轴时间格式
hfmt = mdates.DateFormatter('%H:%M:%S')

ax1.xaxis.set_major_formatter(hfmt)
plt.show()

其中，价格走势为蓝线，上五档平均价格走势

为红线，下五档平均价格走势为绿线。执行程序

后，如图3-10所示。

图3-10

技巧36 【概念】K线图的解读

K线又称为蜡烛线、阴阳线或红黑线等，源于

日本德川幕府时代，当时用来记录米价的波动，后

来被应用于股票与期货市场，在东南亚地区特别流

行，并发展出独到的一门K线形态学。

K线源于日本，被写作“罫”，而该字音译为

kei，因此就以第一个字K翻译为Kline，也就是现在

所说的K线。K线表示出一个时间区段[2]的4个价位

信息：开盘价（Open）、最高价（High）、最低价

（Low）、收盘价（Close）。这4个价位信息常简

称为OHLC。

说明　

K线代表一个时间区段内的数值信息呈

现出的一种图表变化，可视为统计信息的一

类。K线无法呈现逐笔的行情信息，如果要

了解每一笔的变化，需要读取tick数据（即

最小周期区间的逐笔信息，通俗来说就是每

跳信息）。

在K线中，我们会通过类似蜡烛的图形来表示

这4个信息，可以想象成一根直立的蜡烛，上下都

有烛心，蜡烛本体的部分为开盘与收盘的范围，上

面烛心的顶端是最高价，而下面烛心的底端为最低

价，如图3-11所示。

图3-11

如果收盘价高于开盘价，代表趋势往上，会以

红色（用红色表示上涨；而欧美相反，以绿色表示

安全）表示，这时开盘价就在下方，收盘价在上

方；如果收盘价低于开盘价，代表趋势往下，会以

绿色（用绿色表示下跌；而欧美相反，会以红色表

示警告）表示，这时开盘价就在上方，收盘价在下

方，如图3-12所示。

图3-12

另一种表现方式以实心表示上涨（红K），空

心表示下跌（绿K），如图3-13所示。

图3-13

而K线是目前交易指标中常被用来观察价格变

化的图表，依照每个投资人交易风格的不同会关注

不同周期的K线。长线投资人往往会看月K、日K；

短线交易者，则会看30分K、1分K等，依据K线不

同的表现进行解读。

技巧37 【程序】绘制K线图

在Python中，matplotlib包中有finance系列，提

供的函数都是用来进行K线图表绘制以及量能图绘

制的。在matplotlib包官方网站中，有该系列的详细

介绍。

本技巧将会通过finance系列函数来制作K线

图，大家可以通过网络上的免费信息来绘制某些商

品的日K，但这里将教大家如何通过逐笔数据转换

成K线图的数据（时间周期可自定义）。若要调整

时间周期，可以修改本技巧代码中的Cycle变量，

示例默认的时间周期为1分钟（6 000，时间单位最

小至百分之一秒），可依照需求设置为3分（18

000）、5分（30 000）、10分（60 000）等时间周

期。

该包中绘制K线图的函数为candlestick_ohlc、

candlestick2_ohlc，差别在于输入的数据格式稍微不

同。本例将会通过candlestick_ohlc函数来进行介

绍，candlestick_ohlc函数所需要的数据称为

quotes。quotes实际上是一个list对象，其中包含“时

间”“开盘价”“最高价”“最低价”“收盘价”等字段。

在Python中，K线图与量能指标并不是通过同

一个函数就能进行绘制的，必须分别绘制。本技巧

将会依序介绍绘制K线图以及增加量能指标。

K线图的数据字段分为时间、开盘价、最高

价、最低价、收盘价，并需要通过I020的成交价来

配合计算，而每分钟的量能则需要通过成交量来进

行计算。

以下是计算K线以及绘制K线的程序。

文件名：37-1.py

-*- coding: UTF-8 -*-

导入相关包及函数

import datetime
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib.finance import candlestick_ohlc

时间转数值
def TimetoNumber(time):
 time=time.zfill(8)
 sec=int(time[:2])*360000+int(time[2:4])*6000+int(ti
me[4:6])*100+int(time[6:8])
 return sec

数值转时间
def NumbertoTime(sec):
 HH=sec/360000;
 strHH=('00'+str(int(HH)))[-2:]
 MM=(sec-(int(HH)*360000))/6000;
 StrMM=('00'+str(int(MM)))[-2:]
 SS=(sec-(int(HH)8360000)-(int(MM)*6000))/100;
 StrSS=('00'+str(int(SS)))[-2:]
 sss=sec-(int(HH)*360000)-(int(MM)*6000)-int(SS)*100
;
 return strHH+":"+strMM+":"+strSS;

获取成交信息
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020. csv')][1:]
设置K线初始变量
STime = TimetoNumber('08450000')
设置K线周期
Cycle = 6000
OHLC=[]
lastAmount=0
计算每分钟的OHLC
for i in I020:
 time = TimetoNumber(i[0])

 price = int(i[4])
 amount = int(i[6])
 if len(OHLC)==0:
 OHLC+=[[mdates.date2num(datetime.datetime.strptime(Nu
mbertoTime(STime+Cycle),"%H%M%S")),price,price,price,pr
ice,0]]
 if time<STime+Cycle:
 if price>OHLC[-1][2]:
 OHLC[-1][2]=price
 if price<OHLC[-1][3]:
 OHLC[-1][3]=price
 OHLC[-1][4]=price
 else:
 OHLC[-1][5]=amount-lastAmount
 lastAmount=amount
 STime+=Cycle
 OHLC+=[[mdates.date2num(datetime.datetime.strptime
(NumbertoTime(STime+Cycle),"%H%M%S")),price,price,price
,price,0]]

定义图表对象
fig = plt.figure(1)
定义第一张图案在图表的位置
ax1 = fig.add_subplot(111)

绘制K线图
candlestick_ohlc(ax1, OHLC, width=0.0005, colorup='r',
colordown='g')

定义x轴时间格式
hfmt = mdates.DateFormatter('%H:%M')
ax1.xaxis.set_major_formatter(hfmt)

plt.show()

绘制K线图，如图3-14所示。

图3-14

若要加上每分钟量，则必须另外绘制上去，以

下是K线图加上量的完整程序。

文件名：37-2.py

-*- coding: UTF-8 -*-

导入相关包及函数
import datetime
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import matplotlib
from matplotlib.finance import candlestick_ohlc

时间转数值
def TimetoNumber(time):
 time=time.zfill(8)

 sec=int(time[:2])*360000+int(time[2:4])*6000+int(ti
me[4:6])*100+int(time[6:8])
 return sec

数值转时间
def NumbertoTime(sec):
 HH=sec/360000;
 StrHH=('00'+str(int(HH)))[-2:]
 MM=(sec-(int(HH)*360000))/6000;
 Strmm=('00'+str(int(MM)))[-2:]
 SS=(sec-(int(HH)*360000)-(int(MM)*6000))/100;
 StrSS=('00'+str(int(SS)))[-2:]
 sss=sec-(int(HH)*360000)-(int(MM)*6000)-int(SS)*100;
 return strHH+":"+strMM+":"+strSS;

获取成交信息
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020. csv')][1:]
设置K线初始变量
STime = TimetoNumber('08450000')
设置K线周期
Cycle = 6000
OHLC=[]
lastAmount=0
计算每分钟的OHLC
for i in I020:
 time = TimetoNumber(i[0])
 price = int(i[4]
 amount = int(i[6])
 if len(OHLC)==0:
 OHLC+=[[mdates.date2num(datetime.datetime.strpti
me(NumbertoTime(STime+Cycle),"%H%M%S")),price,price,pri
ce,price,0]]
 if time<STime+Cycle:
 if price>OHLC[-1][2]:
 OHLC[-1][2]=price

 if price<OHLC[-1][3]:
 OHLC[-1][3]=price
 OHLC[-1][4]=price
 else:
 OHLC[-1][5]=amount-lastAmount
 lastAmount=amount
 STime+=Cycle
 OHLC+=[[mdates.date2num(datetime.dateti
me.strptime(NumbertoTime(STime+Cycle),"%H%M%S")),price,
price,price,price,0]]

定义图表对象
fig = plt.figure(1)
定义第一张图案在图表的位置
ax1 = fig.add_subplot(111)

绘制K线图
candlestick_ohlc(ax1, OHLC, width=0.0005, colorup='r',
colordown='g')

设置K线图占图表版面比例
pad = 0.25
yl = ax1.get_ylim()
ax1.set_ylim(yl[0]-(yl[1]-yl[0])*pad,yl[1])

定义时间数组、量数组
Time= [line[0] for line in OHLC]
Qty= [line[5] for line in OHLC]

设置两张图表重叠
ax2 = ax1.twinx()
#绘制量能图
ax2.bar(Time, Qty, color='gray', width = 0.0005, alpha
= 0.75)
将量能图定位在K线图下方
ax2.set_position(matplotlib.transforms.Bbox([[0.125,0.1

1],[0.9,0.275]]))

定义x轴时间格式
hfmt = mdates.DateFormatter('%H:%M')
ax1.xaxis.set_major_formatter(hfmt)

plt.show()

绘制K线图，如图3-15所示。

图3-15

技巧38 【程序】绘制价格和点位图表

绘制价格和点位图表，可在折线图中特定价格

上标示点位。在台指期货中，我们可以通过标记点

位来标注特定的时间价格。例如：某个时间点突然

产生大笔的成交量，或者是在折线图中标示期权目

前的履约价格。

在本示例中，会获取成交价量信息，通过数据

中的成交买笔数与成交卖笔数来制作一个有趣的指

标。由于这两个字段都是累积信息，因此当我们可

以得知目前的单笔成交信息中买的增加笔数以及卖

的增加笔数时，就可以得知一笔买单吃掉了多少笔

卖单或者一笔卖单吃掉了多少笔买单。下面就用这

个指标来绘制点位图表。

简单来说，假设1笔买单吃了30笔卖单，即这

笔成交信息可能代表着1个人与30个人的委托单成

交，也就代表着目前市场的大户可能在买方。本技

巧通过将1笔买单成交到30笔卖单或者1笔卖单成交

到30笔买单来做点位图的绘制。

绘制点位图表，要先了解x轴与y轴的数据形

态，否则无法正确将点位绘制上去。程序代码如

下：

文件名：38.py

-*- coding: UTF-8 -*-

导入相关包及函数
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import datetime

取得成交信息
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020.csv')][1:]
BPoint=[]
SPoint=[]
for i in range(1,len(I020)):
 diffBOrder=int(I020[i][7])-int(I020[i-1][7])
 diffSOrder=int(I020[i][8])-int(I020[i-1][8])
 if diffBOrder==1 and diffSOrder>=30:
 BPoint+=[I020[i]]
 if diffSOrder==1 and diffBOrder>=30:
 SPoint+=[I020[i]]

将时间字符串转换至时间格式
Time = [datetime.datetime.strptime(line[0],"%H%M%S%f")
 for line in I020]
通过mdates.date2num函数，将datetime时间格式转换为绘图专
用的时间格式

Time1 = [mdates.date2num(line) for line in Time]
价格由字符串转为数值
Price = [int(line[4]) for line in I020]

将时间字符串转换至时间格式
BPTime = [datetime.datetime.strptime(line[0],"%H%M%S%f
") for line in BPoint]
通过mdates.date2num函数，将datetime时间格式转换为绘图专
用的时间格式
BPTime1 = [mdates.date2num(line) for line in BPTime]
价格由字符串转为数值
BPPrice = [int(line[4]) for line in BPoint]

将时间字符串转换至时间格式
SPTime = [datetime.datetime.strptime(line[0],"%H%M%S%f
") for line in SPoint]
#通过mdates.date2num函数，将datetime时间格式转换为绘图专用
的时间格式
SPTime1 = [mdates.date2num(line) for line in SPTime]
#价格由字符串转为数值
SPPrice = [int(line[4]) for line in SPoint]

定义图表对象
ax = plt.figure(1) #第一张图片
ax = plt.subplot(111) #该张图片仅一个图案

以上两行可简写为如下一行
fig,ax = plt.subplots()

定义title
plt.title('Price Line')
plt.xlabel('Time')
plt.ylabel('Price')

绘制图案
#plot_date(x 轴对象, y 轴对象, 线风格)

ax.plot_date(Time1, Price, 'k-')
ax.plot_date(BPTime1, BPPrice, 'r.',markersize='8')
ax.plot_date(SPTime1, SPPrice, 'g.',markersize='8')

定义x 轴
hfmt = mdates.DateFormatter('%H:%M:%S')
ax.xaxis.set_major_formatter(hfmt)
显示绘制图表

plt.show()

绘制图表，如图3-16所示。

图3-16

该图因印刷时的颜色无法凸显标记点，建议实

操后按照需求及喜好调整标注点大小、颜色。标注

点大小由plot函数中的markersize参数调整。

技巧39 【程序】绘制绩效图表

当取得交易记录后，就可以依照交易回传的数

据加以计算分析。本技巧将会通过以下文件绘制绩

效图表。

profit.log文件内容如下：

1,TXFA3,2012-12-20,09:29:00,7615,S,1,2012-12-20,13:24:5
9,7567
2,TXFA3,2012-12-21,09:44:00,7516,B,1,2012-12-21,09:48:3
9,7504
3,TXFA3,2012-12-24,09:23:00,7546,B,1,2012-12-24,13:24:5
6,7522
4,TXFA3,2012-12-25,09:20:00,7543,B,1,2012-12-25,13:24:5
7,7660
5,TXFA3,2012-12-26,09:17:00,7666,S,1,2012-12-26,13:24:5
7,7649
6,TXFA3,2012-12-27,09:35:00,7652,S,1,2012-12-27,13:24:5
7,7626
7,TXFA3,2012-12-28,09:31:00,7680,B,1,2012-12-28,13:24:5
7,7693
8,TXFA3,2013-01-02,09:31:00,7711,B,1,2013-01-02,09:41:3
8,7703
9,TXFA3,2013-01-03,09:14:00,7822,S,1,2013-01-03,13:24:5
9,7819

...
48,TXFC3,2013-03-11,09:49:00,8021,S,1,2013-03-11,10:36:
10,8026
49,TXFC3,2013-03-12,09:27:00,8047,S,1,2013-03-12,09:36:
20,8053
50,TXFC3,2013-03-13,09:32:00,8031,S,1,2013-03-13,13:24:
59,7988

某些策略会符合某些时期的趋势条件，但不代

表那些策略会符合长期市场的走势，毕竟交易市场

是瞬息万变的，若要设计出一个长期稳定获利的策

略，则必须要经过长期回测的测试。

以下为绘制绩效图表的代码。

文件名：39.py

-*- coding: UTF-8 -*-

导入相关包及函数
import matplotlib.pyplot as plt

获取成交信息
log = [line.strip('\n').split(",") for line in open('p
rofit.log')]
profit=0
profitList=[]
for i in log:

 if i[5]=="B":
 profit+=int(i[9])-int(i[4])
 if i[5]=="S":
 profit+=int(i[4])-int(i[9])
 profitList+=[profit]
print profitList

定义图表对象
ax = plt.figure(1) #第一张图片
ax = plt.subplot(111) #该张图片仅一个图案
以上两行可简写为如下一行
fig,ax = plt.subplots()

定义title
plt.title('Profit Line')
plt.xlabel('Time')
plt.ylabel('Profit')

绘制图案
plot_date(x 轴对象, y 轴对象, 线风格)
ax.plot(profitList, 'k-')

显示绘制图表
plt.show()

绘制完成后，如图3-17所示。

图3-17

[1]　期货交易所不同品种的期货有不同的规定，详

见交易所网站。

[2]　一般常见的时间区段包括分、时、日、周、

月、季，因此在K 线之前会加上时间单位，如“日K

线”代表以日为单位的开高低收4个价格。时间区段

越短，精准度越高。一般坊间能取到的最小单位

为“分K”，如果能取到秒以下的信息就属于高频数

据的范畴了。

第4章　进行历史回测

为什么程序交易要进行历史回测？或许对于一

些市场上的主观的交易老手而言，量化交易并不管

用，也无须进行历史回测；但对于经验不够丰富的

交易人来说，历史回测或许能帮助他们更快地找到

稳定获利的机会。对于程序交易者而言，历史回测

是否必要？答案是“是”。因为量化交易程序放大了

数据的重要性，这与人的本能相违背，许多数据一

闪即逝，也有许多数据实际存在但总被人忽略。这

些情况在量化回测中都是必须被正视的话题，本章

将会讲述构建历史回测的细节，让大家快速投入量

化回测的世界。

技巧40 【概念】认识历史回测

当我们在市场上交易，对于当前市场的趋势变

动没有把握时，就需要历史回测来验证自己的想法

是否可行。历史回测不仅仅只是数学量化模型的计

算，同时也包含了量化模型以外的市场行为分析。

以往大家没有完整的历史数据时，只能依赖网

络上散播的统计信息、盘后数据，没有办法准确地

进行历史回测，而现在是大数据时代，量化回测已

经成为一门不可或缺的技术。

回测的意思就是使用历史数据回溯测试。当我

们有一个交易的想法时，首先会将规则明确列出并

写成具体的代码，接着就会拿出历史数据加以验

证，看看我们的想法在之前的交易日中具体成效如

何。这时如果拥有足够多的历史数据，就能更准确

地了解可用性，并在未来的预测中提供更准确的依

据。

技巧41 【概念】回测算法架构

期货交易，简单来说就是一买一卖，赚取价

差。算法的目的在于将投资人的交易行为量化转化

为代码。程序化交易中的回测算法与实盘交易算法

有不同的编写方式，所以本书才会对回测和实盘分

别进行介绍。

回测算法就是通过历史数据，模拟真实的开盘

环境，进行数据解读、计算、判断，决定是否建

仓、平仓，获取成交信息。

量化回测的必要步骤：

（1）读取历史数据；

（2）转换回测指标；

（3）历史算法设计；

（4）历史回测回传明细格式设计；

（5）绩效计算。

而在上述步骤中，每一个部分都是不可或缺

的，在技巧42当中会依序介绍相关的流程。

技巧42 【概念】建立回测流程

在技巧41中，已经简述了回测的步骤，本技巧

将会依序阐述相关的流程。本书也会提供一段历史

数据供大家进行历史回测。

1．读取历史数据

本技巧要介绍的“读取历史数据”不仅仅是通过

函数去取得数据，还要去运用数据。

（1）获取数据函数

算法程序必须先获取交易指标数据或历史报

价。我们会通过open函数获取文件内的数据。

用Python处理文件，常见的方式是通过open、

read来读取数据，也可以直接通过列表推导式（list

comprehension）来直接将文件存成list对象，常用

的用法如下：

变量名称= [循环变量for循环变量in

open（'读取文件'）]

（2）运用历史数据方式

在读取数据后，如何运用这些数据才是重点，

因为交易所历史数据的种类是属于按时间顺序的数

据，而交易算法与时间字段也息息相关，所以从某

个程度上来说时间格式的掌握是相当重要的。

在Python中，我们会读取文件并存成一个list对

象。读取数据的方式基本上有两种，原理都是通过

循环来进行数据筛选，但是代码编写上会有很大的

差异。

第一种是通过for循环，逐笔判断list当中的

值，通常用于有较多逻辑判断的情况。例如，回测

的进出场判断，在本章后面的示例中会应用到。

第二种是使用列表推导式，简单来说就是可以

直接在list中进行循环筛选。在简易的应用中可以用

该方式来解决，例如数据处理、筛选字段、简易的

逻辑判断筛选数据。以下是一般性的数据读取、筛

选字段和操作介绍。

首先获取数据（文件名：

Futures_20170815_I020.csv），存成I020变量。

>>> I020 = [line for line in open('Futures_20170815_I0
20.csv')]
>>>
>>> I020[0:5]
['INFO_TIME,MATCH_TIME,PROD,ITEM,PRICE,QTY,AMOUNT,MATCH
_BUY_CNT,MATCH_SELL_CNT\n', '8450010,8450009,TXFH7,128,
10310,732,732,202,349\n', 8450011,8450010,TXFH7,128, 10
309,4,736,206,350\n', '8450011,8450010,TXFH7,128,10309,
1,737,207,351\n',
'8450011,8450010,TXFH7,128,10310,1,738,208,352\n']

接着除去数据表头，舍去每行的换行符

（\n）。

>>> I020a = [line.strip("\n") for line in I020[1:]]
>>> I020a[0:5]
['8450010,8450009,TXFH7,128,10310,732,732,202,349', '84
50011,8450010,TXFH7,128,
10309,4,736,206,350', '8450011,8450010,TXFH7,128,10309,
1,737,207,351', '8450011, 8450010,TXFH7,128,10310,1,738
,208,352', '8450011,8450010,TXFH7,128,10310,1,739, 209,
353']

然后将数据通过逗号分隔。

>>> I020b = [line.split(",") for line in I020a]
>>> I020b[0:5]
[['8450010', '8450009', 'TXFH7', '128', '10310', '732',
 '732', '202', '349'],
['8450011', '8450010', 'TXFH7', '128', '10309', '4', '7

36', '206', '350'],
['8450011', '8450010', 'TXFH7', '128', '10309', '1', '7
37', '207', '351'],
['8450011', '8450010', 'TXFH7', '128', '10310', '1', '7
38', '208', '352'],
['8450011', '8450010', 'TXFH7', '128', '10310', '1', '7
39', '209', '353']]

最后依照每个使用者的需求，可以直接对数据

进行初步筛选。这里进行时间筛选（取9点之后的

数据）。

>>> I020c = [line for line in I020b if int(line[0]) >
9000000]
>>> I020c[0:5]
[['9000006', '8595997', 'TXFH7', '128', '10311', '2', '
12906', '6457', '6827'],
['9000006', '9000000', 'TXFH7', '128', '10311', '1', '1
2907', '6458', '6828'],
['9000018', '9000010', 'TXFH7', '128', '10311', '1', '1
2908', '6459', '6829'],
['9000018', '9000012', 'TXFH7', '128', '10311', '4', '1
2912', '6461', '6830'],
['9000031', '9000024', 'TXFH7', '129', '10311', '1', '1
2914', '6463', '6831']]

两种方式各有优缺点，假如要依照时间序列判

断目前是否锁定收益出场，可以通过for循环来逐笔

判断；若要获取特定时期的价格高低点，则会直接

通过Python的list搭配max、min来完成。

2．转换回测指标

“转换回测指标”就是将现有的历史数据进一步

转换成指标，而每个交易者对于指标的定义都不尽

相同，所以必须明确定义指标。

以下提供常见的交易指标，供读者参考。

（1）移动平均价

假如在期货交易市场上的交易算法是通过移动

平均（MA）为主要的交易指标，那就会定义移动

平均的周期以及长度。假设是10分MA，周期就是

分钟，长度就是10，而显示出来的信息也就是由10

分钟的每分钟收盘价所计算的指标。

若10分MA通过前10分钟的收盘价计算，那就

只能看到上一分钟的状态，无法掌控最新的市场价

格动态。若获取tick数据，也就是逐笔信息，就能

够依照最新的价格来进行计算，也就是说，从原本

的10分钟收盘价变为9分钟的每笔收盘价加上当前

的tick计算，可以即时地反映最新的市场动态。

在技巧24中，详细地介绍过如何动态计算移动

平均价，可至第2章参考。

（2）当日价格高低点

回测指标所指的是当日的高低点，并非是直接

通过历史数据获取当天的最高价和当天的最低价，

而是回测时逐笔地去计算当日最高价和最低价。若

回测当前时间为09:50:35，则目前的最高价和最低

价就是09: 50:35以前的最高价和最低价。

若直接取得当日高低点，可能会造成程序逻辑

上的错误，所以在定义指标前必须先厘清观念。

动态计算当日最高点和当日最低点，代码如

下：

文件名：42-1.py

-*- coding: UTF-8 -*-

取I020，依照逗号分隔，并将分隔符号去除
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020.csv')][1:]

定义变量初始值
high=int(I020[0][4])
low=int(I020[0][4])

开始计算高低点
for i in I020[1:]:
 price = int(i[4])
 if price > high:
 high=price
 if price < low:
 low=price
 print ("Time:",i[0]," Price:",price," High:",high," Lo
w:",low)

若要将指标存成新文件，可以将上面示例程序

中的print函数改为write函数。写入文件的细节请参

考技巧11。

通过CMD执行Python指令，输出如下：

>python 42-1.py
Time: 8450011 Price: 10309 High: 10310 Low: 10309
Time: 8450011 Price: 10309 High: 10310 Low: 10309
Time: 8450011 Price: 10310 High: 10310 Low: 10309
Time: 8450011 Price: 10310 High: 10310 Low: 10309
Time: 8450011 Price: 10309 High: 10310 Low: 10309
Time: 8450011 Price: 10309 High: 10310 Low: 10309
...
Time: 8450043 Price: 10312 High: 10312 Low: 10309
Time: 8450043 Price: 10312 High: 10312 Low: 10309
Time: 8450056 Price: 10310 High: 10312 Low: 10309
Time: 8450056 Price: 10313 High: 10313 Low: 10308
Time: 8450056 Price: 10313 High: 10313 Low: 10308
Time: 8450056 Price: 10310 High: 10313 Low: 10308
Time: 8450056 Price: 10313 High: 10313 Low: 10308
Time: 8450056 Price: 10313 High: 10313 Low: 10308

（3）内外盘量

内外盘是大家常用的指标之一，一般的计算方

式为下一笔成交价落在上一档价（卖方价格）还是

下一档价（买方价格），若价格落在上一档价时，

则为“外盘价”；落在下一档价时，则为“内盘价”。

内外盘还有另外一种算法，就是当成交价大于

上一笔成交价时，则为“外盘量”；反之，则为“内

盘量”。

计算内外盘量的总和可以用来判断目前的多空

方趋势：若外盘量较多，则多方趋势较空方趋势

重，价格往上的概率较高；反之，若内盘量较多，

则空方趋势较多方趋势重，价格往下的概率较高。

动态计算当天的内外盘量，预测当天的多空趋

势，代码如下：

文件名：42-2.py

-*- coding: UTF-8 -*-

取I020，依照逗号分隔，并将分隔符号去除
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020.csv')][1:]

定义变量初始值

lastPrice=int(I020[0][4])
outDesk=0
inDesk=0

开始计算内外盘
for i in I020[1:]:
 price = int(i[4])
 qty = int(i[5])
 if price > lastPrice:
 outDesk+=qty
 if price < lastPrice:
 inDesk+=qty
 print ("Time:",i[0]," Price:",price," OutDesk:",outDes
k," InDesk:",inDesK)
 lastPrice = price

若要将指标存成新文件，可以将上面示例程序

中的print函数改为write函数。写入文件的细节请参

考技巧11。

本示例是通过单纯的成交价比对计算的，若要

通过上下五档价来做内外盘判断计算，则需要搭配

I080数据计算。

通过CMD执行Python指令，输出如下：

>python 42-2.py

Time: 8450011 Price: 10309 OutDesk: 0 InDesk: 4
Time: 8450011 Price: 10309 OutDesk: 0 InDesk: 5
Time: 8450011 Price: 10310 OutDesk: 0 InDesk: 5
Time: 8450011 Price: 10310 OutDesk: 0 InDesk: 5
Time: 8450011 Price: 10309 OutDesk: 0 InDesk: 7
Time: 8450011 Price: 10309 OutDesk: 0 InDesk: 8
...
Time: 8450456 Price: 10308 OutDesk: 513 InDesk: 91
Time: 8450468 Price: 10309 OutDesk: 513 InDesk: 93
Time: 8450468 Price: 10309 OutDesk: 513 InDesk: 97
Time: 8450468 Price: 10308 OutDesk: 513 InDesk: 98
Time: 8450481 Price: 10309 OutDesk: 513 InDesk: 99
Time: 8450481 Price: 10308 OutDesk: 513 InDesk: 100
Time: 8450481 Price: 10309 OutDesk: 513 InDesk: 104

（4）委托手数差值

委托手数差值是通过委托信息来计算的，会将

委托的买方手数以及委托的卖方手数相减。若值为

负数，则代表目前委托买方手数较少，代表目前市

场委托趋势较偏向空方；反之，若值为正数，则代

表卖方手数较少，代表目前市场委托趋势较偏向多

方。

（5）委托比重

委托比重指标是从委托信息计算而来的，会将

委托的买卖方分别用手数除以笔数来计算买卖方的

平均单笔手数，进而通过比重的方式计算该指标。

假设委托的买方为100手、50笔，卖方为80手、20

笔，则委托的买方平均手数为2手，卖方平均手数

为4手，进而计算出多方委托比重为33.33%，空方

委托比重为66.67%。

这个指标与委托手数差值指标最大的不同在于

委托比重不会受到手数绝对的影响，就算买方的手

数相当多，但笔数也相对多，还是有可能被空方趋

势胜过。

（6）成交买卖单笔数

成交买卖单笔数是由成交信息获取的，通常交

易者会根据成交买卖笔数来做趋势的判断，因为对

于累积成交量，买卖方是相等的，所以当成交买笔

数小于成交卖笔数时，代表成交买方平均手数大于

卖方平均手数，这时就可以判断买方趋势大于卖方

趋势。

3．历史算法设计

由于回测算法获取的是历史数据，因此在编写

回测算法时可以依照需求去撷取需要的部分信息。

假设交易算法只操作当日开盘的第二个小时，那么

通过子集合的函数去获取那一段期间的数据即可，

不必再从文件的开始读取到结尾。

回测算法也是交易算法，所以依照流程会有趋

势判断、进场、出场和止损等相关步骤。下面会通

过简单的程序流程来帮助大家了解如何操作。

文件名：42-3.py

-*- coding: UTF-8 -*-
取I020，依照逗号分隔，并将分隔符号去除
I020 = [line.strip('\n').split(",") for line in open('

Futures_20170815_I020. csv')][1:]

起始时间至结束时间
I020a= [line for line in I020 if int(line[0])>9000000
and int(line[0])<11000000]

初始仓位
index=0
for i in I020a:
 if index==0:
 if 进场条件:
 OrderTime=i[0] #下单时间记录
 OrderPrice=i[4] #下单价格记录
elif index!=0:
 if 出场条件:
 OrderTime=i[0] #下单时间记录
 OrderPrice=i[4] #下单价格记录

该策略仅展示用途，并没有实际用意，要编写

回测算法，可以通过上述概念来进行，但实际上还

是有许多细节需要注意。

4．历史回测回传明细格式设计

回测交易格式的设计，是希望完整地保存回测

交易记录，并且真实地表达交易事件的细节，最后

让这些记录能够被适度地分析，让回测的效益最佳

化。

以下是交易事件回传格式：

交易序列号、交易商品、开仓日期、开仓时间、开仓价格、买卖、数
量、平仓日期、平仓时间、平仓价格、注记、税金、手续费、策略编
号、交易者编号
SerialNumber,Good,ODate,OTime,OPrice,BorS,Number,CDate,
CTime,CPrice,Comment,Tax,Fee,
PID,ID

读者看到这里，或许会好奇，为什么没有盈亏

字段呢？首先，通过原有的数据字段就可以计算出

盈亏，为了避免表格字段过于冗长，所以不另外设

置字段。另外，若要观察回测的效益，盈亏也并非

绝对标准。怎么说呢？就好比一个回测程序虽然说

一个月的总盈亏是−1000，但它并不代表就是一个

不好的策略，或许买方的头寸净利是3000，卖方的

头寸净利是−4000，只要将这个策略设置为只做买

方，就会是一个赚钱的策略。除了盈亏，也有很多

角度可以分析策略的好坏，例如：交易时间、持仓

时间等。除盈亏以外的分析对于交易而言也是相当

重要的，后面会有介绍。

每个字段都具有存在的价值，而第一个字段交

易序列号代表唯一值，所以每笔数据并不会发生重

复的现象。上述交易回传格式不一定符合每种交易

类型的需求，可以依照自己的需求做更改。

以下是开盘买、收盘卖的策略，做一个基础的

交易回传明细：

文件名：42-4.py

-*- coding: UTF-8 -*-

取I020，依照逗号分隔，并将分隔符号去除
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020. csv')][1:]
OrderTime=I020[0][0] #下单时间记录
OrderPrice=int(I020[0][4]) #下单价格记录
CoverTime=I020[-1][0] #平仓时间记录
CoverPrice=int(I020[-1][4]) #平仓时间记录
print ("Buy OrderTime:",OrderTime," OrderPrice:",OrderP
rice,)
print (" CoverTime:",CoverTime," CoverPrice:",CoverPric

e," Profit:",CoverPrice- OrderPrice)

执行回测后，输出如下：

>python 42-4.py
Buy OrderTime: 8450010 OrderPrice: 10310 CoverTime: 134
50006 CoverPrice: 10309
Profit: -1

5．绩效计算

读取交易记录后，就可以依照交易回传的数据

去加以计算分析。绩效不仅可以从盈亏去观察，也

可以从买卖、交易次数、交易时间点来进行分析。

本节提供的绩效分析示例虽不多，但主要是让读者

熟悉系统分析命令的用法。

某些策略会符合某些时期的趋势条件，但不代

表那些策略会符合长期市场的走势，毕竟交易市场

是瞬息万变的，若要调试出一个长期稳定获利的策

略，必须要经过长期回测的测试。

绩效计算不一定是从获利盈余的数字上来看，

以下提供其他参考绩效的方向让读者参考：

（1）交易次数胜率；

（2）买卖个别成交结果。

技巧43 【概念】即时算法回放回测

回测程序与即时算法程序的编写方式不同：回

测程序的目的在于验证投资人的交易逻辑能否在真

实市场中获利；而即时算法则是将交易人的逻辑通

过程序在真实市场上进行运作。

本概念要阐述的是，即时算法与回测算法对于

真实市场的反应是有差异的，所以当一个量化交易

回测者要真正落实即时程序化交易时，总是会充满

不确定性，这时就要通过轮播机制来验证即时算法

的正确性，以预防即时算法程序错误导致亏损。

技巧44 【概念】时间单位不同的差异

在网络上获取的信息与交易所实际揭示的信

息，往往最大的差异是来自时间的字段。在交易所

揭示的成交信息中，会有撮合时间和报价时间。其

中，撮合时间是交易主机将买卖方的相同数量委托

单进行撮合时的时间，而报价时间是交易所揭示报

价时的时间。

除了时间字段以外，还有数据密度。如果交易

所原本揭示的时间字段密度到百分之一秒，但网络

数据只揭示到秒，那么对于手动交易的投资人而言

可能没有太大差异，但对于程序而言就会发现同一

个时间点产生了许多笔交易信息。

例如，原本数据是9点10分10.03秒与9点10分

10.55秒，对于程序而言两笔数据时间不一样，但对

于网络上免费的数据可能两笔都是9点10分10秒，

这对于回测来说就没那么精准了。

下面提供几个不同的时间单位所绘制出的图

形，比较其差异。

（1）由数据密度为30秒所绘出的K线图，如图

4-1所示。

图4-1

（2）由数据密度为分所绘出的K线图，如图4-

2所示。

图4-2

（3）5分钟密度的K线图，如图4-3所示。

图4-3

（4）15分钟密度的K线图，如图4-4所示。

图4-4

由这4张图我们发现：虽然整体的涨跌趋势十

分类似，但时间单位越小的图形可以让我们更快速

地发现量能的变化，提前得知趋势的动向，掌握更

多的下单机会。

技巧45 【程序】固定时间买进卖出回测

本技巧介绍固定时间买卖进出策略，是策略的

初版模型，让大家初步了解回测构建。

本技巧仅介绍策略构建，而该策略的完整性是

不足的。若在建构策略时没有设置止损，可能会导

致损失，更严重的是仓位亏损至被爆仓时期货公司

会自动将我们的仓位平仓。此时若策略没有判断条

件，则会与现实账务产生差异。这些都是量化回测

必须关注的情况，而这些情况都是可以通过程序来

解决的，只要想得更周全、细腻，就可以预防这些

事情发生，甚至可以提早做出比人为操作更有效的

解决方案。

以下提供的是固定时间点买卖，此策略是在开

盘时间9:00买入一手，接着在11:00时平仓。

文件名：45-1.py

-*- coding: UTF-8 -*-

取I020数据，依照逗号分隔，并将分隔符号去除
I020 = [line.strip('\n').split(",") for line in open('

Futures_20170815_I020.csv')][1:]
起始时间至结束时间
I020a= [line for line in I020 if int(line[0])>9000000
and int(line[0])<11000000]

OrderTime=I020a[0][0] #下单时间记录
OrderPrice=int(I020a[0][4]) #下单价格记录

CoverTime=I020a[-1][0] #平仓时间记录
CoverPrice=int(I020a[-1][4]) #平仓时间记录

print ("Buy OrderTime:",OrderTime," OrderPrice:",OrderP
rice,)
print (" CoverTime:",CoverTime," CoverPrice:",CoverPric
e," Profit:",CoverPrice)
OrderPrice

执行回测后，输出如下：

>python 45-1.py
Buy OrderTime: 9000006 OrderPrice: 10311 CoverTime: 105
95643 CoverPrice: 10289
Profit: -22

该策略内容要让大家初步了解Python中的算法

结构，以及如何运用数据，通过预先的数据筛选，

可以省去许多步骤。

在前面也提到了止损的重要性，所以接着介绍

止损机制的策略，由上一个策略来进行优化。这个

策略会持续地侦测是否止损，直到设置的交易时间

结束。

本策略是判断当前价低于进场价的10点平仓止

损，代码如下：

文件名：45-2.py

-*- coding: UTF-8 -*-

取I020，依照逗号分隔，并将分隔符号去除
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020. csv')][1:]

起始时间至结束时间
I020a= [line for line in I020 if int(line[0])>9000000
and int(line[0])<11000000]

OrderTime=I020a[0][0] #下单时间记录
OrderPrice=int(I020a[0][4]) #下单价格记录

for i in range(1,len(I020a)):
 price=int(I020a[i][4])
 if price <= OrderPrice-10:
 CoverTime=I020a[i][0] #平仓时间记录
 CoverPrice=int(I020a[i][4]) #平仓时间记录

 break
 elif i == len(I020a)-1:
 CoverTime=I020a[i][0] #平仓时间记录
 CoverPrice=int(I020a[i][4]) #平仓时间记录

print ("Buy OrderTime:",OrderTime," OrderPrice:",OrderP
rice,)
print (" CoverTime:",CoverTime," CoverPrice:",CoverPric
e," Profit:",CoverPrice-OrderPrice)

通过CMD执行Python指令，展示如下：

>python 45-2.py
Buy OrderTime: 9000006 OrderPrice: 10311 CoverTime: 940
2568 CoverPrice: 10301 Profit: -10

技巧46 【程序】顺势交易回测

顺势交易策略，这边所指的顺势策略就是俗称

的“海龟策略”，代表价格向上突破某个区间的高

点，顺势买进；或是在价格向下突破某个区间的低

点时，顺势卖出。

上述是进场的部分，对于出场条件的设置，本

示例所提供的是设置固定止损获利点，以买方为

例，止损点为进场成交价的下降10点，获利点为进

场成交价的上升20点。

本示例所设置的高低点区间期间为8:45～

9:00，以及进出场的时间区段为9:00～11:00。顺势

交易的代码如下：

文件名：46.py

-*- coding: UTF-8 -*-

取I020数据，依照逗号分隔，并将分隔符号去除
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020.csv')][1:]

起始时间至结束时间
I020a= [int(line[4]) for line in I020 if int(line[0])<
=9000000]
I020b= [line for line in I020 if int(line[0])>9000000
and int(line[0])<11000000]

定义上下界
ceil=max(I020a)
floor=min(I020a)
仓位为0
index=0
for i in range(len(I020b)):
 price=int(I020b[i][4])

 # 进场判断
 if index==0:
 if price>ceil:
 OrderTime=I020b[i][0] #新仓时间记录
 OrderPrice=price #新仓价格记录
 index=1
 print ("Buy OrderTime:",OrderTime," OrderPrice:",Orde
rPrice,)
 elif price<floor:
 OrderTime=I020b[i][0] #新仓时间记录
 OrderPrice=price #新仓价格记录
 index=-1
 print ("Sell OrderTime:",OrderTime," OrderPrice:",Ord
erPrice,)
 elif i == len(I020b)-1:
 print ("No Trade")
 break
出场判断
elif index!=0:
 if index==1:
 if OrderPrice+20<=price or OrderPrice-10>=price:
 CoverTime=I020b[i][0] #平仓时间记录
 CoverPrice=int(I020b[i][4]) #平仓时间记录
 print (" CoverTime:",CoverTime," CoverPrice:",CoverP
rice," Profit:",CoverPrice- OrderPrice)
 break
 elif i == len(I020b)-1:
 CoverTime=I020b[i][0] #平仓时间记录
 CoverPrice=int(I020b[i][4]) #平仓时间记录
 print (" CoverTime:",CoverTime," CoverPrice:",CoverP
rice," Profit:",CoverPrice- OrderPrice)
 elif index==-1:
 if price<=OrderPrice-20 or price>=OrderPrice+10:
 CoverTime=I020b[i][0] #平仓时间记录
 CoverPrice=int(I020b[i][4]) #平仓时间记录
 print (" CoverTime:",CoverTime," CoverPrice:",CoverP

rice," Profit:",OrderPrice- CoverPrice)
 break
 elif i == len(I020b)-1:
 CoverTime=I020b[i][0] #平仓时间记录
 CoverPrice=int(I020b[i][4]) #平仓时间记录
 print (" CoverTime:",CoverTime," CoverPrice:",CoverP
rice," Profit:",OrderPrice-CoverPrice)

通过CMD执行Python指令，展示如下：

>python 46.py
Buy OrderTime: 9043318 OrderPrice: 10316 CoverTime: 912
0668 CoverPrice: 10306
Profit: -10

技巧47 【程序】MA交叉买进卖出回测

MA在交易市场中是常见的交易指标，而相关

的策略也是五花八门，通常MA的策略都会通过两

个基准来做比较，通过基准彼此之间的关系来做好

进出场的判断，例如12MA（快线）与24MA（慢

线）的配合。

之前在技巧25中有单独计算MA指标的程序，

读者可以通过计算指标后的数据来结合I020成交信

息共同编写程序，此举将会降低策略同时计算MA

与判断进场条件的运算负载，但整体来说，计算完

整天的MA再进行策略判断，还是会增加回测的运

算时间。

本技巧介绍的策略判断是通过成交价与108MA

来进行计算的，当前价向上穿越MA，则买进；当

前价向下穿越MA，则卖出。出场条件则是设置固

定价位止损获利（10点）。

本示例将通过成交价格来计算，同时计算MA

值，并同时做该策略的判断。这样做后代码会比较

复杂，也可以将MA计算完成后（参考技巧24）再

进行策略判断。程序代码如下：

文件名：47.py

-*- coding: UTF-8 -*-

时间转数值
def TimetoNumber(time):
 time=time.zfill(8)
 sec=int(time[:2])*360000+int(time[2:4])*6000+int(time[
4:6])*100+int(time[6:8])
 return sec

获取I020数据，依照逗号分隔，并将分隔符号去除
I020 = [line.strip('\n').split(",") for line in open('
Futures_20170815_I020.csv')][1:]

定义相关变量
MAarray = []
MAValue = 0
STime = TimetoNumber('08450000')
Cycle = 6000
MAlen = 10

定义上一笔值，提供给策略判断
lastMAValue=0
lastPrice=0
仓位为0
index=0

开始进行MA计算
for i in I020:
 time=i[0]
 price=int(i[4])
 if len(MAarray)==0:
 MAarray+=[price]
 else:
 if TimetoNumber(time)<STime+Cycle:
 MAarray[-1]=price
 else:
 if len(MAarray)==MAlen:
 MAarray=MAarray[1:]+[price]

 else:
 MAarray+=[price]
 STime = STime+Cycle
到达第10分钟后，开始进行策略判断
if len(MAarray)==MAlen:
 MAValue=float(sum(MAarray))/len(MAarray)
 if lastMAValue==0 or lastPrice==0:
 lastMAValue=MAValue
 lastPrice=price
 continue
 if index==0:
 if MAValue<price and lastMAValue>=lastPrice:
 OrderTime=time #新仓时间记录
 OrderPrice=price #新仓价格记录
 index=1
 print ("Buy OrderTime:",OrderTime," OrderPrice:",Ord
erPrice,)
 elif MAValue> price and lastMAValue<=lastPrice:
 OrderTime=time #新仓时间记录
 OrderPrice=price #新仓价格记录
 index=-1
 print ("Sell OrderTime:",OrderTime," OrderPrice:",Or
derPrice,)
 elif index!=0:
 if index==1:
 if price>=OrderPrice+10 or price<=OrderPrice-10:
 CoverTime=time #平仓时间记录
 CoverPrice=price #平仓时间记录
 print (" CoverTime:",CoverTime," CoverPrice:",Cover
Price," Profit:",CoverPrice-OrderPrice)
 break
 elif i == len(I020)-1:
 CoverTime=time #平仓时间记录
 CoverPrice=price #平仓时间记录
 print (" CoverTime:",CoverTime," CoverPrice:",Cover

Price," Profit:",CoverPrice-OrderPrice)
 if index==-1:
 if price<=OrderPrice-10 or price>=OrderPrice+10:
 CoverTime=time #平仓时间记录
 CoverPrice=price #平仓时间记录
 print (" CoverTime:",CoverTime," CoverPrice:",Cover
Price," Profit:",OrderPrice-CoverPrice)
 break
 elif i == len(I020)-1:
 CoverTime=time #平仓时间记录
 CoverPrice=price #平仓时间记录
 print (" CoverTime:",CoverTime," CoverPrice:",Cover
Price," Profit:",OrderPrice-CoverPrice)

通过CMD执行Python指令，操作如下：

>python 47.py
Buy OrderTime: 8562343 OrderPrice: 10300 CoverTime: 859
0293 CoverPrice: 10310
Profit: 10

技巧48 【程序】绘制价格走势图并标上
买卖点

当我们进行回测时，往往都只有数据上的呈

现，而进场出场点并不能够很明确地得知当日的市

场价格走势。所以我们可以绘制价格走势图，并且

搭配自己的买卖点，这样就可以了解到当日的走势

以及自己的策略动向。

本示例所提供的代码适用于大多数的回测程

序，只要取得成交信息与进场、出场的时间及价

格，就可以正确绘制出此图。技巧45～技巧47都可

以运用该技巧来绘制价格线图并加上买卖点，只要

在执行完策略时补上下方程序代码，就可以绘制出

当天的图形。

文件名：48.py

导入相关包及函数
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import datetime

将时间字符串转换至时间格式
Time = [datetime.datetime.strptime(line[0],"%H%M%S%f")
 for line in I020]
通过mdates.date2num 函数，将datetime 时间格式转换为绘图
专用的时间格式
Time1 = [mdates.date2num(line) for line in Time]

价格由字符串转为数值

Price = [int(line[4]) for line in I020]
将买卖点时间字符串转为时间格式
OrderTime1=mdates.date2num(datetime.datetime.strptime(O
rderTime,"%H%M%S%f"))
CoverTime1=mdates.date2num(datetime.datetime.strptime(C
overTime,"%H%M%S%f"))

定义图表对象
ax = plt.figure(1) #第一张图片
ax = plt.subplot(111) #该张图片仅一个图案

定义title
plt.title('Price Line')
plt.xlabel('Time')
plt.ylabel('Price')

绘制图案
plot_date(x 轴对象, y 轴对象, 线风格)
ax.plot_date(Time1, Price, 'k-')
ax.plot_date(OrderTime1, OrderPrice, 'r.',markersize='2
0')
ax.plot_date(CoverTime1, CoverPrice, 'g.',markersize='2
0')

定义x 轴
hfmt = mdates.DateFormatter('%H:%M:%S')
ax.xaxis.set_major_formatter(hfmt)

显示绘制图表
plt.show()

通过技巧47来绘制价格走势图并标上买卖点，

只要执行技巧47的时候将技巧48的代码附加至

47.py后方，就能够绘制出图片，如图4-5所示。

图4-5

可以将图片另存成文件，比如存成PNG格式，

代码如下：

plt.savefig('test.png')

在代码的最后部分，在show函数之前加上以上

代码，即可保存成图片。

第5章　设计自己的指标函数

在目前的投资领域中，许多投资人都会通过既

有的商品技术指标来进行投资买卖，好处是因为许

多人同时在关注这些指标，且大家的投资理念相

同，所以当信号触发时会形成一股趋势，坏处是股

市中拥有大部分资金的投资人会利用这种现象来制

造假信号，以致投资人遭受损失。

所以当我们设计自己的函数指标时，一方面可

以比市场上的分钟频率的指标来得快，另一方面能

够照着自己的方式来呈现。本章将会把一些常用的

技术指标通过代码，在取报价时同时生成指标。

技巧49 【概念】何谓指标函数

指标是根据使用者的经验所产生的量化数据，

简单来说，当我们在通过看盘软件进行下单判断

时，就已经在接收指标信息了。常见的指标有价格

走势图、K线图、量能图、委托比例图和上下五档

价等。

这些指标是由提供看盘软件的公司来绘制的，

也是多数投资人会观察的指标，但是要通过程序进

行交易，我们就必须取得这些信息，并非只是单纯

地通过眼睛观察盘中的指标图，而在获取交易所的

报价揭示信息后，通过程序转换成指标。

通过这样的做法，能够真正地实践程序化交

易，假如每天要花3个小时观察盘势，现在只需要

确定计算机开机和程序正确执行，就可以进行自动

化交易了。

技巧50 【概念】定义输入及输出

本技巧将会与FastOS串接即时报价文件（分为

3个文件，分别是成交信息、委托信息和上下五档

价信息），而程序也会依照交易者不同需求获取相

关的即时信息。

即时交易程序会分别对这3个文件进行即时报

价。作为指标的输入值，在编写即时算法时，可以

选择是否要计算指标，也可以直接通过报价信息进

行判断。

在有了标准的输入信息（即时报价）后，我们

就可以通过程序进行金融技术指标的计算，转换成

我们想要的信息，例如：MA、高开低收量（K

线）和内外盘等技术指标。每种自行定义的技术指

标都应该有自定义标准的输出值，以便在交易策略

中使用。

技巧51 【程序】获取即时报价咨询

对于程序化交易来说，获取即时报价信息是整

个程序中的第一步，在获取即时信息后，往后的交

易算法才能被正确执行。为了计算指标，必须先了

解如何获取即时报价。

关于交易所披露信息以及取得即时报价的概念

说明，之后会在第9章进行详细介绍。在这里我们

将通过FastOS使用券商的API获取最新的报价信

息，包含成交信息、委托信息以及上下五档价信

息。

以下是获取即时报价的函数，其中即时报价分

为委托信息、成交信息以及上下五档价信息。在后

续的代码中，都需要通过该函数获取即时报价，所

以将以下代码设为固定的函数库文件

（function.py），在其他代码中直接使用即可。存

取报价分为循环持续存取以及单笔存取，依照不同

运算需求，会有不同的使用搭配。例如：计算内外

盘，就会通过取得当前成交信息的循环存取，当每

次取得成交信息后，就会再去取得上下五档价进行

内外盘计算。

其中加载相关包的部分，如time以及datetime

包，都是在即时策略当中会运用到的包，而tailer包

是帮助我们进行快速报价的包。另外，在启动实盘

交易以前，必须确保所有需要的包都已安装，包的

安装在技巧8中有详细介绍。

存取报价的细节可以参考技巧99（介绍存取报

价的概念）。

代码如下：

文件名：function.py

-*- coding: UTF-8 -*-

导入相关包
import time
import datetime

import tailer

获取当天日期
Date=time.strftime("%Y%m%d")
设置文件位置
DataPath="D:/data/"
开启这3个文件
MatchFile=open(DataPath+Date+'_Match.txt')
OrderFile=open(DataPath+Date+'_Commission.txt')
UpDn5File=open(DataPath+Date+'_UpDn5.txt')

持续获取成交信息
def getMatch():
 return tailer.follow(MatchFile,0)

持续获取委托信息
def getOrder():
 return tailer.follow(OrderFile,0)

持续获取上下五档价信息
def getUpDn5():
 return tailer.follow(UpDn5File,0)

获取最新一笔成交信息
def getLastMatch():
 return tailer.tail(MatchFile,3)[-2].split(",")

获取最新一笔委托信息
def getLastOrder():
 return tailer.tail(OrderFile,3)[-2].split(",")

获取最新一笔上下五档价信息
def getLastUpDn5():
 return tailer.tail(UpDn5File,3)[-2].split(",")

以下是获取报价咨询的操作过程：

>>> exec(open('function.py').read())
>>> for i in getMatch(): #通过循环，去持续获取当
前成交信息
... print (i)
...
10:15:05.69,10334,2,76880,36922,39553,10340,10290
10:15:06.34,10334,1,76881,36923,39555,10340,10290
10:15:06.82,10333,1,76882,36924,39556,10340,10290
10:15:07.06,10334,2,76884,36925,39557,10340,10290
... #Ctrl+C可中断
>>> for i in getOrder(): #通过循环，去持续获取当
前成交信息
... print (i)
...
10:24:53.20,34888,88931,36490,89257
10:24:58.18,34891,88944,36508,89301
10:25:03.19,34917,89064,36509,89392
10:25:08.18,34920,89066,36512,89397
... #Ctrl+C可中断
>>> for i in getUpDn5(): #通过循环，去持续
获取上下五档成交信息
... print (i)
...
10:26:24.82,10330,89,10329,104,10328,145,10327,75,10326
,105,10331,84,10332,276,
10333,69,10334,57,10335,102
10:26:25.05,10330,84,10329,104,10328,145,10327,75,10326
,105,10331,84,10332,276,
10333,69,10334,57,10335,102
10:26:25.18,10330,84,10329,104,10328,145,10327,75,10326
,105,10331,83,10332,276,
10333,69,10334,57,10335,102

10:26:25.67,10330,84,10329,104,10328,145,10327,75,10326
,105,10331,83,10332,276,
10333,69,10334,57,10335,102
10:26:26.06,10330,84,10329,106,10328,145,10327,75,10326
,105,10331,83,10332,276,
10333,69,10334,57,10335,102
...
>>> getLastMatch()
['09:58:19.71', '10329', '1', '69891', '33858', '36117'
, '10339', '10290']
>>> getLastOrder()
['09:58:53.25', '31047', '79073', '32623', '79623']
>>> getLastUpDn5()
['09:58:14.46', '10329', '26', '10328', '95', '10327',
'49', '10326', '132',
 '10325', '81', '10330', '15', '10331', '66', '10332',
'82', '10333', '68',
'10334', '56']

技巧52 【程序】计算每分钟的高开低收
价

通过技巧51获取当前信息后，就可以用来计算

各式各样的指标。该技巧将介绍如何获取高开低收

价。

在之前的章节已介绍过计算历史数据的K线，

并将K线图绘制出来，现在将通过获取即时报价信

息来计算K线。

即时计算和历史计算是有差异的：历史的可以

通过列表对象特性直接进行数据筛选，即时的必须

动态更新计算数据。

该指标通过列表来作为容器，因为会动态更新

数据，元组并不允许更新，所以选用列表。

定义初始值，只需要中括号即可定义列表，代

码如下：

OHLC=[]

接着开始计算高开低收，每分钟过后都会进行

数据的叠加。假设策略已经从8:45执行至8:48，就

应该会有3笔数据，分别是8:46、8:47、8:48，数据

叠加的好处是我们的策略可以有多样的变化，让策

略不会局限于只能判断最近一分钟的状况。

在每分钟转换时，我们通过简单的字符串判

断，例如：“850”代表8点50分。当时间转换

到“851”，则代表分钟变换了。通过该方式来减少

算法的困难度，而在之后的例子若有相关的应用，

也都用该方式来进行判断。

以下为计算每分钟高开低收的代码。

文件名：52.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义指标变量
OHLC=[]

获取成交信息
for i in getMatch():

 MatchInfo=i.split(',')
 # 定义HHMM 的时间字符串，方便进行分钟转换判断
 HMTime=MatchInfo[0][0:2]+MatchInfo[0][3:5]
 MatchPrice=int(MatchInfo[1])
 # 若OHLC 为空，就先填值
 if len(OHLC)==0:
 OHLC.append([HMTime,MatchPrice,MatchPrice,MatchPrice
,MatchPrice])
 else:
 # 进行该分钟是否结束
 if HMTime==OHLC[-1][0]:
 # 进行高、低价判断
 if MatchPrice>OHLC[-1][2]:
 OHLC[-1][2]=MatchPrice
 if MatchPrice<OHLC[-1][3]:
 OHLC[-1][3]=MatchPrice
 OHLC[-1][4]=MatchPrice
 else:
该分钟结束则加入新行
 OHLC.append([HMTime,MatchPrice,MatchPrice,MatchP
rice,MatchPrice])
 # 显示当前高开低收
 print (OHLC[-1])

通过Python命令执行该程序，展示如下：

>python 52.py
['0849', 10359, 10359, 10355, 10355]
['0849', 10359, 10359, 10355, 10355]
['0849', 10359, 10359, 10355, 10357]
['0849', 10359, 10359, 10355, 10356]
['0849', 10359, 10359, 10355, 10357]
['0849', 10359, 10359, 10355, 10355]

['0850', 10357, 10357, 10357, 10357]
['0850', 10357, 10357, 10357, 10357]
['0850', 10357, 10357, 10357, 10357]
['0850', 10357, 10357, 10356, 10356]
['0850', 10357, 10357, 10355, 10355]
['0850', 10357, 10357, 10355, 10357]
['0850', 10357, 10357, 10355, 10355]

技巧53 【程序】计算每分钟的累计量

我们在看盘软件中，常见的就是价格走势图搭

配量能图。本技巧就是用来计算每分钟累积量的程

序，若原本就是通过量来进行策略进出场判断，则

能够通过此技巧来计算并加以判断。

计算成交量，可以通过单笔成交量计算，也可

以通过总量计算。在这里我们使用总量计算，因为

单笔成交量需要高度的信息准确性，若数据不完

整，计算出来的指标参考度也就不高，所以我们通

过交易所揭示出来的交易总量来进行计算，可以不

必考虑数据的高度准确性，也能达到相同的计算效

果。

数据输出的格式有两个字段，一个是时间，另

一个是一分钟时间累积量，即每分钟会叠加信息。

以下是计算每分钟累计量的代码。

文件名：53.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义指标变量
Qty=[]
lastAmount=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')

 # 定义HHMM的时间字符串，方便进行分钟转换判断
 HMTime=MatchInfo[0][0:2]+MatchInfo[0][3:5]
 MatchAmount=int(MatchInfo[3])

 # 进行每分钟价格计算
 if len(Qty)==0:
 Qty.append([HMTime,0])
 lastAmount=MatchAmount

 else:
 if HMTime==Qty[-1][0]:
 Qty[-1][1]=MatchAmount-lastAmount
 else:
 Qty.append([HMTime,0])
 lastAmount=MatchAmount
 print (Qty)

通过Python命令执行该程序，结果如下：

>python 53.py
[['1114', 0]]
[['1114', 1]]
[['1114', 3]]
[['1114', 4]]
[['1114', 8]]
[['1114', 13]]
[['1114', 21]]
[['1114', 23]]
[['1114', 26]]
...
[['1114', 43], ['1115', 101], ['1116', 59]]
[['1114', 43], ['1115', 101], ['1116', 60]]
[['1114', 43], ['1115', 101], ['1116', 61]]
[['1114', 43], ['1115', 101], ['1116', 62]]
[['1114', 43], ['1115', 101], ['1116', 63]]
[['1114', 43], ['1115', 101], ['1116', 64]]
[['1114', 43], ['1115', 101], ['1116', 65]]

技巧54 【程序】计算买卖方每笔平均成
交手数

在研究金融市场时，大家经常关注的无非就是

成交价和成交量，而很少有人去关注买卖的成交笔

数。期交所正好有提供相关的成交笔数信息，通过

这些字段，我们可以得知目前的买方以及卖方的平

均成交手数，也就是买卖方每笔订单所成交的手

数。

假设目前的成交量为12 000，而买方的成交笔

数为3 000，卖方为4 000，则平均买手为4、平均卖

手为3，我们可以判读此数据，若平均买方单一订

单的量较大，则可认为市场大户在买方。

以下为计算买卖方每笔平均成交手数的程序代

码。

文件名：54.py

-*- coding: UTF-8 -*-

取得报价信息，详情请查看技巧51
exec(open('function.py').read())

取得成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=MatchInfo[0]
 MatchAmount=int(MatchInfo[3])
 MatchBCnt=int(MatchInfo[4])
 MatchSCnt=int(MatchInfo[5])

 # 进行平均买卖手计算
 avgB=float(MatchAmount)/MatchBCnt
 avgS=float(MatchAmount)/MatchSCnt

 print (MatchTime,"avgB",avgB,"avgS",avgS)

通过Python指令执行该程序，结果如下：

>python 54.py
12:37:05.23 avgB 2.07742630793 avgS 2.01609233366
12:37:08.63 avgB 2.07740593685 avgS 2.01603669725
12:37:08.71 avgB 2.07738556654 avgS 2.01601805471
12:37:08.84 avgB 2.07736519701 avgS 2.01599941287
12:37:09.34 avgB 2.07734482824 avgS 2.0159807717
12:37:10.96 avgB 2.07734336598 avgS 2.0159804785

技巧55 【概念】了解内外盘的含义

一般我们将买盘称为“外盘”，卖盘称为“内

盘”。就上下五档价而言，上五档盘称为外盘，下

五档盘称为内盘。计算方式通过当前成交价格与内

外盘的对应关系来划分：若成交价格成交在外盘

（上五档价），则该笔成交称为“外盘成交”；若成

交价格成交在内盘（下五档价），则该笔成交称

为“内盘成交”；若价格成交在内外盘的中间，则不

计算。

内外盘的原理是用来观察买卖方的交易积极度

的，这关系到期货交易所的市场规则。一般来说，

券商提供给投资人的下单方式常分为市价单和限价

单，而这两种方式所执行的动作也不尽相同。简单

来说，市价单与限价单可以分为主动撮合和被动撮

合。

就买单而言，市价单会主动地成交在上一档价

位，而限价单则是等着被撮合，也就因为这个因素

才会有内外盘的指标出现。

若价格持续地成交在外盘价，则代表买方持续

地在市场通过市价买进；若价格持续地成交在内盘

价，则代表卖方持续地在市场通过市价卖出。

内外盘的比例代表着过去的买卖方积极度，许

多人会通过这个指标来判断往后的趋势并进行交

易。

技巧56 【程序】计算内外盘总量

计算内外盘的总量即可以计算内外盘的总成交

量，也可以计算内外盘的总次数。本技巧将会依次

介绍计算内外盘的总成交量和内外盘总次数。

本技巧与前面的示例稍有不同，计算内外盘会

同时需要上下一档价量，以下代码将会通过成交信

息与上下五档价数据来做应用搭配。

文件名：56-1.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义指标变量
OutDesk=0
InDesk=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=MatchInfo[0]
 MatchPrcie=int(MatchInfo[1])
 MatchQty=int(MatchInfo[2])

 # 获取上下五档价信息
 UpDn5Info=getLastUpDn5()
 Dn1Price=int(UpDn5Info[1])
 Up1Price=int(UpDn5Info[11])

 # 进行内外盘判断
 if MatchPrcie>=Up1Price:
 OutDesk+=MatchQty
 if MatchPrcie<=Dn1Price:
 InDesk+=MatchQty
 print (MatchTime,"OutDesk",OutDesk,"InDesk",InDesk)

通过Python命令执行该程序，结果如下：

>python 56-1.py
11:29:33.46 OutDesK3 InDesK0
11:29:34.94 OutDesK3 InDesK2

11:29:35.08 OutDesK3 InDesK3
11:29:41.29 OutDesK3 InDesK4
11:29:42.33 OutDesK3 InDesK5
11:29:45.57 OutDesK5 InDesK5
11:29:47.82 OutDesK5 InDesK7
11:29:47.85 OutDesK5 InDesK8

若要计算内外盘次数而非内外盘数量，则可通

过以下代码来实现，将原本计算加成交量的部分改

为每次计算加一。

文件名：56-2.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义指标变量
OutDesk=0
InDesk=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=MatchInfo[0]
 MatchPrcie=int(MatchInfo[1])

 # 获取上下五档价信息
 UpDn5Info=getLastUpDn5()
 Dn1Price=int(UpDn5Info[1])

 Up1Price=int(UpDn5Info[11])

 # 进行内外盘判断
 if MatchPrcie>=Up1Price:
 OutDesk+=1
 if MatchPrcie<=Dn1Price:
 InDesk+=1

 print (MatchTime,"OutDesk",OutDesk,"InDesk",InDesk)

技巧57 【程序】计算内外盘比率

通过技巧56计算过内外盘数量后，就可以开始

计算内外盘比率了。内外盘的比率就是将内盘或外

盘的数量除以内外盘的总和，从而得知目前内盘量

或外盘量的比例。

以下通过外盘比率来进行计算，若外盘比率超

过0.5，则代表目前市场趋势为看多。下面是计算买

盘、卖盘量比率的代码。

文件名：57.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
execfile('function.py')

定义指标变量
OutDesk=0
InDesk=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=MatchInfo[0]
 MatchPrcie=int(MatchInfo[1])
 MatchQty=int(MatchInfo[2])

 # 获取上下五档价信息
 UpDn5Info=getLastUpDn5()
 Dn1Price=int(UpDn5Info[1])
 Up1Price=int(UpDn5Info[11])

 # 进行内外盘判断
 if MatchPrcie>=Up1Price:
 OutDesk+=MatchQty
 if MatchPrcie<=Dn1Price:
 InDesk+=MatchQty

 # 内外盘比率计算
 OutInRatio=float(OutDesk)/(OutDesk+InDesk)

 print (MatchTime,"OutDesKRatio",OutInRatio)

通过Python命令执行该程序，展示如下：

>python 57.py
12:48:46.84 OutDesKRatio 0.0
12:48:47.44 OutDesKRatio 0.333333333333
12:48:47.99 OutDesKRatio 0.285714285714
12:48:48.84 OutDesKRatio 0.444444444444
12:48:55.96 OutDesKRatio 0.5
12:48:56.82 OutDesKRatio 0.454545454545
12:48:57.84 OutDesKRatio 0.6

该技巧仅显示外盘比率，若比率高于0.5，则趋

势看涨；若比率低于0.5，则趋势看跌。

技巧58 【程序】计算买卖方委托总量

在前面回测的部分，曾提到委托买卖方总量的

指标。本技巧将介绍如何通过委托的即时信息来转

化计算为趋势判断的指标。

该指标的计算相当容易，因为委托簿所揭示的

信息为累计信息，所以我们只需要将当前的即时信

息相减过后就可以计算出委托买卖差额。以下为买

卖方委托总量指标的计算代码。

文件名：58.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
execfile('function.py')

获取委托信息
for i in getOrder():
 OrderInfo=i.split(',')
 OrderTime=OrderInfo[0]
 OrderBAmount=int(OrderInfo[2])
 OrderSAmount=int(OrderInfo[4])
 # 委托总量相减，并显示
 print (OrderTime,"diffOrder",OrderBAmount-OrderSAmoun
t)

通过Python命令执行该程序，展示如下：

>python 58.py
13:05:42.94 diffOrder -423
13:05:47.93 diffOrder -443
13:05:52.92 diffOrder -443
13:05:57.95 diffOrder -558
13:06:02.94 diffOrder -576
13:06:07.94 diffOrder -574
13:06:12.95 diffOrder -604
13:06:17.94 diffOrder -653

若委托总量相减为正数，则代表当前委托买手

较多；反之，若为负数，则代表当前卖手较多。

技巧59 【程序】计算买卖方委托平均量

买卖方平均委托量也是委托簿信息常见的延伸

指标之一。通过买卖方委托的平均口数，可以判断

目前市场交易大户是否偏向买方或卖方。

以下是计算买卖方委托平均量的代码。

文件名：59.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

获取委托信息
for i in getOrder():
 OrderInfo=i.split(',')
 OrderTime=OrderInfo[0]
 OrderBCnt=int(OrderInfo[1])
 OrderBAmount=int(OrderInfo[2])
 OrderSCnt=int(OrderInfo[3])
 OrderSAmount=int(OrderInfo[4])

 # 委托平均手数计算，并显示

 print (OrderTime,"avgOrderB",float(OrderBAmount)/Orde
rBCnt,"avgOrderS", float(OrderSAmount)/OrderSCnt)

通过Python命令执行该程序，展示如下：

>python 59.py
13:04:37.95 avgOrderB 2.5539223782 avgOrderS 2.47502947
701
13:04:42.95 avgOrderB 2.55341328985 avgOrderS 2.4744642
1795
13:04:47.91 avgOrderB 2.55309707115 avgOrderS 2.4756336
0607
13:04:52.97 avgOrderB 2.5530220177 avgOrderS 2.47515806
69
13:04:57.94 avgOrderB 2.55321914981 avgOrderS 2.4767636
5086
13:05:02.93 avgOrderB 2.55223880597 avgOrderS 2.4767645
7694
13:05:07.95 avgOrderB 2.55226804124 avgOrderS 2.4765016
4359
13:05:12.96 avgOrderB 2.55192180798 avgOrderS 2.4767659
4728
13:05:17.94 avgOrderB 2.55185635655 avgOrderS 2.4767555
2989
13:05:22.95 avgOrderB 2.55196866625 avgOrderS 2.4769356
3479
13:05:27.91 avgOrderB 2.55171703014 avgOrderS 2.4767705
7208

技巧60 【程序】计算动态委托量变化

委托簿信息属于累计信息，因此可以进行动态

委托量变化的计算，期货交易所揭示期货报价的委

托簿信息，每5秒揭示一次，而每次的揭示内容都

是从8:30开始累计信息。

只要通过程序来记录上一笔信息，就可以准确

地计算出每次揭示的委托数据差异。以下是计算动

态委托量差异的代码。

文件名：60.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())
lastOrderBAmount=0
lastOrderSAmount=0

获取委托信息
for i in getOrder():
 OrderInfo=i.split(',')
 OrderTime=OrderInfo[0]
 OrderBAmount=int(OrderInfo[2])
 OrderSAmount=int(OrderInfo[4])

 # 记录上一笔总量信息

 if lastOrderBAmount==0 and lastOrderSAmount==0:
 lastOrderBAmount=OrderBAmount
 lastOrderSAmount=OrderSAmount
 continue
 else:
 # 进行计算差值
 diffOrderBAmount=OrderBAmount-lastOrderBAmount
 diffOrderSAmount=OrderSAmount-lastOrderSAmount
 print (OrderTime,"diffOrderBAmount",diffOrderBAmount,
"diffOrderSAmount",
diffOrderSAmount)

通过Python命令执行该程序，展示如下：

>python 60.py
10:33:15.24 diffOrderBAmount 26 diffOrderSAmount -8
10:33:20.27 diffOrderBAmount 30 diffOrderSAmount 11
10:33:25.27 diffOrderBAmount 15 diffOrderSAmount 15
10:33:30.28 diffOrderBAmount 23 diffOrderSAmount -10
10:33:35.26 diffOrderBAmount -9 diffOrderSAmount -291
10:33:40.26 diffOrderBAmount 6 diffOrderSAmount 18
10:33:45.26 diffOrderBAmount 27 diffOrderSAmount 8
10:33:50.24 diffOrderBAmount 34 diffOrderSAmount 2
10:33:55.24 diffOrderBAmount -12 diffOrderSAmount 5
10:34:00.24 diffOrderBAmount 13 diffOrderSAmount -12
10:34:05.25 diffOrderBAmount 22 diffOrderSAmount -11
10:34:10.26 diffOrderBAmount 21 diffOrderSAmount -33
10:34:15.24 diffOrderBAmount 11 diffOrderSAmount 68
10:34:20.26 diffOrderBAmount 54 diffOrderSAmount -28

技巧61 【程序】计算上下五档平均成本

在期货交易所中，有揭示目前最佳五档价的委

托信息。在委托簿信息中，只有揭示委托笔数以及

委托手数，但是在最佳五档价的揭示中，有揭示价

格和数量。

许多交易者会善用上下五档价量的变化来进行

策略的进出场判断。本技巧介绍如何计算上下五档

平均成本。

计算上下五档的平均成本，必须将上五档和下

五档分开来算。对于计算出来的结果，每个投资人

的看法不同，当然我们可以依照自己的习性去调整

计算方式。例如：只采用上下三档价量来进行计

算。

以下为计算上下五档平均成本的代码。

文件名：61.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

获取上下五档价量信息
for i in getUpDn5():
 UpDn5Info=i.split(',')
 UpDn5Time=UpDn5Info[0]
 totalUpPrice=0
 totalUpQty=0
 totalDnPrice=0
 totalDnQty=0

 # 开始进行上下五档加权平均值
 for j in range(0,5):
 totalDnPrice+=int(UpDn5Info[1+2*j])*int(UpDn5Info[2+2
*j])
 totalDnQty+=int(UpDn5Info[2+2*j])
 totalUpPrice+=int(UpDn5Info[11+2*j])*int(UpDn5Info[12
+2*j])
 totalUpQty+=int(UpDn5Info[12+2*j])

 print (UpDn5Time,"avgUpPrice",float(totalUpPrice)/tota
lUpQty,"avgDnPrice",
float(totalDnPrice)/totalDnQty)

通过Python命令执行该程序，代码如下：

>python 61.py
10:30:50.88 avgUpPrice 10299.5110132 avgDnPrice 10293.4
981818
10:30:51.00 avgUpPrice 10299.5110132 avgDnPrice 10293.5
251799

10:30:51.12 avgUpPrice 10299.5221239 avgDnPrice 10293.5
65371
10:30:51.29 avgUpPrice 10300.0443548 avgDnPrice 10293.5
714286
10:30:51.40 avgUpPrice 10300.193133 avgDnPrice 10294.48
93617
10:30:51.53 avgUpPrice 10300.3119266 avgDnPrice 10294.5
789474
10:30:51.63 avgUpPrice 10300.3738739 avgDnPrice 10294.5
764706
10:30:51.79 avgUpPrice 10300.3497758 avgDnPrice 10294.5
378486
10:30:51.88 avgUpPrice 10300.3288889 avgDnPrice 10294.5
625
10:30:52.02 avgUpPrice 10300.3818182 avgDnPrice 10294.5
719844
10:30:52.14 avgUpPrice 10300.3926941 avgDnPrice 10294.6
05364
10:30:52.26 avgUpPrice 10300.4259259 avgDnPrice 10294.6
05364
10:30:52.38 avgUpPrice 10300.4259259 avgDnPrice 10294.6
503759
10:30:52.52 avgUpPrice 10300.4259259 avgDnPrice 10294.6
503759
10:30:52.63 avgUpPrice 10300.4259259 avgDnPrice 10294.6
503759
10:30:52.76 avgUpPrice 10301.0471014 avgDnPrice 10295.3
045685
10:30:52.91 avgUpPrice 10301.0952381 avgDnPrice 10295.3
538462
10:30:53.03 avgUpPrice 10301.0952381 avgDnPrice 10295.3
608247

技巧62 【程序】计算价格MA指标

历史信息的MA计算在前面章节中已介绍过，

本技巧主要是教大家如何在即时环境中持续地计算

最新的MA。若要进行MA计算，就必须得设置好周

期以及长度。假设是10分MA，就必须设置分钟的

分界点（判断点），然后进行10个收盘价的计算。

在即时的方法中，与Tick历史数据一样，不会

等到获取第10分钟的收盘价才进行计算，我们会获

取前9分钟的收盘价，接着与当前的报价作为收盘

价，持续地更新MA值。以下是计算价格MA指标的

代码。

文件名：62.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义指标变量
MAarray=[]
MAnum=10
lastHMTime=""

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')

 # 定义HHMM 的时间字符串，方便进行分钟转换判断
 HMTime=MatchInfo[0][0:2]+MatchInfo[0][3:5]
 MatchPrice=int(MatchInfo[1])

 # 进行MA 的计算
 if len(MAarray)==0:
 MAarray+=[MatchPrice]
 lastHMTime=HMTime
 else:
 if HMTime==lastHMTime:
 MAarray[-1]=MatchPrice
 elif HMTime!=lastHMTime:
 if len(MAarray)<MAnum:
 MAarray+=[MatchPrice]
 elif len(MAarray)==MAnum:
 MAarray=MAarray[1:]+[MatchPrice]
 lastHMTime=HMTime
print (HMTime,"MAvalue",float(sum(MAarray))/len(MAarray
))

通过Python命令执行该程序，代码如下：

>python 62.py
1033 MAvalue 10295.0
1033 MAvalue 10295.0
1033 MAvalue 10295.0
...
1035 MAvalue 10294.3333333

1035 MAvalue 10294.3333333
1035 MAvalue 10294.3333333
1035 MAvalue 10294.0
1035 MAvalue 10294.0
1035 MAvalue 10294.6666667
1035 MAvalue 10294.6666667
1035 MAvalue 10294.3333333

技巧63 【程序】计算量MA指标

量MA与价格MA的概念相同，都是计算移动平

均值，但是在即时的计算方法中，由于量这个指标

是通过一段时间进行累积而得的，所以并没有办法

像价格MA那样通过每笔成交Tick都进行一次更

新。

量MA的计算方式，与历史回测计算方式相

同，假设我们计算3分量MA，就会通过前3分钟个

别的累计量来进行平均，与当前的累积量无关，直

至此分钟结束才会将该数据列为新的数据列。

很多投资人会依照爆量的时机点跟进，通过该

指标，只要当前累积量已经突破先前量的MA，就

可以发送下单信号了。以下是计算量MA指标的代

码。

文件名：63.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义指标变量
Qty=[]
QMA=0
MAnum=5
lastHMTime=""
lastAmount=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')

 # 定义HHMM 的时间字符串，方便进行分钟转换判断
 HMTime=MatchInfo[0][0:2]+MatchInfo[0][3:5]
 MatchAmount=int(MatchInfo[3])

 # 进行量MA的计算
 if len(Qty)==0:
 Qty+=[0]
 lastHMTime=HMTime
 lastAmount=MatchAmount

 else:
 if HMTime==lastHMTime:
 Qty[-1]=MatchAmount-lastAmount
 else:
 if len(Qty)==MAnum:
 QMA=sum(Qty)/len(Qty)
 print QMA
 Qty=Qty[1:]+[0]
 else:
 Qty+=[0]
 lastHMTime=HMTime
 lastAmount=MatchAmount
 # 显示量MA
 print (Qty)

通过Python命令执行该程序，代码如下：

>python 63.py
[0]
[3]
[5]
[6]
[11]
... #5分钟过后
[98, 119, 369, 701, 598]
[98, 119, 369, 701, 599]
[98, 119, 369, 701, 600]
[98, 119, 369, 701, 601]
[98, 119, 369, 701, 602]
[98, 119, 369, 701, 605]
[98, 119, 369, 701, 606]
[98, 119, 369, 701, 615]
[98, 119, 369, 701, 616]

380 #MA，每一分钟收盘皆会算出每
5分钟的量平均
[119, 369, 701, 616, 0]
[119, 369, 701, 616, 1]
[119, 369, 701, 616, 2]
[119, 369, 701, 616, 3]
[119, 369, 701, 616, 4]
[119, 369, 701, 616, 5]

技巧64 【程序】计算每分钟价格变化趋
势

计算一分钟价格变化趋势的意义是什么？其实

就是记录上一分钟的价格，观察这一分钟的价格变

动。

本技巧要阐述的不仅是价格的变动，还可以将

任何信息套用进来。由于目前的成交单位是逐笔撮

合，所以对于长期观察K线图和统计信息的投资者

来说，逐笔价格的走势太过于混乱，无法清晰地观

察目前市场上的动向，所以我们试着通过拉长时间

单位，将周期由逐笔改为每分钟。

若每分钟内有300笔成交信息，则可通过这个

技巧将信息简化至1笔，概念如同K线图的收盘价。

以下是计算每分钟价格变化趋势的代码。

文件名：64.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义指标变量
closePrice=[]
lastHMTime=""

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 # 定义HHMM 的时间字符串，方便进行分钟转换判断
 HMTime=MatchInfo[0][0:2]+MatchInfo[0][3:5]
 MatchPrice=int(MatchInfo[1])

 # 进行每分钟收盘价计算
 if len(closePrice)==0:
 closePrice+=[MatchPrice]
 lastHMTime=HMTime
 else:
 if HMTime==lastHMTime:
 closePrice[-1]= MatchPrice
 elif HMTime!=lastHMTime:
 closePrice+=[MatchPrice]

 lastHMTime=HMTime

 # 显示当前价
 print ("current Price:",closePrice[-1])

通过Python命令执行该程序，代码如下：

>python 64.py
current Price: 10290
current Price: 10289
current Price: 10290
current Price: 10290
current Price: 10290
current Price: 10290
current Price: 10289
current Price: 10290
current Price: 10290
current Price: 10290
current Price: 10290
current Price: 10290
current Price: 10290
current Price: 10290

该技巧可以记录过去时间的信息，通过显示上

一分钟来确认程序正确运行，如何运用该技巧，可

依照每个使用者的想法调整应用。

技巧65 【程序】计算固定tick数高开低收

价

通常在计算K线时，我们会通过固定时间区段

来统计高开低收价。现在我们拥有即时的报价存

取，换个角度思考，或许通过固定的tick数量，可

以更准确地描述当前价格与高开低收的对应关系。

由于K线的看法种类繁多，因此依照每个人的喜

好，可以调配不同的参数进行策略判断。

下面通过每200笔成交信息来进行开高低收价

计算：

文件名：65.py

-*- coding: UTF-8 -*-
获取报价信息，详情请查看技巧51
exec(open('function.py').read())
定义指标变量
TickMA200=[]
TickOHLC=[]
获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=MatchInfo[0]

 MatchPrice=int(MatchInfo[1])
 # 将tick相加
 TickMA200+=[MatchPrice]
 # 当tick为200笔时，进行高开低收统计
 if len(TickMA200)==200:
 TickOHLC+=[[MatchTime,TickMA200[0],max(TickMA200),min
(TickMA200),TickMA200[-1]]]
 TickMA200=[]
 print (TickOHLC[-1])

通过Python命令执行该程序，代码如下：

>python 65.py
['10:45:02.85', 10294, 10299, 10292, 10299]
['10:46:06.01', 10299, 10303, 10299, 10303]
['10:48:15.50', 10303, 10305, 10302, 10303]
['10:51:31.13', 10303, 10304, 10299, 10301]
['10:55:10.52', 10301, 10305, 10300, 10300]
['10:56:53.08', 10300, 10300, 10294, 10295]
['11:01:04.58', 10295, 10300, 10295, 10300]
['11:04:52.07', 10300, 10303, 10298, 10303]

技巧66 【程序】计算大户指标

在交易市场上，大家都想追随握有筹码的大

户。因为大家都知道，在金融市场上，握有筹码的

玩家可以创造趋势。所以，大多数投资人会长期关

注市场，希望找到大户的动向。

目前市场上的许多指标。都是通过技术指标搭

配绘制线图，比较少去探究细小的结构数据，而这

个大户指标就是探究细微的数据结构所衍生出来的

指标。

在开始介绍大户指标前，我们需要先了解大户

指标的架构，其实大户指标就是将大单量额外独立

计算。简单来说，以交易手数的多寡来进行区分，

可将市场区分成两个部分：大户与散户。如何独立

出所谓每笔成交的大单呢？这是需要定义的，因为

期货交易所提供的信息有限，所以我们要在有限的

信息中尽可能地去解析它。要理解大户指标，必须

先理解即时成交信息，而我们定义大单量的规则就

是通过成交量高于设定的值，并解析每一笔成交信

息。若买卖其中一方仅通过一笔单就可以吃掉另外

一方的多笔数，就作为成交大单。例如：成交手数

为50手，买方笔数为1，卖方笔数为10，则代表买

方1个人的成交量平了卖方10个人的所有手数，我

们称之为买方大单。

接着开始进行大户指标的编写，代码如下：

文件名：66.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义指标变量
lastBcnt=0
lastScnt=0
accB=0
accS=0

获取成交信息
for i in getMatch():
MatchInfo=i.split(',')
MatchTime=MatchInfo[0]
MatchPrice=int(MatchInfo[1])
MatchQty=int(MatchInfo[2])
MatchBcnt=int(MatchInfo[4])
MatchScnt=int(MatchInfo[5])

存储上一笔最新总笔数
if lastBcnt==0 and lastScnt==0:

 lastBcnt=MatchBcnt
 lastScnt=MatchScnt
else:
 # 计算相差笔数
 diffBcnt=MatchBcnt-lastBcnt
 diffScnt=MatchScnt-lastScnt
 # 进行数量判断
 if MatchQty>=10:
 # 进行买卖方判断
 if diffBcnt==1 and diffScnt>1:
 accB+=MatchQty
 print (MatchTime,MatchPrice,MatchQty,0,accB,accS)
 elif diffScnt==1 and diffBcnt>1:
 accS+=MatchQty
 print (MatchTime,MatchPrice,0,MatchQty,accB,accS)

lastBcnt=MatchBcnt
lastScnt=MatchScnt

通过Python命令执行该程序，代码如下：

>python 66.py
10:42:20.74 10294 11 0 11 0
10:42:20.97 10294 11 0 22 0
10:44:33.61 10295 0 10 22 10
10:45:00.36 10297 0 12 22 22
10:45:13.60 10301 10 0 32 22
10:45:21.99 10302 14 0 46 22
10:47:41.96 10303 0 16 46 38
10:49:49.09 10300 0 10 46 48
10:51:31.11 10301 0 17 46 65
10:53:11.98 10301 0 10 46 75
10:54:34.76 10304 10 0 56 75

10:55:08.41 10302 0 15 56 90
10:56:31.95 10297 0 10 56 100
10:56:32.47 10296 35 0 91 100
10:59:15.95 10298 16 0 107 100
10:59:44.82 10297 0 10 107 110
11:03:22.70 10300 0 25 107 135
11:03:30.70 10301 10 0 117 135
11:06:23.22 10301 0 38 117 173
11:06:53.07 10300 0 35 117 208
11:06:59.34 10298 0 10 117 218
11:07:32.81 10298 0 15 117 233
11:08:10.93 10294 0 10 117 243
11:08:17.06 10294 29 0 146 243

第6章　判断涨跌的趋势

在金融市场的交易之中，许多人都想通过交易

市场赚钱，所以每日的成交信息与涨幅结果都是买

卖双方厮杀的结果。量化交易追求的并非是一夕之

间赚进大把钱财，而是长期投资能够保持稳定获

利，所以当我们在进行市场涨跌的趋势判断时，并

不期望能够获取百分之百的准确度，甚至就算是低

于50%的准确度，只要掌握好进出场点，掌控好止

损，也是会稳定获利的。

技巧67 【概念】趋势的发生与判断

在期货交易中，允许先买后卖（称为多方），

也允许先卖后买（称为空方）。如果未来趋势看

涨，自然会先买后卖以赚取价差；如果趋势看跌，

也可以先卖个好价钱，再用比较低的成本买回，同

样可赚取价差。

在期货交易市场中，必须有人愿意以某一个价

格卖出，也有人愿意以这个价格买入，才会成交。

交易的首要判断就是：要做多还是做空，也就是要

买还是卖，买进代表此商品后势看涨，卖出代表此

商品后势看跌。

如何判断交易商品的多空，方法不胜枚举，且

依照投资的性质也有所差异。就期货日内交易来

说，每次交易的趋势多空判断可能是当日委托买卖

平均手数的比较，也有可能是当日成交量平均手数

的比较，但就股票长期持有而言，就会依照长期走

势的推算来判断多空。

在交易策略中，判断多空的时机与进场时机并

不相等，就意义上而言，判断多空就像断定了当天

的趋势，而进场时机是找一个好的时间点下单。

不论在哪种商品的交易市场中，趋势都有可能

发生改变。若趋势发生改变，则可以考虑止损并反

向持仓，只是在同一个趋势中投资人不该随意反向

持仓，违背交易原则，可能会导致重大亏损。

技巧68 【概念】趋势交易与顺势交易

在研发量化投资策略时，通常分为两种交易策

略形态：“趋势交易”和“顺势交易”。在五花八门的

交易策略中，并不是所有交易策略都需要趋势判

断，有一类的交易策略需要趋势判断，但另外一类

的交易策略不需要。

不需要趋势判断的策略称为“顺势交易策略”。

顺势交易不必判断多空，而是触发特定条件直接进

场。例如：海龟策略，如果当日突破特定区间的高

点即买多，突破低点即买空。

简单来说，若我们使用的策略是趋势交易，则

我们的进场算法必须通过趋势判断进场；若为顺势

交易，则只需要进行进场判断，详细介绍在技巧77

中。

技巧69 【程序】时间区段价格走势

判断趋势最简单、直观的方式就是用两个时间

点比较，因为买卖双方在这段时间区段中经互相对

抗后才会形成价格的涨跌，我们就利用这点来进行

趋势判断。

通常我们会在8:45至9:00之间进行趋势判断，

接着在9:00后寻找相对低点进场，而进场的说明在

第7章中将会介绍。

可通过8:45至9:00时间区段的价格走势来进行

趋势判断，代码如下：

文件名：69.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义判断时间
trendStartTime=datetime.datetime.strptime('08:45:00.00'
,"%H:%M:%S.%f")
trendStartPrice=0
trendEndTime=datetime.datetime.strptime('09:00:00.00',"
%H:%M:%S.%f")
trendEndPrice=0
trend=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=datetime.datetime.strptime(MatchInfo[0],"%H:
%M:%S.%f")
 MatchPrcie=int(MatchInfo[1])

 # 判断趋势开始或结尾的成交价格
 if trendStartPrice==0 and MatchTime>trendStartTime:
 trendStartPrice=MatchPrcie
 elif trendEndPrice==0 and MatchTime>trendEndTime:
 trendEndPrice=MatchPrcie
 if trendEndPrice>trendStartPrice:
 trend+=1
 elif trendEndPrice<trendStartPrice:

 trend-=1
 break
print ("TrendStartPrice",trendStartPrice,"TrendEndPrice
",trendEndPrice,"Trend:",trend)

通过Python命令执行该程序，结果如下：

>python 69.py
TrendStartPrice 10300 TrendEndPrice 10316 Trend: 1

技巧70 【程序】多点查看委托量比重

在趋势的判断中，委托信息是成交的先行信

息，许多投资人会与委托信息做连接，若可以掌握

委托信息，就有机会预测当日的趋势。

本技巧通过买卖双方委托量各自的平均数来进

行比较，若多方大于空方，则趋势看涨；反之，若

空方大于多方，则趋势看跌。

本技巧当中加入了另外一个条件，就是多点查

看，委托量为累计信息，所以当我们在9点整查看

委托信息时，是由8:30至9:00的累计数据，若我们

只查看一个时间点的委托比重，或许没有那么足够

的信心支撑，此时就必须通过多个时间点的检验。

本技巧将会通过3个时间点委托比重的校验，

若3个时间点中多方委托比重（OrderBAmount/

OrderBCnt）较大（OrderBAmount/OrderBCnt大于

OrderSAmount/OrderSCnt）两次以上，则趋势看

涨，反之，空方委托比重

（OrderSAmount/OrderSCnt）较大两次以上，则趋

势看跌。

通过数学原理，只要每次判断会加一或减一，

经过3次判断，则结果必定会是大于或小于0，若趋

势变数大于0，则看多；小于0，则看空。

通过8:50、9:00、9:03这3个时间点作为判断时

机点，代码如下：

文件名：70.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义判断时间
trendTime1=datetime.datetime.strptime('08:50:00.00',"%H
:%M:%S.%f")
trendTime2=datetime.datetime.strptime('09:00:00.00',"%H
:%M:%S.%f")
trendTime3=datetime.datetime.strptime('09:03:00.00',"%H
:%M:%S.%f")
trendNum=0
trend=0

获取委托信息
for i in getOrder():
 OrderInfo=i.split(',')
 OrderTime=datetime.datetime.strptime(OrderInfo[0],"%H:
%M:%S.%f")
 OrderBCnt=int(OrderInfo[1])
 OrderBAmount=float(OrderInfo[2])
 OrderSCnt=int(OrderInfo[3])
 OrderSAmount=float(OrderInfo[4])

 # 趋势判断
 if OrderTime>=trendTime1 and trendNum==0:
 if OrderBAmount/OrderBCnt > OrderSAmount/OrderSCnt:
 trend+=1
 elif OrderBAmount/OrderBCnt < OrderSAmount/OrderSCnt:

 trend-=1

 trendNum+=1
 print (OrderInfo[0],"B",OrderBAmount/OrderBCnt,"S",Or
derSAmount/OrderSCnt)

 # 趋势判断
 if OrderTime>=trendTime2 and trendNum==1:
 if OrderBAmount/OrderBCnt > OrderSAmount/OrderSCnt:
 trend+=1
 elif OrderBAmount/OrderBCnt < OrderSAmount/OrderSCnt:

 trend-=1
 trendNum+=1
 print (OrderInfo[0],"B",OrderBAmount/OrderBCnt,"S",Or
derSAmount/OrderSCnt)

 # 趋势判断
 if OrderTime>=trendTime3 and trendNum==2:
 if OrderBAmount/OrderBCnt > OrderSAmount/OrderSCnt:
 trend+=1
 elif OrderBAmount/OrderBCnt < OrderSAmount/OrderSCnt:

 trend-=1
 print (OrderInfo[0],"B",OrderBAmount/OrderBCnt,"S",Or
derSAmount/OrderSCnt)
 break
print ("Trend",trend)

通过Python命令执行该程序，结果如下：

>python 70.py
08:50:04.28 B 2.9518213866 S 3.30638722555
09:00:04.28 B 2.71271347249 S 2.81610087294
09:03:04.24 B 2.57038945295 S 2.69571167883

Trend -3

技巧71 【程序】多区段查看委托量变化

技巧70谈到的是多点查看委托量比重，而本技

巧也是查看委托量信息，不同的是，它并不是通过

单一时间点的检验来确定当天的趋势，而是通过每

个区段的委托量变化去判定。何谓区段的委托量变

化呢？就是我们将两个时间点的委托信息进行相

减，取出该区段的变动量来进行趋势判断。

本技巧在8:45至9:00之间，每5分钟作为一个区

段，查看每个区段的委托总量变化。

文件名：71.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义判断时间
trendTime0=datetime.datetime.strptime('08:45:00.00',"%H

:%M:%S.%f")
trendTime1=datetime.datetime.strptime('08:50:00.00',"%H
:%M:%S.%f")
trendTime2=datetime.datetime.strptime('08:55:00.00',"%H
:%M:%S.%f")
trendTime3=datetime.datetime.strptime('09:00:00.00',"%H
:%M:%S.%f")
trendNum=0
trend=0

定义指标变量
lastBAmount=0
lastSAmount=0

获取委托信息
for i in getOrder():
 OrderInfo=i.split(',')
 OrderTime=datetime.datetime.strptime(OrderInfo[0],"%H:
%M:%S.%f")
 OrderBAmount=int(OrderInfo[2])
 OrderSAmount=int(OrderInfo[4])
 if OrderTime>=trendTime0 and lastBAmount==0 and lastSA
mount==0:
 lastBAmount=OrderBAmount
 lastSAmount=OrderSAmount

 # 趋势判断
 if OrderTime>=trendTime1 and trendNum==0:
 diffBAmount=OrderBAmount-lastBAmount
 diffSAmount=OrderSAmount-lastSAmount
 if diffBAmount > diffSAmount:
 trend+=1
 elif diffBAmount < diffSAmount:
 trend-=1
 trendNum+=1
 lastBAmount=OrderBAmount

 lastSAmount=OrderSAmount
 print (OrderInfo[0],"B",diffBAmount,"S",diffSAmount)

 # 趋势判断
 if OrderTime>=trendTime2 and trendNum==1:
 diffBAmount=OrderBAmount-lastBAmount
 diffSAmount=OrderSAmount-lastSAmount
 if diffBAmount > diffSAmount:
 trend+=1
 elif diffBAmount < diffSAmount:
 trend-=1
 trendNum+=1
 lastBAmount=OrderBAmount
 lastSAmount=OrderSAmount
 print (OrderInfo[0],"B",diffBAmount,"S",diffSAmount)

 # 趋势判断
 if OrderTime>=trendTime2 and trendNum==2:
 diffBAmount=OrderBAmount-lastBAmount
 diffSAmount=OrderSAmount-lastSAmount
 if diffBAmount > diffSAmount:
 trend+=1
 elif diffBAmount < diffSAmount:
 trend-=1
 print (OrderInfo[0],"B",diffBAmount,"S",diffSAmount)
 break
print ("Trend",trend)

通过Python命令执行该程序，结果如下：

>python 71.py
08:50:04.28 B 2550 S 2671
08:55:04.28 B 2231 S 2149

09:00:05.48 B 2246 S 2532
Trend -1

技巧72 【程序】查看买卖平均成交手数

趋势的判断也可以通过成交的累计信息来进行

预测。在第5章有提到买卖平均成交手数的指标，

而这个技巧会通过该指标进行趋势判断。

买方平均的手数与卖方平均的手数比较，若买

方平均的手数较大，则我们看涨；反之，若卖方平

均的手数较大，我们看跌。

本技巧在9:00判断买卖平均成交手数，若买方

平均手数较大，则趋势看多；若卖方平均手数较

大，则趋势看空，代码如下。

文件名：72.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51

exec(open('function.py').read())

定义判断时间
trendTime=datetime.datetime.strptime('09:00:00.00',"%H:
%M:%S.%f")
trend=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=datetime.datetime.strptime(MatchInfo[0],"%H:
%M:%S.%f")
 MatchAmount=float(MatchInfo[3])
 MatchBcnt=int(MatchInfo[4])
 MatchScnt=int(MatchInfo[5])

 # 趋势判断
 if MatchTime>=trendTime:
 if MatchAmount/MatchBcnt>MatchAmount/MatchScnt:
 trend+=1
 elif MatchAmount/MatchBcnt<MatchAmount/MatchScnt:
 trend-=1
 print (MatchInfo[0],"B",MatchAmount/MatchBcnt,"S",Mat
chAmount/MatchScnt)
 break
print ("Trend",trend)

通过Python指令执行，结果如下：

>python 72.py
09:04:05.03 B 1.7448392555 S 1.7770118904
Trend -1

技巧73 【程序】查看内外盘总量

在第5章中，有提到内外盘的用途及意义。简

单来说，内外盘代表着目前买卖方的积极度，所以

我们可以通过买卖方以往的积极度来预测目前市场

的趋势。

可以选择比较通过某个时间点的内外盘总量来

预测未来市场的趋势。

文件名：73.py

-*- coding: UTF-8 -*-

取得报价信息，详情请查看技巧51
exec(open('function.py').read())

定义判断时间
trendTime=datetime.datetime.strptime('09:00:00.00',"%H:
%M:%S.%f")
trend=0

定义指标变量
OutDesk=0
InDesk=0

取得成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=datetime.datetime.strptime(MatchInfo[0],"%H:
%M:%S.%f")
 MatchPrcie=int(MatchInfo[1])
 MatchQty=int(MatchInfo[2])
 UpDn5Info=getLastUpDn5()
 Dn1Price=int(UpDn5Info[1])
 Up1Price=int(UpDn5Info[11])
 if MatchPrcie>=Up1Price:
 OutDesk+=MatchQty
 if MatchPrcie<=Dn1Price:
 InDesk+=MatchQty
 # 趋势判断
 if MatchTime >= trendTime:
 if OutDesk>InDesk:
 trend+=1
 elif OutDesk<InDesk:
 trend-=1
 break
 print (MatchInfo[0],"OutDesk",OutDesk,"InDesk",InDesk)
print ("Trend",trend)

通过Python命令执行该程序，结果如下：

>python 73.py
08:46:59.14 OutDesk0 InDesk1
08:46:59.38 OutDesk1 InDesk1
08:46:59.78 OutDesk1 InDesk12
08:47:00.13 OutDesk1 InDesk13
...
08:59:59.62 OutDesk2187 InDesk1765

08:59:59.73 OutDesk2187 InDesk1782
08:59:59.75 OutDesk2187 InDesk1783
08:59:59.79 OutDesk2187 InDesk1784
08:59:59.91 OutDesk2189 InDesk1784
08:59:59.92 OutDesk2191 InDesk1784
Trend 1

技巧74 【程序】大户指标趋势判断

在第5章中提到计算的大户指标包含了单笔和

总量的信息揭露，而多空方的总量能够作为趋势判

断，通过特定时间点的大户指标的累计买卖数量进

行比较。若累计买方数量较多，代表目前是买方强

势，趋势看涨；反之，若空方累计数量较多，则空

方强势，趋势看跌。

若要了解大户指标详细内容，请参考技巧66。

本例在9点整进行趋势判断（多方大单累积量大于

空方大单累计量）。以下为通过大户指标趋势判断

的代码。

文件名：74.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义判断时间
trendTime=datetime.datetime.strptime('09:00:00.00',"%H:
%M:%S.%f")
trend=0

定义指标变量
lastBcnt=0
lastScnt=0
accB=0
accS=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=datetime.datetime.strptime(MatchInfo[0],"%H:
%M:%S.%f")
 MatchPrice=int(MatchInfo[1])
 MatchQty=int(MatchInfo[2])
 MatchBcnt=int(MatchInfo[4])
 MatchScnt=int(MatchInfo[5])
 if lastBcnt==0 and lastScnt==0:
 lastBcnt=MatchBcnt
 lastScnt=MatchScnt
 else:
 diffBcnt=MatchBcnt-lastBcnt
 diffScnt=MatchScnt-lastScnt
 if MatchQty>=10:
 if diffBcnt==1 and diffScnt>1:
 accB+=MatchQty
 print (MatchInfo[0],MatchPrice,MatchQty,0,accB,accS

)
 elif diffScnt==1 and diffBcnt>1:
 accS+=MatchQty
 print (MatchInfo[0],MatchPrice,0,MatchQty,accB,accS
)

 # 趋势判断
 if MatchTime>=trendTime:
 if accB>accS:
 trend+=1
 elif accB<accS:
 trend-=1
 break

 lastBcnt=MatchBcnt
 lastScnt=MatchScnt

print ("Trend",trend)

通过Python命令执行该程序，结果如下：

>python 74.py
08:48:46.770000 10308 10 0 10 0
08:53:58.030000 10317 0 10 10 10
08:54:44.770000 10320 10 0 20 10
08:58:49.630000 10318 17 0 37 10
08:59:10.640000 10319 0 10 37 20
08:59:11.520000 10318 10 0 47 20
08:59:25.250000 10318 0 10 47 30
Trend 1

第7章　规划进场的时机

在整个交易流程当中，进场时机的规划是重要

的环节之一，而市场上并没有完美的进场点，每个

不同的策略会创造属于该策略的进场时机，而不是

单从当日高低点可以进行判断的。走极短线交易风

格的交易者，或许并不需要判断当日的高低点及目

前的价位的对应关系，只需要在发生某个事件时进

场。

技巧75 【概念】何谓进场

投资人下单的第一步必须要先了解未来价格可

能的走势，所以必须通过经验法则、价量关系以及

指标函数来帮助我们判断。简单来说，投资人能利

用目前市场上常用的观察方法找出进场时机，例

如：MA指标、布尔信道以及K线图表分析等。当

然投资人也能将其组合成一个进场时机综合判断的

方法，将不同的技术指标结合起来，当多项指标同

时符合下单条件时为进场时机，这样就有机会加强

投资的准确性。

技巧76 【概念】进场点及成交价

在进行程序交易时，往往程序触发点与市场成

交价不一样，通常会滑价1～2点。例如：若是MA

穿越的策略，当前价穿越MA，而当目前市场价格

10 000点向上穿越9 999点MA指标，以市价买进一

手，则成交价通常都是10 001点或以上，一买一卖

则产生了两次滑点，影响获利绩效两点以上。这是

为何呢？有以下4个原因。

（1）程序化交易获取当前报价成交在10 000

点，也是策略的进场触发点，这10 000点成交价是

市场上一买一卖的最佳成交价，但是这个信息是已

经发生的数据，并不保证往后的价格关联性。

（2）MA策略本来就是众多投资人关注的交易

指标，若交易逻辑差异不大，则可能许多投资人同

时触发进场点，这时就有可能造成上几档价都被成

交，造成成交滑点问题。

（3）市场上的交易规则，市价买单会成交在

市场最佳上一档价，也就是说，假设目前成交价为

10 000，上一档价可能是10 001或以上，因此下市

价单极有可能会成交在10 001或以上。

（4）市场大户一笔订单成交于多个价位。例

如：买单10 000与10 001的价格都被成交完，因此

只能成交在10 002。

技巧77 【概念】趋势交易和顺势交易的
进场区别

通常一整个完整的交易程序，会包含进场和出

场机制，也就是说，假设我们拥有一支当冲的交易

策略，其中会包含进场判断和出场判断，并且在当

日一定会将既有的仓位平仓。

完整的交易策略当中的进场点，从信息的角度

来说，分为趋势交易进场与顺势交易进场，单纯是

因为两者的算法架构不同，并非是金融操作上的不

同。

就构架来说，趋势策略进场会包含趋势判断和

进场判断，例如委托判断多空，MA穿越判断进

场；而顺势策略仅有进场判断，例如，通过大户指

标，买方一笔成交40手以上，则顺势做多。趋势交

易及顺势交易的流程如图7-1所示。

图7-1

技巧78 【概念】如何通过Python进行实
盘委托

在程序化交易中，Python所扮演的角色就是运

算与判断平台，通过外部的程序来进行下单，所以

我们会将焦点放在如何通过Python执行外部的程

序。

Python可以通过subprocess包中的check_output

函数来进行外部命令，并且执行外部命令后，还能

获取回传值，通过这样的搭配，我们就可以在

Python中设立下单机制，甚至是委托系统。

本示例介绍的是进场条件的判断，重点并非下

单的处理，所以有关下单的代码都会通过print函数

以显示来代替实盘交易，在后面章节中才会提到如

何进行实际下单与构建委托函数。

说明　

下单的机制与委托的读取，可参阅第9

章的介绍。

技巧79 【程序】固定时间进场

进场条件最简单的示例就是在固定时间进场，

也就是当时间穿越指定的时间后就会进行进场动

作。进场的动作在本章中将不进行真实下单，而以

列出一行文字的方式显示，代码如下所示：

print("Order Buy Success!")

以下为固定时间进场的策略。

文件名：79.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

orderTime=datetime.datetime.strptime('09:00:00.00',"%H:
%M:%S.%f")

设置初始仓位，若为0，则为空仓
index=0
orderPrice=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=datetime.datetime.strptime(MatchInfo[0],"%H:
%M:%S.%f")
 MatchPrice=int(MatchInfo[1])

 if MatchTime>=orderTime:
 index=1
 orderPrice=MatchPrice
 print (MatchInfo[0],"Order Buy Success!")
 break
后续是出场条件判断，本章不做介绍

通过Python指令执行该程序，结果如下：

>python 79.py
09:00:00.09 Order Buy Success!

曾听过一种交易策略：在开盘时，由于价格震

荡较大，通过两个交易账户在同一个价位的多方和

空方各下一手并设置止损和止盈点，当趋势发生

时，趋势相反的一方会进行止损，正确的一方则会

赚取一个价格小波段。

固定时间进场都是一些特殊的时间点，例如

8:45期货开盘，9:00现货（股票）开盘，13:30现货

（股票）收盘。另外，或许是人们的习惯，整点

（如10点、11点）发生行情变化的机会都较高，也

是进场的时机点。

技巧80 【程序】价格穿越MA进场

MA策略有许多变化，其中常见的就是快线追

慢线。本技巧将介绍的是价格（快线）追MA（慢

线），若快线向上突破，则做多；反之，若快线向

下突破，则做空。

通过逐笔的成交价进行价格穿越判断，该策略

优缺点是并存的：优点是可以比一般看盘软件的投

资人提早判断进场点；缺点是当价格波动小的时

候，可能会造成反复穿越，必须通过其他进场判断

机制来提高策略的准确度。

通常MA穿越策略，都是趋势交易的策略，会

先决定多空的方向，毕竟在价格波动较大的期货市

场中，在逐笔计算的情况下很有可能多次交叉穿

越，这时若没有趋势判断，则可能会造成多次下

单。

实盘交易时的MA穿越会搭配趋势判断，本示

例仅展示价格由下往上穿越MA时买进一手，并没

有搭配趋势判断。以下是MA策略和价格穿越MA的

代码。

文件名：80.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

设置指标变量
MAarray=[]
MAnum=10
lastHMTime=""
lastMAValue=0
lastPrice=0
设置趋势
trend=1

设置初始仓位，若为0，则为空仓
index=0
orderPrice=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 HMTime=MatchInfo[0][0:2]+MatchInfo[0][3:5]
 MatchPrice=int(MatchInfo[1])
 if len(MAarray)==0:
 MAarray+=[MatchPrice]
 lastHMTime=HMTime
 else:
 if HMTime==lastHMTime:
 MAarray[-1]=MatchPrice
 elif HMTime!=lastHMTime:
 if len(MAarray)<MAnum:
 MAarray+=[MatchPrice]
 elif len(MAarray)==MAnum:
 MAarray=MAarray[1:]+[MatchPrice]
 lastHMTime=HMTime

 if len(MAarray)==MAnum :
 MAValue=float(sum(MAarray))/len(MAarray)
 if lastMAValue==0 and lastPrice==0:
 lastMAValue=MAValue
 lastPrice=MatchPrice
 continue
 print ("Price",MatchPrice,"MA",MAValue)
 if trend==1:
 if MatchPrice>MAValue and lastPrice<=lastMAValue:
 index=1
 orderPrice=MatchPrice
 print (MatchInfo[0],"Order Buy Success!")
 break
 elif trend==-1:
 if MatchPrice<MAValue and lastPrice>=lastMAValue:
 index=-1
 orderPrice=MatchPrice
 print (MatchInfo[0],"Order Sell Success!")

 break

 lastMAValue=MAValue
 lastPrice=MatchPrice
后续是出场条件判断，本章不做介绍

通过Python指令执行该程序，结果如下：

>python 80.py
Price 10302 MA 10298.0
Price 10302 MA 10298.0
Price 10302 MA 10298.0
Price 10301 MA 10297.9Price 10298 MA 10297.6
Price 10297 MA 10297.5
Price 10298 MA 10297.6
09:32:52.06 Order Buy Success!

技巧81 【程序】MA快线追慢线进场

本技巧是在技巧80的基础上所进行的改良，改

良的原因是期货的价格波动较大，所以很多时机点

都是价格在一瞬间进行的假突破，接着成交价就往

另外一方走了，这时就很有可能止损出场。因此通

过比较两个MA，可以减少价格所带来的瞬间影响

力。消化过价格变化后，MA的穿越显得相对稳

定。

缺点是对于进场的判断时机较为缓慢。读者可

以对该进场点进行修改，加上其他判断机制，让整

个进场机制更加完整。

以下是MA快线追慢线进场的代码。

文件名：81.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

设置指标变量
MAarray=[]
longMAnum=14
shortMAnum=7
lastHMTime=""
lastShortMAValue=0
lastLongMAValue=0

设置趋势
trend=1
设置初始仓位，若为0，则为空仓
index=0
orderPrice=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 HMTime=MatchInfo[0][0:2]+MatchInfo[0][3:5]
 MatchPrice=int(MatchInfo[1])

 if len(MAarray)==0:
 MAarray+=[MatchPrice]
 lastHMTime=HMTime
 else:
 if HMTime==lastHMTime:
 MAarray[-1]=MatchPrice
 elif HMTime!=lastHMTime:
 if len(MAarray)<longMAnum:
 MAarray+=[MatchPrice]
 elif len(MAarray)==longMAnum:
 MAarray=MAarray[1:]+[MatchPrice]
 lastHMTime=HMTime

 if len(MAarray)==longMAnum :
 longMAValue=float(sum(MAarray))/longMAnum
 shortMAValue=float(sum(MAarray[longMAnum-shortMAnum:]
))/shortMAnum
 if lastLongMAValue==0 and lastShortMAValue==0:
 lastLongMAValue=longMAValue
 lastShortMAValue=shortMAValue
 continue
 print ("ShortMA",shortMAValue,"LongMA",longMAValue)
 if trend==1:
 if shortMAValue>lastLongMAValue and lastShortMAValue
<=lastLongMAValue:
 index=1
 orderPrice=MatchPrice
 print (MatchInfo[0],"Order Buy Success!")
 break

 elif trend==-1:
 if shortMAValue<lastLongMAValue and lastShortMAValu
e>=lastLongMAValue:
 index=-1
 orderPrice=MatchPrice
 print (MatchInfo[0],"Order Sell Success!")
 break
 lastLongMAValue=longMAValue
 lastShortMAValue=shortMAValue
后续是出场条件判断，本章不做介绍

通过Python指令执行该程序，结果如下：

>python 81.py
ShortMA 10294.4285714 LongMA 10295.7857143
ShortMA 10294.4285714 LongMA 10295.7857143
ShortMA 10294.5714286 LongMA 10295.8571429
ShortMA 10294.5714286 LongMA 10294.7142857
ShortMA 10294.7142857 LongMA 10294.7857143
...
ShortMA 10294.4285714 LongMA 10294.6428571
ShortMA 10295.5714286 LongMA 10295.2857143
09:42:00.69 Order Buy Success!

技巧82 【程序】MA第二次穿越进场

本技巧是技巧81的衍生策略。在真实的市场

中，若大家都关注某一个指标的变化，那么有心操

作的市场大户就可以进行假突破，接着反向拉价，

这时可能许多人进场后会发现情况不对而仓皇止

损；从程序化交易的角度来说，就有可能会触发止

损条件而出场。

通过这个示例，我们就可以延缓进场，等趋势

较确定后再进场。

图7-2为某一天9:00以后的价格走势以及MA

线，圈内的走势在当天的一开始就向下突破，接着

价格逆涨30点，许多在9:00左右做空的投资人应该

都已经止损了。不过，第二次穿越之后，价格就一

路走低。

图7-2

以下策略在第二次穿越后进场，通过一个标签

（pass变量）来记录目前穿越次数。

文件名：82.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

设置指标变量
MAarray=[]

longMAnum=14
shortMAnum=7
lastHMTime=""
lastShortMAValue=0
lastLongMAValue=0
crossTime=0

设置趋势
trend=1
设置初始仓位，若为0，则为空仓
index=0
orderPrice=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 HMTime=MatchInfo[0][0:2]+MatchInfo[0][3:5]
 MatchPrice=int(MatchInfo[1])

 if len(MAarray)==0:
 MAarray+=[MatchPrice]
 lastHMTime=HMTime
 else:
 if HMTime==lastHMTime:
 MAarray[-1]=MatchPrice
 elif HMTime!=lastHMTime:
 if len(MAarray)<longMAnum:
 MAarray+=[MatchPrice]
 elif len(MAarray)==longMAnum:
 MAarray=MAarray[1:]+[MatchPrice]

 if len(MAarray)==longMAnum :
 longMAValue=float(sum(MAarray))/longMAnum
 shortMAValue=float(sum(MAarray[longMAnum-shortMAnum
:]))/shortMAnum
 if lastLongMAValue==0 and lastShortMAValue==0:

 lastLongMAValue=longMAValue
 lastShortMAValue=shortMAValue
 continue
 print ("ShortMA",shortMAValue,"LongMA",longMAValue)
 if trend==1:
 if shortMAValue>lastLongMAValue and lastShortMAVal
ue<=lastLongMAValue:
 crossTime+=1
 print ("Cross",MatchInfo[0])
 if crossTime==2:
 index=1
 orderPrice=MatchPrice
 print (MatchInfo[0],"Order Buy Success!")
 break
 elif trend==-1:
 if shortMAValue<lastLongMAValue and lastShortMAVal
ue>=lastLongMAValue:
 crossTime+=1
 print ("Cross",MatchInfo[0])
 if crossTime==2:
 index=-1
 orderPrice=MatchPrice
 print (MatchInfo[0],"Order Sell Success!")
 break
 lastLongMAValue=longMAValue
 lastShortMAValue=shortMAValue
 # 后续是出场条件判断，本章不做介绍

通过Python指令执行该程序，结果如下：

>python 82.py
ShortMA 10379.7142857 LongMA 10376.1428571
ShortMA 10379.7142857 LongMA 10376.1428571

ShortMA 10379.7142857 LongMA 10376.1428571
ShortMA 10379.7142857 LongMA 10376.1428571
...
ShortMA 10377.5714286 LongMA 10377.9285714
ShortMA 10378.2857143 LongMA 10378.0
Cross 09:25:00.03
ShortMA 10378.2857143 LongMA 10378.0
ShortMA 10378.1428571 LongMA 10377.9285714
...
ShortMA 10381.0 LongMA 10381.0714286
ShortMA 10381.0 LongMA 10381.0714286
ShortMA 10381.0 LongMA 10381.0714286
ShortMA 10381.1428571 LongMA 10381.1428571
Cross 09:41:04.27
09:41:04.27 Order Buy Success!

技巧83 【程序】MA延迟进场第二次穿越
进场

本技巧是技巧82的延伸，为了应对许多价格短

时间剧烈震荡而造成太早进场。市场是瞬息万变

的，有些时候价格平稳，有些时候大幅度震荡。当

市场价格较为平稳时，MA策略就可能会发生来回

穿越，如图7-3所示，就是价格来回震荡的走势。

图7-3

这时我们可以用某些方式来解决。

策略出场条件不使用MA穿越出场。

价格与MA的差异在某个范围内不出场，假设目

前部位为一手多单，但价格与MA差距未超过10
点，不出场。

延缓时间二次穿越进场，当前穿越后不进场，

而是在数分钟以后第二次穿越进场。除了价格

走势平稳以外，也可以预防市场的第一波走势

被横扫的风险。MA延迟进场第二次穿越进场的

代码如下。

文件名：83.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

设置指标变量
MAarray=[]
longMAnum=14
shortMAnum=7
lastHMTime=""
lastShortMAValue=0
lastLongMAValue=0
crossTime=0
interval=300

设置趋势
trend=1

设置初始仓位，若为0，则为空仓
index=0
orderPrice=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 HMTime=MatchInfo[0][0:2]+MatchInfo[0][3:5]
 MatchPrice=int(MatchInfo[1])
 if len(MAarray)==0:
 MAarray+=[MatchPrice]
 lastHMTime=HMTime
 else:
 if HMTime==lastHMTime:
 MAarray[-1]=MatchPrice
 elif HMTime!=lastHMTime:
 if len(MAarray)<longMAnum:

 MAarray+=[MatchPrice]
 elif len(MAarray)==longMAnum:
 MAarray=MAarray[1:]+[MatchPrice]
 lastHMTime=HMTime

 if len(MAarray)==longMAnum :
 longMAValue=float(sum(MAarray))/longMAnum
 shortMAValue=float(sum(MAarray[longMAnum-shortMAnum:]
))/shortMAnum
 if lastLongMAValue==0 and lastShortMAValue==0:
 lastLongMAValue=longMAValue
 lastShortMAValue=shortMAValue
 continue
 print ("ShortMA",shortMAValue,"LongMA",longMAValue)
 if trend==1:
 if shortMAValue>lastLongMAValue and lastShortMAValue
<=lastLongMAValue:
 if crossTime==0:
 crossTime=datetime.datetime.strptime(MatchInfo[0],
"%H:%M:%S.%f")
 print ("Cross",MatchInfo[0])
 elif datetime.datetime.strptime(MatchInfo[0],"%H:%M
:%S.%f") > crossTime+datetime.timedelta(0,interval):
 index=1
 orderPrice=MatchPrice
 print (MatchInfo[0],"Order Buy Success!")
 break
 elif trend==-1:
 if shortMAValue<lastLongMAValue and lastShortMAValue
>=lastLongMAValue:
 if crossTime==0:
 crossTime=datetime.datetime.strptime(MatchInfo[0],"
%H:%M:%S.%f")
 print ("Cross",MatchInfo[0])
 elif datetime.datetime.strptime(MatchInfo[0],"%H:%M:
%S.%f") > crossTime+datetime.timedelta(0,interval):

 index=-1
 orderPrice=MatchPrice
 print (MatchInfo[0],"Order Sell Success!")
 break
 lastLongMAValue=longMAValue
 lastShortMAValue=shortMAValue
后续是出场条件判断，本章不做介绍

通过Python指令执行该程序，结果如下：

>python 83.py
ShortMA 10378.1428571 LongMA 10376.4285714
ShortMA 10378.1428571 LongMA 10376.4285714
ShortMA 10378.1428571 LongMA 10376.4285714
ShortMA 10378.1428571 LongMA 10376.4285714
ShortMA 10378.0 LongMA 10376.3571429
...
ShortMA 10378.2857143 LongMA 10378.0
Cross 09:25:00.03
ShortMA 10378.2857143 LongMA 10378.0
ShortMA 10378.1428571 LongMA 10377.928571
...
ShortMA 10381.0 LongMA 10381.0714286
ShortMA 10381.0 LongMA 10381.0714286
ShortMA 10381.1428571 LongMA 10381.1428571
09:41:04.27 Order Buy Success!

技巧84 【程序】上下穿越高低点顺势进
场

本技巧是市场上常见的策略。许多人会通过前

几日的高低点来作为基准点，若向上或向下突破了

相对高低点，则顺势进场交易。

在期货的日内交易中，常用的方式就是在开盘

前几分钟设置价格高低点，当突破该高低点就顺势

进场。

以下是上下穿越高低点顺势进场的代码，由于

FastOS本身提供了当日开盘的高低价，因此直接通

过该特性编写代码，节省许多不必要的运算。

文件名：84-1.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

设置指标变量
trendEndTime=datetime.datetime.strptime("09:00:00.00","
%H:%M:%S.%f")
highPoint=0
lowPoint=0

设置初始仓位，若为0，则为空仓
index=0
orderPrice=0

获取高低点
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=datetime.datetime.strptime(MatchInfo[0],"%H:
%M:%S.%f")
 MatchHigh=int(MatchInfo[6])
 MatchLow=int(MatchInfo[7])
 if MatchTime>=trendEndTime:
 highPoint=MatchHigh
 lowPoint=MatchLow
 break
print ("HighPoint",highPoint,"LowPoint",lowPoint)

进场判断
for i in getMatch():
 MatchInfo=i.split(',')
 MatchPrice=int(MatchInfo[1])

 if MatchPrice>highPoint:
 index=1
 orderPrice=MatchPrice
 print (MatchInfo[0],"Order Buy Success!")
 break
 elif MatchPrice<lowPoint:
 index=-1
 orderPrice=MatchPrice
 print (MatchInfo[0],"Order Sell Success!")
 break
后续是出场条件判断，本章不做介绍

通过Python指令执行该程离，结果如下：

>python 84-1.py
HighPoint 10370 LowPoint 10354
09:04:59.98 Order Buy Success!

因为通过所发布的最高价及最低价信息，只能

记录从开盘至当前的信息，若要计算从程序开启开

始至特定时间的最高价和最低价，可以通过以下代

码来实现。

文件名：84-2.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

设置指标变量
trendEndTime=datetime.datetime.strptime("09:00:00.00","
%H:%M:%S.%f")
highPoint=0
lowPoint=999999999

设置初始仓位，若为0，则为空仓
index=0
orderPrice=0

获取高低点
for i in getMatch():
 MatchInfo=i.split(',') MatchTime=datetime.datetime.str
ptime(MatchInfo[0],"%H:%M:%S.%f")
 MatchPrice=int(MatchInfo[1])
 if MatchPrice>highPoint:
 highPoint=MatchPrice
 if MatchPrice<lowPoint:
 lowPoint=MatcMatchPricehLow

 if MatchTime>=trendEndTime:
 break
print "HighPoint",highPoint,"LowPoint",lowPoint

进场判断
for i in getMatch():
 MatchInfo=i.split(',')
 MatchPrice=int(MatchInfo[1])
 if MatchPrice>highPoint:
 index=1
 orderPrice=MatchPrice
 print MatchInfo[0],"Order Buy Success!"
 break
 elif MatchPrice<lowPoint:
 index=-1
 orderPrice=MatchPrice
 print MatchInfo[0],"Order Sell Success!"
 break
后续是出场条件判断，本章不做介绍

技巧85 【程序】上下穿越高低点加上高
低点区间顺势进场

本技巧是技巧84的延伸，突破高低点区间，该

进场条件是市场常见的进场策略。太明显的散户趋

势可能会成为大户套利的机会，也就是说大户趁机

布单接着反向拉价，这时就会造成假突破，接着减

仓（清仓）出场。为了避免这种情况发生，可以用

两种方式解决该问题。

1．动态侦测价格

若连续一分钟判断价格是假突破（查看价格有

无回归），此解决方案会延后进场时机。

2．在上下区间以外再加上额外点数

通常设置上下区间的价差为额外点数。例如最

高价与最低价分别为10 000、9 900，进场点则变为

向上突破10 100[10 000 + (10 000 − 9 900)]以及向下

突破9 800[9 000 − (10 000 − 9 900)]。此解决方案会

降低获利。

本技巧将介绍上述的第二个解决方案，上下穿

越高低点加上高低点区间顺势进场，以下为代码。

文件名：85-1.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

设置指标变量
trendEndTime=datetime.datetime.strptime("09:00:00.00","
%H:%M:%S.%f")
highPoint=0
lowPoint=0
spread=0

设置初始仓位，若为0，则为空仓
index=0
orderPrice=0

获取高低点
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=datetime.datetime.strptime(MatchInfo[0],"%H:
%M:%S.%f")
 MatchHigh=int(MatchInfo[6])
 MatchLow=int(MatchInfo[7])
 if MatchTime>=trendEndTime:

 highPoint=MatchHigh
 lowPoint=MatchLow
 spread=highPoint-lowPoint
 break
print ("HighPoint",highPoint,"LowPoint",lowPoint,"Sprea
d",spread)

进场判断
for i in getMatch():
 MatchInfo=i.split(',')
 MatchPrice=int(MatchInfo[1])

 if MatchPrice>highPoint+spread:
 index=1
 orderPrice=MatchPrice
 print (MatchInfo[0],"Order Buy Success!")
 break
 elif MatchPrice<lowPoint-spread:
 index=-1
 orderPrice=MatchPrice
 print (MatchInfo[0],"Order Sell Success!")
 break
后续是出场条件判断，本章不做介绍

通过Python指令执行该程序，结果如下：

>python 85-1.py
HighPoint 10371 LowPoint 10354 Spread 17
09:50:48.20 Order Buy Success!

通过所发布的最高价及最低价信息只能记录从

开盘至此，若要计算从程序开启开始至特定时间的

最高价和最低价，可以通过以下代码来实现。

文件名：85-2.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

设置指标变量
trendEndTime=datetime.datetime.strptime("09:00:00.00","
%H:%M:%S.%f")
highPoint=0
lowPoint=999999999
spread=0

设置初始仓位，若为0则为空仓
index=0
orderPrice=0
获取高低点

for i in getMatch():
 MatchInfo=i.split(',') MatchTime=datetime.datetime.str
ptime(MatchInfo[0],"%H:%M:%S.%f")
 MatchPrice=int(MatchInfo[1])
 if MatchPrice>highPoint:
 highPoint=MatchPrice
 if MatchPrice<lowPoint:
 lowPoint=MatcMatchPricehLow

 if MatchTime>=trendEndTime:

 spread=highPoint-lowPoint
 break
print ("HighPoint",highPoint,"LowPoint",lowPoint,"Sprea
d",spread)

进场判断
for i in getMatch():
 MatchInfo=i.split(',')
 MatchPrice=int(MatchInfo[1])
 if MatchPrice>highPoint+spread:
 index=1
 orderPrice=MatchPrice
 print (MatchInfo[0],"Order Buy Success!")
 break
 elif MatchPrice<lowPoint-spread:
 index=-1
 orderPrice=MatchPrice
 print (MatchInfo[0],"Order Sell Success!")
 break
后续是出场条件判断，本章不做介绍

技巧86 【程序】大户指标触发进场

大户指标的运用，既可以用来判断目前的趋势

变化，也可以用来判断单一事件。（在第5章中，

介绍过大户指标；在关于“趋势判断”的章节中，也

有通过大户指标进行判断的内容。）进场条件是单

一事件的触发，也就是说，我们可以通过单一一笔

较大的量作为信号来进场。

以下将通过单笔30手以上大单并且配合大单累

积量同时符合时才进场，也就是说，假设目前大单

累计买量500手，大单累计卖量700手，卖方新增一

笔50手大单，则做空。

此进场还有一个基础，设想当一个人下了30手

以上的大单时，是不是在市场上就形成了一股无形

的压力？以下是大户指标触发进场的代码。

文件名：86.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

设置指标变量
lastBcnt=0
lastScnt=0
accB=0
accS=0

设置初始仓位，若为0，则为空仓

index=0
orderPrice=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=datetime.datetime.strptime(MatchInfo[0],"%H:
%M:%S.%f")
 MatchPrice=int(MatchInfo[1])
 MatchQty=int(MatchInfo[2])
 MatchBcnt=int(MatchInfo[4])
 MatchScnt=int(MatchInfo[5])
 if lastBcnt==0 and lastScnt==0:
 lastBcnt=MatchBcnt
 lastScnt=MatchScnt
 else:
 diffBcnt=MatchBcnt-lastBcnt
 diffScnt=MatchScnt-lastScnt
 if MatchQty>=10:
 if diffBcnt==1 and diffScnt>1:
 accB+=MatchQty
 print (MatchInfo[0],MatchPrice,MatchQty,0,accB,accS
)
 if MatchQty>=30 and accB>accS:
 index=1
 orderPrice=MatchPrice
 print (MatchInfo[0],"Order Buy Success!")
 break
 elif diffScnt==1 and diffBcnt>1:
 accS+=MatchQty
 print (MatchInfo[0],MatchPrice,0,MatchQty,accB,accS
)
 if MatchQty>=30 and accS>accS:
 index=-1
 orderPrice=MatchPrice
 print (MatchInfo[0],"Order Sell Success!")

 break

 lastBcnt=MatchBcnt
 lastScnt=MatchScnt
后续是出场条件判断，本章不做介绍

通过Python指令执行该程序结果如下：

>python 86.py
09:06:27.55 10370 17 0 17 0
09:08:45.18 10372 24 0 41 0
09:08:45.31 10372 11 0 52 0
09:10:38.80 10384 15 0 67 0
09:12:55.42 10380 0 13 67 13
09:13:35.56 10380 0 25 67 38
09:14:05.18 10379 0 10 67 48
09:15:04.04 10383 10 0 77 48
09:15:25.05 10381 0 11 77 59
09:16:14.19 10378 0 10 77 69
09:17:06.83 10375 0 10 77 79
09:17:07.29 10376 0 12 77 91
09:17:43.30 10375 0 10 77 101
09:20:02.04 10378 20 0 97 101
09:22:30.81 10377 10 0 107 101
09:22:47.66 10378 0 10 107 111
09:29:40.79 10381 10 0 117 111
09:29:58.52 10381 12 0 129 111
09:29:59.21 10383 59 0 188 111
09:29:59.21 Order Buy Success!

第8章　设置出场及止损获利的条件

在一个自动交易策略中，稳定的出场规则是相

当重要的，这是在主观交易中很难实现的部分，因

为人性具有贪婪以及恐惧的特质，当这些情绪影响

到交易者，就很难控制交易的风险。

程序策略的出场可能会因为太过于死板而错过

许多赚钱的机会，要在固定的交易逻辑中既能控制

风险又能兼顾获利的稳定是计量交易者必备的功

课。本章所提供的出场示例是由目前常见的一些出

场条件以及一些笔者本身的交易经验所汇集而成。

技巧87 【概念】何谓出场

商品交易分为进场和出场，其中出场的意思就

是将目前的“持仓头寸”进行结算，“持仓”就是存有

投资商品在自己名下，“头寸”代表资金，出场则代

表另外一个含义，即获利了结或停止亏损。

当投资人手上有持仓头寸时，就会思考如何处

理这些头寸，若目前持仓头寸符合当前的趋势，则

思考如何止盈；反之，若当前头寸的多空不符合当

前的趋势，则思考如何止损。

许多投资人会用进场时机的交易逻辑去判别何

时平仓，但平仓还需要考虑到止损，所以当持仓头

寸的动态损益已经亏损到一个基准点时，这个时间

点也就是投资人平仓的时机，也是风险管控的重要

课题。

在状态不明、亏损过大或情绪不稳定时，建议

先平仓，退出市场观察后再决定是否要继续交易。

这个观念反映的是市场的不确定性与高风险性，因

为日内交易往往价格波动比较大，若遇到非预期的

状况，建议先出场，等待趋势明确后再进场。

技巧88 【程序】价格止损与获利

第一个出场的技巧几乎是每个策略都会用到的

价格止损或价格止盈。站在一个投资的角度，不仅

要考虑获利，也要考虑投资风险。作为一个程序化

交易者，当然要运用程序的优势进行精准的止损/止

盈，控制投资的获利与风险。

策略的出场并非一定是价格的因素，有可能是

某个事件触发，但是在所有出场条件中价格这个指

标必须考虑，因为若没有考虑价格，则可能会导致

保证金不足而直接爆仓。

价格止损与价格止盈，是可以分别使用的。许

多人会用价格作为止损指标来控制风险，但是不一

定会用单一价位作为止盈的基准。

单一价格的止盈较少被使用，原因是整个市场

每天的活跃度都是不同的，若是达到某些特定条

件，例如：交易所涨跌幅的限制为10%，则可在此

区间附近进行止盈。以下是价格止损/止盈的代码。

文件名：88.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义指标变量
stopLoss=10
takeProfit=10

假设目前仓位为买方，进场部分请参考第7章
index=1
orderPrice=10300
coverPrice=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 MatchPrice=int(MatchInfo[1])

 # 出场判断
 if index==1:
 if MatchPrice>=orderPrice+takeProfit or MatchPrice<=o
rderPrice-stopLoss:

 index=0
 coverPrice=MatchPrice
 print (MatchInfo[0],"Order Sell Success!")
 break
 elif index==-1:
 if MatchPrice<=orderPrice-takeProfit or MatchPrice>=o
rderPrice+stopLoss:
 index=0
 coverPrice=MatchPrice
 print (MatchInfo[0],"Order Buy Success!")
 break

技巧89 【程序】价格回跌获利出场

从技巧88延伸至此，换个角度思考，若止盈出

场不是通过单一价差，而是能够随着时间与市场成

交价有所改变，则是一个不错的想法。

本技巧将在当前价高于进场价加上特定的止盈

基准点时开始进行侦测。假设我们设定30点为止盈

基准点，回跌25%出场，我们在10 000点进场，其

中价格最高飙到10 040，回跌至10 030[10 000 + (40

× 75%)]时则出场，若价格没有突破10 030，则回跌

不计。

以下为价格回跌止盈出场的代码，其中止盈基

准点为20，回跌至75%则出场。

文件名：89.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义指标变量
takeProfit=20
maxProfit=0
fallBack=0.75

假设目前仓位为买方，进场部分请参考第7章
index=1
orderPrice=10300
coverPrice=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 MatchPrice=int(MatchInfo[1])

 # 出场判断
 if index==1:
 currentProfit=MatchPrice-orderPrice
 if currentProfit>=max(takeProfit,maxProfit):

 maxProfit=currentProfit
 if maxProfit>0 and maxProfit*fallBack>currentProfit:
 index=0
 coverPrice=MatchPrice
 print (MatchInfo[0],"Order Sell Success!")
 break

 elif index==-1:
 currentProfit=orderPrice-MatchPrice
 if currentProfit>=max(takeProfit,maxProfit):
 maxProfit=currentProfit
 if maxProfit>0 and maxProfit*fallBack>currentProfit:
 index=0
 coverPrice=MatchPrice
 print (MatchInfo[0],"Order Sell Success!")
 break

技巧90 【程序】MA穿越价格出场

在第7章的技巧80中，已经介绍过价格穿越MA

的进场判断，而本技巧则是通过MA来进行出场条

件的判断。

策略的进出场条件：不一定进场有MA条件，

出场就必须有MA条件，每个策略都可以通过进出

场条件的特性去互相搭配。MA出场有一个特性，

即当价格趋于平稳时就是出场时机。

或许通过某些有趣的配合，例如爆量进场与

MA穿越出场，不过这在实际的市场买卖中还是要

考虑滑点风险的。

以下为MA穿越价格出场的代码。

文件名：90.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义指标变量
MAarray=[]
MAnum=10
lastHMTime=""
lastMAValue=0
lastPrice=0

假设目前仓位为买方，进场部分请参考第7章
index=1
orderPrice=10300
coverPrice=0

获取成交信息

for i in getMatch():
 MatchInfo=i.split(',')
 HMTime=MatchInfo[0][0:2]+MatchInfo[0][3:5]
 MatchPrice=int(MatchInfo[1])

 if len(MAarray)==0:
 MAarray+=[MatchPrice]
 lastHMTime=HMTime
 else:
 if HMTime==lastHMTime:
 MAarray[-1]=MatchPrice
 elif HMTime!=lastHMTime:
 if len(MAarray)<MAnum:
 MAarray+=[MatchPrice]
 elif len(MAarray)==MAnum:
 MAarray=MAarray[1:]+[MatchPrice]
 lastHMTime=HMTime

 # 出场判断
 if len(MAarray)==MAnum :
 MAValue=float(sum(MAarray))/len(MAarray)
 if lastMAValue==0 and lastPrice==0:
 lastMAValue=MAValue
 lastPrice=MatchPrice
 continue
 print ("Price",MatchPrice,"MA",MAValue)
 if index==1:
 if MatchPrice<MAValue and lastPrice>=lastMAValue:
 index=0
 coverPrice=MatchPrice
 print (MatchInfo[0],"Order Sell Success!")
 break
 elif index==-1:
 if MatchPrice>MAValue and lastPrice<=lastMAValue:
 index=0
 coverPrice=MatchPrice

 print (MatchInfo[0],"Order Buy Success!")
 break
 lastMAValue=MAValue
 lastPrice=MatchPrice

技巧91 【程序】MA慢线追过快线出场

在第7章的技巧81中，已经介绍过MA快线穿越

MA慢线的进场判断，而本技巧则是通过MA来进行

出场条件的判断。

本技巧与技巧90的差异在于，双MA线不会受

到价格的直接影响。

以下是MA慢线追过快线出场的代码。

文件名：91.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义指标变量
MAarray=[]

longMAnum=14
shortMAnum=7
lastHMTime=""
lastShortMAValue=0
lastLongMAValue=0

假设目前仓位为买方，进场部分请参考第7章
index=1
orderPrice=10300
coverPrice=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 HMTime=MatchInfo[0][0:2]+MatchInfo[0][3:5]
 MatchPrice=int(MatchInfo[1])

 if len(MAarray)==0:
 MAarray+=[MatchPrice]
 lastHMTime=HMTime
 else:
 if HMTime==lastHMTime:
 MAarray[-1]=MatchPrice
 elif HMTime!=lastHMTime:
 if len(MAarray)<longMAnum:
 MAarray+=[MatchPrice]
 elif len(MAarray)==longMAnum:
 MAarray=MAarray[1:]+[MatchPrice]
 lastHMTime=HMTime

 # 出场判断
 if len(MAarray)==longMAnum :
 longMAValue=float(sum(MAarray))/longMAnum
 shortMAValue=float(sum(MAarray[longMAnum-shortMAnum:]
))/shortMAnum
 if lastLongMAValue==0 and lastShortMAValue==0:

 lastLongMAValue=longMAValue
 lastSho
rtMAValue=shortMAValue
 continue
 print ("ShortMA",shortMAValue,"LongMA",longMAValue)
 if index==1:
 if shortMAValue<lastLongMAValue and lastShortMAValue
>=lastLongMAValue:
 index=0
 coverPrice=MatchPrice
 print (MatchInfo[0],"Order Sell Success!")
 break
 elif index==-1:
 if shortMAValue>lastLongMAValue and lastShortMAValue
<=lastLongMAValue:
 index=0
 coverPrice=MatchPrice
 print (MatchInfo[0],"Order Buy Success!")
 break
 lastLongMAValue=longMAValue
 lastShortMAValue=shortMAValue

技巧92 【程序】委托比重反转出场

在趋势判断的章节（第6章）中，有通过委托

量来进行趋势判断的技巧，而许多策略会依据这些

技巧来作为趋势判断。

本技巧为趋势不明的策略出场条件。若进场

时，委托比重为买方大于卖方，而在进场后委托比

重反转为卖方大于买方，这时趋势已经不明确了，

或许就该出场了。

若没有依据委托比重作为进场趋势的判断，则

通过该技巧的出场条件可能会造成进场后马上出场

的情况，所以必须谨慎规划策略，才不会造成无谓

的损失。

以下为委托比重反转出场的代码。

文件名：92.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义指标变量
lastBAmount=0
lastSAmount=0

假设目前仓位为买方，进场部分请参考第7章
index=1
orderPrice=10300

获取委托信息
for i in getOrder():
 OrderInfo=i.split(',')
 OrderBAmount=int(OrderInfo[2])
 OrderSAmount=int(OrderInfo[4])

 if lastBAmount==0 and lastSAmount==0:
 lastBAmount=OrderBAmount
 lastSAmount=OrderSAmount

 diffBAmount=OrderBAmount-lastBAmount
 diffSAmount=OrderSAmount-lastSAmount

 # 抽单出场判断
 if index==1:
 if diffBAmount <= -100:
 index=0
 print (MatchInfo[0],"Order Sell Success!")
 break
 elif index==-1:
 if diffSAmount <= -100:
 index=0
 print (MatchInfo[0],"Order Buy Success!")
 break

技巧93 【程序】委托量抽单出场

委托簿的信息属于累计信息，从中我们可以了

解到每5秒的变动，而在某些时刻会有委托撤单的

现象。撤单是委托簿的累计信息不增反减，例如委

托买卖量上5秒的信息比当前委托买卖量还高，代

表这5秒有投资人将委托单进行取消。

委托下单是需要保证金的，当市场上的交易大

户要进行大手数的委托时，需要有足额的保证金，

所以会有大手数撤单，代表有高额保证金的转移，

这往往是趋势发生的前兆。我们可以利用这种市场

行为来作为策略的判断依据，但也要依照每个读者

的看法做策略的用途。

本技巧将通过委托量单笔的大量减少来作为出

场的判断，例如当仓位为买单，买方的委托总量单

笔减少200手，则出场；当仓位为卖单，卖方的委

托总量单笔减少200手，则出场。

以下是委托量撤单出场的代码，该示例以100

手为基准，撤单大于100手则为出场信号。

文件名：93.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

假设目前仓位为买方，进场部分请参考第7章
index=1
orderPrice=10300

取得委托信息
for i in getOrder():
 OrderInfo=i.split(',')
 OrderBCnt=int(OrderInfo[1])
 OrderBAmount=float(OrderInfo[2])
 OrderSCnt=int(OrderInfo[3])
 OrderSAmount=float(OrderInfo[4])

 # 出场判断
 if index==1:
 if OrderBAmount/OrderBCnt<OrderSAmount/OrderSCnt:
 index=0
 print (MatchInfo[0],"Order Sell Success!")
 break
 elif index==-1:
 if OrderBAmount/OrderBCnt>OrderSAmount/OrderSCnt:
 index=0
 print (MatchInfo[0],"Order Buy Success!")
 break

技巧94 【程序】内外盘量反转出场

在前面的章节中，无论是指标函数（参见技巧

56、技巧57）以及趋势判断（参见技巧73）都有介

绍到内外盘比率。

需要注意的是，若趋势判断、进场条件与出场

条件不相同时，则我们在每个时期都会有不同的计

算指标；假设趋势判断为大户指标累计量，但出场

条件是内外盘，则会依照每个策略的定义；若需要

从一开始就计算内外盘指标，则在进场条件判断中

就要提前开始计算外盘指标值。

若趋势判断不是通过内外盘指标，则需要考虑

该策略的连贯性，否则可能会面临一进场即出场的

窘境，造成无谓的损失。

内外盘反转有几种看法：当内外盘比率发生极

端值时（例如80%）进场，出场条件可能就不会设

置为50%反转，而是在一个特定比例（60%；80%

～20%）内出场，否则等待到反转时可能已经错过

好的出场点了。

以下是内外盘量反转出场的代码。

文件名：94.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义指标变量
OutDesk=0
InDesk=0

假设目前仓位为买方，进场部分请参考第7章
index=1
orderPrice=10300
coverPrice=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=datetime.datetime.strptime(MatchInfo[0],"%H:
%M:%S.%f")
 MatchPrcie=int(MatchInfo[1])
 MatchQty=int(MatchInfo[2])
 UpDn5Info=getLastUpDn5()
 Dn1Price=int(UpDn5Info[1])
 Up1Price=int(UpDn5Info[11])

 if MatchPrcie>=Up1Price:
 OutDesk+=MatchQty
 if MatchPrcie<=Dn1Price:
 InDesk+=MatchQty

 # 出场判断
 if index==1:
 if InDesk>OutDesk:
 index=0
 coverPrice=MatchPrice
 print (MatchInfo[0],"Order Sell Success!")
 break
 elif index==-1:
 if InDesk<OutDesk:
 index=0
 coverPrice=MatchPrice
 print (MatchInfo[0],"Order Buy Success!")
 break

 print (MatchInfo[0],"OutDesk",OutDesk,"InDesk",InDesk)

技巧95 【程序】一分钟爆量出场

交易市场往往是量能带动价格走势，我们在看

盘软件上常见的就是以一分钟为单位的量能变动

图，本书中也有提到量能的指标计算（见技巧53、

技巧63）。

有句俗语：新手看价，高手看量，老手看筹

码。我们可以将这句话解读为：量能的迅速剧增，

可以大幅地造成价格涨跌，投资人一般会认为该市

场行为一旦发生，应该要进入市场大赚一笔（认为

是进场信号）。

但读者有没有发现，这个技巧的定位是在出场

判断。也就是说，换个角度想，若我们可以将它作

为止盈的基础，是不是可以找到一个稳定的获利出

场点？爆量时并非不能设定为进场点，但是若没有

快速的下单通道，通常都是跟进后成交价位都是处

于趋势末端，之后往往找不到合适的出场点，导致

徒劳无功。

通过图8-1来看看爆量出场是否合理。

图8-1

在图8-1的9点～10点的时候，有量能爆发的情

况。量能爆发应该如何定义，这也是计量回测的功

课之一。下面提出几个定义给大家参考。

1．定义固定基准

例如每分钟超过1 000手成交量称为“量能爆

发”。

2．计算当日每分钟平均量能

只要突破该平均量能就视为量能爆发，该定义

可能会导致不稳定触发，当天若是震荡盘，则有可

能误判。

3．计算平均值，并且设置最低界线

若平均值未超过最低界线，则平均值无效；反

之，当平均值超过最低界线时，就将该平均值作为

爆量基准。

以下为爆量出场的代码，定义固定基准爆量出

场值为1 000，分钟累计量一旦突破1 000就视为出

场条件。

文件名：95.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义指标变量
Qty=[]

lastHMTime=""
lastAmount=0

假设目前仓位为买方，进场部分请参考第7章
index=1
orderPrice=10300

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 HMTime=MatchInfo[0][0:2]+MatchInfo[0][3:5]
 MatchAmount=int(MatchInfo[3])

 if lastAmount==0:
 lastAmount=MatchAmount
 lastHMTime=HMTime
 if HMTime==lastHMTime:
 Qty=MatchAmount-lastAmount
 else:
 Qty=0
 lastAmount=MatchAmount
 lastHMTime=HMTime

 # 出场判断
 if Qty>=1000:
 if index==1:
 index=0
 print (MatchInfo[0],"Order Sell Success!")
 break
 if index==-1:
 index=0
 print (MatchInfo[0],"Order Buy Success!")
 break

 print (Qty)

通过Python指令进行爆量出场，过程如下：

>python 95.py
0
1
2
3
...
887
959
984
09:50:48.18 Order Sell Success!

技巧96 【程序】大户指标反转出场

在前面的章节中，无论是指标函数（技巧

66）、趋势判断（技巧74）以及进场判断（技巧

86）都有介绍到大户指标。需要注意的是，若趋势

判断与出场条件的判断指标不相同（假设趋势判断

为内外盘，但出场条件是大户指标累计量），则会

依照每个策略的定义。若需要从一开始就计算大户

指标累计量，则在进场条件判断中就要提前开始计

算了。

另外，若进场的趋势判断不是通过大户指标累

计量，则需要考虑该策略的连贯性，否则可能会面

临反复进出场的窘境，造成无谓的损失。

当大户指标的累计量反转，我们可以判定另外

一方的压力已经涌入，这时候必须谨慎判断何时出

场。

以下为大户指标反转出场的代码。

文件名：96.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())

定义指标变量
lastBcnt=0
lastScnt=0
accB=0
accS=0

假设目前仓位为买方，进场部分请参考第7章
index=1
orderPrice=10300

coverPrice=0

获取成交信息
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=datetime.datetime.strptime(MatchInfo[0],"%H:
%M:%S.%f")
 MatchPrice=int(MatchInfo[1])
 MatchQty=int(MatchInfo[2])
 MatchBcnt=int(MatchInfo[4])
 MatchScnt=int(MatchInfo[5])

 if lastBcnt==0 and lastScnt==0:
 lastBcnt=MatchBcnt
 lastScnt=MatchScnt
 else:
 diffBcnt=MatchBcnt-lastBcnt
 diffScnt=MatchScnt-lastScnt
 if MatchQty>=10:
 if diffBcnt==1 and diffScnt>1:
 accB+=MatchQty
 print (MatchInfo[0],MatchPrice,MatchQty,0,accB,accS
)
 elif diffScnt==1 and diffBcnt>1:
 accS+=MatchQty
 print (MatchInfo[0],MatchPrice,0,MatchQty,accB,accS
)

 # 出场判断
 if index==1:
 if accB<accS:
 index=0
 coverPrice=MatchPrice
 print (MatchInfo[0],"Order Sell Success!")
 break
 elif index==-1:

 if accB>accS:
 index=0
 coverPrice=MatchPrice
 print (MatchInfo[0],"Order Buy Success!")
 break
 lastBcnt=MatchBcnt
 lastScnt=MatchScnt

第9章　连接券商的即时报价与下单函
数

踏进真实市场交易的第一步，就是要取得即时

报价，通过算法的逻辑进行价量运算后进行自动下

单。券商通常会提供下单的API来让使用者接入，

但这对于一般使用者较为困难，因此我们提供了

FastOS程序连接群益期货的报价与下单服务，即可

获取报价，并通过命令进行下单与委托查询的动

作，创建属于自己的交易系统[1]。

本章将介绍报价的原理与实现，并提供下单程

序以及Python的接入方式，让投资者可以迅速下

单。

技巧97 【概念】程序交易流程

本技巧介绍实盘交易的流程，回测构建的流程

可参考技巧41和技巧42，虽然回测与实盘交易都是

以交易为基础，但是实盘交易比起回测构建更加注

重即时信息的获取以及下单的处理方式。

在了解程序交易的流程以前，必须先了解整体

的市场交易结构。市场上简易的结构分为几个单

位：

交易所；

券商；

信息商；

投资人。

上述每个单位都是市场中不可或缺的部分。其

中，券商接收投资人的委托，冻结投资人保证金，

向交易所传递委托信息；交易所将会接收委托并进

行撮合，发布市场即时信息；信息商负责获取交易

所的即时信息，给投资人发布信息，类似于现在的

看盘软件；最后投资人接收市场信息，进行交易判

断，接着发送委托单给券商。这当中的所有行为都

是环环相扣，所以整个市场结构是不断循环的。市

场交易结构如图9-1所示。

图9-1

无论是程序交易还是主观交易（即手工交

易），都会有3个步骤。

步骤1：取得市场信息。

步骤2：进行交易（主观）判断。

步骤3：发送交易委托。

在上述步骤中，主观交易者会通过看盘软件来

完成，而程序交易者则会通过“取报价”“算法判

断”和“通过程序进行委托”来完成，这些就是程序

交易的流程。

在算法判断当中，本书的目录结构从第5章开

始也正好是实盘算法的流程，读者可以按章节顺序

阅读，了解完整的算法架构。下面列出算法流程。

步骤1：获取报价与设计指标。

步骤2：判断涨跌的趋势。

步骤3：规划进场的时机。

步骤4：设置出场及止损获利的条件。

步骤5：通过程序下单。

技巧98 【概念】交易所解释信息

台湾期货交易所为了促进市场活跃，并且让交

易信息更为透明，配合社会推广“开源数据”与“大

数据”，因此会发布逐笔成交信息，以适应当地的

期货市场逐笔成交制度，在盘中发布20多种不同类

型的信息。

对于这么多种类型的即时信息，本书仅介绍与

即时价量有关的信息，包括委托信息、成交信息和

上下五档价信息。

1．I020

成交价量揭示信息，将逐笔成交信息即时揭

露。在本书所附的交易程序中，报价文件名称

为“日期_Match.txt”，例如“20170803_ Match.txt”。

文件中的字段如下：

时间，成交价，成交量，总量，成交买笔，成交卖笔，最高价，最低价

2．I030

商品累计委托量信息，将所有商品分别统计委

托累计信息，以每5秒发布一次。在本书所附的交

易程序中，报价文件名称为“日期

_Commission.txt”，例

如“20170803_Commission.txt”。

文件中的字段如下：

时间，委托买笔，委托买手，委托卖笔，委托卖手

3．I080

最佳上下五档价量信息，是委托簿信息的一部

分，期交所用来发布个别商品的最佳五档价量。在

本书所附的交易程序中，报价文件名称为“日期

UpDn5.txt”，例如“20170803 UpDn5.txt”。

文件中的字段如下：

时间，下一档价格，下一档数量，下两档价格，下两档数量，下三档
价格，下三档数量，下四档价格，下四档数量，下五档价格，下五档
数量，上一档价格，上一档数量，上两档价格，上两档数量，上三档
价格，上三档数量，上四档价格，上四档数量，上五档价格，上五档
数量

技巧99 【概念】获取报价的方式

在技巧51中介绍了获取即时报价信息的代码，

本技巧将介绍程序交易中获取报价的概念。

接收报价部分属于跨程序的调用，在本书中由

FastOS来串接Python。跨程序调用有许多方式，如

何应用也是程序交易者必须克服的门槛。

从信息技术的角度来说，目前设计的程序交易

系统架构为了符合弹性、多语言兼容的特性而选择

较常用的“文件”传输方案，选择这个方案能降低整

个交易系统难度，程序降低程序编写的门槛。因为

是文件存取的调用方式，所以交易程序会主动读取

报价，而不是被推送数据。

读写报价的交易系统结构如图9-2所示。

图9-2

接着该如何通过文件进行即时报价读取呢？首

先，我们必须了解读文件的方式。因为我们只需

要“最新”的报价，所以只需要访问文件的尾部信

息，这时就该思考如何有效地读取文件的尾部信

息，如图9-3所示。

图9-3

以下是我们建议的解决方案。

（1）通过Python os包中的tail命令来读取文

件。

本方案在Windows上并不被支持，该包仅支持

Linux，所以在本书中不介绍。

（2）通过Python的open函数以及read函数来读

取文件。

通过Python内置的文件读写函数，也能够获取

文件内容，并且通过seek函数可以设定目前的文件

存取访问点，通过这样的方式再自行编写算法，就

能够获取最后一笔数据。

通过seek函数，必须准确获取最后一笔的数

据，才有办法准确地抓出最新一笔数据，而在

Python中，有公开的外部包，可以直接读取文件的

尾部信息，参考下面的方案。

（3）通过Python的tailer包来读取文件。

tailer包必须额外安装，具体的安装过程如下。

pip安装详细介绍可以参考技巧8，安装完成后就可

以在Python中使用了。

>pip install tailer
Collecting tailer
 Downloading tailer-0.4.1.tar.gz
Building wheels for collected packages: tailer
 Running setup.py bdist_wheel for tailer ... done
 Stored in directory: C:\Users\jack\AppData\Local\pip\
Cache\wheels\86\30\e9\
ea2c40a0b2cc6369a4d5ad033490d95f4cca5aa7dde15be7ff
Successfully built tailer
Installing collected packages: tailer
Successfully installed tailer-0.4.1

tailer提供了几个相关的函数，可以从文件的尾

部读取数据（tail），也可以从文件的头部读取数据

（head），还可以跟踪文件变化并读取增长的行

（follow）。

本书将通过Python的tailer包使用即时报价的信

息，读者可参考技巧51。

技巧100 【概念】实盘交易算法与回测算
法差异

实盘交易算法与回测算法最大的差异在于数据

的获取以及运用方式，回测算法是通过既有的历史

信息来进行运算，而实盘算法则是通过目前交易所

最新的报价来进行数据获取。

举个简单的示例，假设要在9:00准时进场，

11:00准时出场，通过回测算法，可以直接通过当天

的历史信息进行筛选，获取最靠近特定时间点的数

据。即时算法则必须要不断地去读取当前报价文件

的最新数据，直到当前的报价时间超过11点才会出

场。这两种算法的写法截然不同，读者也可以观察

第4章以前的示例以及之后实盘流程的交易示例。

除了数据的获取和运用以外，下单部分也是相

当重要的。在进行回测时，触发进出场点的动作只

是将成交时间和成交价记录下来，并没有触及真正

的下单动作。若要真正落实实盘交易的交易所撮合

规则，就必须去查看当前的上下五档价，但是也不

全然正确，毕竟模拟单没有真正送入交易所委托簿

中，我们只能通过历史数据做出最佳判断。若觉得

麻烦，可以在回测中设定一个滑点，因为最佳上下

一档价通常与成交价相差一点，也是最有可能成交

的价位（遇到波动较大的情况，则可能会滑点在一

点以上），而一买一卖则会产生两个滑点，更详细

的介绍详见技巧76。

另外，因为实盘交易的下单部分会直接影响交

易绩效，所以是整个程序交易中需要特别注意的部

分。实际下单有以下两个层面需要考虑。

能否下单成功。

是否能获取相对较佳的成交价位。

以上两点都与下市价单及限价单有关，因为期

货市场活跃度高，成交概率非常大，市价单不会考

虑能否成交的问题，但往往没办法取得相对较佳的

成交价位；限价单则相反，可以设定有相对优势的

价位，但能否下单成功仍会成为隐忧。

这些都是程序交易必须经历的，要在绩效与执

行力上做出抉择。举个例子来说，假设每次通过市

价单交易，一买一卖可能会有2个滑点，而通过限

价单则不会产生滑点，但是可能会面临委托未成交

的情形而错过相对较好的进场点，只能等到下次进

场条件触发。

若无法准确下单，则在实际的策略中必须做出

相对应的措施，否则会导致交易策略充满不确定

性，比如没有触发成交的委托单应该如何处理，也

是程序交易中应该要面对的问题。

我们将会在技巧108中介绍下单命令，尝试解

决市价单及限价单之间的矛盾，让投资人提高策略

执行力并取得相对较佳的价位。

技巧101 【概念】下单参数介绍

在本书的策略中，会提供下单程序，在执行程

序下单时，需要送出交易相关的参数，执行的命令

简称为下单命令，如下所示：

程序名称、商品名称、买或卖、价格、数量和

市价或限价、下单条件、是否日内。

例如：

Order.exe TX00 B 11000 1 LMT ROD 1

命令参数介绍如表9-1所示。

表9-1　下单命令参数

命

令

参

数

说明

程

序

名

称

程序名称指的是传达交易命令的程序，书中提供的程序名称为“Order.exe”

商

品

合

约

名

称

商品合约名称为交易商品合约的名称，以2017年6月30日的大台指为例，期交所定义

的合约名称为TXFG7，但是按照群益期货所定义的商品合约名称规则当月合约为

TX00，而远月份合约为“TX+月份”，例如：7月份合约名为“TX07”

买

或 设置该笔订单是买进（B）还是卖出（S）

卖

价

格
设置要买入或卖出的价格，仅在限价单生效。如果是市价单，就可用空值（" "）

数

量
设置要买入或卖出的合约数量

市

价

或

限

价

市价（Market Price，MKT）是指当前市场的价格，限价（Limit Price，LMT）是我们

指定成交的价格

下

单

条

件

交易参数有3个：IOC、FOK与ROD。其中，IOC为Immediate or Cancel，意为立即成

交否则取消（这条命令与FOK类似，差别在于允许部分成交）；FOK为Fill or Kill，

意为全部成交否则取消；ROD为Rest of Day，意为当日有效单，即当日收盘前都是有

效的。

下单条件要搭配限价或市价使用，一般而言，如果下了市价单（MKT）就会使用下

单条件立即成交（IOC）；如果下了限价单（LMT）就会使用下单条件当日成交

（ROD）

是

否

日

内

交

易

日内交易与否牵涉到保证金是否减半，但日内交易也有条件与资格限制，其中0表示

非日内交易，1表示日内交易

比较特别的是，下单账户没有在下单参数中，会以FastOS系统的下单账户选项来定。

若当前FastOS的交易账户设定为A账户，则下单程序会通过A账户进行委托；若要通

下

单

账

户

过B账户进行委托，则必须修改FastOS中的账户选项，如图9-4所示[2]。

图9-4

技巧102 【概念】实盘委托的市场机制

事件触发（通过算法）后进行的下单动作，不

论是开仓或平仓都需要发送交易委托，本技巧将阐

述目前实盘委托的市场机制。

下单就是投资人发送委托至券商，经由券商的

风控检验[3]后，再送到交易所进行买卖。每次进行

委托时，券商端会对投资人做扣缴保证金，成功后

才会将交易委托送至交易所。

投资人在每次对券商发送委托后，券商会先回

传委托回报，委托成功后才会等待交易所撮合，撮

合成功后交易所会回传成交回报给券商，券商再回

传成交信息给投资人，投资人收到成交回报时，才

会确定成交的相关信息，如图9-5所示。

图9-5

如果使用的是“市价单”，并且要买，就会以市

场上最佳的卖价成交；如果我们要卖，就会以市场

上最佳的买价成交。以台湾指数期货市场而言，只

要下市价单就会马上成交，交易所会传回成交信

息，流程如图9-6所示。

图9-6

如果使用的是“限价单”，就会以我们指定的价

格成交。如果市场上有其他委托单触碰到指定委托

的价格就会传回成交回报，否则就会一直挂在交易

所委托簿之中，如图9-7所示。

图9-7

技巧103 【程序】完整下单函数介绍

完整的实际下单函数会包含委托下单、撤销委

托、委托查询和下单命令等。以下是笔者提供的下

单函数库，通过subprocess包进行外部命令的调

用，并且取得下单程序的回报值，以确保下单能正

确执行。

subprocess包（注：如果是从官网下载的

Python，基本已经内置了subprocess包），通过以下

命令进行安装：

pip install subprocess

安装外部包详情请参考技巧8。

以下所提供的代码皆为基本下单应用，读者若

有更深入的需求可以自行修改代码。

下单函数库的文件名称为order.py，内容如

下。

文件名：order.py

-*- coding: UTF-8 -*-

导入相关包
import subprocess

下单子程序的存放位置
ExecPath="./bin/"

市价单下单
def OrderMKT(Product,BS,Qty):
 OrderNo=subprocess.check_output([ExecPath+"order.exe",
Product,BS,"0",Qty,"MKT","I OC","0"]).strip('\r\n')
 while True:
 ReturnInfo=subprocess.check_output([ExecPath+"GetAcco
unt.exe",OrderNo]).strip('\ r\n').split(',')
 if len(ReturnInfo)>1:
 return ReturnInfo

限价单委托
def OrderLMT(Product,BS,Price,Qty):
 OrderNo=subprocess.check_output([ExecPath+"order.exe",
Product,BS,Price,Qty,"LMT", "ROD","0"]).strip('\r\n')
 return OrderNo

查询委托明细
def QueryOrder(Keyno):
 ReturnInfo=subprocess.check_output([ExecPath+"GetAccou
nt.exe",Keyno]).strip('\r\ n')
 return ReturnInfo.split(',')

查询委托明细
def QueryAllOrder():
 ReturnInfo=subprocess.check_output([ExecPath+"GetAccou
nt.exe","ALL"]).strip('\r\n').split('\r\n')
 ReturnInfo= [line.split(',') for line in ReturnInfo]
 return ReturnInfo

查询未平仓信息
def QueryOnOpen():
 ReturnInfo=subprocess.check_output([ExecPath+"OnOpenIn
terest.exe"]).strip('\r\n')
 return ReturnInfo.split(',')

查询权益数信息
def QueryRight():
 ReturnInfo=subprocess.check_output([ExecPath+"FutureRi
ghts.exe"]).strip('\r\n')
 return ReturnInfo.split(',')

撤销委托
def CancelOrder(Keyno):
 ReturnInfo=subprocess.check_output([ExecPath+"order.ex
e","Delete",Keyno])
 if "cancel send" in ReturnInfo:
 return True
 else:
 return False

限价转删单
def LMT2DEL(Product,BS,Price,Qty,Sec):
 OrderNo=OrderLMT(Product,BS,Price,Qty)
 StartTime=time.time()
 while time.time()-StartTime<Sec:
 ReturnInfo=QueryOrder(OrderNo)
 if len(ReturnInfo)!=1:

 return ReturnInfo
 CancelOrder(OrderNo)
 return False

限价转市价
def LMT2MKT(Product,BS,Price,Qty,Sec):
 OrderNo=OrderLMT(Product,BS,Price,Qty)
 StartTime=time.time()
 while time.time()-StartTime<Sec:
 ReturnInfo=QueryOrder(OrderNo)
 if len(ReturnInfo)!=1:
 return ReturnInfo
 if CancelOrder(OrderNo):
 ReturnInfo=OrderMKT(Product,BS,Qty)
 return ReturnInfo

程序内容包含多个下单函数，将分别在本章和

第10章的函数技巧中介绍。

技巧104 【程序】发送市价委托函数

本技巧将介绍通过Python编写市价委托函数。

FastOS提供了子程序Order.exe，通过这个子程序就

可以进行市价委托，前提是FastOS必须先登录群益

交易账户。

市价单必须通过MKT参数，并在成交价参数中

随意输入任何数字，不可忽略该参数。

在以下的市价委托函数代码中，会去执行外部

命令Order.exe，执行后就成功委托了。需要注意的

是子程序放置的位置，若在Python中没有将子程序

路径设置好，则无法正确执行。外部程序Order.exe

的文件位置在当前目录下的bin目录中，而市价单函

数会执行的动作为：

执行市价单委托。

取委托明细，查询至成交回报委托明细。

文件名：order.py @市价单下单

-*- coding: UTF-8 -*-

导入相关包
import subprocess

下单子程序的存放位置
ExecPath="./bin/"

市价单下单

def OrderMKT(Product,BS,Qty):
 OrderNo=subprocess.check_output([ExecPath+"order.exe",
Product,BS,"0",Qty,"MKT","I OC","0"]).strip('\r\n')
 while True:
 ReturnInfo=subprocess.check_output([ExecPath+"GetAcco
unt.exe",OrderNo]).strip('\ r\n').split(',')
 if len(ReturnInfo)>1:
 return ReturnInfo

执行下单委托，在Python中的执行过程如下：

>>> OrderMKT('TX00','B','1')
['0610034000396', '\xa6\xa8\xa5\xe6', 'FITX 201710', '\
xb6R', '10437', '1',
'09:29:46', 'F020000', '0000693', 'TW', 'u0025', '', ''
, '70000351', '0000000', '8888', '\xa5\xbf\xb1`']

回传的是成交信息的list对象。

技巧105 【程序】发送限价委托函数

本技巧将介绍用Python进行限价委托。FastOS

提供了子程序Order.exe，可以进行限价委托。限价

委托与市价委托的不同点在于，限价委托并不会立

即成交，所以FastOS当初在设计子程序时，限价委

托不会等待成交回报，而是直接回传委托序列号。

委托序列号是券商提供给投资人每笔委托的辨

识码，通过该码可以进行委托查询等相关操作。

获取委托序列号后，通过Python去获取委托信

息，确认是否成交，否则当限价委托不断等待成交

回报时会造成程序瘫痪。举例来说：当前成交价为

10 100，而我们下了10 000的限价买单（不会成交

的情况），这时如果子程序等待限价单成交回报，

则整个策略程序会维持在等待成交回报的无限循环

之中，无法继续进行任何动作。

以下是限价委托函数的代码：

文件名：order.py @限价单委托

-*- coding: UTF-8 -*-

导入相关包
import subprocess

下单子程序的存放位置
ExecPath="./bin/"

限价单委托
def OrderLMT(Product,BS,Price,Qty):
 OrderNo=subprocess.check_output([ExecPath+"order.exe",
Product,BS,Price,Qty,"LMT","ROD","0"]).strip('\r\n')
 return OrderNo

在Python中执行下单过程如下，回传的是委托

序列号，获取该序列号后，可以对该笔委托进行委

托查询：

>>> OrderLMT('TX00','B','10444','1')
'0610034000500'
>>> OrderLMT('TX00','B','10449','1')
'0610034000502'

委托查询会在下个技巧中进行介绍。

技巧106 【程序】获取单笔委托明细

获取单笔成交信息，在策略中通常用来查询限

价单是否成交，也是交易命令中必须用到的，因为

限价单存在不会成交的风险，所以要分别进行委托

并需要提取委托明细来确保策略程序稳定执行。

回报的字符串内容以“，”分隔每一个字段，字

段依序为：①委托序列号、②状态、③商品代号、

④多空、⑤价格、⑥手数、⑦时间、⑧分公司代

号、⑨交易账号、⑩交易所、⑪委托书号、⑫异动

变更前量、⑬异动变更后量、⑭成交序列号、⑮子

账号、⑯营业员编号和⑰委托状态。

以下是获取单笔委托明细的代码。

文件名：order.py@查询委托明细

-*- coding: UTF-8 -*-

导入相关包
import subprocess

下单子程序的存放位置
ExecPath="./bin/"

查询委托明细
def QueryOrder(Keyno):
 ReturnInfo=subprocess.check_output([ExecPath+"GetAccou
nt.exe",Keyno]).strip('\r\ n')

 return ReturnInfo.split(',')

在Python中，执行过程如下：

>>> OrderLMT('TX00','B','10444','1')
'0610034000500'
>>> QueryOrder('0610034000500')
['Nodata']
>>> OrderLMT('TX00','B','10449','1')
'0610034000502'
>>> QueryOrder('0610034000502')
['0610034000502', '\xa6\xa8\xa5\xe6', 'FITX 201710', '\
xb6R', '10449', '1',
'09:39:10', 'F020000', '0000693', 'TW', 'o0029', '', ''
, '70000447', '0000000',
'8888', '\xa5\xbf\xb1`']

若未成交，则会回传Nodata字符串；若成交，

则会回传成交明细。

技巧107 【程序】撤销委托函数

撤销委托函数是指当委托无法成交或改变交易

内容时可以使用的命令。当委托成交后，无法撤销

委托。

撤销委托需要提交委托序列号才能准确执行，

常搭配交易命令使用。

以下是撤销委托的代码。

文件名：order.py@撤销委托

-*- coding: UTF-8 -*-

导入相关包
import subprocess

下单子程序的存放位置
ExecPath="./bin/"

撤销委托
def CancelOrder(Keyno):
 ReturnInfo=subprocess.check_output([ExecPath+"order.ex
e","Delete",Keyno])
 if "cancel send" in ReturnInfo:
 return True
 else:
 return False

在Python中，执行过程如下：

>>> OrderLMT('TX00','B','10444','1')
'0610034000500'
>>> QueryOrder('0610034000500')

['Nodata']
>>> CancelOrder('0610034000500')
True
>>> CancelOrder('0610034000500')
False

若回传字符串中有“cancel send”字符串，则认

定撤单成功。

技巧108 【概念】认识交易命令

目前市场上既有的交易框架就是券商提供的下

单函数：市价单和限价单。既然都已经踏入了程序

交易的领域，就应该能通过程序语言（本书以

Python为例）延伸出更多交易函数的组合。

在技巧100中提到市价单和限价单之间的矛盾

之处，也就是成交价位与成交成功率的问题，而交

易命令就是用来解决这个问题的。

在市价单与限价单的选择中，可以衍生出折中

方案“交易命令”，当我们自行编写程序交易时，可

以通过券商提供的交易命令再进行延伸。后面将会

介绍简易的委托、删单功能以及一些初级衍生的交

易指令，例如限价单到期转市价单、限价单到期转

撤单。

按照策略，我们应该能够搭配不同的交易命令

来做配合。假设目前的策略不是通过价格或量来计

算指标，在进出场时价格的波动就不会那么大，这

时就可以通过限价单来进场。若是通过价或量计算

指标的策略，则必须使用“限价单到期转市价单”；

对于小波段投资，当没有在第一时间成交时，就可

以考虑“限价单到期撤单”的交易命令。

本章后面的技巧将会介绍一些交易命令，让读

者了解交易命令的编写方式，读者也可以依照自己

的需求进一步修改。

技巧109 【程序】限价单到期转市价单

“限价单到期转市价单”是交易指令的应用，也

就是把券商的下单函数、自己的程序算法搭配使

用。

本技巧通过限价单委托，发送委托后检测是否

成交。若限价委托成交就直接传送成交回报；若未

成交，到我们设定的秒数后，就转市价委托进行追

单。

该函数为LMT2MKT，参数为交易商品合约、

买卖、价格、量以及到期秒数，执行函数的语法如

下：

LMT2MKT('TX00','B','10510','1',10)

该函数代表以10 510的限价下了一手大台指数

期货的买单，若在10秒内没有成交，则会将限价委

托撤销，转为市价单。

以下为限价单到期转市价单的代码，其中会用

到本章的其他函数，详情可查看示例文件

order.py。

文件名：order.py @ 限价转市价

-*- coding: UTF-8 -*-

导入相关包
import subprocess

下单子程序的存放位置
ExecPath="./bin/"

限价转市价
def LMT2MKT(Product,BS,Price,Qty,Sec):
 OrderNo=OrderLMT(Product,BS,Price,Qty)
 StartTime=time.time()
 while time.time()-StartTime<Sec:
 ReturnInfo=QueryOrder(OrderNo)
 if len(ReturnInfo)!=1:
 return ReturnInfo
 if CancelOrder(OrderNo):
 ReturnInfo=OrderMKT(Product,BS,Qty)

 return ReturnInfo

在Python中执行限价单到期转市价单的过程如

下：

>>> LMT2MKT('TX00','B','10444','1',10)
['0610034000509', '\xa6\xa8\xa5\xe6', 'FITX 201710', '\
xb6R', '10444', '1',
'09:39:59', 'F020000', '0000693', 'TW', 'x0032', '', ''
, '70000452', '0000000',
'8888', '\xa5\xbf\xb1`']
>>> LMT2MKT('TX00','B','10400','1',10)
['0610034000612', '\xa6\xa8\xa5\xe6', 'FITX 201710', '\
xb6R', '10456', '1',
'10:01:46', 'F020000', '0000693', 'TW', 'o0035', '', ''
, '70000552', '0000000',
'8888', '\xa5\xbf\xb1`']

技巧110 【程序】限价单到期撤单

本技巧与上述技巧的代码差异不大，只是将最

后程序的市价单委托去掉，限价单到期后就撤销委

托。

在用途上，两者是不太一样的。限价单到期撤

单意味着这次进场没有成交，不做交易，通常用于

高频交易。在高频交易中，我们会寻求最佳的进场

时机，若这次没有进场，则会再寻找其他机会，而

不是义无反顾地跟进。

本技巧通过限价单委托，在发送委托后检测是

否成交。若限价委托成交，就直接传送成交回报；

若未成交，到我们设定的秒数后就强制撤销委托。

该函数为LMT2DEL，参数为交易商品合约、

买卖、价格、量以及到期秒数，执行函数的语法如

下：

LMT2DEL('TX00','B','10510','1',10)

该函数代表以10 510的限价下了一手大台指数

期货的买单，若在10秒内没有成交，则会将限价委

托撤销，转为市价单。

以下是限价单到期删单的代码，其中会用到本

章的其他函数，详情可查看示例文件order.py。

文件名：order.py@限价转撤单

-*- coding: UTF-8 -*-

导入相关包
import subprocess

下单子程序的存放位置
ExecPath="./bin/"

限价转撤单
def LMT2DEL(Product,BS,Price,Qty,Sec):
 OrderNo=OrderLMT(Product,BS,Price,Qty)
 StartTime=time.time()
 while time.time()-StartTime<Sec:
 ReturnInfo=QueryOrder(OrderNo)
 if len(ReturnInfo)!=1:
 return ReturnInfo
 CancelOrder(OrderNo)
 return Canceled

在Python中执行限价单到期转市价单的过程如

下：

>>> LMT2DEL('TX00','B','10444','1',10)
['0610034000423', '\xa6\xa8\xa5\xe6', 'FITX 201710', '\
xb6R', '10444', '1',
'09:32:09', 'F020000', '0000693', 'TW', 'm0025', '', ''
, '70000376', '0000000',
'8888', '\xa5\xbf\xb1`']
>>> LMT2DEL('TX00','B','10440','1',10)
Canceled

[1]　国内的交易一般不能直连交易所API，需要通

过期货公司的柜台交易系统（如上期信息CTP系统

的API进行交易接入）。

[2]　图9-4中的“当冲与否”指是否日内交易，交易

所可能会对当日和隔日交易收取不同的手续费。

[3]　此处的风控检验主要涉及持仓和资金方面。

第10章　实盘交易与账务管理

本章提供实盘交易的完整策略，都是由第5～9

章的内容整合而来。代码是进行实盘交易的代码，

必须通过FastOS下单机下单，所以读者必须先通过

账户登录FastOS下单机。另外，本章将会介绍委托

查询，通过Python串接委托查询功能。

本示例所提供的实盘交易策略着重于交易流程

的展示，并不保证能够稳定获利，读者可以通过示

例去进行扩展，但不建议直接用于实盘交易。

技巧111 【程序】固定时间买进卖出策略

该策略是通过固定时间点买进卖出，并设置止

损/止盈点，而开仓一律是买进，交易逻辑如下。

1．进场

每日的9点进场（参考技巧79）。

2．出场

进场后，逐笔查看是否触发止损/止盈价位

（进场成交价的上下10点）则立即出场（参考技巧

88），最晚10点出场。

以下为固定时间买进卖出策略的代码。

文件名：110.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())
获取下单函数，详情请查看技巧103
exec(open('order.py').read())

设置开始时间及结束时间
startTime=datetime.datetime.strptime('09:00:00.00',"%H:
%M:%S.%f")
endTime=datetime.datetime.strptime('10:00:00.00',"%H:%M
:%S.%f")

设置初始仓位，若为0，则为空仓
index=0
orderTime=0
orderPrice=0
coverTime=0
coverPrice=0
定义指标变量
stopLoss=10
takeProfit=10

进场判断
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=datetime.datetime.strptime(MatchInfo[0],"%H:
%M:%S.%f")
 MatchPrice=int(MatchInfo[1])
 # 时间到则进场
 if MatchTime>=startTime:
 index=1
 orderInfo=OrderMKT('TX00','B','1')
 orderTime=orderInfo[6]
 orderPrice=int(orderInfo[4])
 print (orderTime,"Order Buy Success! Price:",orderPri
ce)
 break

出场判断
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=datetime.datetime.strptime(MatchInfo[0],"%H:
%M:%S.%f")
 MatchPrice=int(MatchInfo[1])

 if index==1:
 # 止损/止盈判断

 if MatchPrice>=orderPrice+takeProfit or MatchPrice<=o
rderPrice-stopLoss:
 index=0
 coverInfo=OrderMKT('TX00','S','1')
 coverTime=coverInfo[6]
 coverPrice=int(coverInfo[4])
 print (coverTime,"Order Sell Success! Price:",coverP
rice)
 break
 # 时间到则出场
 if MatchTime>=endTime:
 index=0
 coverInfo=OrderMKT('TX00','S','1')
 coverTime=coverInfo[6]
 coverPrice=int(coverInfo[4])
 print (coverTime,"Order Sell Success! Price:",coverP
rice)
 break

技巧112 【程序】顺势交易策略（海龟策
略）

该策略就是突破高低点区间顺势交易的策略。

1．进场

9点以后开始判断进场，进场条件是突破9点以

前的高低点加上高低点的价差。例如9点以前的

高、低点分别为10 530、10 500，价差为30点，则9

点以后必须向上突破10 560（10 530 + 30）才进行

顺势买进，向下突破10 470（10 500 − 30）才进行

顺势做空，详情参考技巧85。若到了10点尚未进

场，则当日不进行交易。

2．出场

出场则是设置固定10点止损（参考技巧88）以

及价格回跌止盈（参考技巧89）。以买单新仓为

例，若市场当前价高于进场价位20点，则开始计算

最高价位，接着只要当价格回跌至最高获利点位的

75%则获利出场。若没有接触到止损获利点，则最

后会在结束时间12点出场。以下为顺势交易策略的

代码。

文件名：111.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())
获取下单函数，详情请查看技巧103
exec(open('order.py').read())

设定上下界
trendEndTime=datetime.datetime.strptime("09:00:00.00","
%H:%M:%S.%f")
highPoint=0
lowPoint=0
spread=0
进出场时间限制
orderLimitTime=datetime.datetime.strptime("10:00:00.00"
,"%H:%M:%S.%f")
coverLimitTime=datetime.datetime.strptime("12:00:00.00"
,"%H:%M:%S.%f")

设置初始仓位，若为0，则为空仓
index=0
orderTime=0
orderPrice=0
coverTime=0
coverPrice=0
定义指标变量
stopLoss=10
takeProfit=20
maxProfit=0
fallBack=0.75

获取高低点
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=datetime.datetime.strptime(MatchInfo[0],"%H:
%M:%S.%f")
 MatchHigh=int(MatchInfo[6])
 MatchLow=int(MatchInfo[7])

 if MatchTime>=trendEndTime:
 highPoint=MatchHigh
 lowPoint=MatchLow
 spread=highPoint-lowPoint
 break

显示上下界，突破则顺势入场
print ("HighPoint",highPoint,"LowPoint",lowPoint,"Sprea
d",spread)

进场判断
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=datetime.datetime.strptime(MatchInfo[0],"%H:
%M:%S.%f")
 MatchPrice=int(MatchInfo[1])
 # 顺势做多
 if MatchPrice>highPoint+spread:
 index=1
 orderInfo=OrderMKT('TX00','B','1')
 orderTime=orderInfo[6]
 orderPrice=int(orderInfo[4])
 print (orderTime,"Order Buy Success! Price:",orderPri
ce)
 break
 # 顺势做空
 elif MatchPrice<lowPoint-spread:
 index=-1
 orderInfo=OrderMKT('TX00','S','1')
 orderTime=orderInfo[6]
 orderPrice=int(orderInfo[4])
 print (orderTime,"Order Sell Success! Price:",orderPr
ice)
 break
 # 若到10点尚未进场，则当日不交易

 if MatchTime>orderLimitTime:
 print ("No Order")
 sys.exit(0)

出场判断
for i in getMatch():
 MatchInfo=i.split(',')
 MatchTime=datetime.datetime.strptime(MatchInfo[0],"%H:
%M:%S.%f")
 MatchPrice=int(MatchInfo[1])
 if index==1:
 # 记录最高点，进行止盈出场判断
 currentProfit=MatchPrice-orderPrice
 if currentProfit>=max(takeProfit,maxProfit):
 maxProfit=currentProfit
 if maxProfit>0 and maxProfit*fallBack>currentProfit:
 index=0
 coverInfo=OrderMKT('TX00','S','1')
 coverTime=coverInfo[6]
 coverPrice=int(coverInfo[4])
 print (coverTime,"Order Sell Success! Price:",coverP
rice)
 break
 # 止损出场
 if currentProfit<(stopLoss*-1):
 index=0
 coverInfo=OrderMKT('TX00','S','1')
 coverTime=coverInfo[6]
 coverPrice=int(coverInfo[4])
 print (coverTime,"Order Sell Success! Price:",coverP
rice)
 break
 # 到达结束时间，自动出场
 if MatchTime>coverLimitTime:
 index=0
 coverInfo=OrderMKT('TX00','S','1')

 coverTime=coverInfo[6]
 coverPrice=int(coverInfo[4])
 print (coverTime,"Order Sell Success! Price:",coverP
rice)
 break
 elif index==-1:
 # 记录最高点，进行止盈出场判断
 currentProfit=orderPrice-MatchPrice
 if currentProfit>=max(takeProfit,maxProfit):
 maxProfit=currentProfit
 if maxProfit>0 and maxProfit*fallBack>currentProfit:
 index=0
 coverInfo=OrderMKT('TX00','B','1')
 coverTime=coverInfo[6]
 coverPrice=int(coverInfo[4])
 print (coverTime,"Order Buy Success! Price:",coverPr
ice)
 break
 # 止损出场
 if currentProfit<(stopLoss*-1):
 index=0
 coverInfo=OrderMKT('TX00','B','1')
 coverTime=coverInfo[6]
 coverPrice=int(coverInfo[4])
 print (coverTime,"Order Buy Success! Price:",coverPr
ice)
 break
 # 到达结束时间，自动出场
 if MatchTime>coverLimitTime:
 index=0
 coverInfo=OrderMKT('TX00','B','1')
 coverTime=coverInfo[6]
 coverPrice=int(coverInfo[4])
 print (coverTime,"Order Buy Success! Price:",coverPr
ice)

 break

技巧113 【程序】MA交叉买进卖出策略

该策略就是常见的MA交易策略，通过逐笔信

息计算。该策略一天当中仅交易一次，若要来回进

行多次交易，则可在策略进出场判断之外再使用一

层循环，如下所示：

判断是否再次进场，例如：在12点以前持续交易
while 时间小于12点 :
 # 进场条件判断
 while index=0:
 ...
 # 出场条件判断
 while index!=0:
 ...

MA策略的交易逻辑如下。

1．进场

通过委托量判断当日趋势，通过3个时间点来

进行判断，分别为8:50、9:00、9:03，趋势判断可

参考技巧56。

趋势判断完成后，与10MA比较价格，以趋势

看涨为例，价格向上突破MA则买进，详情可参考

技巧65。

2．出场

出场与进场的方式一样都是通过MA交叉来判

断；不同的是，买进是价格向上突破MA，平仓则

是价格向下突破MA，可参考技巧73。

以下是MA交叉买进卖出策略的代码。

文件名：112.py

-*- coding: UTF-8 -*-

获取报价信息，详情请查看技巧51
exec(open('function.py').read())
获取下单函数，详情请查看技巧103
exec(open('order.py').read())

定义趋势判断时间
trendTime1=datetime.datetime.strptime('08:50:00.00',"%H
:%M:%S.%f")
trendTime2=datetime.datetime.strptime('09:00:00.00',"%H
:%M:%S.%f")
trendTime3=datetime.datetime.strptime('09:03:00.00',"%H
:%M:%S.%f")
trendNum=0
trend=0

设置指标变量
MAarray=[]
MAnum=10
lastHMTime=""
lastMAValue=0
lastPrice=0

设置初始仓位，若为0，则为空仓
index=0
orderTime=0
orderPrice=0
coverTime=0
coverPrice=0

判断趋势
for i in getOrder():
 OrderInfo=i.split(',')
 OrderTime=datetime.datetime.strptime(OrderInfo[0],"%H:
%M:%S.%f")
 OrderBCnt=int(OrderInfo[1])
 OrderBAmount=float(OrderInfo[2])
 OrderSCnt=int(OrderInfo[3])
 OrderSAmount=float(OrderInfo[4])

 # 趋势判断1

 if OrderTime>=trendTime1 and trendNum==0:
 if OrderBAmount/OrderBCnt > OrderSAmount/OrderSCnt:
 trend+=1
 elif OrderBAmount/OrderBCnt < OrderSAmount/OrderSCnt:

 trend-=1
 trendNum+=1
 print (OrderInfo[0],"B",OrderBAmount/OrderBCnt,"S",Or
derSAmount/OrderSCnt)

 # 趋势判断2
 if OrderTime>=trendTime2 and trendNum==1:
 if OrderBAmount/OrderBCnt > OrderSAmount/OrderSCnt:
 trend+=1
 elif OrderBAmount/OrderBCnt < OrderSAmount/OrderSCnt:

 trend-=1
 trendNum+=1
 print (OrderInfo[0],"B",OrderBAmount/OrderBCnt,"S",Or
derSAmount/OrderSCnt)

 # 趋势判断3
 if OrderTime>=trendTime3 and trendNum==2:
 if OrderBAmount/OrderBCnt > OrderSAmount/OrderSCnt:
 trend+=1
 elif OrderBAmount/OrderBCnt < OrderSAmount/OrderSCnt:

 trend-=1
 print (OrderInfo[0],"B",OrderBAmount/OrderBCnt,"S",Or
derSAmount/OrderSCnt)
 break

进场判断
for i in getMatch():
 MatchInfo=i.split(',')
 HMTime=MatchInfo[0][0:2]+MatchInfo[0][3:5]

 MatchPrice=int(MatchInfo[1])

 # 计算MA
 if len(MAarray)==0:
 MAarray+=[MatchPrice]
 lastHMTime=HMTime
 else:
 if HMTime==lastHMTime:
 MAarray[-1]=MatchPrice
 elif HMTime!=lastHMTime:
 if len(MAarray)<MAnum:
 MAarray+=[MatchPrice]
 elif len(MAarray)==MAnum:
 MAarray=MAarray[1:]+[MatchPrice]
 lastHMTime=HMTime

 # 当MA计算完成后，开始进场判断
 if len(MAarray)==MAnum :
 MAValue=float(sum(MAarray))/len(MAarray)
 if lastMAValue==0 and lastPrice==0:
 lastMAValue=MAValue
 lastPrice=MatchPrice
 continue
 print ("Price",MatchPrice,"MA",MAValue)
 # 多方进场判断
 if trend>=1:
 # 当价格向上突破MA
 if MatchPrice>MAValue and lastPrice<=lastMAValue:
 index=1
 orderInfo=OrderMKT('TX00','B','1')
 orderTime=orderInfo[6]
 orderPrice=int(orderInfo[4])
 print (orderTime,"Order Buy Success! Price:",orderP
rice)
 break
 # 空方进场判断

 elif trend<=-1:
 # 当价格向下突破MA
 if MatchPrice<MAValue and lastPrice>=lastMAValue:
 index=1
 orderInfo=OrderMKT('TX00','S','1')
 orderTime=orderInfo[6]
 orderPrice=int(orderInfo[4])
 print (orderTime,"Order Sell Success! Price:",order
Price)
 break
 lastMAValue=MAValue
 lastPrice=MatchPrice

出场判断
for i in getMatch():
 MatchInfo=i.split(',')
 HMTime=MatchInfo[0][0:2]+MatchInfo[0][3:5]
 MatchPrice=int(MatchInfo[1])

 # 计算MA
 if len(MAarray)==0:
 MAarray+=[MatchPrice]
 lastHMTime=HMTime
 else:
 if HMTime==lastHMTime:
 MAarray[-1]=MatchPrice
 elif HMTime!=lastHMTime:
 if len(MAarray)<MAnum:
 MAarray+=[MatchPrice]
 elif len(MAarray)==MAnum:
 MAarray=MAarray[1:]+[MatchPrice]
 lastHMTime=HMTime

 # MA计算后出场判断
 if len(MAarray)==MAnum :
 MAValue=float(sum(MAarray))/len(MAarray)

 if lastMAValue==0 and lastPrice==0:
 lastMAValue=MAValue
 lastPrice=MatchPrice
 continue
 print ("Price",MatchPrice,"MA",MAValue)
 # 当价格向下穿越MA，则出场
 if index==1:
 if MatchPrice<MAValue and lastPrice>=lastMAValue:
 index=0
 coverInfo=OrderMKT('TX00','S','1')
 coverTime=coverInfo[6]
 coverPrice=int(coverInfo[4])
 print (coverTime,"Order Sell Success! Price:",cover
Price)
 break
 # 当价格向上穿越MA，则出场
 elif index==-1:
 if MatchPrice>MAValue and lastPrice<=lastMAValue:
 index=0
 coverInfo=OrderMKT('TX00','B','1')
 coverTime=coverInfo[6]
 coverPrice=int(coverInfo[4])
 print (coverTime,"Order Buy Success! Price:",coverP
rice)
 break
 lastMAValue=MAValue
 lastPrice=MatchPrice

技巧114 【概念】何谓账务

账务也就是投资人目前的账户信息，其中包含

了常用的权益数、交易记录和未平仓记录。权益数

代表投资人目前可动用的资金。

通过账户类查询，可以了解自己的账户信息，

甚至可以在策略中进行动态净值的计算。

FastOS提供了委托查询、未平仓查询和权益数

查询的相关子程序。

技巧115 【程序】获取总委托明细

在第9章中已介绍过如何查询单笔委托明细，

但在本技巧中是一次性将所有委托明细取出，我们

可以通过这项功能来记录自己每天的交易，返回值

请参考技巧106单笔委托查询。

以下为获取总委托明细的代码。

文件名：order.py@ 查询总委托明细

-*- coding: UTF-8 -*-

导入相关包
import subprocess

下单子程序的存放位置
ExecPath="./bin/"

查询总委托明细
def QueryAllOrder():
 ReturnInfo=subprocess.check_output([ExecPath+"GetAccou
nt.exe","ALL"]).strip('\r\ n').split('\r\n')
 ReturnInfo= [line.split(',') for line in ReturnInfo]
 return ReturnInfo

在Python中，执行获取总委托明细的过程如

下：

>>> QueryAllOrder()
[['0610034000001', '\xa6\xa8\xa5\xe6', 'FITX 201710', '
\xb6R', '10470', '1',
'08:46:03', 'F020000', '0000693', 'TW', 'x0001', '', ''
, '70000001', '0000000',
'8888', '\xa5\xbf\xb1`'],
['0610034000002', '\xa6\xa8\xa5\xe6', 'FITX 201710', '\
xbd\xe6', '10467', '1',
'08:46:08', 'F020000', '0000693', 'TW', 'x0002', '', ''
, '70000002', '0000000',
'8888', '\xa5\xbf\xb1`'],
...
...

技巧116 【程序】获取未平仓明细

未平仓明细代表目前投资人持仓的部位，数据

内容以“，”分隔每一个字段，字段依序为：市场类

别、账号、商品、买卖类型、未平仓部位、当日未

平仓部位、平均成本（3位小数）、每点价值、单

次手续费、交易税。

下面通过Python的子程序OnOpenInterest.exe来

进行未平仓查询。

文件名：order.py@ 查询未平仓信息

-*- coding: UTF-8 -*-

导入相关包
import subprocess

下单子程序的存放位置
ExecPath="./bin/"

查询未平仓信息
def QueryOnOpen():
 ReturnInfo=subprocess.check_output([ExecPath+"OnOpenIn
terest.exe"]).strip('\r\n')

 return ReturnInfo.split(',')

在Python中获取未平仓明细的执行过程如下：

>>> QueryOnOpen()
['TF', 'F0200000000693', 'TX10', 'B', '27', '3', '10444
667', '200', '90', '2.5']
>>>

技巧117 【程序】获取权益数

可用资金数即目前账户里可动用的资金量，通

过权益数的查询，可以判断目前可以交易的合约数

量，并做好资金量管控。

权益数可以扩展委托动态净值，通过程序去计

算目前的动态损益。

返回的字符串内容以“，”分隔每一个字段，字

段依序为：

账户余额、浮动损益、已实现费用、交易税、

预扣权利金、权利金收付、权益数、超额保证金、

存提款、买方市值、卖方市值、期货平仓损益、盘

中未实现、原始保证金、维持保证金、持仓原始保

证金、持仓维持保证金、委托保证金、超额最佳保

证金、权利总值、预扣费用、原始保证金、昨日余

额、期权组合单加不加收保证金、维持率、币种、

足额原始保证金、足额维持保证金、足额可用、抵

缴金额、有价可用、超额保证金、足额现金可用、

有价价值、风险指标、期权到期差异、期权到期差

损、期货到期损益和追加保证金。

以下为权益数的查询函数代码。

文件名：order.py@查询权益数信息

-*- coding: UTF-8 -*-

导入相关包
import subprocess

下单子程序放置位置
ExecPath="./bin/"

查询权益数信息
def QueryRight():
 ReturnInfo=subprocess.check_output([ExecPath+"FutureRi
ghts.exe"]).strip('\r\n')
 return ReturnInfo.split(',')

查询权益数在Python中的执行过程如下，其中

关于个人信息的部分用代字号（×××××）代替，主

要供读者了解权益数查询。

>>> QueryRight()
['+000000XXXXXX00', '+0000000000000', '+0000000000000',
 '+0000000000000',
'+0000000000000', '+0000000000000', '+000000XXXXX00', '
+000000XXXXX00',
'+0000000000000', '+0000000000000', '+0000000000000', '
+0000000000000',
'+0000000000000', '+0000000000000', '+0000000000000', '
+0000000000000',
'+0000000000000', '+0000000000000', '+000000XXXXX00', '
+000000XXXXX00',
'+0000000000000', '+0000000000000', '+000000XXXXX00', '
Y ', '000000000', 'NTD',
'+0000000000000', '+0000000000000', '+00000 XXXXXX00',
'+0000000000000',
'+0000000000000', '+00000XXXXXX00', '+00000XXXXXX00', '
+0000000000000',
'000000000', '+0000000000000', '+0000000000000', '+0000
000000000',
+0000000000000']

	版权信息
	版 权
	版权声明
	内容提要
	序言1
	序言2
	资源与支持
	第1章 Python的基本语法
	技巧1 【概念】Python的诞生与发展
	技巧2 【操作】安装Python的基本环境
	技巧3 【操作】Python语言的基本操作
	技巧4 【操作】执行Python语言的方式
	技巧5 【操作】Python的基本运算与数学函数
	技巧6 【操作】基本变量的使用
	技巧7 【操作】元组、列表与字典的应用
	技巧8 【操作】使用Python的第三方库
	技巧9 【操作】字符串处理的应用
	技巧10 【操作】时间函数应用
	技巧11 【程序】文档的读取与写入
	技巧12 【操作】MySQL数据库的基本操作[4]
	技巧13 【程序】使用Python访问MySQL
	技巧14 【操作】数据的分割与合并
	技巧15 【程序】判断表达式与示例
	技巧16 【程序】循环语句与示例

	第2章 建立自己的工具函数
	技巧17 【概念】建立函数的方法
	技巧18 【程序】在函数库中建立多个函数
	技巧19 【概念】了解时间格式
	技巧20 【程序】时间转换秒数函数
	技巧21 【程序】秒数转换时间函数
	技巧22 【程序】固定时间内的高开低收量
	技巧23 【程序】获取指定时间的价格与数量
	技巧24 【程序】计算移动平均价格

	第3章 Python的图表绘制
	技巧25 【操作】安装绘图包
	技巧26 【概念】折线图与MA的关联性
	技巧27 【程序】绘制价格折线图
	技巧28 【程序】绘制一个与MA重叠的图表
	技巧29 【概念】委托档的意义与用法
	技巧30 【程序】价格折线和委托总量差图
	技巧31 【程序】绘制委托比重线图
	技巧32 【程序】绘制价格线图和量能图
	技巧33 【概念】上下五档的含义与量能变化
	技巧34 【程序】绘制上下五档的量能分布表
	技巧35 【程序】绘制上下五档平均价格走势图
	技巧36 【概念】K线图的解读
	技巧37 【程序】绘制K线图
	技巧38 【程序】绘制价格和点位图表
	技巧39 【程序】绘制绩效图表

	第4章 进行历史回测
	技巧40 【概念】认识历史回测
	技巧41 【概念】回测算法架构
	技巧42 【概念】建立回测流程
	技巧43 【概念】即时算法回放回测
	技巧44 【概念】时间单位不同的差异
	技巧45 【程序】固定时间买进卖出回测
	技巧46 【程序】顺势交易回测
	技巧47 【程序】MA交叉买进卖出回测
	技巧48 【程序】绘制价格走势图并标上买卖点

	第5章 设计自己的指标函数
	技巧49 【概念】何谓指标函数
	技巧50 【概念】定义输入及输出
	技巧51 【程序】获取即时报价咨询
	技巧52 【程序】计算每分钟的高开低收价
	技巧53 【程序】计算每分钟的累计量
	技巧54 【程序】计算买卖方每笔平均成交手数
	技巧55 【概念】了解内外盘的含义
	技巧56 【程序】计算内外盘总量
	技巧57 【程序】计算内外盘比率
	技巧58 【程序】计算买卖方委托总量
	技巧59 【程序】计算买卖方委托平均量
	技巧60 【程序】计算动态委托量变化
	技巧61 【程序】计算上下五档平均成本
	技巧62 【程序】计算价格MA指标
	技巧63 【程序】计算量MA指标
	技巧64 【程序】计算每分钟价格变化趋势
	技巧65 【程序】计算固定tick数高开低收价
	技巧66 【程序】计算大户指标

	第6章 判断涨跌的趋势
	技巧67 【概念】趋势的发生与判断
	技巧68 【概念】趋势交易与顺势交易
	技巧69 【程序】时间区段价格走势
	技巧70 【程序】多点查看委托量比重
	技巧71 【程序】多区段查看委托量变化
	技巧72 【程序】查看买卖平均成交手数
	技巧73 【程序】查看内外盘总量
	技巧74 【程序】大户指标趋势判断

	第7章 规划进场的时机
	技巧75 【概念】何谓进场
	技巧76 【概念】进场点及成交价
	技巧77 【概念】趋势交易和顺势交易的进场区别
	技巧78 【概念】如何通过Python进行实盘委托
	技巧79 【程序】固定时间进场
	技巧80 【程序】价格穿越MA进场
	技巧81 【程序】MA快线追慢线进场
	技巧82 【程序】MA第二次穿越进场
	技巧83 【程序】MA延迟进场第二次穿越进场
	技巧84 【程序】上下穿越高低点顺势进场
	技巧85 【程序】上下穿越高低点加上高低点区间顺势进场
	技巧86 【程序】大户指标触发进场

	第8章 设置出场及止损获利的条件
	技巧87 【概念】何谓出场
	技巧88 【程序】价格止损与获利
	技巧89 【程序】价格回跌获利出场
	技巧90 【程序】MA穿越价格出场
	技巧91 【程序】MA慢线追过快线出场
	技巧92 【程序】委托比重反转出场
	技巧93 【程序】委托量抽单出场
	技巧94 【程序】内外盘量反转出场
	技巧95 【程序】一分钟爆量出场
	技巧96 【程序】大户指标反转出场

	第9章 连接券商的即时报价与下单函数
	技巧97 【概念】程序交易流程
	技巧98 【概念】交易所解释信息
	技巧99 【概念】获取报价的方式
	技巧100 【概念】实盘交易算法与回测算法差异
	技巧101 【概念】下单参数介绍
	技巧102 【概念】实盘委托的市场机制
	技巧103 【程序】完整下单函数介绍
	技巧104 【程序】发送市价委托函数
	技巧105 【程序】发送限价委托函数
	技巧106 【程序】获取单笔委托明细
	技巧107 【程序】撤销委托函数
	技巧108 【概念】认识交易命令
	技巧109 【程序】限价单到期转市价单
	技巧110 【程序】限价单到期撤单

	第10章 实盘交易与账务管理
	技巧111 【程序】固定时间买进卖出策略
	技巧112 【程序】顺势交易策略（海龟策略）
	技巧113 【程序】MA交叉买进卖出策略
	技巧114 【概念】何谓账务
	技巧115 【程序】获取总委托明细
	技巧116 【程序】获取未平仓明细
	技巧117 【程序】获取权益数

