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内容简介

一致性是非常重要的分布式技术。众所周知，分布式系统有很多特

性，如可用性、可靠性等，这些特性多多少少会与一致性产生关系，受

到一致性的影响。要全面研究、掌握分布式技术，一致性是绕不开的一

个话题，也是最难解决的一个问题。本书主要介绍GFS、HDFS、
BigTable、MongoDB、RabbitMQ、ZooKeeper、Spanner、CockroachDB
系统与一致性有关的实现细节，以及非常重要的Paxos、Raft、Zab分布

式算法；本书还介绍了事务一致性与隔离级别、顺序一致性、线性一致

性与强一致性相关内容，以及架构设计中的权衡等。

从分布式技术的角度来说，本书讲解了分布式领域比较高阶的内

容，但是从分布式一致性的角度来说，本书仍然是一致性的入门书。



分布式架构的终极奥义

分布式架构是每个架构师必须面对的挑战。宇宙自大爆炸以来持续

膨胀，我们一直身处日趋离散的“分布式”世界之中。四维时空的物理法

则限制着信息传输和校验，从原始社会开始，历经农牧时代、工业时

代、信息时代，直至分布式系统无所不在的今天，被Eric Brewer总结为

CAP理论。架构师要挑战的不是代码的逻辑运算，而是不可逾越的物理

结界。大道至简，知易行难，初窥分布式门径不难，要在大型系统里游

刃有余，功力绝非一般！

东明在架构领域耕耘多年，曾主导多个大型分布式项目，是经验丰

富的架构专家。我们曾一同共事，推进基础架构层面的分布式项目和产

品，东明对技术的执着追求令我印象深刻。如今他在负责一个公司的架

构团队，我有过相同经历，深知其责任之重、要求之高。百忙之中，东

明坚持笔耕不辍，将多年心得总结出版，我非常钦佩他的心力，为之欣

然。这正是技术人的本色，无论世间纷扰变幻，不变的是对“不变”孜孜

以求的初心。

本书专注于分布式系统的一致性，从实例、算法、原理多方面深入

浅出地讲解其中的奥妙。架构的终极奥义正是化繁为简，非精深者不能

为之。对有志于钻研技术架构、扩展行业视野的同道中人，相信本书会

带给你很多思考和成长。比如：分布式能解决一切问题吗？不能，会带

来更多问题！如何在物理规则下构建可扩展的系统？如何在算法的理想

设计和实际应用中权衡取舍？也许并没有唯一答案，但每有所得，皆是

欢喜！

史海峰 微信公众号“IT民工闲话”作者



前言

我对一致性的研究起源于一段负责基础架构的工作经历，当时负责

公司的ZooKeeper事宜，所以对ZooKeeper进行了比较深入的研究。我在

阅读ZooKeeper的官方文档和与ZooKeeper相关的论文时，看到了顺序一

致性和线性一致性。在此之前的工作中，我凭借多年的工作经验，每当

遇到陌生的概念时，基本上都可以望文生义，很快就能体会到其中的含

义。但顺序一致性和线性一致性却成了我的反例，很长时间都没有搞清

楚其含义。在此之后，我在负责公司自研的一个key-value数据库时，参

考了Google公司的Spanner系统，在深入研究Spanner系统时，发现该系

统中也存在线性一致性的概念。所以我开始系统地研究顺序一致性和线

性一致性，从而进入分布式系统一致性的领域。

在研究过程中我发现，行业内还没有一本能够理论联系实际、系统

化讲解分布式系统一致性的著作。当前讲系统一致性的文献往往专注于

理论的定义，而分布式系统的官方文档和相关著作对一致性又往往都是

简单地一笔带过。因此，我萌生了一个想法：写一本既有实际例证又有

理论定义的一致性方面的书，也就是《分布式系统与一致性》这本书。

本书讲解8个分布式系统，主要关注这些系统与一致性相关的实现，并

对其中一些分布式系统中用到的关键的分布式算法做了详细的讲解，力

争做到把分布式系统的一致性相关内容讲透。最后介绍几个关于一致性

的理论定义，并且结合前面的实例加以分析。

在实际的工作中，一致性往往没有受到重视，行业从业人员将更多

的精力放在了可用性、性能等分布式系统的特性上。的确，从所带来的

影响和出现的概率上讲，可用性和性能导致的问题更大一些，而一致性

问题更隐蔽，出现的概率也比较小，并且往往能通过一些简单的手段解

决掉，导致对一致性的要求不是那么强烈，甚至在某些应用场景下，一

致性问题是用户可以接受的。

但是，一致性仍然是非常重要的分布式技术。众所周知，分布式系

统有很多特性，如可用性、可靠性、性能等，这些特性多多少少会与一

致性产生关系，受到一致性的影响。要全面研究、掌握分布式技术，一

致性是绕不开的一个话题，也是最难解决的一个问题。



行业内部对一致性的讨论比较少，导致很多从业者对一致性的理解

比较片面，这也是因为一致性其实是非常复杂、难懂的概念，甚至有些

从业者对一致性以及一致性相关理论的理解有些偏差。本书力争对一致

性给出一个全面的介绍。

本书仅仅讲解分布式系统的一致性的一部分内容，也是在实际的工

作中可能遇到的内容，还有很大一部分本书没有涉及——本书仅讲解7
种一致性模型，但笔者所知的一致性模型就有50多种。分布式领域专家

对一致性进行了非常深入的研究，本书不能完全覆盖。此外，虽然本书

讲解了Spanner、CockroachDB这样的分布式系统，但是对分布式系统领

域与数据库领域的交汇点，也就是分布式数据库的讲解仍然不够全面，

全面的讲解需要额外阐述数据库领域的很多内容，而这些内容并未包含

在本书中，读者需要另行查看其他相关资料。

本书主要面对有志进入分布式领域或者进入分布式领域不长时间的

初学者。如果你是分布式领域的老手，已经读过或研究过各种分布式系

统的经典著作和典型系统，那么本书讲解的内容可能都是你熟知的。但

是本书仍然有一定的阅读要求，特别是对涉及数据库领域的相关内容，

铺垫较少，有一定的阅读难度。从分布式技术的角度来说，本书讲解了

分布式领域比较高阶的内容，但是从分布式一致性的角度来说，本书仍

然是一致性的入门书籍。

本书中对重要的概念或者定义采用黑体书写，并且在可能的情况

下，同时在概念后面的圆括号中给出其英文名称，方便读者在扩展阅读

英文文献时可以准确地建立对应关系。在之后的内容中，如果这个概念

在中文资料中已经被广泛接受并且使用，则会使用其中文名称；否则，

为了不产生歧义，会使用其英文名称。

本书主要讲解的是计算机技术理论，这需要较长时间的沉淀和准

备，而成书比较仓促，加之一致性是分布式系统的核心特性，涉及面又

比较广，错误之处在所难免，希望各位读者给予指正。
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第1部分 开篇

分布式和一致性都不是什么新鲜的技术。但是随着互联网的发展，

分布式变成互联网应用中必不可少的一项技术；一致性作为分布式系统

的核心特性，成为大规模应用落地过程中的一个难题，也就成为互联网

从业者必须面对的一个难题。

第1章 分布式系统的核心特性：一致性

从互联网出现到现在这些年，互联网应用经历了非常快速的发展，

它的访问量和数据量不断增长，这是互联网应用与其他领域的计算机应

用一个非常大的区别。互联网从业者为了解决互联网应用所面临的这个

问题，不断地改进着系统架构。

1.1 拆分是解决大规模应用问题的本质

互联网应用的架构是非常复杂多变的，具有不同用户访问量和数据

量的互联网应用的系统架构有着非常大的差异。当系统访问量和数据量

不大时，系统架构相对简单，往往一台应用服务器加上一台数据库服务

器就可以解决问题。早期的互联网应用基本上就是这样的架构。在互联

网发展初期，互联网用户还不是很多，不管是什么类型的应用，基本上

一台机器就可以搞定。

但是互联网的发展是快速的，这样的架构很快就不能满足需求了，

大量的访问用户给服务器带来了巨大的压力。当服务器不能承载时，在

架构上就开始采用具有更强处理能力的CPU、容量更大的内存、容量更

大的存储设备。昂贵的小型机和存储设备成为互联网的首选，

IOE（IBM的服务器、Oracle的数据库、EMC的存储设备）架构也成为

主要的解决方案。

为了获得更好的用户体验，对应用服务器可以进一步做一些系统架

构优化，比如将从数据库取到的结果缓存在应用服务器的内存当中，下

次处理同一个用户的同一类请求时，就可以直接将内存中的结果返回给

用户，减少了访问数据库这一步骤。这缩短了用户请求响应时间，同时



也降低了数据库的压力，便于承载更大的用户访问量。此外，甚至可以

做进一步的优化，将某些数据直接保存在应用服务器的本地磁盘中，而

不保存到数据库中。

互联网的发展是惊人的，随着访问量的进一步增长，单台应用服务

器最终将出现瓶颈，不能再依靠替换更强的服务器继续支撑。因为不是

一种可以持续发展的架构，并且IOE的昂贵收费也让这种架构变得不可

接受，这种依赖提高单机处理能力的垂直扩展架构走到了尽头。互联网

从业者开始尝试采用增加应用服务器的数量来处理增长的访问请求这种

架构，也就是采用水平扩展的方式来解决问题。在水平扩展架构中，在

应用服务器前可以增加一层负载均衡，比如使用Nginx或LVS这样的软

件负载服务器，或者F5这样的硬件负载服务器，把用户的访问请求分散

到多台应用服务器上，让多台应用服务器访问同一台数据库服务器。这

种架构不再依赖单台服务器的处理能力，随着访问量的增长，只需要不

断地增加应用服务器即可，具有无限的水平扩展能力。应用服务器也不

再是昂贵的IBM小型机，普通的PC服务器就可以。

与此同时，不能再像单台应用服务器阶段那样对缓存进行优化，因

为某个用户的数据被缓存在某台应用服务器的内存中，或者被保存在某

台应用服务器的硬盘中，当这个用户的请求被负载均衡到其他服务器

时，将找不到缓存在内存中和保存在硬盘中的数据。对于那些之前缓存

的数据，可以通过再次从数据库中读取的方式来解决，但是保存在硬盘

中的数据就没办法解决了。所以这个阶段的应用服务器往往被设计成无

状态的服务器，也就是说，在应用服务器上不保存任何数据，数据都被

保存在数据库中，每次处理用户请求时，都去数据库中获取最新的数

据。为了提高性能，添加了一台专门的缓存服务器，如Redis或者

Memcache，所有的应用服务器都把本来缓存在自己内存中的数据保存

在缓存服务器中。把应用服务器设计成无状态的好处是水平扩展非常方

便，所有的应用服务器都是一样的，水平扩展只是在负载均衡层后面添

加一台服务器，可以将用户请求发给任意一台应用服务器，而无须发给

缓存了这个用户数据的那台服务器。

但无状态的应用服务器并不能解决全部的问题，随着用户访问量的

继续增长，数据库的处理能力或者缓存服务器的处理能力逐步达到上

限，数据库和缓存这一层同样需要一种可以水平扩展的架构。对于这个



问题，相应的办法是对应用进行拆分，把原来一个大应用，按照领域拆

分成多个应用。比如电子商务应用，一般都会拆分成订单子系统、交易

子系统、用户子系统、商品子系统等，每个子系统都有自己独立的数据

库服务器，这样就解决了单台数据库服务器的瓶颈问题。这种将一个应

用拆分成多个子系统的方法也被称为领域拆分，每个领域相对比较独

立。领域拆分仍然是互联网行业解决大规模应用问题所采用的主要技术

手段，被应用得淋漓尽致。比如在大型电子商务应用中，甚至一个商品

详情页面就是一个独立的子系统，由多层应用服务器、多层缓存机制、

多个数据库组成，并且由一个庞大的部门独立维护着。

1.2 分布式技术是大规模应用的最后一个考验

随着用户量的进一步增长，单个子系统数据库也会慢慢达到单机处

理能力的上限。此时，已经不能再通过领域拆分来解决问题了，因为仅

仅是单一的订单表中的数据就已经超出了单个数据库的处理能力。唯一

的解决方式就是把订单数据拆分存储在多台数据库服务器中。至此，互

联网应用已经成为一个彻底的分布式应用。但是做好这个分布式应用并

不容易。

如何把订单数据保存到多台服务器上？有三类方法可以实现。

第一类方法是仍然使用关系型数据库。在多个数据库中创建相同的

订单表，然后按照一定的规则把订单分别存储在不同的服务器上。比如

按用户存储，将用户id按照一定的规则划分成组，常见的方式是按id取
余数，如按10取余数，可以把订单平均分到10台服务器上，当订单量继

续增长时，可以把规则改为按100取余数，就可以把订单分到100台服务

器上。这种架构的难点在于当取余规则更改时，需要把原来存储在10台
服务器上的已有数据迁移到100台机器上。

再比如按时间存储，将一年的订单存储在一台机器上，随着时间的

推移不断地增加服务器。这种方法不需要迁移数据，但是只适用于订单

量没有太大变化的场景，所以应用场景比较受限。

这类方法相对比较好理解，其核心就是针对每台数据库服务器分别

执行SQL语句，然后将SQL语句的执行结果进行合并。但是这种架构的

使用是非常复杂的，需要处理各种异常情况，比如某台服务器的SQL语
句执行失败等。为了简化这种架构的使用，开源领域出现了很多数据库



中间件项目，用来让开发者不需要面对多台数据库服务器分别执行SQL
语句，感觉自己仅仅是面对一台服务器在执行SQL语句。但是其核心原

理没有改变，只是这些数据库中间件自动帮助开发者把SQL语句合并的

事情做了。另外，无论是否采用这样的数据库中间件，每次执行SQL语
句时需要所有服务器都执行这条SQL语句，成本和性能都是不可接受

的，可见采用这种架构的应用都有很多限制。应尽量避免这样的操作，

需要把应用设计成每次执行SQL语句时最好只发给一台服务器来处理。

因此，最终不管用不用数据库中间件，都需要背后的数据库拆分逻辑。

最重要的一个难题是这种架构保证一致性非常有挑战性，让所有服

务器上的数据都保持正确，是应用开发者要考虑的事情，也是数据库中

间件开发者要考虑的事情。

第二类方法是放弃SQL的便利性，采用分布式文件系统（见第2章
和第3章）保存海量的数据。分布式文件系统是近年来迅速发展起来的

大数据技术的基石，Google公司在这方面做了开创性的工作。GFS（见

第2章）被称为Google公司大数据的“三架马车”之一，HDFS（见第3
章）是开源大数据领域的核心组件，它们提供的可靠的数据存储能力和

强一致性，为大数据技术提供了强有力的基础支撑。

另外，在在线服务方面，我们也可以采用NoSQL数据库（见第4章
和第5章）来存储数据。NoSQL是近年来出现的新型的数据库和存储系

统，从名字上可以看出它除去了对SQL的支持。但是缺失SQL的支持并

不是NoSQL数据库的弱项。用NoSQL数据库替换SQL数据库往往适用于

因数据量大而需要拆分的场景，在这种场景下，SQL的使用受到很多限

制，比如互联网公司往往都有不能使用join、SQL中必须携带分片id等
要求。在这些使用要求下，受限的SQL数据库的能力与NoSQL数据库的

能力相比，已经没有明显的优势了。NoSQL数据库通常具有很好的扩展

能力、数据可靠存储能力和可用性，保存到NoSQL数据库中的数据会被

系统自动拆分存储在多台服务器上，并且随着数据的增长自动重新拆

分、迁移，这些功能大大降低了系统的使用难度。有些NoSQL数据库还

放弃了一致性，也有些NoSQL数据库并没有放弃一致性，比如Google的
BigTable系统（见第4章）就提供了很好的一致性。MongoDB（见第5
章）在早期版本中没有很好的一致性保证，会出现各种异常，导致数据

丢失，但是随着版本的逐步迭代，不断地加强一致性，慢慢消除了各种



异常和丢失数据的问题。

第三类方法就是使用NewSQL数据库（见第8章和第9章）。

NewSQL数据库并没有去掉对SQL的支持，同时它还具有很好的水平扩

展能力、可靠性和可用性。Spanner系统（见第8章）还不能被称作

NewSQL数据库，它的后代产品才是NewSQL数据库。

CockroachDB（见第9章）是NewSQL数据库，用户使用时无须考虑库表

的拆分以及数据迁移的问题，就像使用单机数据库一样。相对于拆分数

据库表的方法而言，NewSQL数据库给使用者带来的最大便利就是，使

用者不用再关注数据的一致性，NewSQL数据库有非常好的一致性保

证，这也是本书主要讲述的内容。

除前面讲到的三类方法中所涉及的分布式系统之外，做好一个分布

式应用可能还会需要其他种类的分布式系统，比如消息系统。消息系统

用来解耦各个系统，RabbitMQ（见第6章）就是这样的一个系统。此

外，还需要使用分布式协调服务来管理分布式系统中的各个进程，比如

ZooKeeper（见第7章）。

这些分布式系统的内部实现差别非常大，有些使用了非常复杂的分

布式算法，第3部分会介绍其中的三种：Paxos算法（见第10章）、Raft
算法（见第11章）、Zab算法（见第12章）。

最终，解决大规模应用问题就变成了对这些分布式系统和分布式技

术的使用问题，用好分布式技术成为实现大规模应用的最后一个难题。

1.3 一致性是这个考验的核心

前面提到的各种分布式系统有什么区别呢？一个重要的区别就体现

在它们对SQL的支持上。NoSQL数据库不支持SQL，虽然有些NoSQL数
据库支持类SQL，但是类SQL不是SQL。基于单机数据库分表的方式，

虽然支持标准的SQL，但是仍然禁用和限制了SQL的很多功能。而

NewSQL数据库在不断改进这种情况，不断扩展对SQL的全面支持。

虽然对SQL的支持是一个重要的区别，但是并不是核心的区别，它

们之间核心的区别体现在一致性上，这是本书内容的重点，也是设计一

个分布式系统必须解决的核心问题。这些分布式系统具有的一致性不尽

相同，第13章将介绍关系型数据库的事务，以及事务所具有的一致性和

隔离级别；第14章和第15章将分别介绍分布式系统中非常重要的两种一



致性模型。

为什么说一致性是分布式系统的核心问题呢？因为一致性是分布式

系统的一个非常重要的特性。分布式系统的特性还包括扩展性

（scalability）、可用性（availability）、性能（performance）、可靠性

（reliability）、故障容忍性（fault-tolerance），在这些分布式系统的特

性中，一致性特性处于核心地位，它对这些特性都有影响，一个分布式

系统具有什么样的一致性，在某种程度上决定了它的其他特性。分布式

系统领域的CAP定理告诉我们，没有免费的午餐，想得到一致性，其他

特性如可用性、性能、故障容忍性、可靠性等都会受到影响，因此在系

统架构设计中，必须在分布式系统的各种特性之间进行权衡，第16章将

介绍相关内容。

前面讲解了应用层的分布式技术和数据层的分布式技术，数据层的

分布式技术是互联网大规模应用技术中的最后一道难关。目前，应用层

的分布式技术已经相对成熟，虚拟化技术（virtualization）、容器技术

（Docker）、服务网格（service mesh）已经成熟并且大面积落地，这些

技术大大帮助了应用层的分布式技术在实际应用场景中大范围落地。相

对而言，数据层的分布式技术的成熟度和落地程度还远不如应用层，目

前大部分公司的大部分应用仍然以数据库分表的方式为主。虽然NoSQL
数据库已经过多年的发展，但它仍然处于辅助地位，而NewSQL数据库

尚处于初始的尝试阶段。无论哪一种数据层的分布式技术，最难的一道

关卡都莫过于分布式系统的一致性。一致性复杂、难懂，并且牵扯着分

布式技术领域的方方面面。



第2部分 系统案例

这部分会介绍五大类分布式系统，分别是分布式文件系统、NoSQL
存储、分布式消息系统、分布式协调服务、NewSQL数据库，并且会具

体介绍它们的内部实现。这些分布式系统都具有非常丰富的功能和复杂

的实现，每一类系统其实都可以单独成书论述，仅仅一本书很难将它们

介绍得很详细，所以本书主要集中在与一致性有关的实现细节上。

第2章 Google的文件系统

GFS（Google File System）是Google公司开发的一种分布式文件系

统。虽然GFS在Google公司内部被广泛使用，但是在相当长的一段时间

里它并不为人所知。2003年，Google发表一篇论文[1]详细描述了GFS，
人们才开始了解GFS。开源软件也开始模仿GFS，第3章讲解的HDFS就
是GFS的模仿者。

2.1 GFS的外部接口和架构

让我们从GFS的接口设计和架构设计说起吧。

2.1.1 GFS的外部接口

GFS采用了人们非常熟悉的接口，但是并没有实现POSIX的标准文

件接口。GFS通常的操作包括create，delete，open，close，read，
write，record append等，这些接口非常类似于POSIX定义的标准文件接

口，但是不完全一致。

create，delete，open，close这几个接口的语义和POSIX标准接口类

似，这里就不逐一强调说明了。下面详细介绍write和record append这两

个接口的语义。

● write（随机写）：可以将任意长度的数据写入指定文件的位置，

这个文件位置也被称为偏移（offset）。

● record append（尾部追加写）：可以原子地将长度小于16MB的



数据写入指定文件的末尾。GFS之所以设计这个接口，是因为

record append不是简单地将offset取值设置为文件末尾的write操
作，而是不同于write的一个操作，并且是具有原子性的操作

（后面的2.3节会解释原子性）。

write和record append都允许多个客户端并发操作一个文件，也就是

允许一个文件被多个客户端同时打开和写入。

2.1.2 GFS的架构

GFS的架构如图2.1所示。

图2.1 GFS的架构（此图参考GFS的论文[1]）

GFS的主要架构组件有GFS client、GFS master和GFS chunkserver。
一个GFS集群包括一个master和多个chunkserver，集群可以被多个GFS
客户端访问。三个组件的详细说明如下：

● GFS客户端（GFS client）是运行在应用（application）进程里

的代码，通常以SDK形式存在。

● GFS中的文件被分割成固定大小的块（chunk），每个chunk的长

度固定为64MB。GFS chunkserver把这些chunk存储在本地的

Linux文件系统中，也就是本地磁盘中。通常每个chunk会被保

存三个副本（replica），也就是会被保存到三个chunkserver
里。一个chunkserver会保存多个不同的chunk，每个chunk都会

有一个标识，叫作块柄（chunk handle）。



● GFS master维护文件系统的元数据（metadata），包括：

■ 名字空间（namespace，也就是常规文件系统中的文件树）。

■ 访问控制信息。

■ 每个文件由哪些chunk构成。

■ 每个chunk的副本都存储在哪些chunkserver上，也就是块位置

（chunk location）。

在这样的架构下，几个组件之间有如下交互过程。

1.客户端与master的交互

客户端可以根据chunk大小（即固定的64MB）和要操作的offset，
计算出操作发生在第几个chunk上，也就是chunk的块索引号（chunk
index）。在文件操作的过程中，客户端向master发送要操作的文件名和

chunk index，并从master中获取要操作的chunk的chunk handle和chunk
location。

客户端获取到chunk handle和chunk location后，会向chunk location中
记录的chunkserver发送请求，请求操作这个chunkserver上标识为chunk
handle的chunk。

如果一次读取的数据量超过了一个chunk的边界，那么客户端可以

从master获取到多个chunk handle和chunk location，并且把这次文件读取

操作分解成多个chunk读取操作。

同样，如果一次写入的数据量超过了一个chunk的边界，那么这次

文件写入操作也会被分解为多个chunk写入操作。当写满一个chunk后，

客户端需要向master发送创建新chunk的指令。

2.客户端向chunkserver写数据

客户端向要写入的chunk所在的三个chunkserver发送数据，每个

chunkserver收到数据后，都会将数据写入本地的文件系统中。客户端收

到三个chunkserver写入成功的回复后，会发送请求给master，告知

master这个chunk写入成功，同时告知application写入成功。

这个写流程是高度简化和抽象的，实际的写流程更复杂，要考虑写

入类型（是随机写还是尾部追加写），还要考虑并发写入（后面的2.2
节会详细描述写流程，解释GFS是如何处理不同的写入类型和并发写入



的）。

3.客户端从chunkserver读数据

客户端向要读取的chunk所在的其中一个chunkserver发送请求，请

求中包含chunk handle和要读取的字节范围（byte range）。chunkserver
根据chunk handle和byte range，从本地的文件系统中读取数据返回给客

户端。与前面讲的写流程相比，这个读流程未做太多的简化和抽象，但

对实际的读流程还会做一些优化（相关优化和本书主题关系不大，就不

展开介绍了）。

2.2 GFS的写流程细节

本节我们详细讲解在前面的写数据过程中未提及的几个细节。

2.2.1 名字空间管理和锁保护

在写流程中，当要创建新文件和将数据写入新chunk时，客户端都

需要联系master来操作master上的名字空间。

● 创建新文件：在名字空间创建一个新对象，该对象代表这个文

件。

● 将数据写入新chunk中：向master的元数据中创建新chunk相关信

息。

如果有多个客户端同时进行写入操作，那么这些客户端也会同时向

master发送创建文件或创建新chunk的指令。master在同一时间收到多个

请求，它会通过加锁的方式，防止多个客户端同时修改同一个文件的元

数据。

2.2.2 租约

客户端需要向三个副本写入数据。在并发的情况下，也会有多个客

户端同时向三个副本写入数据。GFS需要一条规则来管理这些数据的写

入。简单来讲，这条规则就是每个chunk都只有一个副本来管理多个客

户端的并发写入。也就是说，对于一个chunk，master会将一个块租约

（chunk lease）授予其中一个副本，由具有租约的副本来管理所有要写



入这个chunk的数据。这个具有租约的副本称为首要副本（primary
replica）。首要副本之外的其他副本称为次要副本（secondary
replica）。

2.2.3 变更及变更次序

对文件的写入称为变更（mutation）。首要副本管理所有客户端的

并发请求，让所有的请求按照一定的顺序用到chunk上，这个顺序称为

变更次序（mutation order）。变更包括两种，即前面讲过的write操作

和record append操作。接下来介绍GFS基本变更流程，write操作就是按

照这个基本变更流程进行的，而record append操作则在这个基本变更流

程中多出一些特殊的处理。

1.基本变更流程

图2.2描述了GFS基本变更流程。

图2.2 GFS基本变更流程（此图参考GFS的论文[1]）

整个写入过程包括以下7个步骤。

（1）当客户端要进行一次写入时，它会询问master哪个chunkserver
持有这个chunk的租约，以及其他副本的位置。如果没有副本持有这个

chunk的租约，那么master会挑选一个副本，通知这个副本它持有租约。



（2）master回复客户端，告诉客户端首要副本的位置和所有次要副

本的位置。客户端联系首要副本，如果首要副本无响应，或者回复客户

端它不是首要副本，则客户端会重新联系master。
（3）客户端向所有的副本以任意的顺序推送数据。每个

chunkserver都会将这些数据缓存在缓冲区中。

（4）当所有的副本都回复已经收到数据后，客户端会发送一个写

入请求（write request）给首要副本，在这个请求中标识了之前写入的数

据。首要副本收到写入请求后，会给这次写入分配一个连续串行的编

号，然后它会按照这个编号的顺序，将数据写入本地磁盘中。

（5）首要副本将这个带有编号的写入请求转发给次要副本，次要

副本也会按照编号的顺序，将数据写入本地，并且回复首要副本数据写

入成功。

（6）当首要副本收到所有次要副本的回复后，说明这次写入操作

成功。

（7）首要副本回复客户端写入成功。在任意一个副本上遇到的任

意错误，都会告知客户端写入失败。

2.原子记录追加

record append这个接口在论文[1]中被称为原子记录追加（atomic
record append），它也遵循基本变更流程，但有一些附加的逻辑。客

户端把要写入的数据（这里称为记录，record）推送给所有的副本，如

果record推送成功，则客户端会发送请求给首要副本。首要副本收到写

入请求后，会检查把这个record追加到尾部会不会超出chunk的边界，如

果超出边界，那么它会把chunk剩余的空间填充满（这里填充什么并不

重要，后面的2.4节会解释这个填充操作），并且让次要副本做相同的

事情，然后再告知客户端这次写入应该在下一个chunk上重试。如果这

个record适合chunk剩余的空间，那么首要副本会把它追加到尾部，并且

告知次要副本写入record在同样的位置，最后通知客户端操作成功。

2.3 GFS的原子性

接下来我们分析GFS的一致性，首先从原子性开始分析。



2.3.1 write和record append的区别

前面讲过，如果一次写入的数据量超过了chunk的边界，那么这次

写入会被分解成多个操作，write和record append在处理数据跨越边界时

的行为是不同的。

下面我们举例来进行说明。

例子1：目前文件有两个chunk，分别是chunk1和chunk2。客户端1
在54MB的位置写入20MB数据。同时，客户端2也在54MB的位置写入

20MB的数据。两个客户端都写入成功。

前面讲过，chunk的大小是固定的64MB。客户端1的写入跨越了

chunk的边界，因此要被分解成两个操作，其中第一个操作写入chunk1
最后10MB数据；第二个操作写入chunk2开头10MB数据。

客户端2的写入也跨越了chunk的边界，因此也要被分解为两个操

作，其中第一个操作（作为第三个操作）写入chunk1最后10MB数据；

第二个操作（作为第四个操作）写入chunk2开头10MB数据。

两个客户端并发写入数据，因此第一个操作和第三个操作在chunk1
上是并发执行的，第二个操作和第四个操作在chunk2上也是并发执行

的。如果chunk1先执行第一个操作，后执行第三个操作；chunk2先执行

第四个操作，后执行第二个操作，那么最后在chunk1上会保留客户端1
写入的数据，在chunk2上会保留客户端2写入的数据。虽然客户端1和客

户端2的写入都成功了，但最后的结果既不是客户端1想要的结果，也不

是客户端2想要的结果，而是客户端1和客户端2写入的混合结果。对于

客户端1和客户端2来说，它们的操作都不是原子的。

例子2：目前文件有两个chunk，分别是chunk1和chunk2。一个客户

端在54MB的位置写入20MB数据，但这次写入失败了。

这次写入跨越了chunk的边界，因此要被分解成两个操作，其中第

一个操作写入chunk1最后10MB数据；第二个操作写入chunk2开头10MB
数据。chunk1执行第一个操作成功了，chunk2执行第二个操作失败了。

也就是说，写入的这部分数据，一部分是成功的，一部分是失败的。这

也不是原子操作。

例子3：目前文件有一个chunk，为chunk1。一个客户端在54MB的



位置追加一个12MB的记录，最终写入成功。

由于这个record append操作最多能在chunk1中写入10MB数据，而要

写入的数据量（12MB）超过chunk的剩余空间，剩余空间会被填充，

GFS会新建一个chunk，为chunk2，这次写入操作会在chunk2上重试。这

样就保证了record append操作只会在一个chunk上生效，从而避免了文件

操作跨越边界被分解成多个chunk操作，也就避免了写入的数据一部分

成功、一部分失败和并发写入的数据混在一起这两种非原子性的行为。

2.3.2 GFS中原子性的含义

GFS中的一次写入，可能会被分解成分布在多个chunk上的多个操

作，并且由于master的锁机制和chunk lease机制，如果写入操作发生在

一个chunk上，则可以保护它是原子的。但是如果一些文件写入被分解

成多个chunk写入操作，那么GFS并不能保证多个chunk写入要么同时成

功、要么同时失败，会出现一部分chunk写入成功、一部分chunk写入失

败的情况，所以不具有原子性。之所以称record append操作是原子的，

是因为GFS保证record append操作不会被分解成多个chunk写入操作。如

果write操作不跨越边界，那么write操作也满足GFS的原子性。

2.3.3 GFS中多副本之间不具有原子性

GFS中一个chunk的副本之间是不具有原子性的，不具有原子性的

副本复制行为表现为：一个写入操作，如果成功，那么它在所有的副本

上都成功；如果失败，则有可能是一部分副本成功，而另一部分副本失

败。

在这样的行为下，失败会产生以下结果：

● write在写入失败后，虽然客户端可以重试，直到写入成功，达到

一致的状态，但是如果在重试成功以前，客户端出现宕机，那

么就变成永久的不一致了。

● record append在写入失败后，也会重试，但是与write的重试不

同，它不是在原有的offset处重试，而是在失败的记录后面重

试，这样record append留下的不一致是永久的，并且还会出现



重复问题。如果一条记录在一部分副本上写入是成功的，在另

外一部分副本上写入是失败的，那么这次record append就会将

失败的结果告知客户端，并且让客户端重试。如果重试后成

功，那么在某些副本上，这条记录就会被写入两次。

从以上结果可以得出结论：record append保证至少有一次原子操作

（at least once atomic）。

2.4 GFS的松弛一致性

GFS把自己的一致性称为松弛的一致性模型（relaxed consistency
model）。GFS的一致性分为元数据的一致性和文件数据的一致性，松

弛一致性主要是指文件数据。

2.4.1 元数据的一致性

元数据的操作都是由单一的master处理的，并且操作通过锁来保

护，所以保证了原子性，也保证了正确性。

2.4.2 文件数据的一致性

在介绍松弛的一致性模型之前，我们先看松弛一致性模型中的两个

概念。对于一个文件中的区域：

● 无论从哪个副本读取，所有客户端总是能看到相同的数据，这称

为一致的（consistent）。

● 在一次数据变更后，这个文件的区域是一致的，并且客户端可以

看到这次数据变更写入的所有数据，这称为界定的

（defined）。

在GFS论文[1]中，总结了GFS的松弛一致性，如表2.1所示。

表2.1 GFS的松弛一致性



下面分别说明表中的几种情况。

● 在没有并发的情况下，写入不会相互干扰，成功的写入是界定

的，那么也就是一致的。

● 在并发的情况下，成功的写入是一致的，但不是界定的。比如，

在前面所举的“例子1”中，chunk1的各个副本是一致的，

chunk2的各个副本也是一致的，但是chunk1和chunk2中包含的

数据既不是客户端1写入的全部数据，也不是客户端2写入的全

部数据。

● 如果写入失败，那么不管是write操作失败还是record append操作

失败，副本之间会出现不一致性。比如，在前面所举的“例子

2”中，当一些写入失败后，chunk的副本之间就可能出现不一

致性。

● record append能够保证区域是界定的，但是在界定的区域之间夹

杂着一些不一致的区域。record append会填充数据，不管各个

副本是否填充相同的数据，这部分区域都会被认为是不一致

的。比如前面所举的“例子3”。

2.4.3 适应GFS的松弛一致性

GFS的松弛一致性模型，实际上是一种不一致的模型，或者更准确

地说，在一致的数据中间夹杂着不一致的数据。

这些夹杂在其中的不一致的数据，对应用来说是不可接受的。在这

种一致性下，应该如何使用GFS呢？在GFS的论文[1]中，给出了几条使

用GFS的建议：依赖追加（append）而不是依赖覆盖（overwrite）、设

立检查点（checkpoint）、写入自校验（write self-validating）、自记录

标识（self-identifying record）。下面我们用两个场景来说明这些方法。



场景1：在只有单个客户端写入的情况下，按从头到尾的方式生成

文件。

方法1：先临时写入一个文件，在全部数据写入成功后，将文件改

名为一个永久的名字，文件的读取方只能通过这个永久的文件名访问该

文件。

方法2：写入方按一定的周期写入数据，在写入成功后，记录一个

写入进度检查点，其信息包含应用级的校验数（checksum）。读取方只

校验和处理检查点之前的数据。即便写入方出现宕机的情况，重启后的

写入方或者新的写入方也会从检查点开始，继续写入数据，这样就修复

了不一致的数据。

场景2：多个客户端并发向一个文件尾部追加数据，就像一个生产

消费队列，多个生产者向一个文件尾部追加消息，消费者从文件中读取

消息。

方法：使用record append接口，保证数据至少被成功写入一次。但

是应用需要应对不一致的数据和重复数据。

● 为了校验不一致的数据，为每条记录添加校验数，读取方通过校

验数识别出不一致的数据，并且丢弃不一致的数据。

● 对于重复数据，可以采用数据幂等处理。具体来说，可以采用两

种方式处理。第一种，对于同一份数据处理多次，这并无负面

影响；第二种，如果执行多次处理带来不同的结果，那么应用

就需要过滤掉不一致的数据。写入方写入记录时额外写入一个

唯一的标识（identifier），读取方读取数据后，通过标识辨别

之前是否已经处理过该数据。

2.4.4 GFS的设计哲学

前面讲解了基于GFS的应用，需要通过一些特殊手段来应对GFS的
松弛一致性模型带来的各种问题。对于使用者来说，GFS的一致性保证

是非常不友好的，很多人第一次看到这样的一致性保证都是比较吃惊

的。

GFS在架构上选择这样的设计，有它自己的设计哲学。GFS追求的



是简单、够用的原则。GFS主要解决的问题是如何使用廉价的服务器存

储海量的数据，且达到非常高的吞吐量（GFS非常好地做到了这两点，

但这不是本书的主题，这里就不展开介绍了），并且文件系统本身要简

单，能够快速地实现出来（GFS的开发者在开发完GFS之后，很快就去

开发BigTable了[2]）。GFS很好地完成了这样的目标，但是留下了一致

性问题，给使用者带来了负担。这个问题在GFS推广应用的初期阶段不

明显，因为GFS的主要使用者（BigTable系统是GFS系统的主要调用

方）就是GFS的开发者，他们深知应该如何使用GFS。这种不一致性在

BigTable中被屏蔽掉（采用上面所说的方法），BigTable提供了很好的

一致性保证。

但是随着GFS推广应用的不断深入，GFS简单、够用的架构开始带

来很多问题，一致性问题仅仅是其中之一。Sean Quinlan作为Leader主导

GFS的研发很长时间，在一次采访中，他详细说明了在GFS渡过推广应

用的初期阶段之后，这种简单的架构带来的各种问题[2]。
在清晰地看到GFS的一致性模型给使用者带来的不便后，开源的

HDFS（Hadoop分布式文件系统）坚定地摒弃了GFS的一致性模型，提

供了更好的一致性保证（第3章将介绍HDFS的实现方式）。

参考文献
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第3章 开源的文件系统HDFS

HDFS（Hadoop Distributed File System）是一个开源的分布式文件

系统，这个开源项目的建立也受到了GFS的启发。

3.1 HDFS的外部接口和架构

HDFS的架构设计与GFS有相似之处。让我们从HDFS对外提供的接

口说起。

3.1.1 HDFS的外部接口

HDFS对外提供如下几个接口。

● create：如果文件不存在，则创建一个文件。

● append：以追加的方式打开文件。

● write：在文件尾部写入数据。

● hflush：将数据强制写入磁盘。

● close：关闭文件。

与GFS相比，HDFS不支持在任意位置随机写入。对于同一个文

件，HDFS不支持多个写入方同时写入（后面的3.2.1节和3.3.3节将介绍

HDFS如何保证唯一使用方写入）。

在HDFS 0.21版本之前，HDFS不支持append和hflush，并且HDFS的
其他接口的语义与GFS的非常不同。在HDFS 0.21版本之前，使用create
创建一个文件后，向文件中写入的数据，在文件关闭之前是不可见的，

只有它的创建者可以看到，并且在文件关闭之后，就不能再向该文件中

添加数据了。从效果上讲，这个设计类似于GFS的使用“场景1”中的“方
法1”（见2.4.3节）。

在HDFS 0.21版本之后，虽然write接口还是只支持在文件尾部追加

数据，但是这些数据在文件关闭之前是可见的，并且支持在文件关闭后

重新打开，可以继续在文件尾部添加数据，也就是支持使用append来打

开文件。如前所述，无论是使用create还是append打开文件，都不支持



多个写入方同时写入。

3.1.2 HDFS的架构

HDFS的架构如图3.1所示。

图3.1 HDFS的架构（此图参考HDFS社区文档[1]）

HDFS主要有如下几个架构组件。

● client（客户端）是运行在应用（application）上的代码，以SDK
的形式存在。

● Namenode（NN），用于存储分布式文件系统的元数据

（metadata）。

● HDFS中的文件被分成块（block）存储在Datanode（DN）中，

用于存储文件数据。

在这样的架构下，读/写流程如下。

1.写流程

（1）客户端向NN发送创建请求，请求中包含文件路径和文件名。

NN根据文件路径和文件名，在名字空间创建一个对象代表这个文件。

（2）客户端向三个DN发送要写入文件中的数据，每个DN收到数



据后，都将数据写入本地的文件系统中，写入成功后，告知客户端写入

成功。

（3）DN在成功写完一个block后，发送请求给NN，告知NN一个

block写入成功，NN收到DN写入成功的信息后，记录这个block与机器

之间的对应关系。

（4）客户端确认三个DN都写入成功后，本次写入成功。

（5）关闭文件。

2.读流程

（1）应用发起读操作，指定文件路径和偏移（offset）。

（2）客户端根据固定的block大小（即64MB），计算出数据在第

几个block上。

（3）客户端向NN发送一个请求，请求中包含文件名和索引号，

NN返回三个副本在哪三台机器上的信息。

（4）客户端向其中一个副本所在的机器发送请求，请求中包含要

读取哪个block和字节范围（byte range）。

（5）DN从本地的文件系统中读取数据返回给客户端。

从上面的介绍可以看出，HDFS的读/写流程和GFS的读/写流程非常

类似，这是因为它们采用了非常类似的架构。但是它们在写流程的细节

上是不一样的，下面进行介绍。

3.2 HDFS的写流程细节

详细的写流程分为4个步骤：打开文件、管道（pipeline）写入、上

报block状态和关闭文件。下面分别介绍这4个步骤，并讲解DN的定期上

报。

3.2.1 打开文件

在打开文件这个步骤中，客户端向NN发送打开文件的请求，请求

中包含文件路径和文件名。NN为该客户端在这个文件上发放一个租约

（lease）。

与GFS不同，HDFS的租约是发放给打开某个文件的客户端的，而



GFS的租约是发放给首要副本的。其他客户端在其后要求打开同一个文

件时，会被NN拒绝，从而保证只有一个客户端可以写入数据。在不出

现故障的情况下，租约机制能够保证只有一个客户端写入数据，此外别

无他法。

3.2.2 pipeline写入

文件打开后，开始pipeline写入的步骤，采用pipeline的方式将数据

写入三个副本中。每个block都会建立一个pipeline。
每个pipeline都需要经历三个阶段：建立（setup）pipeline阶段、输

送数据（data streaming）阶段和关闭（close）pipeline阶段。

1.建立pipeline阶段

建立pipeline分为两种情况。

● 如果建立pipeline的目的是在HDFS中新建一个文件，则NN新建一

个block，并且为这个block选择三个DN来存储它的三个副本

（称为create block）。NN会为这个block生成一个新代戳

（generation stamp）。我们可以认为代戳是一个递增的数

值。

● 如果建立pipeline的目的是为了追加写入数据而打开一个文件，则

NN会把这个文件的最后一个block的副本所在的DN返回给客户

端（称为append block）。NN会加大这个block的代戳（可以理

解为把代戳的数值加1），即赋予一个更大的代戳，即表明这

个block已经进入下一代。

不管是新建文件写入数据还是打开文件追加写入数据，当一个

block写满数据后，客户端都会要求NN再创建一个新block。
客户端发送建立pipeline的请求给三个DN，当它收到三个DN的成功

回复后，pipeline即建立成功。

2.输送数据阶段

成功建立后的pipeline如图3.2所示。



图3.2 HDFS的pipeline（此图参考HDFS设计文档[2]）

在输送数据阶段，客户端会将要写入的数据先发送给DN0，由DN0
将数据发送给DN1，DN1收到数据后，再将数据发送给DN2。

在pipeline建立后，客户端将要发送的数据分成多个包（packet），

按顺序发送每个包，包发出后，不必等待包的回复即可发送下一个包，

如图3.3所示。



图3.3 HDFS的pipeline传输数据（此图参考HDFS设计文档[2]）

3.关闭pipeline阶段

在发送完所有的数据，并且收到所有包的回复之后，客户端发送一

个关闭请求，关闭这个pipeline。

3.2.3 上报block状态

当客户端要求NN创建一个block，或者打开一个已存在的block追加

数据时，这个block在NN上的状态被标记为UnderConstruction，表示该

block处于建立状态或者追加状态。



客户端在DN上创建这个block的副本，并且为该block创建pipeline，
这时这个副本的状态被标记为rbw（replica being written to），表示该

副本处于建立状态（即调用create后）或者追加状态（即调用append
后）。

当客户端向这个block中写完数据，将该block的pipeline关闭后，副

本的状态会变为finalized，表示该副本已经完成数据写入。

DN和客户端都会向NN上报这个block的finalized状态。如果NN收到

客户端的上报信息，则会将这个block的状态标记为Committed。当NN
收到DN的上报信息后，它会把这个block的状态标记为Complete。

这里需要注意HDFS对block状态和副本状态的命名规则，block状态

的命名规则是首字母大写，而副本状态的命名规则是字母全部小写。

3.2.4 关闭文件

如果没有数据被继续写入文件中，则客户端会向NN发起关闭文件

的请求，NN会检查所有block的状态。如果所有block的状态都为

Complete，则关闭文件；如果存在状态不是Complete的block，则等待

DN上报状态，直到至少收到一个DN上报状态，block状态被标记为

Complete。

3.2.5 DN定期上报信息

在上面的写入过程中，客户端和DN会主动向NN上报自己的状态，

除此文外，DN还会定期上报信息，来注册自己并且发送自己的block的
副本状态。

3.3 HDFS的错误处理

如果在写入过程中出现任何错误，那么HDFS会处理各种错误（不

同于GFS，GFS会给客户端返回失败信息，最终导致数据不一致），试

图从错误中恢复（recovery），通过恢复过程保证数据的一致性。

错误可能来源于各个组件，如DN、NN、客户端等。下面通过介绍

在这些组件中会出现哪些错误以及如何处理，来讲解HDFS的错误处



理。

3.3.1 DN的错误

当DN发生错误时，DN自己可能会发现这个错误并进行处理，客户

端也可能会发现这个错误并进行处理。

1.DN自己处理错误

如果DN自己检查到错误（如网络发送数据错误、网络接收数据错

误、磁盘操作错误），则DN自己会停止建立pipeline，或者退出所在的

pipeline，具体会执行以下动作：

● 给上游DN回复失败信息。

● 关闭本地文件（将所有缓存的数据写入文件中）。

● 关闭TCP连接。

无论是因为发生错误，还是因为机器维护的需要，DN都有可能会

重新启动。DN重新启动后，状态为rbw的副本会被加载为rwr（replica
waiting to be recovered）状态，表示这个副本要开始进行恢复。检查文

件的CRC，把文件长度设置为满足CRC校验，不能通过CRC校验的内容

将被丢弃。

2.客户端处理DN的错误

客户端将数据写入pipeline中，如果收到DN返回的错误信息，则不

管是哪个DN上的哪个步骤出错，客户端都需要处理这个错误。HDFS将
客户端处理这些错误的过程称为管道恢复（pipeline recovery）。

pipeline在不同阶段的错误，客户端要进行不同的处理。比如在建

立pipeline阶段：

● 如果create block出错，则客户端会放弃这个block，要求NN再分

配一个block。
● 如果append block出错，则客户端会为剩下没有出错的DN重新建

立新的pipeline，并且向NN要求一个新的代戳，NN会增加代

戳。

在输送数据阶段，按照下面的步骤处理。



● 客户端停止数据写入。

● 使用剩余的DN重新建立pipeline，并且向NN要求一个新的代戳，

NN会增加代戳。

● 客户端使用新代戳向新pipeline中写入数据。

3.3.2 NN的错误

NN发生错误或者主动进行维护，可能会使NN重新启动。NN不会

持久化存储block的状态，block的状态仅会被保存在内存中，NN在处理

DN的定期上报信息（见3.2.5节）或客户端的上报信息（见3.2.3节）

时，会更新内存中block的状态。重新启动后NN进入安全模式，在安全

模式下，它会在内存中重建block的状态。

● 所有状态未关闭的文件的最后一个block都会被加载为

UnderConstruction状态，其他的block会被加载为Complete状态

（HDFS保证文件是顺序写入的，并且只有当前的block写满之

后才会开始一个新的block，所以除了最后一个block，其他的

block都应该是Complete状态）。

● NN会等待DN上报信息，直到至少每个block都收到一个副本的上

报信息，并且符合以下条件，则退出安全模式。

■ 如果block的状态被标记为Complete，那么至少收到一个状态

为finalized的副本上报信息。

■ 如果block的状态为UnderConstruction，那么至少收到一个副

本上报信息，并且这个副本的状态为rwr或优于rwr，也就

是rwr、committed、finalized其中之一。

3.3.3 客户端的错误

从第2章的GFS分析中可以看出，在串行（serial，也就是操作一个

接着一个，即在一个操作完成之后再进行下一个操作）写入时，GFS可
以保证一致性。显而易见，串行是保证获得一致性的一种简单方法；保

证只有一个写入者（即只有一个writer，这个writer同一时刻只能发起一



个操作，采用单线程是比较简单的实现）是实现串行的一种简单方法；

只启动一个writer是保证只有一个写入者的简单方法。

但是，只启用一个writer时，宕机会成为问题。如果writer可以快速

恢复，则还好；但如果writer不能恢复，那么整个写入功能就无效了。

解决writer宕机问题的方法是启用多个writer，为了保证只有一个写入者

写入，需要引入同步机制（synchronization）或者叫作锁机制

（locking），拿到锁的writer可以写入，没拿到锁的writer，要等待持有

锁的writer发生宕机，再接替它。HDFS采用的这种方式，具体来说就是

租约机制（见3.2.1节）。

然而，前面讲解的租约机制并不能严格保证只有一个写入者写入，

问题出在租约过期上。在writer正常的情况下，它会不断地续约，保证

租约不过期，但是一旦writer出现假死、过载、续约包在网络上丢失等

情况，续约就会失败，其他的writer就会从NN处拿到新的租约。这时前

一个writer仍然还活着（比如在丢包的情况下），或者从假死和过载中

恢复过来，就会出现两个writer（这种情况也被称为脑裂）。HDFS采用

叫作租约恢复（lease recovery）的过程来解决这个脑裂问题，防止旧的

写入者再写入数据。

客户端出错还会导致另外一个问题，即block的副本不能完成一个

完整的文件写入过程（3.2节中讲解了一个完整的文件写入过程：

create/append block→副本的状态变为rwr，接收数据写入→写满数据

后，副本的状态变为finalized→客户端上报信息后，block在NN上的状态

变为Committed→DN上报信息后，block在NN上的状态变为Complete→
客户端关闭文件）。HDFS需要处理导致这种写入过程中断的错误，处

理过程叫作块恢复（block recovery）。

在块恢复的过程中，需要将这个block保存在每个DN上的副本都进

行恢复，每个副本的恢复过程叫作副本恢复（replica recovery）。

总之，租约恢复过程可能包含一个块恢复过程，而一个块恢复过程

会包含多个副本恢复过程。

1.租约恢复

如果NN发现一个文件的租约过期了，那么它会将这个租约的持有

者设置为dfs（dfs代表HDFS系统，表明这个文件被系统持有，不同于无



人持有）。即使这个客户端还活着（比如发生假死后恢复），它向NN
发送的请求（比如获取新代戳、获取新block、关闭文件）也会被拒

绝，因为这时客户端已经不再具有有效的租约。

之后，NN检查这个文件最后两个block的状态。

● 如果最后两个block的状态是Complete，则NN会关闭这个文件。

其他block的状态应该都是Complete。
● 如果最后两个block的状态是Committed或者Complete，则会等待

一段时间（与租约超时的时长一致），此时的租约持有者是

dfs。当租约过期后，NN还会检查最后两个block的状态，如果

仍然不是Complete状态，则会续租。连续若干次续租后，最后

两个block的状态仍然不是Complete，则强制关闭这个文件。

● 如果最后一个block的状态是UnderConstruction，则开始块恢复过

程，在块恢复过程中会将这个block的状态改

为UnderRecovery，表明该block正在进行恢复操作。

● 如果最后一个block的状态是UnderRecovery，说明之前已经开始

了块恢复过程，则开始一个新的块恢复过程。在尝试若干次之

后会放弃恢复。

2.块恢复

NN从block的副本所在的所有DN中选择一个作为首要

DN（Primary Datanode，PD）。如果没有DN可选，则块恢复过程终

止。

NN生成一个新代戳，然后将block的状态从UnderConstruction改为

UnderRecovery，为将新代戳作为recoveryid。由此可见，新的块恢复过

程会具有更新的代戳，具有新代戳的块恢复过程会抢占之前旧的块恢复

过程。

PD让每个DN都执行副本恢复过程，执行副本恢复过程的副本处于

rur（replica under recovery）状态。每个副本的DN执行完副本恢复

后，都会返回给PD副本的状态，该状态中包含副本id、副本的代戳、副

本的磁盘文件长度、恢复前状态。

PD收到每个DN的副本执行状态后，会根据不同异常做出相应处

理：



● 所有DN在执行副本恢复过程中都返回了异常，则终止块恢复过

程。

● 所有副本返回的文件长度都为0，则要求NN删除这个block。
● 所有副本的状态都为finalized，但是副本的长度却不一样，则终

止块恢复过程。

如果不存在异常，则根据所有副本的恢复前状态，选择其中一个副

本的文件长度，作为block的长度。基本原则是有更优状态的副本，就

选择更优状态（状态优先级为finalized>rbw>rur）的副本；没有更优状

态的，则选择长度最小的。

3.副本恢复

在副本恢复过程中，DN会做如下几件事情。

● DN检查是否存在这个待恢复block的副本。如果不存在，或者副

本的代戳旧于请求中block的代戳，或者副本的代戳新于

recoveryid，则返回PD异常。

● 停止数据写入。如果DN正在向这个副本中写入数据，则块恢复

过程（或者说是副本恢复过程）会抢占客户端写入。从客户端

的角度来看，出现DN错误时，需要执行pipeline恢复过程，在

这个过程中要向NN获取新代戳。但是，此时这个文件的租约

持有者已经是dfs，客户端获取新代戳的操作会失败，从而使

得客户端写入失败。通过这样的机制可阻止脑裂的出现。

● 停止旧的块恢复过程。如果副本处于rur状态，说明之前已经执行

副本恢复过程，则停止这个旧的块恢复过程。
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第4章 Google的BigTable系统

BigTable是Google公司开发设计的一款key-value型的NoSQL数据

库。从第2章的介绍中我们知道，BigTable构建于GFS之上，也是Google
的一个内部系统。Google公司在2006年发表了一篇论文[1]，介绍了

BigTable。

4.1 BigTable的外部接口和架构

我们先来看BigTable对外提供的接口。

4.1.1 表

在逻辑上，BigTable的数据按表（table）来组织。在使用BigTable
前，需要创建或者打开一个表。图4.1大致描述了BigTable中的一个表。

图4.1 BigTable中的表（此图参考BigTable论文[1]）

4.1.2 数据

接下来，我们会逐一介绍图4.1中出现的表的构成元素。

● 一个表中的数据按行（row）组织，每一行用row key标识。row
key是一个字符串。

● 在一行中，分成若干列（column），每个列都有自己的名字。

● 列被分成组，一组列叫作列族（column family）。

列族需要提前创建，即在调用写入接口前必须先创建列族。列不需

要提前创建，也就是在调用写入接口时可以使用任意列名。



在同一个列族中，不同的行可以有不同的列，并且不会限制列的个

数。列名也可以为空。我们来看下面的伪代码（与BigTable的实际接口

语法有差异）例子。

综合以上信息，BigTable的数据模型如表4.1所示，BigTable中的表

逻辑上类似于这个样子。

表4.1 BigTable的数据模型

4.1.3 原子性

BigTable的接口支持一行内的原子操作，也就是允许一次操作多个

列，并且保持原子性。

在下面的代码（参考BigTable论文[1]，接近BigTable的真实语法）



例子中，对同一行的两个列分别进行Set操作和Delete操作，这两个操作

会保证原子性。

4.1.4 时间戳

每个单元格都包含多个版本的数据，这些版本通过时间戳

（timestamp）标识。时间戳是一个64位的整型数字。这个时间戳可以

是BigTable生成的，也可以是应用指定并传给BigTable的。如果是应用

自己生成的，那么应用需要保证生成唯一的、不重复的时间戳。

有了时间戳之后，BigTable的数据模型如表4.2所示，BigTable中的

表逻辑上类似于这个样子。

表4.2 BigTable的数据模型（有了时间戳之后）

4.1.5 BigTable的数据模型



上面我们看到了BigTable表的逻辑结构，在BigTable内部，数据模

型是一个多维排序Map。这个Map结构把row key、column key（包括

family）和时间戳这三个维度映射到一个值，并且按这三个维度排序：

BigTable的实际数据模型如表4.3所示。

表4.3 BigTable的实际数据模型

可以看到，这个实际的数据模型就是很多key-value对按照key排序

得到的。所以，虽然BigTable支持表、列甚至列族等复杂的逻辑数据模

型，但它仍然被认为是一种key-value型的数据库。

通常这个Map很大，BigTable会按row key对它进行切分，每一份都

叫作tablet。
继续拿表4.3举例，这个表可以被拆分成两个tablet，即tablet1和

tablet2，分别如表4.4和表4.5所示。

表4.4 BigTable tablet1

表4.5 BigTable tablet2



4.1.6 BigTable的架构

BigTable在架构上包含5个组件：GFS、chubby、client、master和
tablet server，分别说明如下。

● BigTable会将数据以日志文件和数据文件的形式存储在GFS中
（后面的4.2.3节会详细介绍）。

● BigTable会为每个tablet指定一个tablet server，tablet server负责处

理所有对这个tablet的读操作和写操作，并把这些读操作和写

操作转化成对GFS的读/写操作。一个tablet只会由一个tablet
server负责，一个tablet server会负责多个tablet。

● 一个主（master）节点负责把一个tablet指派给一个tablet server，
在BigTable集群中只会有一个master。

● 客户端（client）是嵌入在应用中的一个库（library），或者叫

作SDK。客户端不但包含对tablet server操作的代码，还包含了

GFS的客户端和chubby的客户端。

● chubby是Google公司内部的一个分布式锁服务，类似于第7章中

讲解的ZooKeeper。chubby负责维护BigTable集群，它有两个职

责：

■ 选举master。
■ 维护tablet server（即维护当前BigTable集群中有哪些tablet

server，并且这些tablet server是否还活着）。

另外，chubby还保存了BigTable集群的基础信息，包括root tablet的
location和root tablet在GFS中的存储位置（后面的4.2.1节会详细讲解）。



4.2 BigTable的实现

本节介绍BigTable的具体实现。

4.2.1 tablet location

前面讲解了BigTable会把数据组织成表，表会被切分成tablet，并且

master会把tablet分配给一个tablet server，这涉及BigTable的很多元数

据，比如：

● BigTable中有哪些表。

● 每个表被切分成哪些tablet（每个tablet包含哪些范围的key，即起

始行和结束行（endrow）是什么）。

● tablet都被分配给了哪个tablet server。
这些元数据也被保存成一个BigTable的表（叫作metadata表）。也

就是说，元数据和普通数据采用了相同的存储逻辑，都被存储在tablet
中。不过，BigTable对这个metadata表和存储元数据的tablet会进行特殊

对待。

metadata表中存储着tablet location信息，metadata表中的每一行都

是一个tablet location，一个tablet location中记录着这个tablet的信息，每

个tablet（包括元数据的tablet，也包括普通数据的tablet）都在metadata
表中有一行记录。

tablet location中包含的信息有：

● 这个tablet属于哪个表。

● 这个tablet拥有该表中的哪一段数据（用end row表示）。

● 目前这个tablet由哪个tablet server负责。

● 这个tablet被保存在GFS的哪些文件中。

BigTable对一个tablet所属的表的标识（table identifier）和该tablet
的end row进行编码，生成这个tablet location的row key，来存储上面的前

两条信息，而上面的后两条信息被存储在value中。

前面讲过，在chubby中存储了BigTable集群的基础信息，它就是一

行tablet location记录。这行tablet location记录指向metadata表的第一个



tablet，该tablet被称作root tablet。
BigTable采用三层的n叉树结构来存储数据。这棵树的每个节点都

是一个tablet，如图4.2所示。

图4.2 BigTable的三层树结构（此图参考BigTable论文[1]）

4.2.2 tablet的指派

前面讲到，需要将tablet指派给一个tablet server。在下面的几种情况

下，会出现未被指派的tablet，并且需要将这些未被指派的tablet指派给

一个tablet server。
● 创建新表，同时会创建该表的第一个tablet，BigTable会选择一个

tablet server，并且将该tablet server的地址写入这个tablet在
metadata表的这一行中，这样就完成了对这个tablet的指派

（assignment）。

● tablet分裂。

● tablet server出现宕机，需要将该tablet server上的tablet重新指派

（reassignment）给一个tablet server。
重新指派的过程比指派的过程要复杂，这里详细讲解一下。

BigTable用chubby来追踪哪些tablet server是活的，如果发现有tablet
server宕机，那么该tablet server上的所有tablet都不处于服务状态，

master把这些tablet放到一个未指派集合中。未指派集合中的tablet会被

master一次一个地分配给适合的tablet server。master修改metadata表中的



该tablet对应的那一行tablet location记录，并且给选定的tablet server发送

一个tablet加载请求（tablet load request），让这个tablet server从GFS
中加载该tablet。

4.2.3 加载tablet

tablet中保存的信息（也称为tablet的状态）是持久化在GFS中的，

以GFS文件的形式存在。前面讲过，在metadata表中，每一行tablet
location记录，除了记录为该tablet所分配的tablet server，还记录一个GFS
文件列表。这个列表中的文件就持久化保存着该tablet的状态。当tablet
server加载一个tablet时，会先从metadata表中读取该tablet的location记
录，从而知道这个tablet被保存在哪些GFS文件中。

tablet的状态被保存在两种类型的GFS文件中，即日志文件和数据文

件。

● 日志文件中保存着重做（redo）记录，称为提交日志（commit
log）。

● 数据文件是一种SSTable格式的文件。

在metadata表中，还会保存名为重做点（redo point）的信息，用来

记录提交日志中哪部分还在内存（即memtable）中，哪部分已经写入

GFS的数据文件中，完成了持久化。加载tablet的过程就是从GFS中读取

日志文件，然后从重做点重新执行一遍redo log，在内存中重建

memtable。此外，加载tablet，还包括将SSTable文件的索引加载到内存

中，这里就不展开介绍了。

4.2.4 tablet的读/写操作

当tablet server加载tablet完成后，就可以处理读/写请求了。tablet的
读/写过程如图4.3所示。



图4.3 tablet的读/写过程（此图参考BigTable论文[1]）

最近写入的数据会被保存在内存的buffer中，这个buffer叫作

memtable。比较旧的数据会被保存在SSTable文件中。

● 执行tablet的写入操作，会先调用GFS的客户端向日志文件中追加

一条redo记录，然后数据会被插入memtable中。

● 执行tablet的读取操作，需要先在memtable中查找数据，如果查找

不到，则会调用GFS的客户端在SSTable文件中进行查找。

4.2.5 合并

随着不断地写入，memtable的长度会不断地增加，当达到一定的阈

值之后，这个memtable会被冻结，同时一个新memtable会被建立。这个

冻结的memtable会被转成一个SSTable文件写入GFS中，这个过程叫作小

合并（minor compaction）。小合并可以减少内存的使用，并且缩短宕

机后恢复的时间。

随着小合并的执行，SSTable文件会越来越多，每个读取操作都需

要合并从这些SSTable文件中读取的结果。为了减少SSTable文件的数

量，需要定期执行融合合并（merging compaction）。merging
compaction会读取几个SSTable文件，合并成一个新的SSTable文件，再

写回GFS中。

另外，还存在一种叫作大合并（major compaction）的过程。大合

并会读取全部的SSTable文件，把它们合并成一个SSTable文件。
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第5章 文档数据库MongoDB

MongoDB是一个开源的文档数据库，主要为Web应用提供可扩展的

高性能数据存储解决方案。MongoDB是一个介于关系型数据库和非关

系型数据库之间的产品，在非关系型数据库中，它的功能最丰富，也最

像关系型数据库。

5.1 MongoDB的外部接口和架构

我们从MongoDB的外部接口和架构开始讲解。

5.1.1 MongoDB的基本概念

在MongoDB中，数据是以文档形式保存的，一个文档

（document）就是一个JSON格式的数据串。一组文档形成一个集合

（collection）。一个MongoDB数据库可以包含多个集合。

5.1.2 MongoDB的架构

MongoDB由4个组件构成，它们是mongod、mongos、configserver
和client。其中mongod是一个进程，负责接收和处理客户端发送过来的

请求，并且负责保存数据。本节重点讲解这个组件。

MongoDB支持单机使用模式，也就是将数据仅保存在一个mongod
进程中，这种模式被称作独立（standalone）模式。

除了standalone模式，MongoDB还支持另外一种模式，即副本组

（replica set）模式。在这种模式下，MongoDB支持将数据冗余地保存

多份，每一份称为数据的一个副本（replica）。也就是说，数据被保存

在多个mongod进程中。在MongoDB中，数据副本和进程是一一对应

的，所以一个mongod进程也被称作一个副本。而这样的一组mongod进
程，被称作副本组。

在replica set中，只有一个mongod进程被称作首要副本（primary
replica），它负责处理写操作，其他的mongod进程都被称作次要副本



（secondary replica）。在默认的配置下，读操作也是由首要副本处理

的。也就是说，在默认情况下，只有首要副本在工作，次要副本只负责

保存冗余数据，随时准备接替首要副本。

5.2 MongoDB的standalone模式

本节首先介绍基本的数据写入过程，然后介绍在standalone模式下

出现的异常。

5.2.1 MongoDB的写入过程

写操作是指插入文档、更新文档、删除文档。客户端将写请求发送

给首要副本，首要副本向集合中插入该文档、修改集合中对应的文档，

或者从集合中删除该文档，也就是会把写操作应用（apply）到对应的

集合中。在standalone模式下，当把写操作应用到集合中后，写入过程

就结束了。而在replica set模式下，还会有额外的复制过程（后面的5.3.1
节会介绍复制过程）。

5.2.2 无确认导致的丢失更新异常

本节介绍在standalone模式下出现的一种异常。

场景：异步写入

当把写操作应用到集合中后，MongoDB并没有通知客户端这次写

操作成功，客户端也不等待MongoDB的通知。

在这种情况下，客户端只向MongoDB发送写操作请求，即使

MongoDB没有成功处理这次写操作，客户端也不知道，只要发送了写

操作请求，客户端就会认为这次写操作是成功的。在出现故障的情况下

（比如网络连接断开、MongoDB服务器节点重启等），会丢失大量客

户端自认为写入成功的数据（请求可能没有到达MongoDB，还在网络

路由中，或者MongoDB已经接收到请求，还没来得及处理就宕机

了），这种行为被称为丢失更新（loss update）。之所以说“客户端自

认为”，是因为在这种情况下，MongoDB并没有向客户端承诺写入成

功。



在没有故障的情况下，是不会发生丢失更新异常的，并且客户端不

需要等待MongoDB的确认（acknowledgement），这种异步写入可以获

得非常高的写入效率。然而，一旦出现故障，虽然客户端会出现异常报

错，但客户端处理这个异常报错的过程是非常复杂的。因为客户端不知

道从哪一条数据开始，MongoDB没有进行正确的处理，往往要通过多

次查询，确认哪些数据已经成功写入，哪些数据没有成功写入，然后重

试失败的写操作。

原因：无确认

发生这种丢失更新异常的本质原因是无确认。

解决方法：写入确认

通常，可以通过让MongoDB给客户端返回一个写入确认（write
acknowledgement，ack）来防止发生丢失更新异常。MongoDB客户端

可以通过write concern：w选项，要求服务器端返回ack，开启了写入确

认选项的客户端会等接收到ack后，再发送下一个写操作请求。

在开启了写入确认选项后，在异常情况下（比如网络断开、服务器

重启等），受异常影响的请求不会接收到服务器端返回的ack，客户端

据此就知道这些写入执行失败，可以简单地重试相应的写操作。客户端

对这种异常的处理，比没有写入确认的异步场景处理要简单得多。

5.2.3 未持久化导致的丢失更新异常

在开启了写入确认选项后，并不能完全避免丢失更新。下面介绍另

一种丢失更新异常。

场景：重启

这种丢失更新是因为MongoDB接收到写请求后，会先把数据应用

到集合中，但是这并不等于这部分数据已经被写入磁盘中，它们可能仍

然在内存中。出于性能的考虑，并不是每次被应用到集合中的写操作都

会立即持久化到磁盘中，根据某种策略可能会采取定期或者异步的方式

将数据写入磁盘中。采取定期或者异步方式，可以将多个写操作批量地

持久化到磁盘中，以优化磁盘的写入性能。

然而，这时如果MongoDB服务器重启，那么还没有持久化到磁盘



中的写操作就会丢失，但是客户端已经接收到了ack，所以这种丢失更

新又被称为丢失确认更新（loss ack update），表明客户端已经接收到

ack的写操作丢失了。这个更新可以是各种写操作，如插入、修改、删

除等。

原因：未持久化

显而易见，发生这种丢失更新异常的本质原因是未持久化。

解决方法：写入日志

为了防止出现丢失确认更新，MongoDB采用了写入日志

（journaling）技术。MongoDB可以通过write concern：j选项来开启写

入日志。在开启了这个选项后，MongoDB每次把写操作应用到对应的

集合中前，都会把这次写操作记录在一个日志（journal）文件中，这

些记录被称为操作记录。操作记录描述了这次写操作对集合应用了哪些

变化。

如果发生重启，那么MongoDB可以重新执行一遍日志中记录的操

作，这样数据库中就包含了所有的数据。集合也会被定期持久化到磁盘

中，并且在持久化到磁盘中后日志记录一个检查点，下次重启只需要执

行这个检查点之后的记录，检查点之前的操作记录可以删除。

MongoDB支持多种存储引擎（如MMapV1和WireTiger），每种存储引

擎实现日志都有所不同。

5.3 MongoDB的replica set模式

即便同时开启了写入确认和写入日志选项，但如果MongoDB服务

器发生不可恢复的宕机，那么也会出现丢失确认更新，并且丢失了

MongoDB中的全部数据。所以这种丢失确认更新也被称为丢失数据

（loss data）。这种丢失更新的本质原因是数据没有冗余。

standalone模式最大的问题就是单点问题，机器宕机后，MongoDB
将不能再提供服务。而replica set模式引入了副本，解决了单点问题，但

是多副本的引入也会带来更多出现异常的情况，防止异常的出现也非常

复杂。

5.3.1 MongoDB的复制过程



为了防止出现丢失数据异常，需要把数据保存多份，也就是要采用

replica set模式。在replica set模式下，客户端会把写操作发送给首要副

本，这个写操作会由首要副本负责应用到集合中。不同于standalone模
式，在应用到集合中之后，MongoDB还会把这个写操作应用到replica
set中的所有次要副本上，这个过程被称为复制（replication）。

MongoDB有一种机制，这种机制会观察每个集合的数据变化，一

旦有数据变化，就将这个数据变化整理成一条操作记录，写入一个名

为oplog的特定集合中，并且操作记录是幂等的，可以反复应用。这里

需要注意，oplog和我们之前讲的日志不是一个东西，虽然它们记录的

操作记录是类似的，但使用oplog是专门为了把数据复制多份。

oplog采用了一种特殊类型的集合，叫作封顶集合（capped
collection）。capped collection是一种只保存固定数量文档的集合，如果

存储的文档超过这个数量，则最早存入的文档会被自动删除。

replica set中的次要副本会主动去首要副本上拉取oplog集合中的操

作记录，并把这些操作应用在自己的本地集合中。次要副本会严格按照

oplog的顺序应用每一条操作记录（也就是说，次要副本会严格按照首

要副本应用操作的顺序来应用操作记录），再加上每条操作记录是幂等

的，并且每个操作都是确定的（deterministic）（也就是说，应用完这

条操作记录后，一定会等到一个确定的结果，例如x=1就是确定的，而

x=currentTime()就不是确定的，因为每次执行x的值都会不一样），这样

就形成了一个复制状态机（replicated state machine）。那么，执行了

所有操作记录的次要副本最后会具有与首要副本完全相同的数据。也就

是说，它们具有相同的状态（state）。

有了复制之后，即使首要副本宕机，也不会出现丢失数据异常，因

为数据是复制给所有次要副本的，数据还被保存在次要副本中。

虽然通过复制过程解决了丢失数据异常问题，但是这里还有一个问

题，就是如果首要副本宕机，此时集群已经不能处理客户端请求了，则

需要把其中一个次要副本提升为首要副本，让它继续处理客户端请求

（后面的5.3.3节会详细讲解这个提升过程）。

5.3.2 无副本确认导致的丢失更新异常



本节我们介绍replica set模式下的第一种丢失更新异常。

场景：宕机故障

前面讲的复制过程仍然存在一个问题，就是在极端的情况下，比如

首要副本成功写入集合中，它返回给客户端ack，这时这个写操作还没

有被写入oplog中，首要副本发生宕机，这个写操作还没有被复制到次

要副本上，其中一个次要副本会转为首要副本，新的首要副本是不包含

这个写操作的。也就是说，客户端的这个写操作会丢失，即发生了丢失

确认更新异常。

原因：无副本确认

发生这种丢失更新异常的本质原因是写入确认没有反映写操作在副

本上的应用状态。

解决方法：副本写入通知

次要副本应用完操作记录后会通知首要副本，告诉首要副本这个写

操作已经成功应用。通过这个通知，首要副本可以知道，在某个时刻有

几个副本成功应用了该写操作。

客户端通过write concern：w选项，要求首要副本在收到几个次要副

本的通知后再返回ack。也就是说，当指定数量的次要副本复制并应用

了oplog后，通知首要副本，然后首要副本给客户端返回ack。
但是，在极端的情况下，仍然有一些次要副本还没有复制这条操作

记录，这时如果首要副本和已经复制并应用了oplog的次要副本全部宕

机，那么刚刚确认过的数据就会丢失，出现丢失确认更新异常。

因此，无论把w设置成什么值，都是一个概率的问题，指定的成员

数量越大，丢失确认更新的概率就越小。最极端的设置是，把w设置成

全部副本的数量，只有全部副本都发生宕机，才会出现丢失数据异常。

可见，本节所介绍的丢失更新是不可避免的，通过任何手段都是不

可能消除的。现实中，我们要接受一定概率的丢失确认更新。

将这个概率换成另一种说法，就是当宕机数量达到一定的阈值时，

数据会丢失——如果首要副本和所有返回过通知的次要副本都发生了宕

机，则出现丢失确认更新异常。

这里要注意的是，上面结论的否命题并不成立，也就是未达到宕机



数量的阈值时，并不保证数据不丢失——首要副本和所有返回过通知的

次要副本，即使有一个没发生宕机，也可能出现丢失确认更新异常（这

取决于其他一些条件，后面的5.3.4节会继续讨论）。

这里还应该注意的另外一个方面就是，等待次要副本通知的数量不

仅仅会导致丢失更新，还会导致MongoDB不可用。比如，把w设置成全

部成员的数量，只要有一个成员发生宕机（哪怕是一个次要副本发生宕

机），写操作就会失败，首要副本等待全部次要副本的通知，就会一直

不给客户端返回ack，客户端就会超时或者无限等待。

5.3.3 不正确选主导致的丢失更新异常

本节我们介绍replica set模式下的第二种丢失更新异常。

场景：选主

前面讲过，如果首要副本发生宕机，一个次要副本则会被提升为新

的首要副本。选择新的首要副本的过程就叫作选主（leader
election）。

那么，哪个次要副本会成为新的首要副本呢？错误地选择一个新

主，会导致即便满足5.3.2节中讲的未达到宕机阈值的条件，也仍然会出

现丢失确认更新异常。例如，客户端发送一个写操作，这个写操作要求

一个次要副本通知首要副本成功后，首要副本才返回给客户端ack。如

果一个次要副本读取了oplog中的这条操作记录并且应用到自己的集合

中，而其他次要副本还没有从首要副本中读取到这条操作记录，若此时

首要副本发生宕机，MongoDB没有选择这个成功完成复制的次要副

本，而是选择了一个没有完成复制的次要副本作为首要副本，那么这个

写操作就会丢失，即发生丢失确认更新异常。

原因：不正确的选主

发生这种丢失更新异常的本质原因是不正确选主，即选择了一个不

包含最新数据的次要副本作为首要副本。

解决方法（第一部分）：选主协议protocol v0
解决这种异常的方法包括两个部分，我们先来讲第一部分。

为了防止出现这种丢失更新异常，在选主时必须选择一个包含最新



数据的次要副本作为首要副本。

oplog中的每条操作记录都有一个属性叫作optime，这是一个时间

戳类型的属性，它记录了该操作发生的时间。

选主的依据是optime，即选择optime大的次要副本，因为optime越
大的次要副本一定复制了越多的操作记录，也就是有最大可能性与旧的

首要副本具有相同的数据，选择它作为新的首要副本，可以最大程度地

避免丢失更新。

在未达到副本宕机阈值之前，在没有宕机的次要副本中，一定存在

一个与首要副本具有相同数据的次要副本，并且这个次要副本的optime
一定是最大的；在超过了副本宕机阈值后，与首要副本具有相同数据的

次要副本可能已经宕机，这时就会出现丢失确认更新异常。

MongoDB选主依据下面几条原则：

● 要成为新的首要副本，一定要大多数成员同意。

● 针对一次选举，每个成员只能投票一次。

● 不同意optime比自己小的次要副本成为首要副本。

满足这几条原则，可以做到只有一个次要副本被选举成为首要副

本。例如，replica set中有5个成员，其中A和B选举A作为首要副本，C
和D选举C作为首要副本，无论是A还是C，要成为新的首要副本都必须

得到E的同意，但是E只能投票一次，即E要么选择A，要么选择C，所

以只能有一个主产生。

但是，在上面的例子中我们会发现，这样的选主原则，并不一定能

选举出数据最新的次要副本。继续上面的例子，如果A包含最新数据，

C不包含最新数据，也就是A的optime比C的大，而C的optime又比E的
大，若E同意了C作为首要副本，那么新的首要副本就不会包含旧的首

要副本的全部数据。

这种选主方法是MongoDB早期的方法。在MongoDB 2.6.7之前的版

本中采用的选举协议被称为protocol v0。在后面的版本中改进了选主协

议，新的选主协议被称为protocol v1（5.3.5节会讲到）。

如果要避免上面所讲的丢失确认更新，还需要配合其他手段，也就

是解决方法的第二部分。



解决方法（第二部分）：大多数写

为了防止发生丢失更新，按照上面的选举过程，我们必须让参与选

举的大多数集合中一定要包含具有最新数据的次要副本。如果客户端要

求首要副本在得到大多数次要副本的通知后再返回ack，那么确认集合

与选举集合必定有一个成员是重合的。也就是说，选举集合中一定存在

包含最新数据的次要副本。

客户端可以设置write concern：w为majority，来要求首要副本在接

收到大多数次要副本的通知后再返回ack。
至此，我们可以得到一个新的条件——只要大多数成员没有宕机，

就可以保证不出现本节中所讲的丢失确认更新异常，并且可以选出一个

新主对外提供服务。

5.3.4 脑裂导致的丢失更新异常

做了大多数选举和大多数写入后，仍然不能完全阻止出现丢失更新

异常。下面再介绍一种异常。

场景：网络分区故障、回滚

前面讲了replica set成员宕机（不可恢复）、重启（可以理解为可恢

复）的情况，但除了宕机和重启，还有其他故障情况，比如网络分区，

网络分区要比宕机情况复杂。

当出现网络分区时，如果首要副本在大多数成员的一侧，那么处于

少数成员一侧的都是次要副本，这些次要副本不能联系上首要副本，停

止复制oplog。在网络分区恢复以后，它们重新连接首要副本，继续复

制oplog。
如果首要副本在少数成员所在的一侧，那么处于大多数成员一侧的

次要副本不能联系上首要副本，会进行重新选举，选择optime最大的次

要副本作为新的首要副本，这个新的首要副本会接收客户端的连接和新

的写入命令。而在少数成员一侧，旧的首要副本仍然继续运行，并且仍

然认为自己是首要副本。这种存在两个首要副本的现象被称作分布式系

统中的脑裂（brain split）。

旧的首要副本在一段时间后发现自己已经不是首要副本了，它会主



动下台（step down）成为次要副本。根据网络分区持续和恢复的时

间，存在两种旧的首要副本发现自己不再是首要副本并且主动下台的场

景：

● 由于网络分区，首要副本联系不上大多数（例如，首要副本会给

所有成员发送心跳请求，接收不到大多数的心跳回复）的次要

副本，在一段时间后它会下台。

● 如果旧的首要副本没有及时通过心跳发现自己已经不是首要副本

了，那么当网络分区恢复后，它联系上了网络分区期间失联的

节点（其中包括新的首要副本），它就会发现新的首要副本的

存在，它也会自己下台。

在旧的首要副本下台前，它仍然在接收客户端的请求。如果write
concern：w选项设置的数量小于大多数，那么这些请求仍然会得到足够

的次要副本的通知，并且首要副本会给客户端回复ack，即写入是成功

的。

在网络分区恢复后，处于少数成员一侧的次要副本（包括下台的旧

的首要副本）会承认新的首要副本，但此时其状态已经和新的首要副本

不一致了，这些次要副本需要回滚（rollback）不一致的状态。大致的

回滚方式是，次要副本会寻找与新的首要副本相同的数据，那些与新的

首要副本不同的数据会被删除。

在回滚后，旧的首要副本中与新的首要副本不一致的数据都会丢

失，也就是丢失已经向客户端返回ack的一些更新操作，这时就发生了

丢失确认更新异常。

原因：脑裂

发生这种丢失更新异常的主要原因是网络分区导致的脑裂，旧的首

要副本在下台前，它仍然在正常工作，也就是可以成功地接收和处理客

户端的请求。

解决方法：大多数写

前面讲过首要副本要求收到大多数副本写入通知，可以正确选出一

个具有最新数据的新的首要副本，这里我们讨论大多数副本写入通知的

另外一个作用。如果首要副本要求收到大多数副本的通知，旧的首要副

本就不能正常工作，那么就可以阻止本节所介绍的这种丢失更新异常的



发生。

客户端可以设置write concern：w为majority，来要求首要副本收到

大多数次要副本通知后返回ack。
这样设置之后，即便请求写入旧的首要副本，但是由于旧的首要副

本不会收到足够的次要副本的通知，它就不会回复客户端ack，客户端

也就不会认为写入成功。那么，旧的首要副本就会只包含还没有向客户

端回复ack的一些更新操作，将其称为未确认更新（unack update）。

在网络分区恢复后，这些unack update是与新的首要副本不一致

的，会被回滚，也就是丢失了还没有向客户端回复ack的一些更新，那

么就不会发生丢失确认更新异常了。

5.3.5 缺失任期信息导致的丢失更新异常

前面讲解了设置w为majority可以阻止发生丢失更新，但这只是暂时

的结论，在某些情况下，这样的设置仍然不能完全阻止发生丢失确认更

新。接下来就讲述这些情况。

场景1：A—B—A切换

我们讨论这样一个比较极端的异常场景，如图5.1所示，在replica
set中有3个节点：A、B、C。



图5.1 MongoDB A—B—A切换

从图5.1可以看出，A是首要副本，有两个客户端c1、c2连接在A
上，并且c1写入w1，w1的optime是9。

A与其他节点发生网络分区，在网络分区的一侧，B和C发生选主，

B成为新的首要副本，并且B收到客户端c3写入的w2，w2的optime是



10。这个w2被成功地写入B，并且被成功地复制到C，由于达到大多

数，B给客户端返回ack。
在网络分区的另一侧，c1和c2这两个客户端仍然连接在A上，A仍

然认为自己是首要副本。两个客户端分别向A发送了写请求w3和w4，
w3和w4的optime分别是11和12。由于发生网络分区，这两个写请求都

只能被A本地写入成功，没有收到其他次要副本的通知，也并未给客户

端返回ack。
此时，B和C发生网络分区，而A和C之间的网络分区恢复，A和C发

生选主。由于A的optime大，A会成为新的首要副本。因为和A的oplog
不一致，C回滚w2，也就是回滚了已经向客户端确认的写请求，发生了

丢失确认更新。

在这个场景中，虽然将write concern：w选项设置为majority，但是

首要副本在不断地切换，即A—B—A切换，导致错误地保留了unack的
更新，而丢失了ack的更新。

场景2：时钟偏斜

前面讲述的场景是一种比较极端的情况。在机器系统时间异常的情

况下，这种A—B—A切换导致的丢失确认更新会加剧。

之所以说前面讲述的场景比较极端，有如下两个原因：

● 旧的首要副本节点A会检测是否与大多数节点保持连接，B、C会
检测是否连接到首要副本，这两个检测的机制是相同的，所以

在大概率的情况下，在B成为新的首要副本之前，A已经下台

不再接收客户端写入了。

● 连接在旧的首要副本上的客户端会等待旧的首要副本回复ack，
所以发送了w3和w4之后就不会再发送请求了。而新的首要副

本上的客户端会很快完成w2，并且后续会不断地发送请求，

后面的请求optime有更大的可能性会超过旧的首要副本上的12
这个时间戳。

所以，现实中不会发生这种丢失确认更新情况的可能性非常大。

前面讲过每条操作记录都有optime，它是一个时间戳。这里要注意

一个问题，每台机器的时钟不是完全一样的，机器之间时钟的不一样或

者误差通常是非常小的，但是在非常极端的情况下，比如发生人为误操



作的话，误差可能就比较显著。这种机器之间的时间差异，也就是时间

的不同步（synchronized），叫作时钟偏斜（clock skew）。

时钟偏斜会加剧“场景1”中丢失更新异常的出现。如果旧的首要副

本的时钟比其他副本的时钟都快10分钟，那么即便旧的首要副本上只有

一个unack的写操作，新的首要副本上有10000个ack的写操作，旧的首

要副本的optime也可能会大于其他副本的optime。
解决方法：选主协议protocol v1
这种丢失更新是protocol v0本身的设计导致的。为了解决这种丢失

更新的问题，MongoDB 3.2引入了新的选主协议protocol v1。
protocol v1中的optime不仅仅是一个时间戳，它还包括一个任期

（term）。每次重新选举时，任期都会增加（相当于做加1的操作）。

回顾一下图5.1中A—B—A这种首要副本切换的场景，在大多数成

员的一侧，B和C发生选主，B成为新的首要副本，选主成功，B的任期

增加，也就是B的任期要比A的任期大。虽然A在网络分区期间接受了更

多的客户端写入，但是这些写入的任期要比B和C上接收的写入的任期

小。在A的网络分区恢复而B又被网络分区后，A和C发生选主，C上写

入的optime要比A上写入的optime大，A不会成为首要副本，而C会成为

首要副本。A上那些没有被确认的写入会发生回滚，所以就不会发生丢

失确认更新异常。

5.3.6 脏读异常

有了新的复制协议之后，MongoDB已经彻底解决了丢失更新这种

异常，但是除了丢失更新，还会有其他异常，比如脏读异常，下面我们

就来介绍这种异常。

场景：ack前读取

举例说明。假设存在5个节点的MongoDB，节点分别为N1、N2、
N3、N4、N5，其中N1为首要副本，两个客户端分别为c1和c2。

按照前面介绍的写入过程，如果客户端c1向首要副本节点N1写入

w1，依据write concern：w选项的设置给客户端返回ack，在这个客户端

收到ack之前，另外一个客户端c2发起读请求，那么这个客户端会读取



到客户端c1写入的w1。
上面这种情况产生的影响如下：

● 如果在这之后MongoDB没有发生任何异常，这次写入的w1会被

成功地复制到replica set中的所有副本上，并且被所有成员成功

地写入磁盘中。客户端c2就像一个“先知”一样，在这次写入成

为事实之前提前知道了这次写入。

● 如果在这之后MongoDB发生异常（如发生网络分区），首要副本

节点N1没有把这次写入复制到其他次要副本上，一个次要副

本节点N2被选为新的首要副本，当网络分区恢复后，旧的首

要副本节点N1重新加入replica set，发现自己和新的首要副本

节点N2不一致，N1会回滚写入的w1。在这种情况下，客户端

c2就像一个“傻瓜”一样，读取到了一个不存在的数据，当它再

次读取这个数据时，就读取不到了。这种情况被称为脏读

（dirty read）。脏读也被称为未提交读（read
uncommitted），也就是读取到了还未提交的数据。

MongoDB默认是在首要副本上处理读操作的，也可以通过read
preference选项的设置让客户端从次要副本上读取。与上面所讲的类

似，如果从次要副本上读取，同样也会出现脏读。客户端c1在首要副本

节点N1上写入w1，N1把w1复制到成员N2上，但是还没有复制到其他成

员N3、N4、N5上，客户端c2依据read preference选项的设置从次要副本

节点N2上读取到写入的w1。这时发生网络分区，分区的一侧是N1、
N2，分区的另一侧是N3、N4、N5，这时N3、N4、N5发生选主，N3成
为新的首要副本。当网络分区恢复后，N1、N2重新加入replica set，
N1、N2回滚写入的w1，客户端读取到了不存在的数据。

原因：被回滚

不管是从首要副本上读，还是从次要副本上读，产生脏读都是因为

客户端读取的数据在后续的回滚中被删除了。

解决方法：大多数读

为了解决脏读这种异常，在MongoDB 3.6中引入了大多数读，也就

是只返回已经被复制到大多数副本的数据。因为被复制到大多数副本的

数据不会被回滚，所以能防止脏读的发生。大多数读可以通过read



concern选项进行设置。

这里需要注意的是，在处理读操作时大多数读并不是从大多数副本

上读取数据，而是只从首要副本上读取。所有的次要副本在成功复制一

个写操作后会通知首要副本，所以首要副本是知道某个写操作已经被大

多数次要副本复制了的。MongoDB会为每个数据保存多个版本，每个

写操作都会增加一个新的版本，并且为这个版本（也就是一个写操作）

记录收到了哪些副本的通知。即便有其他更新版本的数据写入，这个版

本已经不是最新的版本，对这个数据的读操作也只会读取其最新的已经

收到大多数确认的那个版本。另外，首要副本在等待前一个写操作的次

要副本通知时，它可以再开始一个写操作，大多数读不会阻止对同一个

数据的新的写操作。也就是说，大多数读不会读取数据的最新版本，只

会读取已经得到大多数确认的历史版本。

5.3.7 陈旧读异常

到此为止，MongoDB已经解决了大部分异常，但是它还会出现一

种陈旧读（stale read）异常。陈旧读就是读取到一个陈旧的数据，比

如客户端c1进行一个写操作，写入w1，当操作完成后，首要副本给客户

端c1返回ack，在收到ack之后的时间里，任何客户端（包括c1）进行读

操作都应该读取到w1，如果读取到的不是w1，那么就发生了陈就读。

场景：网络分区

如前面所讲，大多数读是读取一个历史版本，但是这里所讲的陈旧

读异常并不是由于读取一个数据的历史版本而引起的。对于大多数读来

说，读取的不是最新的版本，最新的版本还没有得到ack，读取最新版

本也就不能被认为是成功的读取。收到大多数复制确认的数据才能被认

为是写入成功的数据。

实际上，陈旧读出现在发生网络分区时，这种异常仍然是由网络分

区导致的。在发生网络分区时，仍然存在连接在少数成员一侧的旧的首

要副本的客户端，并且这些客户端仍然可以进行读操作。这是因为大多

数读只需要从首要副本这一个节点进行读取，所以，虽然此时首要副本

与大多数次要副本是不能通信的，但这并不影响读操作，首要副本仍然

可以读取到已经复制到大多数节点的数据，而多数成员一侧会重新选



主，新的首要副本接收新的写入并且复制到大多数节点，连接在旧的首

要副本上的客户端不能读取到这些最新的数据。

原因：脑裂

陈旧读发生的原因在于网络分区导致脑裂，在网络分区的少数成员

一侧的旧的首要副本仍然可以处理读请求。

解决方法：线性读

为了防止陈旧读，在MongoDB 3.6中引入了线性读（linearizable
read）。线性读可以通过read concern选项进行设置。

从前面讲述的内容可以知道，要阻止陈旧读，需要阻止处于网络分

区的少数成员一侧的旧的首要副本处理读请求。我们知道，这种状态是

比较短暂的，因为首要副本发现自己联系不上大多数次要副本之后，会

主动下台。但是仍然有一段短暂的时间会发生陈旧读，如果要阻止这段

时间发生陈旧读，则可以采用线性读。我们知道，大多数写操作要等待

大多数副本确认之后才会成功，线性读实际上是在读之后阻塞等待，做

了一次空的写操作，这个空的写操作会被复制到大多数副本，保证首要

副本不是处于网络分区的少数成员一侧，当复制成功之后才完成读操

作。



第6章 消息系统RabbitMQ

RabbitMQ是一款开源的分布式消息broker。

6.1 RabbitMQ简述

6.1.1 关于broker

什么是broker？为什么要用broker来描述RabbitMQ呢？

在一个消息系统（messaging system）中，RabbitMQ位于两类应用

的中间，其中一类是消息的生产者（producer）；另一类是消息的消费

者（consumer）。也就是说，RabbitMQ是这二者之间的中介者

（broker）。

我们通过类比的方式来说明broker。先看server（服务器）这个词

的翻译。server直译是服务者的意思，服务者的职责是对外提供服务

（serving，就是收到一个请求，返回一个响应）。server可以指物理上

的一台机器，也可以指一个进程（比如web server）。

与server的翻译进行类比，broker应翻译成中介器。broker直译是中

介者的意思，中介者的职责是对外提供中介（broking，不同于

serving，broking是指介于二者之间的撮合者，在messaging的场景下，

就是指介于生产者和消费者之间，替二者传递消息）。一般在消息系统

（不仅仅是RabbitMQ）中，进程往往不被称为server，而是被称为

broker。

6.1.2 RabbitMQ的接口

简单来说，RabbitMQ对外暴露了队列（queue）的概念，队列中保

存着RabbitMQ所要传递的消息。生产者会向这个队列中发送消息，我

们称这个发送的动作为发布（publish），而消费者会从这个队列中读

取这些消息，我们称这个读取的动作为订阅（subscribe）。RabbitMQ
支持非常丰富的语义功能，但这些不是本书的主题，这里就不展开介绍

了。



6.1.3 镜像队列

队列的内容可以被镜像（mirrored）到多个节点上。这里需要注意

的是，不同于其他的分布式系统，RabbitMQ采用了“镜像”这个词，而没

有采用很多分布式系统中所采用的复制（replicate）一词。被镜像过的

队列叫作镜像队列（mirrored queue），它包含一个主（master）镜像

和一个到多个队列镜像（queue mirror）。在很多分布式系统中，队列

镜像往往被称为副本（replica）。

6.2 RabbitMQ的基本实现

RabbitMQ功能丰富，所以RabbitMQ的实现也非常复杂，接下来介

绍与本书主题有关的几个方面的实现。

6.2.1 镜像复制

队列的所有操作都发生在master上，master会在处理完一个操作

后，将这个操作传播给活着的镜像，master会维护一个列表记录所有活

着的镜像。这个列表最初来自Policy定义，后续master会动态维护这个

列表。如果在向一个镜像上传播一个操作时没有成功，则说明这个镜像

已经不是活着的镜像，master会把这个镜像从列表中剔除，下一个操作

就不会再传播给该镜像了。master和镜像之间还有心跳机制，master也
会根据心跳的结果剔除没有活着的镜像。

RabbitMQ会把一条消息成功写入所有镜像后，才处理下一条消

息，这样可以保证所有镜像上的消息都与master上消息的顺序是一样

的。这也带来了一个问题：如果某个镜像宕机，那么master只能等待超

时，把这个镜像剔除后，才能继续处理接下来的消息。还有一件重要的

事情是，队列处理消息的快慢取决于写入最慢的镜像，如果某个镜像由

于某种原因（比如CPU负载高）写入消息比较慢，那么即使其他镜像有

足够的能力，这时整个队列处理消息也会比较慢。

6.2.2 镜像加入队列

通常，如果某个镜像所在的broker发生宕机，那么这个镜像就会被



认为是不可用的，master会把这个镜像从列表中剔除。当这个broker重
启后，其上的镜像会被重新加入队列中。在发生网络分区的情况下，某

个镜像也会被认为是不可用的，当网络分区恢复后，这个镜像也会被重

新加入队列中。

无论是宕机还是网络分区，都会导致队列镜像的数量少于Policy定
义的数量。如果宕机的节点或者网络长时间不能恢复，那么RabbitMQ
会将一个全新的空镜像加入这个队列中（如果存在可用的broker的
话），尽量让队列符合Policy定义。

显然，在创建一个新队列时，新镜像也需要被加入这个队列中。

此外，Policy的改变也会导致新镜像被加入队列中。比如一个队列

的镜像的Policy定义从2个镜像变成3个镜像，一个新镜像就会被加入这

个队列中。

6.2.3 镜像同步过程

无论什么原因导致镜像被加入一个新队列中，这个镜像都必须满足

一个条件：它一定是一个空镜像。如果这个镜像曾经属于一个旧队列

（不管它曾经属于其他队列，还是属于这个队列），那么它可能包含了

属于那个旧队列的数据，因此它需要清除这些数据，让自己变成一个空

镜像，然后再加入这个新队列中。

新镜像被加入队列中后，一般来说要落后于队列的master，这是因

为新镜像是空的，而队列的master已经包含了消息。但是新镜像并不试

图追齐master，它只接收其加入之后的消息。也就是说，master在收到

一条消息后，会传播给队列中的所有镜像，也包括新加入的镜像。随着

消费者不断地消费消息，之前的消息会被不断地从master中删除，肯定

在某个时刻，master中不再包含之前的消息，这时master和新镜像就包

含了完全相同的消息，那么新镜像就达到了同步（synchronized）状

态。而在达到同步状态之前，新镜像处于非同步（unsynchronized）状

态。在这里，RabbitMQ也没有采用很多分布式系统中所采用的一致

（consistent）这个词。

前面讲过，master一定要将当前消息成功传播给所有副本后才会处

理下一条消息，所以我们可以得出这样一个结论：处于非同步状态的镜



像只能是新加入队列的镜像。如果一个镜像已经被加入队列中且达到了

同步状态，并且始终正常地接收master的写入而没有被剔除，那么这个

镜像会一直保持同步状态。

上面讲的是一种自然追齐的方式。RabbitMQ也支持另外一种追齐

方式，就是停止master写入新消息，新镜像从master拉取所有消息，当

新镜像具有与master完全相同的消息后，才允许master继续写入新消

息。这种强制追齐的方式被称为同步（synchronization）。同步分为两

种，其中一种是手工同步（manual synchronization），由人为的运维

操作触发；另一种是自动同步（automatic synchronization），也就是

一旦有新镜像加入队列，RabbitMQ就停止master的写入，并且让新镜像

追齐master的所有消息。

6.3 master切换及RabbitMQ的异常处理

每个队列都有一个master，当发生master宕机，或者发生主动运维

操作（比如升级、重启broker、停止broker），或者发生网络分区时，

可能会发生master的切换，也就是有另外一个镜像接管了这个master的
职责。

6.3.1 意外宕机后的master切换

RabbitMQ按这样的规则来选择一个新的master：如果master所在的

broker发生宕机，则最早加入这个队列的镜像会成为新的master，但是

该镜像不一定达到同步状态。通过参数设置，也可以要求只有达到同步

状态的镜像才能成为新的master。

6.3.2 主动运维后的master切换

当主动关机时（比如进行升级操作、重启broker），RabbitMQ只会

让具有同步状态的镜像中最早加入队列的那个镜像成为新的master。具

体来说，有下面两种情况：

● 如果存在具有同步状态的镜像，那么该镜像会成为这个队列的新

的master，原来的master重启后，发现队列的master已经不是自



己了，它会清空自己本地的所有消息，作为一个普通镜像重新

加入队列中。

● 如果不存在具有同步状态的镜像，那么在旧的master重启之前，

这个队列就一直处于没有master的状态，也就是处于不可用的

状态，需要等待master重启成功后，才可以继续对外提供服

务。

类似地，可以通过设置参数要求不管是否达到同步状态，最早加入

队列的镜像都会成为master。当这个新的master不具有同步状态时，旧

的master同样会清空自己本地的所有消息，作为普通镜像加入队列中，

那么原来只存在于旧的master中的消息就会丢失。

6.3.3 意外宕机与主动运维的默认行为差异

可以看出，RabbitMQ在发生master宕机和发生主动运维操作时的默

认行为正好是相反的——在宕机处理上，保证的是RabbitMQ尽量可

用；在主动运维时，则保证的是数据尽量不丢失。

6.3.4 网络分区后的master切换

当发生网络分区时，原本的一个集群被分割成多个分区，master只
能存在于其中的一个分区中，其他分区中不存在master。对于那些处于

其他分区中的镜像来说，其master不可用，会选出一个新的master。与

前面两种master切换场景不同的是，对于同一个队列来说就存在多个

master，这种现象被称为脑裂（brain split）。

如果发生网络分区，RabbitMQ会检测出每个分区中有几个broker，
并且根据集群原有的broker的数量来判断：每个分区中是包含了大多数

节点，还是只包含了少数节点。

总体来说，RabbitMQ有两种策略来处理网络分区：

● 暂停少数分区。

● 让所有分区独立运行。

1.暂停少数分区（pause_minority）



暂停少数分区就是指RabbitMQ会停止少数分区中的所有broker，断

开这些broker上的所有客户端连接。

暂停少数分区后，会出现下面两种情况：

● 如果某个队列的master不在少数分区中，而是在大多数分区中，

那么这个队列仍然可以继续运行。当网络分区恢复后，少数分

区中的镜像会清空自己本地的所有消息，重新加入队列中。

● 如果master在少数分区中，那么大多数分区中的普通镜像就会发

现master不可用，大多数分区中最早加入这个队列的镜像会成

为新的master。当网络分区恢复后，RabbitMQ会重启少数分区

中的所有broker，原来不是master的镜像会清空本地消息，重

新加入队列中。原来的master发现队列中已经有新主了，也会

清空本地消息，作为普通镜像重新加入队列中。可见，在这种

情况下，如果大多数分区中成为新的master的镜像不是具有同

步状态的，那么就会丢失数据。

2.让所有分区独立运行

在发生网络分区后，也可以让所有分区独立运行，那么不存在

master的分区就会选出一个新的master，使得这个队列在任何一个分区

中都可以继续运行。当网络分区恢复后，可以采用不同的恢复方式。

● ignore：当网络分区恢复后，RabbitMQ忽略恢复处理，将恢复处

理留给系统管理员来做，由系统管理员来选择留下哪个分区，

将不要的分区中的broker全部重启，让它们清空自己重新加入

队列中。采用这种处理方式，需要系统管理员熟悉RabbitMQ
的工作原理，并且能够判断出舍弃哪些分区带来的损失最小，

因为舍弃分区一定会导致数据丢失。

● autoheal：与ignore方式不同的是，当网络分区恢复后，RabbitMQ
自动做出选择，舍弃少数分区，将少数分区中的broker重启，

让它们重新加入队列中。可想而知，与ignore方式相同，这种

方式也会存在丢失数据的可能。

6.4 确认机制

RabbitMQ在生产者和消费者两侧都支持消息确认机制。



在生产者一侧，确认机制叫作confirm。生产者发送一条消息，

master收到这条消息，将这条消息写入本地，并且将这条消息传播给所

有的镜像，当所有的镜像都回复说已保存至本地后，master回复客户端

一个confirm。

在消费者一侧，确认机制叫作acknowledge。当队列里有新的消息

时，master将这条消息发送给消费者，消费者收到这条消息并成功处理

后，它会发送一个acknowledge给master。master收到acknowledge之后，

将这条消息从本地删除，并且把删除动作传播给所有的镜像。如果

master在规定的时间内没有收到消费者的acknowledge，则master认为这

条消息没有被成功消费，它会把这条消息标记成redelivery，并且把它重

新放回队列中，发送给其他消费者。此外，消费者也可以主动发送一个

no-ack，表明它没有成功处理这条消息，master收到no-ack后，也会把这

条消息标记成redelivery放回队列中。



第7章 协调服务ZooKeeper

ZooKeeper是一个开源的分布式协调服务，用来协调一个分布式系

统中的多个进程协同工作。

7.1 协调服务的应用场景

我们从ZooKeeper的应用场景来解释什么是协调（coordination）服

务。ZooKeeper主要被应用在配置管理（configuration management）、

组员（group membership）、选主（leader election）、锁（lock）上。

1.配置管理

配置管理用来实现分布式系统中的动态配置，配置信息被存储在

ZooKeeper中。当进程启动时，进程连接到ZooKeeper，从ZooKeeper中
读取配置信息。ZooKeeper保持这个连接，当配置更新时，它会通知所

有连接的进程配置有变化，进程可以重新读取配置信息。

这是一个很常见的使用场景，比如HBase将region的信息记录在

ZooKeeper中，Kafka将分片信息记录在ZooKeeper中。

2.组员

一个分布式集群，集群中的成员是动态变化的，集群成员信息包

括：

● 有新成员加入。

● 有旧成员离开（宕机、重启）。

● 当前有哪些成员。

比如在HBase中，master需要知道有多少个region server，并为每个

region server分配其负责的region。当集群中有region server宕机时，

master需要知道是哪个region server发生了宕机，并把它负责的region分
配给其他region server。如果有新的region server加入，则可以把一部分

region迁移到新的region server上。

3.选主

一个分布式集群，需要选举其中一个成员作为leader，并且只有唯

一一个成员被选为集群的leader，比如HBase中的master、Kafka中的



partition leader和controller。
4.锁
锁场景与选主非常类似，在一个集群中只有一个成员能获得锁。

总结以上场景，我们可以看到在分布式系统中有多个进程存在，要

想让这些进程按照预想的方式工作，必须很好地协调系统中每个进程的

行为，ZooKeeper就是这个系统中的协调员。在这些进程中，谁担任

master，哪些进程还活着，哪些进程已经死了，又有哪些进程加入系

统，等等，都由ZooKeeper这个协调员来管理。分布式系统就像是一个

动物园，每个进程都是动物园里的动物，而ZooKeeper就是动物园管理

员。

7.2 ZooKeeper简述

本节介绍ZooKeeper的数据模型、外部接口和架构。

7.2.1 ZooKeeper的数据模型

ZooKeeper的数据模型类似于一个文件系统，但是ZooKeeper并不是

一个文件系统，它只是使用了与文件系统类似的树形结构来管理数据，

如图7.1所示。

这个树形结构被称为数据树（data tree），树上的每个节点都被称

为znode，每个znode都可以使用类似UNIX系统中的路径（path）来标

识。

图7.1 ZooKeeper的数据模型（此图参考ZooKeeper的论文[1]）



znode有两种类型，如下所示。

● regular（常规的）：znode在创建之后必须由客户端删除，否则

会一直存在。

● ephemeral（临时的）：znode在创建之后可以由客户端删除，也

可以由系统自动删除。

此外，每个znode还可以指定一个sequential（顺序性）属性。当一

个znode被指定了sequential属性后，在这个znode下创建的所有子znode
都会在名字的末尾添加一个单调递增的编号，后创建的子znode一定比

先创建的子znode具有更大的编号。

客户端可以为每个znode都设置一个观察器（watch），当znode有
变化时，也就是发生znode被修改、删除等操作时，客户端会收到通知

（notification），被告知这个znode的数据发生了变化。

当一个客户端连接到ZooKeeper后，它会保持一个长连接，并且会

创建一个会话（session），每个session都有超时时间（timeout），如

果超过这个时间还没有收到客户端发来的心跳，ZooKeeper就认为这个

客户端已经死掉，会关闭这个session。客户端自己也可以主动关闭这个

session。当一个session被关闭后，这个session对应的客户端创建的

ephemeral类型的znode和观察器都会失效，随着这个session一同被

ZooKeeper删除。

7.2.2 ZooKeeper的外部接口

下面介绍ZooKeeper的外部接口。

● create（path，data，flags）：创建一个路径名为path的znode，
znode中保存的数据是data，flags是znode的标识，这个标识包

括前面讲过的regular类型、ephemeral类型、sequential属性这些

信息。

● delete（path，version）：删除路径名为path的znode，如果指定

version，则只有当库中的版本与version相同时才删除。

● exist（path，watch）：判断是否存在路径名为path的znode。
watch参数指定是否同时创建一个watch。



● getData（path，watch）：读取路径名为path的znode中的数据。

watch参数指定是否同时创建一个watch。
● setData（path，data，version）：向路径名为path的znode中写入

数据data。如果指定version，则只有当库中的版本与version相
同时才写入。

● getChildData（path，watch）：读取路径名为path的znode中所有

子znode的名字。

● sync（path）：这个方法被调用后会一直等待，直到调用它之前

的所有更新都已经复制到客户端连接的server后才返回。path未
被使用。

7.2.3 ZooKeeper的架构

一个ZooKeeper服务（service）由多个server组成，ZooKeeper的架

构如图7.2所示。



图7.2 ZooKeeper的架构

在图7.2中，物理上，一个服务由多个server组成；逻辑上，一个服

务由三个逻辑组件组成，即请求处理器（request processor）、原子广

播（atomic broadcast）和多副本的数据库（replicated database）。每

个逻辑组件在每个server中都存在。

ZooKeeper采用首要备份模式（primary backup scheme）。写请求

（write request）由请求处理器处理，并且只由其中一个server上的请求

处理器处理。这个处理写请求的请求处理器所在的server被称为首要

（primary）进程，其他server被称为备份（backup）进程。因为只有

首要进程的请求处理器处理写请求，该请求处理器可以串行依次处理所

有的请求。

写请求由请求处理器转换成一个事务（transaction）交给原子广播



组件继续处理，在图7.2中transaction被简写为txn，后面的7.3.2节会详细

讲解事务。

备份进程收到写请求后，会把写请求转发给首要进程处理。

读请求（read request）不需要经过请求处理器和原子广播组件处

理，它可以由多副本的数据库组件处理，并且读请求不仅仅可以由首要

进程处理，也可以由备份进程处理。

原子广播组件采用的是Zab算法（关于Zab算法知识，请参考第12
章）。从Zab算法中可以知道，原子广播组件将一个事务广播到所有的

server上，并且投递（deliver）到每个server的数据库中。在ZooKeeper
中，Zab中的投递操作就是将事务应用到本地的数据库。Zab算法中的一

个进程被称为领导者（leader），用于处理写请求的请求处理器可以和

Zab的leader不在同一个server上，通过网络，请求处理器的首要进程将

事务发送给Zab leader。为了简化，请求处理器的首要进程就采用了Zab
选举出来的leader。也就是说，Zab选出的leader就是请求处理器的首要

进程。

Zab算法可以在上一个提议还没有投递之前，允许开始广播下一个

提议。Zab算法可以同时处理多个提议，并且保证这些提议是按照广播

的顺序投递的，如图7.3所示。

这样一来，每个server中的三个组件就形成了一个请求处理的管道

（pipeline）。Zab算法允许pipeline同时处理多个请求。也就是说，上一

个组件处理完请求之后会把请求交给下一个组件，不管下一个组件是否

处理完成，上一个组件都开始处理下一个请求。那些还没有被最终处理

完，停留在管道中的请求，被称作未解决（outstanding）请求。



图7.3 ZooKeeper的pipeline

7.3 ZooKeeper的实现细节

本节我们来介绍ZooKeeper的实现细节。

7.3.1 客户端异步处理

ZooKeeper的客户端是以异步方式请求ZooKeeper服务的。也就是

说，客户端将上一个操作的请求（request）发送给服务，不用等待这

个操作的响应（response），就可以发送下一个操作的请求。

7.3.2 请求处理器

请求处理器这个组件处理由客户端发来的客户端请求（client
request），在客户端请求中是客户端对ZooKeeper服务的接口调用。

但是请求处理器不能把客户端请求直接交给Zab。虽然从图7.3所示

的例子来看，同时提交多个客户端请求到pipeline中，这些请求工作得



非常好，但是我们注意到ZooKeeper接口中的方法效果实际上是累加的

效果。我们举例来说明这种累加效果。比如有一个znode的路径

是/parent，它具有sequential属性，现在执行这个方法调用：

创建子znode的这个方法在执行前，是不确定会向数据库中写入什

么数据的。首先要看数据库中/parent下已经存在的编号最大的子znode，
把这个znode的编号加1，作为新创建的znode的编号。

但是，从Zab算法（见第12章介绍）可知，Zab算法在恢复

（recovery）的过程中，会重复投递一个提议。也就是说，这个创建子

znode的客户端请求可能被重复执行，而这种有累加效果的操作是不能

重复执行的，因为每次执行都会创建一个新的子znode。这种不能重复

执行的操作被认为不是幂等的（idempotent）。

请求处理器会把客户端请求转换成名为状态变更（state change）
的操作，也就是事务操作。请求处理器不会把客户端请求操作交给原子

广播组件，而是会把转换之后的事务操作交给原子广播组件。例如，请

求处理器会把上面的客户端请求转换成下面的状态变更操作：

事务是客户端请求执行之后的结果。事务可以被直接写入数据库

中，并且可以被反复执行。

将客户端请求转换成状态变更操作，不仅仅依据数据库中的状态，

还要考虑所有的未解决请求。我们看图7.4所示的例子。

图7.4 ZooKeeper的事务

如图7.4所示，数据库中执行了request1，目前它存在一个子



znode（child001）。请求处理器在处理request2时，确定数据库中已有

child001，将create（/p/child）这个客户端请求转换成

setDataTxn（/p/child002）事务操作。请求处理器在处理request3时，不

仅要确定数据库中存在child001，还要确定未解决请求pipeline中有一个

事务child002，这样它就可以将request3转换成setDataTxn（/p/child003）
事务操作。同理，当请求处理器处理完request3后，开始处理request4
时，它要考虑数据库中的状态，同时还要考虑两个未解决的事务

child002和child003。
ZooKeeper的API中还有一类操作叫作条件（conditional）操作，比

如在setData操作中指定了版本，只有当它与数据库中的数据版本匹配时

才执行该操作。条件操作在被转换成事务前也必须同时检查数据库中的

状态和未解决的事务，只有当其版本匹配上数据库中的数据版本或者最

新的未解决的事务时才交给Zab算法，否则会报异常。

7.3.3 原子广播

在第12章中，我们会详细介绍原子广播组件中的算法的细节，本节

就不详细讲解这个组件了，因为它的实现主要就是Zab算法的实现。这

里主要讲解在原子广播组件中，不属于Zab算法的一个实现细节。阅读

完第12章后，你会了解Zab算法中有leader和follower两种角色，并且在

第12章中还会介绍Zab的leader就是ZooKeeper的首要进程，Zab的
follower就是ZooKeeper的备份进程。建议阅读完第12章后，重新阅读本

节。

前面讲过，首要进程收到写请求后会转发给备份进程来执行。也就

是说，在原子广播组件中，follower收到写请求后会转发给leader来执

行。这里有一个问题需要注意，follower收到leader返回的成功后并不会

马上向客户端返回成功，我们来考虑图7.5所示的例子。



图7.5 原子广播

在图7.5所示的例子中，follower收到客户端请求，follower把请求转

发给leader，leader开始Zab算法。当leader收到大多数的ACK后给

follower回复说其转发的请求处理成功，但这时COMMIT消息还没有被

发送到follower，follower并没有把x=1这个操作投递到数据库中，在数

据库中仍然是x=0。如果follower收到转发的回复后就给客户端回复成

功，那么客户端在后续发来的get请求中读取到的就会仍然是x=0。这种

情况违反了ZooKeeper的一致性保证，ZooKeeper对这种情况做了处理，

如图7.6所示。follower收到转发的回复后需要等待，直到这个事务在本

地投递后，才会给客户端返回成功。



图7.6 ZooKeeper的一致性

ZooKeeper在原子广播组件中做这样的处理，是为了让ZooKeeper的
一致性达到顺序一致性。顺序一致性对ZooKeeper来说是非常重要的，

它是ZooKeeper能够完成作为协调服务所要支持的应用场景的重要保

证。本章我们就不展开讨论ZooKeeper是顺序一致性的这个问题了，第

14章会详细介绍顺序一致性。第15章会介绍线性一致性，并且在介绍完

这两种一致性之后，在15.4节会详细分析ZooKeeper的一致性，也就是

为什么ZooKeeper是顺序一致性的。

参考文献

[1] Hunt p, Konar M, Junqueira FP, et al. ZooKeeper: Wait-free
coordination for Internet-scale systems. USENIXATC' 10: Proceedings of the
2010 USENIX conference on USENIX annual technical conference, 2010.



第8章 Google的Spanner数据库

Spanner是Google公司开发的一个数据库。Google在2012年发表了一

篇关于Spanner的论文，从中我们能够了解到Spanner的实现细节。2017
年，Google发表了关于Spanner二代的论文，论文中讲述了如何在

Spanner一代的基础上添加一个SQL层，让Spanner成为一个SQL系统。

SQL这部分不是本书关注的重点，所以本章仍然讲解Spanner一代。

Google在Google Cloud上售卖Spanner二代产品，其整体特性与Spanner一
代类似。

总体来说，Spanner是一个全球部署（globally）、可扩展

（scalable）、时间维度多版本（temporal multi version）、同步复制

（synchronized replicated）、具有外部一致性（external consistency）的

数据库。

8.1 Spanner的数据模型

Spanner的数据模型包括三部分：带模式的半关系型表

（schematized semi-relational table）、查询语言（query language）、

通用事务（general-purpose transaction）。Spanner一代也采用了类似

于SQL的查询语言，但这不是本书关注的内容，所以这里不讨论这一部

分，只介绍另外两部分。

8.1.1 带模式的半关系型表

与关系型数据库类似，在Spanner中可以创建库（database），在一

个库中可以创建多个表（table），该表与关系型数据库中的表类似，包

含行（row）和列（column）。表必须被设置一个可以由多个列组成的

主键（primary-key）。上面这些模式（schema）必须在使用前声明，

示例如下：



在上面的例子中，创建了两个表。第一个表是Users（用户表），

它包含两个列：uid（用户id）和email（用户的E-mail）。uid被设置为

主键。

第二个表是Albums（用户相册表），它包含三个列：uid（这个相

册所属的用户id）、aid（相册id）和name（相册的名字）。uid和aid的
组合被设置为主键。

虽然上面讲的这些内容看起来与关系型数据库类似，但Spanner并
不是一个关系型数据库，其实际的数据模型更类似于键值存储（key-
value store），也就是从主键到非主键的映射，并且按照主键排序。

在关系型数据库中，上面的Albums表的声明会不太一样，字段aid
会被设置为主键，而字段uid会被设置为外键来关联Users表。但是出于

性能的考虑，Spanner中并不存在外键关系（这是因为Spanner是分布式

数据库，它会把数据保存在多台服务器上，本章后面会讲解Spanner的
分布式特性），而是设计一种层级关系（hierarchy）。在这种层级关

系中，Users表被称为目录（directory）表（在上面的例子中，用

DIRECTORY关键字表示），或者父（parent）表，而子表Albums与父

表交织（interleave），被交织的表的数据会被保存在一起，如图8.1所
示。

在上面的例子中，ON DELETE CASCADE表示删除Users表的数据

时，会级联删除Albums表的数据（这里不展开介绍）。



图8.1 数据模型（此图参考Spanner论文[1]）

8.1.2 通用事务

Spanner支持事务，在一个事务中可以包含对多行数据的多个操作

（读操作或者写操作）。Spanner支持三种事务：读/写事务（read-write
transaction）、只读事务（read only transaction）、快照读事务

（snapshot read transaction）。

Spanner的读/写事务是包含读操作和写操作的事务，与传统的关系

型数据库（如MySQL）中的事务类似。但与MySQL不同的是，Spanner
还有只读事务和快照读事务。只读事务是只包含读操作的事务。快照读

事务也是只包含读操作的事务，但与只读事务不同的是，它指定在过去

的某个时间点进行读取。再进一步，这两种事务的区别是，只读事务是

Spanner系统自动选择了最新的时间读取数据，而快照读事务是用户指

定一个时间读取数据。在Spanner Cloud上，这两种事务被合并成一种事

务。

Spanner没有隔离级别的等级，或者说它只有一种隔离级别，就是

serializable级别。上面的三种事务都运行在这一级别下。

Spanner实现只读事务和快照读事务，是为了获取更好的性能，这

种优化性能的方式不同于传统数据库的实现方式。拿MySQL来对比，

在serializable隔离级别下，可以防止出现各种异常现象，但是要想获得

更好的性能，就要采用repeatable read（RR）隔离级别（在MySQL的RR
隔离级别下读操作是读取快照，不会妨碍写操作），但在RR隔离级别

下会出现幻读的异常现象（本书第13章会讲解异常现象与隔离级别）。

也就是说，传统数据库为了有更好的性能就必须放弃数据的正确性，要

平衡性能与数据正确性，则必须在隔离级别之间进行合理的选择。而

Spanner采用了相反的思路，Spanner只支持serializable隔离级别，在任何



情况下都不会丢失数据而破坏正确性。为了获取更好的性能，其内部实

现也采用多版本机制，只读事务和快照读事务并不影响读/写事务。在

使用Spanner时，不用考虑数据正确性的问题，Spanner不会出现任何异

常现象。为了达到更好的性能，你所要做的事情就是合理地利用只读事

务和快照读事务。

实现只读事务和快照读事务大大提升了Spanner的性能表现。此

外，实现快照读事务也让Spanner成为时间维度多版本的数据库。也就

是说，你可以读取过去某个时间点的数据。

8.2 Spanner的架构

前面讲到Spanner按照key-value管理数据，并且存储多版本数据。

实际上，Spanner像下面这样来存储数据：

Spanner的架构如图8.2所示。Spanner会把数据存储到多台服务器

上。

图8.2 Spanner的架构（此图参考Spanner论文[1]）

Spanner将一个完整的部署称作宇宙（universe），universe指全球

范围部署。一个universe会分为多个区域（zone），一个数据中心可以

对应一个zone，一个数据中心中也可以有多个zone，zone可以随着数据

中心的搭建和拆除而动态添加与删除。

一个universe中会有一个universemaster，它是一个单例的管理控制



台，用来显示状态信息，便于调试。一个universe中还会有一

个placement driver，它负责跨zone自动迁移数据，保持数据平衡。

每个zone中都有一个zonemaster、多个location proxy和几百

个spanserver，zonemaster负责分配数据到spanserver，spanserver负责存

储数据，location proxy负责替客户端发现哪些数据保存在哪些spanserver
上。

8.3 Spanner的实现

本节我们介绍在这样的架构之下Spanner的具体实现。

8.3.1 tablet与存储

与BigTable类似，所有的key-value被保存为一个有序的集合，这个

集合可以被拆分成多个分片，每个分片都叫作tablet，每个spanserver都
负责一定数量的tablet。在Spanner Cloud上，tablet被称为split。
spanserver将tablet存储在Google分布式文件系统Colossus中（Colossus是
我们前面讲的GFS的后续版本，Colossus与GFS的核心功能相同，在GFS
基础上进行改进，突破了GFS的名字空间的限制，可以保存更多数量的

文件，但是单个文件的存储机制是相同的）。每个tablet都会保存两类

文件：B-Tree文件和WAL（write ahead log）文件，如图8.3所示。

图8.3 tablet的存储

8.3.2 复制



Spanner会通过Paxos算法将tablet复制到多个zone中，如图8.4所示。

zone可以是不同的数据中心，甚至分布在不同的大陆（如美洲和亚

洲）上，一般会具有非常高的广域网级别的延迟。为了提高吞吐量

（throughput），Spanner的Paxos实现了pipeline。但这里要注意的是，

pipeline并不能解决高延迟的问题，Spanner的单个事务的执行时间仍然

是广域网级别的时间。如果两个zone距离比较远的话，（受光信号或电

信号传播速度的限制）执行时间会更长，从几十毫秒到上百毫秒都是可

能的。但是pipeline可以让Spanner在单个事务延迟高的情况下，整体仍

然具有非常高的吞吐量，也就是具有非常高的TPS（transaction per
second）。如果应用设计合理（比如尽量减少每次用户请求中调用读/写
事务的个数），使用Spanner的整体性能仍然能够达到非常好的效果。

图8.4 复制

这里需要注意的另外一点是，文件被存储在Colossus中，Colossus
会把文件存储为多个副本，保证了tablet的高可用和数据可靠存储。在

此基础上，Paxos算法又将tablet复制到多个zone中，也提高了tablet的可

用性和数据可靠性。但是在Spanner中，Paxos复制的作用更多的是实现



数据跨zone，让数据可以就近访问。

8.3.3 TrueTime

Spanner通过名为TrueTime的API来获取时间。不同于调用系统的时

间函数，TrueTime不会返回一个确定的时间，而是返回一个时间范围，

也可以返回一个带有误差的时间。TrueTime包含三个方法，如图8.5所
示。

图8.5 TrueTime包含的方法（此图参考Spanner论文[1]）

TT.now()方法用来获取当前时间。这个方法返回一个时间范围

[earliest，latest]，TrueTime保证它的实际调用时间落在这个范围内。这

个时间范围用TTinterval数据类型来表示，earliest表示这个时间范围的开

始，latest表示这个时间范围的结束。earliest和latest的数据类型都是

TTstamp。
TT.after（t）和TT.before（t）是TT.now()的包装函数，传入参数t的

类型是TTstamp，判断t是否已经绝对过去，或者绝对没有到来。也就是

说：

● TT.after（t）==true表示now().latest<t。
● TT.before（t）==true表示t<now().earliest。
对TT.now()方法的两次调用，得到两个时间范围，如果两个时间范

围没有重叠，则可以判断出这两次调用的先后关系；否则，无法判断出

这两次调用的先后关系。

在实际应用中，在调用TT.now()得到[earliest，latest]时间范围后，

可以使用这个范围内的任意时间作为当前时间。显然，不管如何选择这

个时间，都有可能与真实的当前时间不一样，也就是与真实的当前时间

之间有一定的误差。即使所有事务在调用TT.now()获取到时间范围后，

都使用latest作为事务的时间戳，也不能保证时间戳的先后顺序与调用

TT.now()时的绝对时间顺序相符合。显然，这个误差会影响Spanner的正



确性，要使用TrueTime API就必须处理这个误差（后面的8.4.2节将介绍

Spanner如何处理这个误差）。

8.3.4 事务

前面讲过，Spanner使用Paxos算法将数据复制到多个zone中，每个

zone都是Paxos group中的一个副本，其中一个副本被称为leader，负责

接收写入，并将写入复制到其他副本上；其他副本被称为slave。
同时，Spanner支持包含多个操作、多个对象（也就是多个行或者

多个key）的事务。这些对象可能分布在多个tablet上，跨多个tablet的事

务采用两阶段提交（two phase commit）。依据两阶段提交算法，在执

行事务时，在这些tablet中有一个tablet被称为协调者（coordinator），

其他的tablet被称为参与者（participant）。承担coordinator角色的tablet
的leader被称为coordinator leader，而slave被称为coordinator slave。同

样，承担participant角色的tablet的leader被称为participant leader，而

slave被称为participant slave。这些事务中的角色关系如图8.6所示。



图8.6 事务中的角色关系

Spanner同时采用了锁（locking）和多版本并发控制（MVCC，
Multi Version Concurrent Control）两种并发控制机制。

● 每个数据都会被保存为多个版本，写操作是为数据添加一个新的

版本。数据的每个版本都具有时间戳，每个时间戳都可以形成

一个快照（snapshot）。

● 在读/写事务中，对要操作的数据的当前版本分别加读锁和写锁。

加锁的策略是使用两阶段锁（two phase locking）。

只读事务不是仅仅包含读操作的读/写事务。与读/写事务操作数据

的当前版本不同，只读事务和快照读事务都是从历史版本中读取的，即

相当于从某个时间点的snapshot中读取；其不同之处在于，只读事务是

从最新的snapshot中读取的，而快照读事务是从用户指定的一个时间点

的snapshot中读取的。所以，只读事务和快照读事务不会妨碍读/写事务

的执行。



下面通过事务的具体执行过程，来看看两种并发控制机制的实现细

节。

1.涉及多个tablet的读/写事务的执行过程

事务可以包含多个操作，涉及多个数据，这些数据可能被保存在多

个tablet上。如果一个读/写事务涉及多个tablet，那么这个读/写事务的执

行过程如下：

（1）客户端开始一个新事务，即调用客户端的begin()方法。

（2）客户端给需要读取的tablet的leader发送读请求。

（3）tablet的leader接收到读请求后，给要读取的数据加读锁。

（4）如果tablet的leader加锁成功，则读取数据，返回给客户端。

（5）客户端接收到返回信息，执行事务中的计算，准备好所有要

修改的内容。

（6）客户端调用commit()方法，从所有要修改的tablet中选出一个

作为coordinator，其他的作为participant，给所有tablet的leader发送

COMMIT请求（这里需要注意的是，这是客户端的COMMIT请求，但

也是两阶段提交的PREPARE请求），请求中包含对应的修改，其中发

送给coordinator leader的请求中包含了一个标识，这个标识指明

coordinator的身份。

（7）这个步骤是两阶段提交的第一阶段（在这个步骤中，所有的

participant都会获取锁），过程如下：

注：在下面的流程中，用（P.L）这样的标注强调这个步骤的执行

者，便于对流程的整体理解。P.L代表participant leader，P.S代表

participant slave，C.L代表coordinator leader，C.S代表coordinator slave。
此方法模仿了Zab的论文，在第12章中介绍Zab算法时也使用了该方法。

①（P.L）所有participant leader都会获取锁（两阶段锁的锁增长阶

段）。

②（P.L）participant leader在获取到锁后，生成一个时间戳作

为prepare timestamp，这个时间戳要大于participant leader之前所有事务

的时间戳。

③ 通过Paxos将prepare record（其中包括获得了哪些锁和prepare



timestamp）复制到所有participant slave上，即执行下面的过程（这是

Paxos算法过程，可以参看第10章来理解）：

a.（P.L）participant leader将prepare record通知给participant
slave（Paxos算法消息）。

b.（P.S）participant slave收到participant leader的通知，将participant
leader的prepare record记录到持久化存储中，回复participant leader。

c.（P.L）participant leader收到大多数participant slave的回复后，通

知coordinator leader获取锁成功（相当于两阶段提交的ACK请求）。

（8）这个步骤是两阶段提交的第二阶段（在这个步骤中，

coordinator通知所有的participant提交事务），过程如下：

①（C.L）coordinator leader获取锁（两阶段锁的锁增长阶段）。

②（C.L）收到所有participant leader的通知后，coordinator leader生
成一个时间戳（称为s）作为commit timestamp。s必须满足下面的条件

（这里并不是选择当前时间作为时间戳，即TT.now()返回的时间范围内

的时间，而是选择了一个未来时间作为时间戳）：

● 大于所有prepare timestamp。
● 调用一次TT.now()，要满足s>TT.now().latest。
● 大于coordinator leader之前所有事务的时间戳。

③ 通过Paxos将commit record（其中包括获得了哪些锁和commit
timestamp）复制到所有coordinator slave上，即执行下面的过程（这是

Paxos算法过程，可以参看第10章来理解）：

a.（C.L）coordinator leader将commit record通知给coordinator
slave（Paxos算法消息）。

b.（C.S）coordinator slave收到commit record，将其持久化存储，回

复coordinator leader。
c.（C.L）coordinator leader收到大多数coordinator slave的回复后，

确认s已经成为过去时间，即如果TT.after（s）==false则等待，一直等到

TT.after（s）==true后（这个等待的行为被称为commit wait，并且等待

实际上从commit timestamp生成时就开始了，后面的8.4.2节会进一步讲

解commit wait），开始并行执行下面的操作：



● 回复客户端成功（客户端消息）。

● 通知所有的participant leader（两阶段提交协议消息，相当于两阶

段提交的COMMIT消息）。

● 通知所有的coordinator slave应用事务（Paxos算法消息）。

● 应用事务，之后释放锁（两阶段锁的锁收缩阶段）。

d.（C.S）coordinator slave收到coordinator leader的通知，应用事

务。

④ participant leader收到coordinator leader的通知后，通过Poxas算法

将事务已提交这个结果复制到所有participant slave上，即执行下面的过

程（这是Paxos算法过程，可以参看第10章来理解）：

a.（P.L）participant leader向所有的participant slave通知事务已提交

（Paxos算法消息）。

b.（P.S）participant slave收到participant leader的通知，将其持久化

存储，回复participant leader（Paxos算法消息）。

c.（P.L）participant leader收到大多数participant slave的回复后，开

始并行执行下面的操作：

● 通知所有的participant slave应用事务（Paxos算法消息）。

● 应用事务，之后释放锁（两阶段锁的锁收缩阶段）。

d.（P.S）participant slave收到participant leader的通知后，应用事

务。

2.只涉及一个tablet的读/写事务的执行过程

如果一个读/写事务只涉及一个tablet，则不需要两阶段提交，

Spanner对这种事务的执行过程进行了简化，整个过程相对简单（后面

的8.3.5节会讲解Spanner如何结合单个tablet事务和目录两个特性来提升

性能）。这个读/写事务的执行过程如下：

注：在下面的流程中，用（L）这样的标注强调这个步骤的执行

者。L代表leader，S代表slave。
（1）客户端发送COMMIT请求到tablet的leader。
（2）（L）leader为要操作的数据加写锁。



（3）（L）leader生成一个时间戳（称为s）。s要满足下面的条

件：

● 大于TT.now().latest。
● 大于所有之前事务的时间戳。

（4）（L）leader通过Paxos将事务和时间戳通知slave。
（5）（S）slave收到leader的事务和时间戳的通知，将事务和时间

戳记录到持久化存储中。

（6）（L）leader收到大多数slave的回复后，如果TT.after（s）
==false则等待，一直等到TT.after（s）==true后，开始并行执行下面的

操作：

● 回复客户端事务已提交。

● 通知slave应用事务。

● 应用事务到本地，并且解锁。

（7）（S）slave收到leader的应用事务的通知，将事务应用到本

地。

3.快照读事务的执行过程

快照读事务会先判断要读取事务中的哪些tablet，可以将事务中的

读操作发给这些tablet的任意一个副本来执行。如果要在某个副本上执

行一个要读取时间点t快照的操作，那么这个副本要满足下面的条件：

其中，t_safe是每个副本都会维护的一个时间点，记录上次Paxos成
功写入的时间和上次事务成功执行的时间。

如果不满足上面的条件，则需要等到上面的条件满足后才能执行。

4.只读事务的执行过程

对于只读事务，Spanner需要为事务选定一个时间s_read，然后按照

这个时间来执行上面所讲的快照读事务的过程。

Spanner通过最简单的方式来选定s_read，即使用TT.now().latest。如

果事务只需要从一个tablet上读取，为了减少等待时间，则会做一些优

化——事务会被发送给leader执行，leader会选择上次成功写入的时间作



为s_read。

8.3.5 目录

前面8.1.1节和8.3.4节分别讲解了Spanner在存储数据上的层级设

计，以及对只涉及单个tablet的读/写事务和只读事务的优化设计，这两

种设计都是为了让Spanner获得更好的性能表现。

Spanner的这种性能优化基于这样一个假设：在实际的应用开发

中，有关联的表往往会被组织在一个事务中，一起被更新或者一起被查

询，通过层级式的数据存储，将这些表交织在一起，往往会让多个表中

有关联的数据落在一个tablet中，那么事务只涉及一个tablet，就可以享

受到单个tablet事务带来的性能提升。

在Spanner中有一个目录（directory）的概念。一个tablet中保存的

数据可以被分为多个目录，一个目录中的所有key都具有相同的前缀

（prefix）。对于交织在一起的多个表，父表中的一行数据带上多个子

表中的数据往往形成了一个目录。

8.3.6 Paxos的作用

上面介绍过Spanner通过Paxos算法将数据复制到多个副本上，但

Paxos的作用不仅仅是提供复制功能，它还保证了两阶段提交在Spanner
中的应用。在两阶段提交中，如果参与的任何一个角色（包括

participant和coordinator）发生宕机，事务都不能成功，而且也不能回

滚，只能等待这个角色恢复，再继续事务的执行。将Paxos和两阶段提

交组合在一起，可以很好地缓解这个问题。Paxos让两阶段提交的每个

角色都有多个副本，少数节点出现故障宕机，并不会影响两阶段提交协

议的继续运行，即便某个角色的leader出现宕机，但因为加锁信息已经

通过Paxos协议复制到其他副本上，其他副本被选为leader后，也可以根

据加锁信息对数据重新加锁，继续承担两阶段提交的角色。

8.4 TrueTime的作用

TrueTime在Spanner中起着至关重要的作用，本节就将详细介绍



TrueTime的作用。

8.4.1 Spanner的外部一致性

Spanner支持serializable隔离级别，但实际上Spanner提供了比

serializable更严格的一致性，那就是外部一致性。外部一致性与

serializable的比较，以及与其他一致性模型的比较，将在第16章中介

绍。

Spanner对外部一致性的定义[2]如下：

对于任意两个事务T1和T2（即使这两个事务分别在地球的两

侧），如果事务T2在事务T1完成提交之后开始提交，那么事务T2的时

间戳一定大于事务T1的时间戳。

这里需要注意的是，任意两个事务覆盖所有的场景，当然也包括下

面两个特殊的场景：

● 两个没有交集的读/写事务，也满足外部一致性。

● 只读事务和快照读事务，也满足外部一致性。

为了达到外部一致性，需要为事务赋予一个时间戳，但是通过简单

调用系统时间函数来生成时间戳在分布式条件下是不能满足要求的，因

为在分布式环境下，各台机器的时间不是完全同步的，有的机器的时钟

快一些，有的机器的时钟慢一些。一个全局的时钟对保证外部一致性起

着至关重要的作用。

虽然通过一个全局授时服务可以解决这个问题，但是显然全局授时

服务是一个集中式的方案。Spanner并没有采用这种方式来解决，而是

采用了TrueTime，TrueTime是纯粹的分布式方案。

趣事

2010年，Google公司发表了内部Percolator系统是如何在BigTable
的基础之上添加事务功能的论文[2]。Percolator架构设计采用了全局

授时服务，在论文中，这个授时服务被称为timestamp oracle（简称

TO，或者TSO），这里的oracle并不是Oracle公司的Oracle数据库，而



是表示神谕的意思（神谕是oracle的本意，而甲骨文是意译），用来

形容这个授时服务发出的时间仿佛就像神下达的旨意一样。

ZooKeeper的作者Flavio Junqueira等人在2011年发表了一篇论文[3]，
论述了一种分布式事务的实现方式，文中采用的全局授时服务也被称

为timestamp oracle。随后的2013年，Flavio Junqueira当时就职的

Yahoo公司开源了分布式事务框架Omid，其也采用了timestamp oracle
全局授时服务。从此以后，很多分布式系统架构设计在采用全局授时

服务时，都使用了oracle这个词。

8.4.2 TrueTime生成事务时间戳

调用系统时间函数，会导致实际先执行的事务被分配了较大的时间

戳，而实际后执行的事务被分配了较小的时间戳，从而不能保证外部一

致性。前面讲过，TrueTime是存在误差的，使用TrueTime必须要适应这

种误差。Spanner采用commit wait方式来适应这种误差。

事务启动后，Spanner会为这个事务选择一个时间戳，对合理的事

务时间戳只有一个要求——它一定大于事务实际开始的时间，小于事务

实际结束的时间：

Spanner设定了下面两个原则来满足上面的条件：

● 选择事务时间戳时，时间戳要大于TT.now().latest。
● 直到TT.after（s）==true后，才提交应用事务。

接下来举例说明如何生成时间戳，以及如何通过commit wait来适应

TrueTime的误差。

如图8.7所示，图中向右带箭头的横线表示时间的流逝，横条表示

一个事务，其灰色部分表示事务的实际执行过程，白色部分表示提交完

成前的等待，也就是commit wait。



图8.7 适应TrueTime的误差

图8.7中的事务在t_start这个时间点启动，在事务启动之后，调用

now()方法，可知t_start一定小于now()的实际调用时间。根据TrueTime
的特性可知，now()的实际调用时间一定小于now().latest。Spanner选择

一个时间戳，让这个时间戳大于now().latest，从而可以得到：

在选定s之后，Spanner会调用TT.after（s），在TT.after（s）返回

true之后提交事务。TT.after（s）==true意味着s小于now().earliest（这里

第二次调用now()，TT.after（s）是now()的包装函数，不是前面的那次

调用了），而now()的实际调用时间一定大于now().earliest，小于t_end，
从而可以得到：

结合这两个过程，我们可以得到：

简单来说，选择未来的时间戳，这个时间一定大于事务的开始时

间，并且通过等待足够长的时间，使这个未来的时间戳成为过去时间，

从而小于事务的提交时间。

commit wait会导致事务需要更长的时间才能结束。前面8.3.4节讲过

这部分多出来的等待时间，实际上和Paxos协议的执行时间是重叠的，

所以并不是空等待。



8.4.3 TrueTime管理leader租约

当某个tablet的leader与其他副本发生网络分区时，事务T1在这个

leader上发起读操作，在网络分区的另一侧重新选出一个leader，事务T2
在新的leader上发起写操作。通过8.3.4节介绍的Spanner读/写事务的执行

过程可以知道，读锁只发生在leader上，不会通过Paxos算法复制到其他

副本上。这种做法会大大降低读/写事务中的读操作成本，但也带来一

个问题：当发生网络分区时，不能阻塞其他副本上的写操作。在这种情

况下，事务T1会读取到旧数据，这违反了外部一致性。

为了达到外部一致性，基于两阶段锁的读/写事务，需要将读锁也

复制到其他副本上，当发生网络分区时，因为无法将锁复制到其他副本

上，事务T1会失败，从而保证了Spanner的外部一致性。但是未发生网

络分区时，读锁也要被复制到其他副本上，这加大了开销，会大大降低

性能。

类似的情况在其他分布式系统中也存在，例如ZooKeeper、
MongoDB等。ZooKeeper的读操作是不会走Zab协议的，因此从读操作

的角度来讲，ZooKeeper不是一个线性一致性的系统（关于ZooKeeper的
一致性分析在15.4节中会进行详细讲解）。为了让ZooKeeper的读操作

也达到线性一致性，需要加上sync操作，强制为读操作进行一个Zab复
制。同样，MongoDB为了达到线性一致性，需要为读操作加上一个空

写操作，强制复制到副本上（关于MongoDB的线性读在5.4.7节中讲

过）。总之，多副本的分布式系统要达到线性一致性，读操作需要和写

操作一样与其他副本交互才行。

Barbara Liskov在1991发表的“Practical uses of synchronized clocks in
distributed systems”[4]论文的第7节中，给出了一种采用同步时钟

（synchronized clock）来降低读操作成本的方法。同步时钟是一种在所

有机器上都完全同步（也就是时钟完全一致）的时钟，但是现实中是不

存在这种时钟的，所以Liskov的方法不是一个实际可用的方法。顺便说

一下，这里的Liskov就是设计原则中“Liskov替换原则”的Liskov。
虽然Liskov的方法不是一个实际可用的方法，但却是一个非常有借

鉴意义的方法。具体来说，Liskov的方法是这样的，在像Spanner这样的

采用复制策略、首要备份模式（primary-backup scheme）的系统中，



primary角色通过租约（lease）来维护自己的primary地位。backup角色

发送给primary每一个消息时，都会发送一个租约，如果primary持有从

大多数backup发来的租约，那么它就可以单方面进行读操作，而不用联

系其他副本。如果发生网络分区，那么新选出来的primary在所有旧的

primary的租约过期之前是不能处理任何客户端请求的，从而保证了在发

生网络分区的情况下也不会有陈旧读。12.2.1节会介绍首要备份模式，

以及其他两种架构模式。

相比于每次读操作都要联系其他副本的方式，采用租约方式存在的

问题是，在发生网络分区时和旧租约到期前，新的primary和旧的

primary都是不能处理客户端请求的。也就是说，服务处于不可用状态，

时效性差，但是却大大提高了读的性能。

Spanner采用了Liskov的方法来避免读操作时联系其他副本的开销。

Spanner的租约实现与Liskov的方法的一个不同之处在于，Spanner使用

TrueTime来代替同步时钟。当然，Spanner必须适应TrueTime的误差。

可以看出，与commit wait过程类似，Spanner的读操作过程也采用等待

方式来保证每个leader的租约范围不会相互重叠。它们的另一个不同之

处在于，Spanner采用长租约，默认是10s。长租约会让服务不可用变得

更加明显。但是按照Eric Brewer在论文“Spanner，TrueTime and the CAP
Theorem”[5]中所讲的，在Google的数据中心，非计划的故障是很少发生

的，所以长租约是合理的。Spanner采用Liskov的方法，也许并非偶然，

Spanner的两个设计者都是Liskov的学生。

8.4.4 TrueTime作用的总结

TrueTime让Spanner在非常高的性能下（读操作不需要联系其他副

本）达到外部一致性（包括non-locking的快照读），并且不依赖集中式

的授时服务。

虽然Spanner的读/写事务不需要进行复制读，但是仍然有两阶段

锁、复制写、两阶段提交，所以读/写事务的性能表现不是强项。

Spanner的性能强项在于只读事务和快照读事务是保持外部一致性的non-
locking的读取，所以Spanner更适合读多写少的场景。
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第9章 分布式数据库CockroachDB

CockroachDB是一个开源的分布式SQL数据库项目，由Spencer
Kimball发起，并成立了Cockroach Labs公司运营这个开源项目，将其商

业化。CockroachDB的设计来源于Google的Spanner。Spencer Kimball也
曾经就职于Google公司。

9.1 CockroachDB的接口和数据模型

用户可以使用SQL访问CockroachDB，CockroachDB采用了

PostgreSQL数据库的SQL语言。

与常见的传统关系型数据库一样，CockroachDB以表（table）为核

心，表中包含行（row）和列（column）。列分为主键列（primary
key column）和非主键列（non-primary key column）。

CockroachDB支持读/写事务，按照ANSI SQL的定义，CockroachDB
的隔离级别是serializable。实际上，与Spanner一样，CockroachDB支持

比serializable更强的一致性，本节后面会详细讲解CockroachDB是如何

一步步提高自己的一致性的。但是与Spanner的外部一致性相比，

CockroachDB的一致性仍然要弱一些。

CockroachDB将一个表中的数据存储成一个有序的映射（ordered
map），在这个有序的映射中，将表中的每一行数据都存储成从主键列

到非主键列的映射：

其中，{primary key column}表示所有主键列的组合，{non-
primary key column}表示所有非主键列的组合。这个有序的映射按照

{primary key column}排序。

{primary key column}也被称为键（key），{non-primary key
column}也被称为值（value），所以这个有序的映射也可以被看成是从

key到value的映射：

CockroachDB会将数据存储在多个机器节点上，所有这些机器节点



形成了集群（cluster）。所有的key形成了一个有序的key space。key
space会被分成多片，每个分片都被称为一个range，每个range中的数据

都会保存多份，每一份都被称为一个副本（replica）。

上面讲解的数据在集群中的存储，即CockroachDB数据分区如图9.1
所示。

图9.1 CockroachDB数据分区

9.2 CockroachDB的架构

CockroachDB的架构如图9.2所示。

CockroachDB集群中所有的节点都是相同的，没有存储元数据的特

殊节点（后面的9.3节会讲解CockroachDB的元数据是如何存储的）。



图9.2 CockroachDB的架构

从逻辑上讲，每个节点都包含两部分：SQL部分和分布式

KV（distributed KV）部分。

每个节点的SQL部分共同组成了一个逻辑的SQL层，这个逻辑层把

基于SQL的关系型数据模型转换成key-value的数据模型。这一部分的实

现与本书的主题不直接相关，因此就不展开介绍了。

每个节点上都会有多个store，所有这些store共同组成了一个逻辑的

分布式KV层。客户端会将请求发送给其中一个节点，这个节点上的

SQL部分解析客户端发来的SQL命令，转换成KV命令发送给store，如果

这个SQL命令涉及多个store，则会转换成多个KV命令，发送给不同的

store。最后，SQL层从store接收到结果后，组装成SQL的结果集合返回

给客户端。

9.3 元数据存储的实现



key space中存储的数据被称为用户数据（user data）。SQL层需要

知道这些用户数据的位置，即哪个range存储在哪个store里，这些range
的位置信息就是集群的元数据（meta data）。CockroachBD没有使用独

立的组件来存储元数据，它将元数据也保存在key space中，即通过特定

key的前缀将这些元数据保存在key space的开头部分。元数据分为两

级，其中一级元数据被称为meta1，meta1被存储在唯一的一个range
里，并且只存储在这个range里，meta1中存储的是所有二级元数据的位

置信息；二级元数据被称为meta2，meta2中存储的是所有用户数据的位

置信息。

例如，元数据大概如下面这个样子（参考社区文档[1]）：



在这个例子中，假设需要寻找ABCD数据，步骤如下：

（1）meta1中存储了两个key，其中分别存储了两个meta2的range的
位置信息（三个store的位置）。通过第一个key，我们可以找到第一个

meta2的range，meta1/M表示这个key中的信息记录了[A-M）部分key
space的meta2的信息。

（2）第一个meta2的range里也存储了两个key，其中分别存储了两

个用户数据的range的位置信息。通过第一个key，我们可以找到第一个

用户数据的range，meta2/G表示这个key中的信息记录了[A-G）部分key
space的用户数据的range的信息。

（3）第一个用户数据的range里包含从key A到key G的数据，从这

个range中我们可以找到ABCD数据。

依此类推，我们可以找到其他数据。并且可以看出，只要知道

meta1的位置，就可以找到集群中存储的所有数据。

meta1的位置信息通过Gossip协议获取。每个range都有一个描述符

（descriptor），这个描述符包含该range的基本信息，即rangeid、该

range包含key space的哪部分（比如包含key space中的[A-G）部分）、该

range的位置信息这三部分。

集群中的每个节点都会定期通过Gossip协议将自己负责的所有range
的描述符传播给其他节点。节点通过Gossip协议得到meta1的位置信息

之后，会通过元数据来定位用户数据，而不会使用通过Gossip协议传播

的描述符来定位用户数据。

9.4 多副本存储的实现

CockroachDB会将一个range存储在多个store上，也就是多副本存

储。副本的复制过程采用Raft算法，Raft算法会在第11章中讲解。一个

range的所有副本组成一个raft group，Raft算法要求其中一个副本是

leader，这个副本被称为raft leader，其他的副本被称为raft follower。
对range的读请求和写请求需要发送给raft leader来处理，其中写请

求走完整的Raft算法来完成，保证数据被写入多个副本中；从性能的角

度考虑，读请求不走Raft算法。

CockroachDB通过租约（lease）机制控制只有一个副本能够服务于



读/写请求，拥有租约的副本被称为leaseholder。leaseholder收到请求后

会发送给raft leader来处理。leaseholder和raft leader不一定是同一个副

本，但CockroachDB会尽量让leaseholder和raft leader是同一个副本。

只有上一个租约结束后，新的租约才能处理读/写请求。比如上一

个租约在10ms时结束，那么在10ms前不会有其他副本发起下一个租

约，在10ms后才会发起下一个租约。但是我们知道，在分布式环境中，

不同机器的时钟不是完全一样的，不同机器之间的时钟是有差异的，这

种现象被称为时钟偏斜（clock skew）。CockroachDB并未采用类似于

TrueTime这样的分布式时钟API（见第8章），而是采用了本地系统时

钟，即采用NTP来同步节点的本地时钟。CockroachDB通过节点间的时

钟同步算法和NTP，能够做到集群中的任意两个节点间的时钟误差不超

过250ms。
为了适应这种250ms的差异，leaseholder在租约开始到租约结束的

时间减去最大误差时间内可以服务于读/写请求，其他副本要在租约结

束之后才能成为新的leaseholder，如图9.3所示。

图9.3 租约

CockroachDB使用一个较长的时间作为过期时间，一般是10s。为了

方便阐述，在图9.3中，我们将过期时间设为1500ms。图中有两个节

点，在这两个节点上分别运行着某个range的两个副本，即Replica1和
Replica2，这两个副本的本地时钟相差250ms，也就是Replica1的时钟比

Replica2的时钟慢了250ms。Replica1在本地时钟240ms时获取到了租



约，租约到期时间是1740ms，在图中用lease（1740）来表示这个租约。

由于未收到其他副本的心跳，Replica1不能继续续约，这个租约在

1740ms时会结束，但是Replica1在1490ms（即1740ms-250ms）后就不再

处理任何读/写请求了。因为Replica2未收到Replica1的心跳，所以会在

1740ms（Replica2自己的本地时钟）时开始一个新的租约处理读/写请

求。可以看到，通过这种方式，即便两个节点间有时钟误差，也仍然可

以保证在任意时间点只有一个副本能处理读/写请求。

虽然这种处理方式解决了时钟误差的问题，但是带来了另外的问

题。如图9.4所示，如果两个节点间的时钟没有误差，那么新旧两个租

约交替时，会有250ms的时间两个副本都不能处理读/写请求。

leaseholder将读请求发送给raft leader，raft leader一定具有最新的数

据。减去最大时钟误差，保证旧的leaseholder在新的leaseholder开始服务

于写请求后就不会再服务于任何读请求了，所以旧的leaseholder就不会

读取到旧数据，对单个key的读/写达到线性一致性（第15章将详细介绍

线性一致性）。

图9.4 无时钟误差的租约

9.5 事务的实现

本节我们讲解CockroachDB事务的实现。CockroachDB支持ACID的

事务（关于ACID可以参看第13章的讲解）。CockroachDB的事务可以包

含多个操作，这些操作可以读取和写入任意多个key，这些key可以在同

一个range里，也可以在不同的range里，这些range也可以在不同的节点



上，这就是分布式事务。

接下来，我们先介绍单个事务的执行，也就是系统中只有一个事务

在执行。显然只执行一个事务不是一个实际的场景，我们会逐步逼近真

实的CockroachDB，讲完单个事务的执行后，会讲解多个事务串行执

行，最后会讲解事务是如何并发执行的。

9.5.1 单个事务的执行

CockroachDB的单个事务使用两阶段提交来保证原子提交（atomic
commit），也就是说，在失败的情况下，事务中的所有操作要么全部

成功，要么全部失败。

CockroachDB的一个事务的执行分为5个步骤。

（1）建立事务记录（transaction record）（对应两阶段提交的

prepare阶段）。

在这个事务涉及的所有key所在的data store中，选出一个data store，
在这个data store中建立一个transaction record，将这个transaction record
存储在一个key中，而value中包含下面的字段：

● 唯一的事务id。
● 事务状态，即PENDING，ABORTED，COMMITTED三种状态之

一。

将transaction record存储在一个key中，这一点是保证事务原子性的

关键。

在建立了transaction record之后，就可以开始执行事务中的读/写操

作了。

（2）执行写操作（对应两阶段提交的prepare阶段）。

如果事务要修改某个key（或者创建某个key），则会使用写入意图

（write intent）的方式进行写入。我们将这种方式简称为intent。接下

来举例说明intent。假设某个key的value是一个数字（当然，

CockroackDB实际的value要比一个数字复杂，一般是一个复杂的结构，

因为要支持关系模型的表，这里简化成一个数字，不影响说明intent这
个概念），初始值是4，一个事务要把这个value改成5，CockroachDB不



会把原始的值覆盖成5，而是会把原始的值变成一个intent结构，这个结

构包括原始的值4和要修改成的值5，还包括这个事务的transaction record
的key。这个额外的key相当于指向transaction record的指针。相对于

intent，原始的值被称为plain value。intent中的新值被称为staged
value。

（3）执行读操作（对应两阶段提交的prepare阶段）。

执行读操作，直接读取plain value。
（4）提交/取消事务（对应两阶段提交的commit阶段）。

当执行完事务中的所有读/写操作后，就可以提交事务了，或者客

户端选择取消事务。

● 如果是提交事务，则CockroachDB将transaction record的状态改为

COMMITTED，之后就可以给客户端返回事务完成。

● 如果是取消事务，则CockroachDB将transaction record的状态改为

ABORTED，之后给客户端返回事务完成。

（5）异步清除intent。
● 如果事务状态是ABORTED，则清除这个事务添加的所有intent，

也就是保持原始的值不变。

● 如果事务状态是COMMITTED，则将intent中的staged value转换成

plain value，也就是intent被清除。

通过上面的步骤，可以保证事务是原子的，从而保证事务的一致

性。也就是说，如果数据库在事务执行前处于一致状态，那么当执行完

这个事务（包括清除intent的步骤执行完）后，数据库仍然处于一致状

态，保证了数据库的一致性。

9.5.2 多个事务串行执行

前面介绍了单个事务的执行，但只执行一个事务的数据库是没有实

际意义的，现在介绍多个事务的执行，先讲解在某一时刻，只有一个事

务在执行的情况，也就是假设只有一个客户端连接到数据库，并且客户

端在确定前一个事务完成之后才开始执行后一个事务，即保证数据库中

的事务是绝对串行执行（serial execution）的。



从前面介绍的单个事务的执行过程可以看到，如果串行执行多个事

务，那么前一个事务的“清除intent”的阶段会与后一个事务重合，后一个

事务会遇到前一个事务还没有清除完intent的情况。也就是说，后一个

事务在执行读/写操作时需要应对这些遗留的intent。应对遗留的intent有
两种方式，第一种方式是等前一个事务清除intent后再执行；第二种方

式是帮助前一个事务清除intent。CockroachDB采用了第二种方式，这种

方式能够加快intent的清除速度，但会导致前后两个事务并发地清除

intent。采用第二种方式，还可以解决前一个事务出现故障后，遗留的

intent没有被清除的问题。

第二种方式也会带来一个问题，就是会有两个事务同时清除

intent（在后面讲解并发事务处理时，就变成了多个事务同时清除

intent，但是其处理方式和这里讲的没有区别，后面就不进行特别说明

了）。我们需要注意的是，清除intent相当于用staged value覆盖intent结
构，这个动作是可以被多个事务多次执行的。如果前一个事务执行了清

除，后一个事务再次执行，则不会有任何效果，也可以说清除intent的
操作是幂等的。

与单个事务的执行过程不同，这里讲的是在同一时刻只有一个事务

在执行，事务执行读操作时除了会遇到plain value，还可能会遇到

intent。因此，我们需要修改单个事务执行的第2步和第3步。

对于第2步——执行写操作：

当事务执行写操作时，发现这个key是一个plain value，这个写操作

将把plain value变成intent，我们称这种情况为writer遇到plain value。
当事务执行写操作时，发现要操作的key是一个intent，我们称这种

情况为writer遇到intent。因为在同一时刻只能有一个事务在执行，这个

intent一定是前面完成的事务遗留下来的（或者是没有成功的事务留下

来的，事务超时，客户端宕机导致事务中断），当前事务根据intent中
的信息查询前一个事务的transaction record，并根据前一个事务的不同状

态执行下面的步骤：

① 如果状态是PENDING，则将状态变为ABORTED。

② 如果状态是COMMITTED或者ABORTED（包括步骤①中改变的

ABORTED），则清除intent。



③ 添加新的intent。
对于第3步——执行读操作：

当事务执行读操作时，发现要读取的key是一个plain value，其处理

方式与前面介绍的相同，直接读取即可。类似地，我们称这种情况为

reader遇到plain value。
当事务执行读操作时，发现要读取的key是一个intent，我们称这种

情况为reader遇到intent。根据intent中的transaction record的key读取前

一个事务的transaction record，并根据前一个事务的状态执行下面的步

骤：

① 如果状态是PENDING，则将状态变为ABORTED。

② 如果事务状态是COMMITTED，则读取intent中的值，并删除

transaction record的key，让intent变成plain value。
③ 如果事务状态是ABORTED（包括步骤①中改变的

ABORTED），则清除intent，返回plain value。
上面对第2步和第3步的修改，总结起来，就是在事务执行过程中加

入对intent的处理，当遇到intent时额外查询一次intent对应事务的状态，

如果事务状态是COMMITTED，则将这个intent当成plain value对待。因

为transaction record是存储在一个key中的，前面讲过，对一个key的写入

和读取是线性一致性的（线性一致性会在第15章中讲解）。也就是说，

对一个key的写入和读取是保证原子的，即只要将transaction record状态

改为COMMITTED，intent中的新值就对后面的事务生效了，不管一个

事务写入了多少个intent，这些intent都是同时生效的，后面的事务就可

以读取到COMMITTED事务写入的值，从而保证了原子性——事务要么

都生效，要么都不生效。

与传统的两阶段提交不同的是，CockroachDB事务的提交阶段只是

一个轻量级的key的写入操作，提交后的intent清除是异步处理的。从事

务的时间成本角度来讲（事务的执行时间或者叫延时），CockroachDB
的两阶段提交只是增加一个轻量级的key的写入操作，将前一个事务的

提交阶段的成本转化为后一个事务的写入和读取阶段的成本。也就是

说，如果遇到intent，则要额外读取一次transaction record，在某些情况

下，这个成本是不必付出的。但是传统两阶段提交的提交阶段的成本在



任何情况下都是必须要付出的。在非常理想的负载情况下，

CockroachDB的事务相当于只有一个阶段，额外加上一个key的写入。

9.5.3 事务的并发执行

前面介绍了事务的串行执行，但串行执行仍然是不切实际的，接下

来讲解真实的CockroachDB的事务执行，也就是并发执行。

到了并发执行，问题就变得非常复杂了，采用相同的思路，我们逐

步逼近CockroachDB真实的事务实现方式，逐一讲解CockroachDB是如

何保证几个重要特性的。

1.serializability理论和timestamp ordering技术

CockroachDB通过时间戳排序（timestamp ordering）技术来保证

可串行性（serializability）。timestamp ordering技术已经出现30年了，

我们可以从标准的数据库教科书[2]上学习到这种技术。为了后面并发实

现的展开，这里简单介绍一下timestamp ordering技术。

根据serializability理论，如果serializability graph无环就能保证事务

的执行是可串行化的（serializable）。那么，什么是serializability
graph？首先来看什么是冲突。

如果两个不同的事务操作同一个数据，其中一个事务的操作是写操

作，那么就会产生冲突（conflict）。有下面三类冲突。

● write-read（WR）冲突：第一个事务的操作写入一个值，第二个

事务的操作读取这个值。

● read-write（RW）冲突：第一个事务的操作读取一个值，第二个

事务的操作写入这个值。

● write-write（WW）冲突：第一个事务的操作写入一个值，第二个

事务的操作也写入这个值。

针对任何事务的执行，根据冲突关系可以构建一个图，我们看图

9.5所示的例子（此例参考CockroachDB官方博客[3]）。



图9.5 无环的冲突

在图9.5的左图中，有三个事务T1、T2、T3在执行，根据这三个事

务之间的冲突关系构建了一个有向图，如图9.5的右图所示。在这个有

向图中：

● 每个事务都用一个节点表示。

● 如果两个事务之间存在冲突，则在两个节点间画一条线，线的方

向是从引起冲突的事务到受到冲突的事务。

具体来讲如下：

● 事务T1写入A，之后事务T2读取A，那么从事务T1到事务T2存在

WR冲突。

● 事务T2写入B，之后事务T3读取B，那么从事务T2到事务T3存在

WR冲突。

● 事务T1写入A，之后事务T3读取A，那么从事务T1到事务T3存在

WR冲突。

serializability理论告诉我们，如果这个有向图中存在环，则这些事

务的执行不能保证是可串行化的。在图9.5所示的例子中，不存在环，

所以这三个事务的执行是可串行化的。

我们再来看图9.6所示的例子（此例参考CockroachDB官方博客
[3]）。



图9.6 有环的冲突

在图9.6所示的例子中：

● 事务T1写入A，之后事务T2读取A，那么从事务T1到事务T2存在

WR冲突。

● 事务T2写入B，之后事务T3读取B，那么从事务T2到事务T3存在

WR冲突。

● 事务T3写入C，之后事务T1读取C，那么从事务T3到事务T1存在

WR冲突。

根据这个冲突关系，我们可以得到带有环的serializability graph，如

图9.6的右图所示。因此可以判定，这三个事务的执行不是可串行化

的。

CockroachDB使用timestamp ordering技术保证serializability graph中
不存在环。具体的做法是：

● 当事务启动时，每个事务都会被分配一个时间戳（从事务启动的

节点上获取），事务中的所有操作都具有相同的时间戳。

● 对于每个操作，根据时间戳本地判断是否存在冲突。

● 只允许与较早的时间戳发生冲突的操作存在，不允许与较晚的时

间戳发生冲突的操作存在，也就是只接受比自己的时间戳大的

操作。

这种timestamp ordering技术可以保证serializability graph无环，从而

保证事务的执行是可串行化的。这里就不详细证明了，对证明有兴趣的

读者可以查阅参考文献[2]。
继续图9.6所示的例子，假设三个事务分别先后执行，我们用

TS（1）、TS（2）、TS（3）表示三个事务的时间戳，也就是每个事务



第一个操作的执行时刻分别是时刻1、时刻2、时刻3。我们把带有时间

戳的图9.6所示的例子表述成如图9.7所示的样子。

图9.7 timestamp ordering

在图9.7中，接下来的三个操作具体如下：

● 当事务T1执行R（C）操作时，R（C）操作的时间戳是1，而事务

T3的W（C）操作的时间戳是3，CockroachDB会拒绝R（C）
操作，也就是事务T1会被回滚，在稍后的时间重试。

● 当事务T2执行R（A）操作时，R（A）操作的时间戳是2，而事

务T1的W（A）操作的时间戳是1，所以R（A）操作会被允许

执行。

● 当事务T3执行R（B）操作时，R（B）操作的时间戳是3，而事务

T2的W（B）操作的时间戳是2，所以R（B）操作会被允许执

行。

最终，T1回滚，T2、T3执行，T2、T3形成的serializability graph不
存在环，这个执行是可串行化的。

综上所述，总结如表9.1所示。

表9.1 基于timestamp ordering的冲突解决



2.数据的多版本保存

CockroachDB的事务启动时会被分配一个时间戳，这个时间戳被称

为事务的时间戳。每个操作也都会有时间戳，操作的时间戳就是其所

在事务的时间戳。

在CockroachDB中，同一个数据会被保存为多个版本。新的写入不

是覆盖旧的值，而是创建一个新的具有更大时间戳的版本，如图9.8所
示。

其实，前面介绍的intent也是基于数据多版本保存机制实现的。写

入的intent实际上是一个新的版本，这个版本带有特殊的标志，或者说

是一个指针，指向事务的transaction record，如图9.9所示。

图9.8 数据的多版本保存

（此图参考CockroachDB官方博客[3]）



图9.9 基于多版本实现的intent

（此图参考CockroachDB官方博客[3]）

在多版本的基础上，清除intent的动作其实就是把intent的标志从key
中删除。

3.冲突的检测

CockroachDB是如何检测冲突的？在CockroachDB中，上面介绍的

三类冲突表现为如下具体形式。

● write-read（WR）冲突表现为后一个事务T2执行读操作，也就是

T2作为reader读取前一个事务T1写入的intent或者plain value。
具体如下：

■ 当reader遇到一个intent时，可能是一个正在运行的事务正在这

个数据上写入一个版本，那么reader所在的事务和这个正在

运行的事务是有冲突的。

■ 当reader遇到一个intent时，也可能是刚刚提交的一个事务写入

的intent还没来得及转换成plain value，那么reader所在的事

务和这个刚刚提交的事务是有冲突的。

■ 如果reader遇到一个plain value，则说明之前很久提交的一个

事务写入了这个版本，最初的intent已经成功转换为plain
value，后面要读取它的reader都会和它有冲突。这里需要注

意的是，serializability graph中的冲突包括已经完成的事务

执行过的操作产生的冲突。

● write-write（WW）冲突与WR冲突的情况类似，只不过writer要修

改覆盖intent或者plain value。



■ 当writer遇到一个intent时，可能是一个正在运行的事务打算在

这个数据上写入一个版本，那么writer所在的事务和这个正

在运行的事务是有冲突的。

■ 当writer遇到一个intent时，也可能是刚刚提交的一个事务写入

的intent还没来得及转换成plain value，那么writer所在的事

务和这个刚刚提交的事务是有冲突的。

■ 如果writer遇到一个plain value，则说明之前很久提交的一个事

务写入了这个版本，最初的intent已经成功转换为plain
value，后面要修改它的writer都会和它有冲突。

● read-write（RW）冲突不能通过plain value或者intent的时间戳检

测出来，CockroachDB采用缓存来记录读操作的时间——
CockroachDB会记录下所有读操作的时间戳，准确地说，是某

个key之前执行的所有读操作的时间戳（如果要记录下所有读

操作的时间戳，显然这个缓存会无限地增长，CockroachDB对
其进行了优化，即将这个缓存设置成固定大小。关于此内容这

里就不展开介绍了，有兴趣的读者可以参考CockroachDB的文

档[3]）。writer在写入前，先在缓存中检查要操作的key的时间

戳，如果缓存中存在这个key的时间戳，则说明在写入前有一

个事务对这个数据进行了读取，因此存在冲突。为了后面不产

生歧义，本书后面将这个缓存称为时间戳缓存。

总结起来，在CockroachDB中上述三类冲突对应的情况如表9.2所
示。

表9.2 CockroachDB中的冲突及对应的情况

4.基于timestamp ordering技术的冲突解决

总体来说，CockroachDB通过MVCC、timestamp ordering这两种方

法控制多个事务并发执行，采用乐观（optimistic）策略。前面已经介绍



了timestamp ordering的理论，这里讲解timestamp ordering在
CockroachDB中的具体实现。

因为事务操作的时间戳是其所在事务的时间戳，所以先发生的操作

可能具有更大的时间戳，后发生的操作可能具有更小的时间戳。也就是

说，操作的时间戳与操作实际发生的时间顺序可能是完全相反的。我们

用图9.10所示的例子来说明。

图9.10 时间戳

在图9.10所示的例子中，Transaction1发生在TS1=1时，Transaction2
发生在TS2=2时。对于write1.2和write2.2，它们实际发生的时间与各自

的时间戳一致；而对于write2.1和write1.2，它们实际发生的时间与各自

的时间戳相反。采用timestamp ordering的并发控制，write1.2和write2.2
的冲突是允许发生的；write2.1和write1.2的冲突是不允许发生的，需要

取消事务。

显而易见，这种情况与前面例子中的冲突情况类似，在

CockroachDB中有些冲突是允许的，有些冲突是不允许的，按照

timestamp ordering的规则，结合事务操作的时间戳，我们重新整理冲

突，如表9.3所示。

表9.3 基于时间戳的冲突



在表9.3中，TS（T）表示一个事务T中的reader/writer的读/写操作的

时间戳，也就是reader/writer所在的事务T的时间戳。如果reader/writer遇
到的是intent，则TS（key）表示的是intent的时间戳；如果reader/writer
遇到的是plain value，则TS（key）表示的是plain value的时间戳。在RW
冲突场景下，TS（key）表示的是时间戳缓存中这个key的时间戳。

5.基于MVCC技术的冲突解决

在表9.3中，在reader遇到一个key（intent或者plain value）且

TS（T）<TS（key）这种情况下，读操作不是要读取前面的写操作写入

的数据，实际上要读取的是历史数据。这个冲突操作，可以通过MVCC
方式来解决，读取历史版本的数据。如表9.4所示，采用MVCC减少了一

种不被允许的冲突（后面的13.2.1节还会继续介绍MVCC）。

表9.4 基于MVCC的冲突

6.可恢复性



通过timestamp ordering保证了serializability，但是只有timestamp
ordering不能保证一致性。下面举例说明。

在事务T的reader遇到一个intent且TS（T）>TS（key）这种情况

下，这个intent是被另外一个事务T2写入的，时间戳为TS（key）。事务

T具有更大的时间戳TS（T），根据timestamp ordering，事务T是可以读

取这个intent的，并且事务T读取了intent中的事务T2写入的值，但是在

这之后，如果事务T2没有提交而是取消了，那么事务T就读取到了一个

脏数据。这破坏了数据库的一致性。

根据数据库教科书[2]中所讲的，这种情况违反了可恢复性

（recoverability），这种冲突应该是不被允许的。

因此，我们可以得到基于可恢复性的冲突，如表9.5所示。

表9.5 基于可恢复性的冲突

至此，CockroachDB保证了serializability和可恢复性，已经可以保证

事务的一致性，从而保证事务执行完成后，即便是并发执行完成后，数

据库的状态也仍然是保持一致的。

虽然CockroachDB已经达到了事务保持一致性，但是它并没有止步

于此，仍然在进一步提升一致性。

7.没有陈旧读

CockroachDB进一步的努力就是保证没有陈旧读。前面9.4节讲解了

时钟误差，在这样的时钟误差下，可能出现如图9.11所示的情况。



在图9.11所示的例子中，客户端先后启动了两个事务：T1和T2，它

们启动的实际时间分别是Time（T1）=100ms，Time（T2）=110ms，事

务T1由Node1处理，事务T2由Node2处理。Node1上的时钟快100ms，所

以事务T1的时间戳是TS（T1）=200ms；而Node2上的时钟慢100ms，所

以事务T2的时间戳是TS（T2）=10ms。从客户端的视角来看，先启动事

务T1对一个key写入了一个新值，事务T1结束后，再启动事务T2读取这

个key，客户端理所应当地期盼读取到这个刚刚写入的新值，但是按照

我们前面讲的规则，CockroachDB不会读取到最新的值，而是会根据

reader的时间戳（也就是事务T2的时间戳）读取一个历史版本，返回给

客户端，那么客户端就读取到了一个陈旧数据。这种情况被称作陈旧读

（stale read）。

图9.11 时钟误差

这里的事务T2仿佛进行了“时空旅行”，读取到了过去的值。那么如

何理解这个“时空旅行”呢？serializability相当于所有事务都按串行的方

式执行，任何一种串行方式都可以，包括这种顺序完全打乱的串行执

行，就像图9.12所示的一样。一般来说，在两种情况下会出现这种顺序

完全相反的执行，其中一种是两个事务访问完全不同的key的集合，没

有任何交集；另一种是在两个事务中，有一个事务是只读事务，就像图

9.12所示的例子一样。



图9.12 陈旧读

与前面章节中介绍的陈旧读不同的是，CockroachDB的陈旧读不是

源于多副本数据存储，而是源于机器间的时钟误差。

在上面的例子中，key的时间戳TS（key）与reader的时间戳

TS（reader）的差值小于250ms，则这个key的时间戳为比较近的将来时

间戳（near future）。所以要防止陈旧读，就需要阻止例子中事务T2的
执行，即将事务T2回滚。

如果key的时间戳与reader的时间戳的差值大于250ms，会怎么样

呢？我们再来看图9.13所示的例子。

图9.13 大于250ms的陈旧读

在图9.13所示的例子中，客户端2启动事务T2，启动的实际时间是

Time（T2）=160ms，事务T2由节点Node2处理，Node2的时钟比实际时

间慢150ms，所以Node2分配给T2的时间戳是TS（T2）=10ms；客户端1
在10ms后启动了事务T1，事务T1由节点Node1处理，Node1的时钟比实

际时间快100ms，所以Node2给事务T1分配的时间戳是TS（T1）



=270ms。事务T1在180ms时，对一个key写入了一个新值。10ms后，事

务T2对同一个key进行读操作，事务T2会发现这个key的时间戳

TS（key）比自己的时间戳大260ms。也就是说，这个key的时间戳相对

于自己的时间戳是一个比较远的将来时间戳（far enough in the
future）。在这种情况下，即便两个节点的时钟误差达到250ms，我们

仍然可以确定事务T2启动的实际时间一定早于事务T1，那么事务T2不
读取事务T1刚刚写入的新值，而是读取之前的历史版本也是正确的。

通过上面的两个例子可以总结出，当reader遇到一个key（intent或
者plain value）且TS（T2）<TS（key）时，会出现下面两种情况：

● 如果TS（key）比TS（T）大很多，也就是事务T遇到一个比较远

的将来时间戳，则reader的事务一定比写入key的事务启动时间

早。也就是说，reader在读取一个历史版本。这种冲突是被允

许的，按照之前所讲的，可以通过MVCC读取历史版本。

● 如果TS（key）比TS（reader）大得不是很多，也就是事务T遇到

一个比较近的将来时间戳，虽然reader的时间戳TS（T2）大于

key的时间戳TS（key），但是仍然无法确定reader的事务T和写

入key的那个事务，哪个事务是先启动的。哪个事务先启动都

是有可能的，图9.13所示的例子是reader的事务晚于写入key的
事务启动，也就是事务启动的实际时间与时间戳的时间顺序完

全相反，但是也存在reader的事务早于写入key的事务启动，也

就是与时间戳的顺序相同。由于无法确定事务启动的真正时

间，因此就无法确定是读取最新值，还是通过MVCC读取历史

版本，所以统一按照不允许执行来处理。

CockroachDB不允许图9.12中例子的情况发生，但是允许图9.13中
例子的情况发生，也就是通过MVCC读取历史版本，从而可以得到最终

的完整的CockroachDB中的冲突情况，如表9.6所示。

表9.6 完整的CockroachDB中的冲突情况
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第3部分 分布式算法

第2部分介绍了8个分布式系统，它们很多都用到一些类似的分布式

算法，比如Paxos算法、Raft算法、Zab算法。其中，BigTable的架构组

件Cubby使用了Paxos算法，MongoDB的复制过程使用了一种与Raft类似

的算法，ZooKeeper使用了Zab算法，Spanner使用了Paxos算法，

CockroachDB使用了Raft算法。这一部分将介绍这几种非常重要的分布

式算法。

第10章 共识算法Paxos

本书第8章介绍了Google的Spanner，在Spanner中使用Paxos进行副

本间的数据复制。本章就将具体讲解Paxos算法。

10.1 Paxos的历史

Paxos的历史是计算机历史当中最有趣的历史之一。Lamport在20世
纪80年代末提出了Paxos算法，论文名为“The Part-Time Parliament”[1]，
翻译成中文就是“兼职议会”。如果不事先说明，也许你不会认为这是一

篇关于Paxos算法的论文。Lamport在写这篇论文时，采用了一个虚构的

古希腊岛屿上发生的故事来描述这个算法。Lamport的另外一篇非常著

名的论文“The Byzantine General Problem”也采用了这种写作风格，并且

被人们广泛接受，然而采用相同风格写成的Paxos论文，却没有被人们

所接受。为了向人们说明这个算法，Lamport做了几次演讲，在演讲中

Lamport扮演成《夺宝奇兵》电影中印第安纳·琼斯风格的考古学家，为

了逼真，Lamport还带上了与电影中相同的Stetson牌的牛仔毡帽和系在

屁股上的小酒壶。但是令Lamport失望的是，听众没有记住Paxos算法，

仅仅记住了印第安纳·琼斯[2]。
1990年，Lamport将这篇论文提交给TOCS。TOCS的三个审稿人看

过Lamport的论文后认为，虽然这篇论文并不重要，也还有些意思，但

是需要把其中与Paxos岛相关的故事删除。Lamport对这个意见非常生

气，认为他们缺乏幽默感，拒绝修改论文，从而论文的发表被搁置。



虽然论文没有发表，但是并不是没有人关注这个算法。Butler
W.Lampson认识到了这个算法的重要性（Butler W.Lampson是1991年的

图灵奖获得者），Lampson在他的一篇论文“How to Build a Highly
Availability System using Consensus”[3]中对Paxos算法进行了描述。此

后，De Prisco，Lynch和Lampson共同发表了他们对Paxos算法的描述和

证明的一篇论文“Revisiting the PAXOS algorithm”[4]。

Lamport曾回忆到[2]，“他们那些论文的发表更使我确信是时候发表

我的这篇论文了。于是，我提议当时TOCS的编辑Ken Birman发表该论

文。他建议我再修改一下，比如添加关于该算法的TLA描述。但是重读

该论文后，我更确信其中的描述和证明已经足够清晰，根本不需要再做

改动。诚然，该论文可能需要参考一下最近这些年发表的研究成果进行

修订。但是，一方面作为一种开玩笑的延续；另一方面为保存原有工

作，我建议不是再写一个修订版本，而是以一个最近被发现的手稿的形

式公布，并且由Keith Marzullo作注。Keith Marzullo很乐意这样干，

Birman也同意了，最终该论文得以重见天日。”
1998年，“The Part-Time Parliament”这篇论文在TOCS上发表。论文

发表时，在上一次版本的基础上，仅仅加上了一段Keith Marzullo的注

释，在这段注释中，Keith Marzullo也风趣了一把，他把这次发表解释

成，“这篇提交的论文最近在TOCS编辑办公室的文件柜后面被发现了。

尽管距离收到这篇论文已经很长时间了，主编还是感觉值得发表。因为

作者当前正在希腊群岛做考古工作，所以委托我来准备这篇论文的发

表。作者好像是一位对计算机非常有兴趣的考古学家。这是不幸的；即

使计算机科学家对作者所描述的这个晦涩的远古Paxon人的文明兴趣不

大，但是它的立法系统是一个在异步环境中实现分布式系统的杰出的模

型。”Keith Marzullo风趣地称Lamport为一位考古工作者。

这篇论文发表后，大众仍然觉得很难理解，于是Lamport在2001年
又发表了一篇论文“Paxos Made Simple”[5]，用计算机领域比较常见的讲

述方式重新讲述了一遍Paxos。但是在这篇论文中，他仍然不忘幽默一

把，他在论文最开始处说，“Paxos算法用来实现能够容忍故障的分布式

系统，但Paxos被认为难于理解，可能原因是最初的表述是用希腊语写

的。”关于Paxos的第一篇论文显然是用英语写的，但是的确里面虚构故



事中的一些人物的名字是他找朋友用希腊的一种方言起的。并且他还

说，“当Paxos被表述为平实的英语后，它非常简单。”
讲完这段有趣的Paxos的历史，下面我们逐层分解来讲解Paxos算

法。

10.2 Consensus vs Paxos

Paxos是一种算法，它包含两部分，其中一部分是核心算法；另一

部分是基于核心算法扩展的完整算法。

在Lamport的“The Part-Time Parliament”这篇论文中，并没有给核心

算法和完整算法起一个名字，甚至都没有说该论文在讲述一个算法。

Lamport在论文中讲述了考古学的一个最新发现——一个叫作Paxos的希

腊岛屿上的民主政治的故事。Paxos岛上的人通过民主投票的方式，确

立他们自己的法律。这些岛民通过一种叫作“单法令议会”（Single-
Decree Synod）的制度来确定单个法令，通过一种叫作“多法令国

会”（Multi-Decree Parliament）的制度来确立所有法令以及法令体

系。“单法令议会”的故事就是在隐喻核心算法，“多法令国会”的故事就

是在隐喻完整算法。

在Lamport的“The Part-Time Parliament”这篇论文之后，有很多人详

细完整地重新阐述了这个算法，其中比较有名的是上一节提到的Butler
W.Lampson，他写了两篇论文，“How to Build a Highly Available System
Using Consensus”[3]（1996年）和“Revisiting the PAXOS algorithm”[4]

（1997年）。在1997年的这篇论文中，Butler W.Lampson将核心算法和

完整算法分别命名为basic-paxos和multi-paxos。

Lamport在2001年发表的“Paxos Made Simple”[5]这篇论文中，又重

新阐述了一遍Paxos算法，该论文仍然将Paxos算法分为核心算法和完整

算法两部分，也仍然没有非常明确地给这两部分算法正式命名。但是将

算法所起的作用作为论文小节的标题，其中核心算法部分的小节标题

是“共识算法”（The Consensus Algorithm），完整算法部分的小节标题

是“实现一个状态机”（Implementing a State Machine）。从这两个标题可

以看出，Paxos算法的核心部分解决了分布式领域当中非常重要的基础

问题，也就是共识问题；完整算法是用来实现状态机的算法。并且在论

文的正文中，Lamport也用Paxos Consensus Algorithm、Paxos Algorithm



来分别称呼核心算法和完整算法。

下面将Paxos算法名称汇总在表10.1中。

表10.1 Paxos算法名称汇总

个人感受

笔者个人比较喜欢Lamport的命名，将算法的核心部分称为Paxos
consensus算法，将完整算法称为Paxos算法，个人觉得这两种命名更

体现了算法的核心问题。但是目前行业内部更多采用“Revisiting the
PAXOS algorithm”中的命名方法，即采用Basic Paxos和Multi Paxos的
叫法，本书后面也会依照这种命名来讲解，方便读者阅读。

10.3 Basic Paxos算法

本节系统讲解Paxos consensus算法，但是为了方便读者理解，标题

采用了“Basic Paxos算法”。

10.3.1 共识问题

虽然这里使用了“Basic Paxos算法”作为本节的标题，但是从本质上

讲，Basic Paxos仍然是一个共识算法，所以我们先来看看什么是共识问

题。

1.Lamport对共识问题的描述

不严格地说，共识问题就是多个进程对一个值达成一致。每个进程

都可以提议（propose）一个自己想要的值，但是最终只有一个值会被

选中，并且所有进程对这个选中的值达成一致。

共识问题中的值（value）可以是非常简单的，比如一个整型数



字，也可以是任何非常复杂的信息。

Lamport在给出consensus算法之前，这样描述了共识（consensus）
问题[1]：

假设有一组进程，在这组进程中每一个进程都可以提议一个值。共

识算法可以保证在所有这些提议的值中，只有唯一的一个值会被选中。

如果没有被提议的值，那么就没有值没被选中。如果有一个值被选中，

那么所有进程都应该能学习到这个值。

Lamport的共识问题有下面几个需要注意的点：

● 可以是任意多个进程。

● 所有进程都可以提议一个值。

● 所有进程都可以学习到被选中的值。

我们可以把这个共识问题描述成如下程序问题。

对于进程Pi（i=0，…，n），分别要提议值xi（i=0，…，n），进

程Pi调用方法：

对于每个进程Pi，这个方法都会返回同一个值y。并且，无论Pi调用

多少次，consensus()方法都只能返回y。下面通过例子来说明。

在这个例子中，有三个进程，分别是P1、P2、P3，它们要对一个值

达成一致。P1要提议的值是1，P2要提议的值是2，P3要提议的值是3，
它们同时调用consensus()方法，该方法实现一个共识算法，保证三个被

提议的值当中只有一个值被选中。比如P2提议的值被选中，那么P1、P2
调用consensus()方法返回的值就是2。并且，尽管P1后续又调用了

consensus()方法，但是仍然返回被选中的值2。而且，即便P2后续再次

提议一个值4，共识算法也要保证返回的是被选中的值2。
2.consensus算法的安全要求和存活要求

consensus算法有两个要求，即安全要求和存活要求。



安全（safety）要求是指：

● 只有一个被提议的值可能被选中。

● 只有唯一的一个值被选中。

● 只有一个值实际上已经被选中，一个进程才能学习到这个值。

存活（liveness）要求是指：某个被提议的值最终一定会被选中，

并且如果一个值被选中，那么一个进程最终能够学习到这个值。

10.3.2 算法简述

讲述完算法要解决的问题后，接下来讲解算法是如何解决这个共识

问题的。

1.算法的3个角色

Paxos consensus算法中有3个角色，分别是提议者（proposer）、接

受者（acceptor）和学习者（learner）。这些角色是逻辑角色，它们完

成算法中的不同功能。一个进程可以容纳多个角色：

● proposer角色负责提出一个值。

● acceptor角色负责选择一个值。

● learner角色负责学习到被选中的值。

2.算法的选择值和学习值的过程

Basic Paxos算法分为两个过程，即选择一个值和学习一个值。具体

如下：

● 在选择一个值的过程中，在一组proposer中，每一个proposer都可

以提议任意一个值给一组acceptor，这组acceptor会从所有

proposer提议的值中选中唯一的一个值。

● 在学习一个值的过程中，learner从acceptor中学习到这个被选中的

值。

前面讲过，可以将共识问题描述成一个consensus（x）方法，所有

进程都调用这个方法达成对一个值的共识。依据上面所讲的角色，这个

方法的实现的伪代码如下：



现在举例说明。假设有4个进程，每个进程承担的角色如图10.1所
示。

图10.1 Paxos的进程与角色

在图10.1中，每个进程都包含proposer角色，所以每个进程都可以

提议一个值；每个进程都包含learner角色，所以每个进程都可以学习到

被选中的值。本节后面会详细介绍，acceptor一般是奇数个（如3，5，
7，9），在图10.1中选择“3”这个奇数，所以只有3个进程中包含acceptor
角色，这3个acceptor角色保证proposer所提议的值中只有一个值被选

中。分开的逻辑角色可以让Paxos算法应用于任意数量进程的分布式系

统中。

3.重要概念

在继续介绍算法之前，先讲解几个重要的概念。

（1）大多数

如果有2n+1个acceptor，那么n+1就是大多数（majority）。比如有

3个acceptor，大多数就是2；有5个acceptor，大多数就是3；有7个
acceptor，大多数就是4。按照2n+1这个公式来确定acceptor的个数，

acceptor都会是奇数。当然，acceptor选择偶数个也是可以的，假设有m
个acceptor，大多数就是m/2+1，比如有4个acceptor，那么大多数就是

3。在实际中，一般会选择奇数个acceptor。



（2）提议

算法中的另一个概念是提议（proposal），提议是包含一个提议编

号和一个值的值对。我们后续用{n，v}表示一个提议，其中n是提议编

号；v是一个任意值。例如{1，x}表示编号为1、要提议的值为x的一个

提议。后续会大量使用这种表示方式。

（3）提议编号

算法要求每个提议都包含一个提议编号（proposal number），并

且这个提议编号是唯一且递增的，更准确地说，提议编号在一组进程中

是全局唯一且递增的。Lamport给出了一种简单且有效的方法来生成这

个提议编号：每个进程都被分配一个唯一的进程标识（processid）（假

设为32位），每个进程都维护一个计数器（counter）（假设为32
位），每发出一个提议都把计算器加1。下面这个64位的组合值作为提

议编号：

那么，我们就可以得到一个全局唯一且递增的提议编号。Paxos算
法并不要求提议编号的生成一定要使用上面的方法，满足要求的任何一

种方法都可以。

10.3.3 选择值过程

选择值的过程，可以被理解为consensus()方法实现中的第一条语

句。

choose（x）方法的参数x就是调用进程要提议的值。

1.选择值过程描述

选择一个值的过程是Paxos consensus算法的核心，而Paxos



consensus算法又是Paxos算法的核心，所以选择值可谓是核心中的核

心。Lamport用171个词描述了这个选择值的过程。Lamport的描述非常

精炼和准确，可以说是一个词不多，一个词不少。先把Lamport的描述

摘抄如下[1]：
Phase 1.(a) A proposer selects a proposal number n and sends a prepare

request with number n to a majority of acceptors.
(b) If an acceptor receives a prepare request with number n greater than

that of any prepare request to which it has already responded,then it responds
to the request with a promise not to accept any more proposals numbered less
than n and with the highest-numbered proposal (if any) that it has accepted.

Phase 2.(a) If the proposer receives a response to its prepare requests
(numbered n) from a majority of acceptors,then it sends an accept request to
each of those acceptors for a proposal numbered n with a value v,where v is
the value of the highest-numbered proposal among the responses,or is any
value if the responses reported no proposals.

(b) If an acceptor receives an accept request for a proposal numbered n,it
accepts the proposal unless it has already responded to a prepare request
having a number greater than n.

个人感受

相对于本书后面介绍的另外两个类似的算法（Raft和Zab），笔

者个人非常喜欢Paxos算法。喜欢的原因有两点：第一，非常钦佩

Lamport的这种精炼但又准确的描述风格，后面介绍的顺序一致性也

采用了这样的描述风格，仅仅几十个词就把顺序一致性准确地描述出

来；第二，Paxos-> Paxos consensus-> 选择值，这种层层递进的解决

问题的风格，具有一种架构上的美感。笔者做架构设计工作多年，这

种分层思想已经深入骨髓。

在做出任何解释之前，先把Lamport的原话翻译出来，组织成表格

的形式，如表10.2所示。

表10.2 Basic Paxos算法选择值过程翻译



显而易见，选择值的过程是一个两阶段的算法。我们对这个过程中

各阶段的细节进行解释说明如下。

1（a）：在这个阶段中，仅仅是生成一个新的提议编号，这时还没

有新的提议，新的提议是在2（a）阶段产生的。

1（b）：“不再接受任何编号比n小的提议”中的这个接受提议的动

作发生在2（b）阶段。需要注意的是，这里回复的是编号最大的提议，

不仅仅是那个值。acceptor回复prepare消息后，则意味着这个acceptor承
诺不再接受任何编号比n小的提议。

2（a）：这个阶段需要注意的地方是，proposer并没有把所收到的

编号最大的提议放在accept消息里，而是构建了一个新的提议，这个新

的提议编号是n，值是已接受的编号最大的提议中的值，如果没有接受

的提议，则可以是proposer要提议的任何值。

2（b）：这个阶段需要注意的是，acceptor接受的是提议，不是提

议中的值。

在Lamport描述的这个过程中，有很多灵活的未具体说明实现方式

的地方，我们为这个过程中Lamport没有言明实现方式的地方选择一种

具体实现方式，转化成一个具体的过程。这个具体化包括两个方面，分

别介绍如下。

具体化的第一个方面是明确过程中传递的消息。在这个具体化过程



中有3个消息进行传递，说明如表10.3所示。

表10.3 消息

具体化的第二个方面是持久化存储的信息。在这个具体化过程中涉

及3个保存在持久化存储中的信息，如表10.4所示。当然，也存在其他

具体化过程，在其他具体化过程中可能会存储不同的信息。

表10.4 记录的信息

在这个具体化过程中，每个阶段的具体描述如表10.5所示。

表10.5 具体化过程



在这个具体化过程中，承诺（promise）一个提议编号就具体体现

为将一个提议编号持久化存储，接受（accept）一个提议就具体体现为

将一个提议持久化存储。

按阶段、动作执行者、收到消息、动作的执行条件、所执行的持久

化存储、发送消息、消息发送目标等多个维度整理这个具体化过程，其

中的重点部分如表10.6所示。

表10.6 选择值过程的重点部分

2.选择值过程举例说明

前面讲解了选择值的过程，接下来用3个具体例子来说明选择值的

过程。



例子1：
第一个例子如图10.2所示。在图10.2中，我们用垂直向下的虚线表

示一个角色按时间维度执行的动作。虚线左侧的实线框表示这个角色发

送的消息，带箭头的实线表示将这个消息发送给某个角色；虚线右侧圆

括号中的文字描述了一些关键动作。本节后面的图也采用类似的图例。

图10.2 选择值的过程“例子1”



在图10.2所示的这个例子中，具体过程解释如下：

（1）proposer1要提议X，生成一个新编号1.1，向acceptor1、
acceptor2、acceptor3所形成的大多数集合发送PP（1.1）消息。

（2）acceptor1、acceptor2、acceptor3收到PP（1.1）后，因为它们

之前都没有接受任何提议，也没有承诺过任何提议编号，所以都会回复

PM（1.1，null）消息给proposer1。
（3）proposer1收到3个PM（1.1，null）消息后，构建一个新的提

议{1.1，X}，发送A（{1.1，X}）消息给acceptor1、acceptor2、
acceptor3。

（4）acceptor1、acceptor2、acceptor3收到A（{1.1，X}）消息后，

因为它们都没有收到过编号比1.1更大的提议，所以它们都会接受{1.1，
X}这个提议。

（5）与步骤4同一时刻，proposer2要提议Y，并生成编号1.5，向

acceptor3、acceptor4、acceptor5形成的大多数集合发送PP（1.5）消息。

（6）acceptor4、acceptor5没有接受过任何提议，也没有承诺过任

何提议编号，因此都会回复PM（1.5，null）消息给proposer2；而

acceptor3已经接受了提议{1.1，X}，因此会回复PM（1.5，{1.1，
X}）。

（7）proposer2收到3个PM消息后，满足发起新提议的条件，会构

建一个新的提议，提议编号为1.5，但是值不会使用Y（虽然proposer2的
初始目的是提议Y，但是会放弃提议Y的初衷），而是会选择{1.1，X}
这个收到的提议中的值X，作为自己要提议的值，即新提议是{1.5，
X}，将这个新提议通过accept消息发送给acceptor3、acceptor4、
acceptor5。从这里可以看出，proposer角色并不会坚持原本要提议的

值，而是会以最终达成共识作为自己的原则。

（8）acceptor3、acceptor4、acceptor5收到A（{1.5，X}）后，会接

受这个提议。从这里可以看出，5个acceptor最终接受的提议是不同的，

acceptor1和acceptor2接受的提议是{1.1，X}，acceptor3、acceptor4、
acceptor5接受的提议是{1.5，X}。但是这些提议中包含的值是相同的。

在后续的例子中，为了方便说明，在算法的实际应用中会进行一定

的简化，即把proposer和acceptor放在同一个进程中。如果把proposer和



acceptor放在同一个进程中，那么一个进程内部的proposer和acceptor之
间就不需要用消息进行通信了。于是，我们可以对本例的图10.2进行简

化，得到图10.3。在图10.3中用圆角框代表一个进程，框中注明了这个

进程所承担的角色。本章后面的一系列例子也会按照这样的方式来简

化。





图10.3 “例子1”的简化图

例子2：
“例子1”的过程是完全正常的，但是在实际中可能会出现各种异常

情况，比如消息延迟。接下来，在这个例子中我们讲解Paxos的选择值

过程能够容忍某些消息延迟，请看图10.4。





图10.4 选择值过程容忍某些消息延迟

在图10.4所示的这个例子中，acceptor2接收A（{1.1，X}）这个消

息发生了延迟，但是对最终的值的选择没有影响，值X最终被选中。

例子3：
并非所有的消息延迟对最终的值的选择都没有影响，在这个例子

中，我们仍然介绍消息延迟的影响。不同于“例子2”，这个例子中的消

息延迟对选择值的过程有影响，我们来看看Paxos是如何处理这种消息

延迟的，如图10.5所示。



图10.5 在选择值过程中处理某些消息延迟带来的影响

在“例子3”中，发送给acceptor3的A（{1.1，X}）消息延迟到达，这

样的延迟对最终的结果会有影响，值X没有达到大多数，而Y达到了大

多数，最终达成共识的值会是Y。但是值得注意的地方是，第1个进程

和第2个进程当前接受的值是X，第3个进程、第4个进程、第5个进程当

前接受的值是Y。也就是说，目前所有的进程并没有达成一致。

出现这种不一致后，Paxos算法如何处理呢？我们来看图10.6，图



10.6是在图10.5的基础上添加了虚线框部分。





图10.6 处理消息延迟带来的不一致

图10.6中虚线框部分的执行过程如下：

（1）proposer1要提议另外一个值Z，proposer1递增自己的计数器，

生成一个新的编号2.1，用这个编号发送PP（2.1）消息给acceptor2和
acceptor3。

（2）acceptor2已接受{1.1，X}，编号1.1小于编号2.1，acceptor2会
回复PM（2.1，{1.5，Y}），承诺编号2.1。acceptor3已接受{1.5，Y}，
编号1.5小于编号2.1，acceptor3会回复PM（2.1，{1.1，X}），承诺编号

2.1。
（3）在proposer1收到的两个PM消息里，返回了两个提议，即

{1.1，X}和{1.5，Y}，proposer1会放弃提议另外一个值Z，选择编号最

大的提议中的值Y，连同编号2.1，构建一个新的提议{2.1，Y}，通过

accept消息发送给acceptor2和acceptor3。
第1个进程、第2个进程、第3个进程都会接受{2.1，Y}，至此，所

有进程达成一致，都选中值Y。这里需要注意的是，最终第1个进程、

第2个进程、第3个进程接受的提议是{2.1，Y}，而第4个进程、第5个进

程接受的提议是{1.5，Y}，但是所有进程选中的值都是Y。

在“例子3”中，进行了3次提议，第1次proposer1提议X，X未被选

中；第2次proposer2提议Y，Y被选中，但是所有进程并未达成一致；第

3次proposer1提议Z，虽然Z仍然未被选中，但是所有进程达成了一致。

至此，共识问题得到解决。

既然共识问题已经得到解决，那么Paxos算法还需要有学习值的过

程吗？当然需要，因为选择值的过程有两个问题没有得到解决：

● 需要进行多次投票，所有进程才能达成一致。需要优化这个达成

一致的过程，在有值被选中后，尽快让所有进程达成一致。

● 更重要的一个问题是，即便所有进程已经对选中的值达成一致，

进程也无法知道这个状态已经达到。即便某个acceptor接受了

多个提议，并且每个提议中的值都是同一个值，这个acceptor
也不能确定这个值就是被选中的值。

3.选择值过程的progress保证

选择值的过程不能完全保证progress，也就是不能保证最终会达成



共识。看下面这个例子，如图10.7所示。

在图10.7所示的例子中，proposer1发送给acceptor3的accept消息被

proposer2发出的prepare消息取消，proposer2发出的accept消息又被

proposer1发出的第二轮prepare消息取消，如此往复进行下去，存在永远

都不会达成共识的可能，也就是出现了活锁。



图10.7 活锁导致最终不能达成共识



为了避免出现这种情况，可以选出一个proposer，作为distinguished
proposer，只有这个distinguished proposer才能发起提议，从而避免了活

锁情况的发生，如图10.8所示。

显而易见，只有一个proposer可以发起提议不是Paxos算法的必要条

件，选出一个distinguished proposer只是为了提高效率。所以我们可以采

用任何一种方式来选择distinguished proposer，只要能大概率地选出一个

proposer即可。

图10.8 distinguished proposer

4.学习值过程

学习值的过程，可以被理解为consensus()方法实现中的第二条语

句。

学习值过程的产出是被选中的值v。
学习值的过程相对简单，总结如表10.7所示。

表10.7 学习值过程的总结



当learner接受（accept）一个值后，这个进程就知道这个值被选中

了，如果所有进程都接受了一个值，那么所有进程也就达成了一致。

本书将学习值过程中acceptor向learner发送的消息记为learn（{n，
v}），简写成L（{n，v}）。这个消息携带一个参数{n，v}，{n，v}是
一个提议，这个提议的编号是n，值是v。

接下来，我们看图10.9所示的例子。



图10.9 学习值过程

在图10.9所示的例子中，每个进程都对提议{1.1，X}接受了3次，如

果一个进程对这个提议接受了3次，那么值X就被接受了。

每个接受提议的acceptor向每一个learner都发送一个learn消息，如图

11.9所示，learn消息的数量是acceptor的数量与learner的数量的乘积。为

了减少learn消息的数量，可以指定一个learner作为distinguished
learner，acceptor接受提议后，向distinguished learner发送learn消息，



distinguished learner收到learn消息后，向其他learner发送learn消息。本书

将acceptor发送给distinguished learner的learn消息称为ALearn消息，消息

携带接受的提议，也就是{n，v}；将distinguished learner发送给其他

learner的消息称为LLearn消息，消息仅仅携带值。与distinguished
proposer一样，distinguished leaner并不要求唯一，多个distinguished
leaner并不影响Paxos算法的正确性。

指定distinguished leaner后的学习值过程如图10.10所示。在图10.10
中，将ALearn简写成AL，将LLearn简写成LL。

我们对具有distinguished leaner的学习值过程进行整理，如表10.8所
示。



图10.10 指定distinguished leaner后的学习值过程

表10.8 具有distinguished leaner的学习值过程整理



参照表10.6，我们对表10.8中学习值过程的重点部分进行整理，如

表10.9所示。

表10.9 学习值过程的重点部分

承担distinguished learner角色的进程可能会发生宕机，因此可以指

定多个learner作为distinguished learner，这样可以提高系统的可靠性，但

同时也增加了通信成本，也就是有更多的消息发送。一般只选择一个

learner作为distinguished learner。
回顾一下选择值的过程，你有没有注意到，在选择值的过程中，

prepare消息和accept消息仅仅发送给了大多数acceptor，并没有发送给所

有的acceptor，有了distinguished learner后，学习值过程中的消息发送数

量将不再受acceptor数量的影响，那么选择值过程中的prepare消息和

accept消息就可以发送给所有的acceptor，这样做也可以加快值的选中和

最终的值达成一致。

本节前面讲过，为了提高效率，会选出一个distinguished proposer。
为了方便说明，可以指定distinguished proposer所在进程的learner作为

distinguished learner。当然，也可以指定其他进程的learner作为

distinguished learner。比较常见的做法是，通过某种方法选择一个进

程，这个进程中的proposer成为distinguished proposer，并且这个进程中

的learner成为distinguished leaner。而这个被选中的进程就被称为Paxos
consensus算法的leader。

但是无论哪种学习值的过程，都不能保证消息丢失后仍然能够学习

到最终的值。如图10.11所示，没有收到LLearn消息的进程可以重新发起

一个提议，学习到最终的值。

5.整合两个过程

选择值的过程有2个阶段4个步骤，学习值的过程有2个阶段3个步



骤，Paxos consensus算法是由这两个过程组合而成的。在完整的Paxos
consensus算法中，选择值的第4个步骤和学习值的第1个步骤是一个步

骤，选择值的第4个步骤是这个步骤的前半部分，学习值的第1个步骤是

这个步骤的后半部分。现在我们可以把选择值的过程与学习值的过程整

合在一起，形成一个完整的Paxos consensus算法，如表10.10所示。



图10.11 LLearn消息丢失

表10.10 选择值过程和学习值过程的整合



续表

整合后的过程就实现了一个完整的consensus()方法：

从表10.10可以看出，Paxos consensus算法是一个三阶段算法。

值得注意的一点是，表10.10所示的只是Paxos consensus算法中的一

种具体化过程，也就是在Lamport的论文基础上补充了一些他并未明确

之处。当然，也存在其他具体化过程。

个人感受

Paxos consensus算法中有很多未确定或者说未具体化的地方，这

也是Paxos consensus算法比较难理解的地方。但这也是笔者个人比较

喜欢Paxos consensus算法的地方，Paxos consensus算法中的选择值过

程就像武侠小说中的武功心法，而Paxos consensus算法是武功套路，

你可以根据武功心法练出各种不同的套路。就像C语言，其语法规则

很少，但是可以用它来构建任何系统。

10.4 Multi Paxos算法



本节将系统讲解Paxos完整算法，但是为了方便读者理解，标题采

用了“Multi Paxos算法”。

10.4.1 多个实例

Paxos consensus算法可以确定一个值，如果运行多个Paxos
consensus算法，就可以确定多个值，将这些值排列成一个序列，这就是

完整的Paxos算法。

运行的每一个Paxos consensus算法，被称为一个实例，为每一个实

例都设定一个实例编号。

Paxos算法，或者叫作Multi Paxos算法，就是多次运行Paxos
consensus算法，形成多个实例的算法。

Paxos完整算法可以有多种实现方式。接下来将介绍两种具体的完

整Paxos算法，其中一种是独立实例运行的完整Paxos算法；另一种是只

运行一次prepare消息的完整Paxos算法。无论哪种方式，Paxos算法都会

产生这样一个结果：类似于每个进程都会形成一个数组，数组中的每个

元素都是一个达成一致的值。

10.4.2 独立实例运行的完整Paxos算法

我们先来介绍第一种完整的Paxos算法。

1.算法简述

类似于10.3节中介绍的方法，我们具体化一些信息，可以得到实际

的一个算法过程。当然，也存在其他具体化方式，产生的具体算法不尽

相同。为了区分实例，我们在Paxos consensus算法的消息中添加一个实

例编号，也就是instanceid参数，简写成i，得到表10.11。
表10.11 添加了instanceid的消息表



在表10.10所示的Paxos consensus算法的具体过程的基础上，使用表

10.11中定义的消息，形成Paxos算法，得到表10.12。
表10.12 添加了instanceid的Paxos consensus算法

续表

2.算法举例说明

算法举例说明，如图10.12所示。



图10.12 独立运行的Paxos consensus算法

从图10.12中可以看到，每个实例都需要3个阶段、5个消息的传

递，我们用横线来区分每个实例。不同于10.3节，我们在图10.12中添加

了实例编号，1->X1表示实例编号为1的实例的值为X1，1->{1.1，X1}表
示实例编号为1的实例，这个实例的提议编号是1.1，提议的值是X1。

3.脑裂处理

前面简述了Paxos完整算法，并且举例做了说明，但是这仅仅是算

法的正常执行过程，在这个执行过程中会出现各种异常情况，接下来就



讲解对这些异常情况的处理。

Paxos consensus算法会保证即便有多个进程认为自己是leader，也就

是出现脑裂的行为，每个实例最终也只能有一个值被选中，如图10.13
中的例子所示。



图10.13 有多个进程认为自己是leader

在图10.13所示的例子中，我们可以看到，在第二个实例开始的时



候，“进程3”也认为自己是leader，同时开始准备对instance2提议自己的

值，Paxos consensus算法保证，instance2只能有一个值被选中。在本例

中，“进程3”会放弃自己提议的Y2，接受“进程1”提议的X2。
但是在这种情况下，“进程1”不一定每次都会成功，也会出现失败

的情况，我们用图10.14来举例说明。



图10.14 “进程3”成为leader并且提议成功

在图10.14所示的例子中，“进程1”在instance2的值的确定过程中并

没有成功，最新认为自己是leader的“进程3”在instance2的值的选择上取



得了成功。

4.空洞处理

从上面的例子可以看到，在每个实例中，提议编号都是重新开始

的，这也就意味着每个实例都是相互独立的。一个leader可以同时发起

对多个实例的值的提议。也就是说，leader不必等第一个实例的值确定

后，再开始第二个实例，各实例之间是可以并发执行的。这可能会导致

出现一种情况：如果在第一个实例的值的确定过程中出现消息丢失，或

者某个消息延时，导致最终第一个实例的值没有确定，同时，leader开
始了第二个实例，并且第二个实例的值成功确定，那么第一个实例的值

是空的，而第二个实例的值是确定的。这种情况被称为空洞。

如果leader发现某个消息在一定的时间内没有得到回复，那么leader
可以重发这个消息，重复的消息对Paxos的正确性是没有影响的。这里

就不举例说明了。通过重发机制，空洞最终会被填补上。

如果在leader重发消息前，另一个进程成为新的leader，则情况会有

所不同。如果旧的leader的提议已经被接受，那么新的leader会继续保持

这个提议；如果旧的leader的提议还没有被接受，则新的leader可以提议

一个新的值，也就是图10.13和图10.14所描述的情况。不管怎样，这个

空洞都会被填补上。

5.代码抽象

独立实例运行的完整Paxos算法可以被描述成如下代码片段，其中

consensus()方法就是我们在10.3节中讲的Paxos consensus算法。

10.4.3 只运行一次prepare消息的完整Paxos算法

本节介绍第二种完整的Paxos算法，在这种算法中，只运行一次

prepare消息。从10.4.2节的例子可以看出，在没有多个leader出现的情况

下，每个实例都要经历3个阶段（其中有5个消息的传递），其值才能成



功确定。在有多个进程都认为自己是leader的情况下，不管是图10.13中
的例子还是图10.14中的例子，实例都要经历超过3个阶段，使用更多的

消息才能确定实例的值。

在实际工程中，上面过程的性能开销比较大，往往需要经过优化。

Lamport在论文中给出了一个非常重要的优化点，下面就讲解Lamport的
这个优化点，以及经过优化后形成的另外一种完整的Paxos算法。

1.算法简述

分析前面所讲的独立实例运行的完整Paxos算法，可以总结出这样

一条规律：每个实例都是相互独立的，且从头开始编号运行，而且到第

二阶段才开始提议具体的值，相当于每个实例的prepare阶段都是相同

的，所以leader可以为所有的实例发送一个共同的prepare消息，也就是

所有的实例共用第一阶段。

图10.15（a）中有3个实例，其实每个实例都是相互独立的，甚至可

以认为它们像图10.15（b）所示的一样并行运行。让每个实例都共用一

个prepare消息，像图10.15（c）所示的一样运行——运行共同的第一阶

段后，就可以顺序地运行各实例各自后面的阶段了。



图10.15 使用同一个prepare消息

2.算法举例说明

从前面的“算法简述”中可以看到，算法中prepare（1，1.1）消息中

的提议编号1.1，不再是仅仅针对实例编号为1的这个实例，而是针对实

例编号大于1的所有实例。下面举例说明，如图11.16所示。



图10.16 共用第一阶段

在图10.16中，“进程1”认为自己是leader，发起第一阶段，成功之后

发送第一个实例的accept消息，这个实例运行完之后，“进程1”不再发送

prepare消息，而是直接发送第二个实例的accept消息，运行第二个实

例。

3.脑裂处理

接下来，我们介绍在只运行一次prepare消息的算法中，如何处理异

常行为。

如同前面讲解的独立实例运行的完整Paxos算法一样，可能会有多

个进程认为自己是leader的情况，也就是出现脑裂的行为，如图10.17中
的例子所示。





图10.17 有多个进程认为自己是leader

对图10.17所描述的过程解释如下：

（1）“进程1”认为自己是leader，发起第一阶段。

（2）成功后，发送accept消息成功，运行第一个实例。

（3）“进程1”运行完第一个实例后，继续运行第二个实例，并且成

功确定第二个实例的值为X2，但是LL消息丢失。

（4）“进程3”没有收到任何关于第二个实例的消息，“进程3”开始

认为自己是leader，并且想把第二个实例的值提议成Y2，生成新的提议

编号1.3，发起第一阶段，“进程3”给“进程2”发送prepare消息。

（5）“进程2”已经接受了第二个实例的提议{1.1，X2}，但是当“进
程2”收到“进程3”发来的提议编号1.3时，“进程2”会对提议编号1.3做出

承诺，并且把提议{1.1，X2}回复给“进程3”。
（6）“进程3”收到提议{1.1，X2}后，会放弃把第二个实例的值提

议成Y2的意图，采纳提议{1.1，X2}中的值X2，生成一个新的提议

{1.3，X2}，运行第二个实例后面的步骤。

（7）虽然之前“进程1”和“进程2”已经接受了值X2，但是它们仍然

会接受新的提议{1.3，X2}，然而不会产生任何变化。

（8）“进程1”运行第三个实例会被拒绝，“进程3”运行第三个实例

会被接受。

在这种情况下，还有另外一种可能，就是“进程3”提议的Y2会生

效，而“进程1”提议的X2不会生效，我们来看图10.18。
在图10.18中，“进程3”的prepare消息先于“进程1”的accept消息到

达“进程2”，“进程2”就会先承诺“进程3”的新编号1.3，而不会接受“进程

1”的新提议{1.1，X2}，那么“进程1”的第二个实例就不能形成大多数，

后续“进程3”提议的Y2就会成为第二个实例的值。

第一阶段被多个实例共用，也就意味着第一阶段产生的提议编号也

被多个实例共用，那么提议编号就不能在每个实例中都重新编号了（比

如从1开始重新编号）。从前面的例子可以看出，每个进程成为leader后
都会重新执行第一阶段，在第一阶段会重新生成一个新的提议编号，只

要进程一直认为自己是leader，就会保持提议编号不变。在第二阶段，



如果accept消息失败，则进程要么放弃认为自己是leader，要么继续认为

自己是leader，选择一个新的提议编号，重新执行第一阶段。





图10.18 新的leader的提议生效

4.空洞处理

采用共用第一阶段，leader在执行完第一阶段后，仍然可以同时发

起多个实例的accept请求，因此也会出现空洞问题。与独立实例运行的

完整Paxos算法类似，可以通过重试把空洞填补上。从前面的例子可以

看出，如果有新的leader出现，则新的leader要么替旧的leader完成剩下

的工作，也就是继续提议旧的leader要提议的值；要么提议一个新值。

到底执行两者中的哪一个，要看新的leader在什么时间点执行prepare阶
段。

5.代码抽象

讲解完共用第一阶段的内容后，我们可以把这种共用prepare阶段的

Paxos算法抽象成如下伪代码：

个人感受

笔者认为Paxos算法简单但不好理解。Lamport认为Paxos算法非

常简单，这也是为什么他把第二篇论文命名为“Paxos Made Simple”的
原因。之所以说它简单，是因为Paxos算法的核心相对来说还是比较

简单的，Lamport仅仅用了一百多个词就把它准确地描述出来了；但



是简单并不等于好理解，Paxos算法比较难于理解的原因在于完整的

Paxos算法。Lamport在“The Part-Time Parliament”和后续的“Paxos
Made Simple”这两篇论文中，对完整的Paxos算法的描述都不甚详尽，

缺少了很多实现细节，如果要想实现Paxos算法，很多细节都需要读

者自己补齐，不容易形成完整的算法。如果仅仅理解算法的核心部

分，还不能应用于实际当中。核心部分是在解决共识问题，而共识问

题不是一个实际的问题，它是很大一类分布式问题的高度抽象，实际

中不存在共识问题。Lamport将他的这个共识（consensus）算法应用

于状态机中，用来解决分布式系统中常见的故障容忍（fault-
tolerant）问题。

10.5 复制状态机

讲解完Paxos consensus算法和Paxos算法（或者叫Basic Paxos和Multi
Paxos）后，我们来继续讲解如何将算法应用到实际中。在实际中，

Paxos算法的一种应用就是实现复制状态机。在Lamport的“Paxos Made
Simple”论文中，就使用了“实现状态机”作为完整Paxos算法这部分的标

题。

我们先来看看什么是状态机。状态机（state machine）是构建服务

的一种常见方法。服务具有一个初始状态，服务接受动作（action），

服务每接受一个action，内部状态就发生一次迁移，达到一个新的状

态。例如一个数据库服务，它接受一个x=3的action后，数据库的内部状

态就从x=0迁移到x=3。这时如果这个数据库服务接受一个查询，客户端

就能知道x=3这个事实。当数据库服务又接受一个x=5的action时，数据

库的内部状态就从x=3迁移到x=5，客户端发起查询，就能知道x=5。状

态机自己具有状态，当执行一个输入的命令时，会产生一个输出结果，

并且把状态机带入一个新的状态。确定状态机（deterministic state
machine）中所有的命令都会产生确定的输出结果，并且把状态机带入

一个确定的状态。比如，x=current_time()就不是一个确定的命令，在不

同的时间执行它，就会让状态机进入不同的状态。

为了达到高可用、故障容忍，服务冗余是常见的手段。采用状态机

模式的服务，实现冗余的方式就是在多台机器上部署这个服务，也就是

可以使用一组server，每一个server都独立部署一个状态机，每个状态机



都会以相同的顺序执行所有客户端的命令。因为是确定状态机，如果所

有的server都执行相同序列的命令，那么它们会产生相同序列的状态和

结果，让这些服务具有相同的状态。我们称这样的状态机为复制确定状

态机（replicated deterministic state machine），一般简称为复制状态

机（replicated state machine）。复制状态机是分布式领域常用的一种

技术。

我们用图10.19来说明复制状态机。

在图10.19中，3台服务器都是确定状态机，它们会执行客户端

（client）发来的命令，客户端会按照顺序发送所有的命令，并且对于

每个命令，客户端都会按照相同的顺序发送给所有的服务器。最终，3
台服务器会达到相同的状态，即便server1发生宕机，客户端也仍然能从

server2和server3上获得命令的执行结果。

图10.19 客户端驱动复制状态机

但是显然，让客户端确保将所有的命令按照相同的顺序发送给所有

的服务器，并不那么容易，这个工作通常是由服务器来完成的。图

10.20展示了服务器端实现某种复制机制来完成这个工作。



图10.20 服务器端驱动复制状态机

在图10.20中，客户端（client）连接server1，向server1发送命令，

server1按照接收到的顺序在状态机（在图10.20中为sm）上执行所有命

令。并且服务器之间存在一种机制——把server1上的所有命令复制到其

他服务器上，其他服务器也会按照同样的顺序在自己的状态机上执行所

有命令。当server1发生宕机后，客户端可以转而连接server2，从server2
的状态机上取得结果。

服务器之间的这种复制机制的实现方法有很多，可以采用Paxos算
法，也可以采用Raft算法（见第11章）和Zab算法（见第12章）。

10.6 Paxos算法与复制状态机

本节讲解如何通过Paxos算法实现复制状态机。

10.6.1 Paxos算法实现复制状态机

为了保证所有的服务器都执行相同序列的状态机命令，我们实现一

系列Paxos consensus算法的实例，其中第i个实例所选择的值就是第i个
状态机的命令。一台服务器被选出作为leader，客户端发送命令给



leader，leader决定每一个命令应该出现在什么位置。例如，如果leader
决定某个客户端命令应该是第135个命令，那么leader会试图让这个命令

被选成Paxos算法的第135个实例的值。过程如图10.21所示。

图10.21 Paxos算法实现复制状态机

10.6.2 空洞处理

前面讲过，Paxos算法允许多个实例同时运行，这会导致空洞的出

现，但是算法可以保证在后面的执行中把空洞填补上。然而，这种填补

仍然会影响复制状态机的执行，如果采用Paxos算法实现复制状态机，

还需要对并发实例和空洞做进一步的处理。

因为状态机要按照顺序执行所有命令，所以我们可以采用最粗暴的

串行方式，leader严格按顺序执行Paxos算法，也就是在没有确认上一个

Paxos实例成功时，不开始执行下一个Paxos实例。但是，即便严格按顺

序执行Paxos算法，也仍然不能完全避免空洞的出现，因为空洞可能出

现在非leader的进程上。例如，在某个非leader的进程上，关于某个实例



的所有消息都丢失了，而下一个实例的所有消息又都收到了，那么就会

出现空洞。所以，即便leader严格按顺序执行Paxos算法，非leader的进

程也仍然需要一种机制处理空洞。

这种处理空洞的机制非常简单，就是所有进程都要严格按照命令序

列执行每一个命令，如果在某个命令序列位置未发现值，也就是出现了

空洞，则状态机不会继续执行，它会一直等待这个位置被填入值，即便

在这个空洞之后的位置上有命令，状态机也不会继续执行。

有了这种机制后，空洞将不再影响状态机的正确性，即便在leader
并发执行多个实例的情况下也没影响，比如，leader并发执行位置1、
2、3上的三个命令的Paxos实例，第一个和第三个命令成功被接受，第

二个命令因为消息丢失没有被接受。按照这种机制，所有进程都仅仅在

各自的状态机上执行了第一个命令，包括leader的状态机。这时另外一

个进程被指定为新的leader，新的leader会在位置2的实例上填入一个全

新的命令，并且被接受了，那么所有进程都会在状态机上执行新的

leader的这个命令，并且执行完后，开始执行旧的leader的第三个命令。

所有进程的状态机仍然是保持一致的。

在具体的算法实现中，对于上面这种情况，新的leader往往是向这

个空洞里填入一个空操作命令，这个空操作是不会对状态机产生任何影

响的，有了这个空操作，状态机就可以继续执行空洞后面的操作了。

另外，实例的并发执行也并不是没有任何条件，如果想要并发执

行，所有命令之间就不能有任何关系。比如后一个命令依赖前一个命令

的成功执行，在这种情况下，最好还是严格按照顺序来执行Paxos实
例。

10.7 原子广播

原子广播也是一种非常常见的分布式技术。本节就来介绍原子广

播。

10.7.1 原子广播协议

原子广播（atomic broadcast）协议用于把消息（message）向广播

对象进行广播，并且保证消息能够被可靠地收到，且所有广播对象以相



同的顺序收到。

10.7.2 原子广播的模型

原子广播可以用来构建分布式系统，这类分布式系统有很多不同的

进程，如果其中某个进程希望广播一条消息，这条消息被抽象成一个值

（value），其他进程能接收到这个值。也可以说，这个值被投递

（deliver）到其他进程上，或者说一个进程希望提交自己的值，并且能

够同时接收其他进程提交的值。原子广播可以被看作一个黑盒，这些进

程通过这个黑盒完成值的提交和接收。我们将这些进程称为客户端

（client）。

原子广播协议通常被定义为包含以下两个动作（action）原语

（primitive）。

● ABroadcast（v）：广播动作，当客户端想广播值v时，它可以调

用这个动作。

● v=ADeliver()：投递动作，客户端通过这个动作接收其他客户端

提交的值。这个动作一般是一个回调，当有值要被接收时，客

户端会被回调。

我们将这个模型描述成如图10.22所示。

图10.22 原子广播的模型

在图10.22中，存在5个进程作为广播的客户端，其中第1个client和
第2个client在广播，第1个client先后广播了值v1和值v2，第2个client广播

了值v3。其他3个客户端接收到了3个值，也就是有3个值被投递到了这3
个进程上。



这个模型中的原子广播黑盒是一个逻辑上的黑盒，可以被实现成独

立的进程，也可以被实现在客户端进程中，或者是两种实现方式的组

合。

10.7.3 原子广播的特性

从原子广播的定义可以看出，原子广播保证：如果有一个进程调用

了广播动作（即ABroadcast），那么所有客户端的投递动作（即

ADeliver）一定会被调用，并且调用ADeliver动作的顺序一定与调用

ABroadcast动作的顺序相同。

10.8 Paxos算法与原子广播

我们可以使用Paxos算法来实现原子广播，当然，原子广播协议也

可以不基于Paxos算法来实现。本节讲解通过Paxos算法实现原子广播。

10.8.1 Paxos consensus实例与原子广播

前面的10.6节讲解了基于Paxos算法的复制状态机的实现，基于

Paxos算法的原子广播的实现与其类似。基于Paxos算法的原子广播也是

通过执行一个Paxos consensus实例序列来实现的，每个实例都使用一个

唯一且单调递增的编号来标识，这个编号被称为实例编号（instance
identificator，iid）。每个Paxos consensus实例都是一个要广播的值，

Paxos consensus算法保证广播是原子的，所有客户端一定会收到同一个

值。按照实例的顺序投递值能保证全局有序。如图10.23所示，原子广

播黑盒内部被实现成一个Paxos consensus实例序列。



图10.23 原子广播的实现

10.8.2 Paxos的角色与原子广播

在基于Paxos算法的原子广播的实现中，原子广播黑盒内部由一组

进程组成。客户端进程和这些黑盒里的进程会承担Paxos协议中逻辑角

色中的一个角色，或者是几个角色的组合，也可以不承担任何角色

（Paxos的角色在前面10.3.2节中讲解过）。

图10.24给出了一种可能的实现方式。当然，角色和进程的组合不

止这一种实现方式。



图10.24 Paxos的角色与原子广播

在图10.24所示的例子中，一共有10个进程，其中2个承担了

proposer角色，3个承担了acceptor角色，3个承担了learner角色并作为

client，2个没有承担任何角色仅作为client。3个Paxos的角色在原子广播

协议中承担的作用如下。

● learner：learner角色在客户端进程中。learner的任务是监听

acceptor的决定。只要learner意识到大多数acceptor在一个实例

上已经达成共识，learner投递这个值，即可完成对ADeliver()这
个动作接口的回调。

● acceptor：在原子广播黑盒进程中，对值的选择达成大多数共

识。

● proposer：客户端进程通过ABroadcast接口接收要广播的值，然后

将收到的值发送给原子广播黑盒进程中的proposer，proposer接
收客户端发来的值，发送给acceptor，让acceptor做决定。

为了保证progress，也要保证在同一时刻最好只有一个proposer在向

acceptor提交值。为了这个目的，把其中一个proposer认命为coordinator
或者leader。
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第11章 复制日志算法Raft

Raft是一种用来管理复制日志的算法。本章将介绍Raft算法的细

节。

11.1 Raft是复制日志的算法

除了前面10.5节介绍的复制状态机和10.6节介绍的基于Paxos实现的

复制状态机，在分布式系统中还有一种常见复制状态机的抽象，就是把

具有一定顺序的一系列action抽象成一条日志（log），每个action都是日

志中的一个条目（entry）。如果想使每个节点的服务状态相同，则要

把日志中的所有entry按照记录顺序执行一遍。所以复制状态机的核心问

题就变成了让每个节点都具有相同的日志的问题，也就是把日志复制到

每个节点上的问题。因此，这个问题也被称为复制日志（replicated
log）问题。

Raft就是用来实现复制日志的一种算法，该算法会：

● 生成一条日志。

● 把这条日志复制到所有节点上。

● 把日志的entry应用到状态机上。

每个状态机都以相同的顺序执行相同的命令，最终每个状态机都会

达到相同的状态。Raft实现了节点之间的复制日志，每条日志的内容就

是一个命令，如图11.1所示。

图11.1 日志复制



11.2 Raft算法的组成

Raft算法的所有节点中会有一个节点作为领导者（leader），其他

非leader的节点被称为跟随者（follower）。leader负责接收客户端的请

求，根据请求生成日志，把日志复制到所有节点上，并且判断是否适合

把日志应用到状态机中。我们将这个过程称作复制（replication）过

程。

除了复制过程，Raft还包括一部分：如果leader发生宕机等异常情

况，其他节点需要成为新的leader，继续履行leader的职责。我们将这个

过程称作选举（election）过程。

此外，在选举后，还需要处理异常带来的各种影响，也就是进行异

常处理。

总体来说，Raft算法可以分解为复制、选举、异常处理三个部分。

Raft采用RPC（Remote Procedure Call，远程过程调用）实现节点间

的通信，包括复制过程、选举过程和异常处理都通过RPC来实现。

11.3 复制过程

对复制过程解释如下：

（1）当leader收到客户端的请求后，它会将这个请求作为一个entry
记录到日志中。leader会将新entry记录到日志的最后，或者说追加到末

尾（append）。日志中的每个entry都有一个索引（index），index是一

个连续的整数，每追加一个entry，index就会加1。
（2）leader在完成append操作后，会并行向所有的follower发起

AppendEntries RPC，follower收到AppendEntries调用后，将请求中的

entry追加到自己的本地日志中，并回复leader成功。

（3）leader收到大多数follower的成功回复后，这个entry就被leader
认为达到提交（committed）状态，leader将这个entry应用到状态机中，

并且leader会回复客户端这次请求成功。对于没有回复的follower，
leader会不断地重试，直到调用成功。

此时，follower只是把这个entry追加到日志中，并没有应用到状态

机中。Raft在下面两个时机会通知follower这个entry已经处于committed
状态。



● 当leader处理下一个客户端的请求时，leader会将下一个entry复制

到所有follower的请求中，带上committed状态的entry的index，
follower将下一个entry追加到日志中，同时会将这个entry应用

到状态机中。

● 如果暂时没有新的客户端请求，则Raft会将committed状态的entry
的index信息随着心跳发送给所有follower。

当follower通过上面两种方式知道entry已经提交后，它会把entry应
用到状态机中。

这样的复制过程有一个特性：即使少数节点变慢或者网络拥堵，也

不会导致这个过程变慢。

11.4 选举过程

如果出现诸如leader发生宕机这样的情况，则需要从follower中选出

一个新的leader，也就是执行选举过程。

11.4.1 选举的基本条件

具体来讲，发生选举的条件是：在一定的时间内，没有收到leader
的日志复制请求，包括心跳请求，即发生超时（timeout）。

如果上面的条件满足了，则节点会进入candidate状态，candidate是
处于candidate状态的节点，也就是想要成为leader的节点。相对应地，

leader是处于leader状态的节点，follower是处于follower状态的节点。

candidate会给其他所有的节点发送投票请求（通过RequestVote
RPC），要求其他节点同意自己成为新的leader。

收到投票请求的follower，会检查这个candidate是不是符合条件：

candidate的index要比自己的大。

如果满足这个条件，则回复同意；如果不满足，则回复不同意。如

果candidate得到大多数follower同意的话，那么它就顺利成为新的

leader。

11.4.2 任期



上面讲的是基本的选举过程，实际的选举过程要处理下面两个问

题。

问题一：所有follower都发现leader宕机，因此都转变为candidate，
多个candidate抢夺leader的地位。因为多个candidate同一时刻发起投票，

瓜分了follower（每个follower只能投一个candidate），甚至大家都是

candidate，没有follower。多个candidate都想成为leader，剩下处在

follower状态的节点形成不了大多数，这时candidate会一直等待，直到

超过一定时间后，最后选举失败。为了选出新的leader，需要重新选

举，并区分新旧选举的请求。

问题二：除了发生leader宕机，还有其他情况要处理。比如leader宕
机后又恢复了，发生网络分区，这种情况要比leader宕机复杂，因为在

宕机恢复和网络分区恢复后，集群中可能会出现两个leader，也就是出

现脑裂问题。我们需要区分出新旧两个leader，并且阻止旧的leader参与

集群活动。

Raft采用任期（term）来解决上面的两个问题。每个节点都用一个

整型数字来保存任期，每次开始新的选举，任期都加1。
从全局逻辑来理解，在Raft中，时间被分为很多个任期，每个任期

都从一次选举开始。如果一个candidate在选举中获胜，那么在这个任期

内，这个candidate将成为leader。如果没有leader被选出，则开始一个新

的任期，重新进行选举。如图11.2所示，term1开始于一次选举

（election），这次选举成功，开始正常的操作，term 2有同样的过程，

在term 3（在图11.2中简写为t3）选举失败，没有leader被选出，所以开

始term 4，在term 4选举成功。

图11.2 Raft任期（此图参考Raft论文[1]）

接下来，我们看看如何通过任期来解决上面讲的两个问题。

“问题一”的解决



我们先通过一个例子来说明任期的作用。假如有两个节点A和B，
它们的任期都为1，这两个节点都转变为candidate，开始选举，两个

candidate都没有达到大多数同意，这时节点A先发生超时，节点A会把

它的任期加1，成为2，重新开始一次选举。各节点都会无条件优先接受

更大的任期的请求，所以节点A这次会得到大多数节点的同意，成功成

为leader。
但是存在一种特殊的情况，就是节点A和B同时开始选举，都没有

达到大多数同意，节点A和B同时超时，又同时开始新的选举，又都没

有达到大多数同意，又同时失败，这样就会反复地进行下去，没有休

止。Raft通过一种非常简单的方法解决了这个问题，就是在选举失败

后、开始新的选举前，随机等待一段时间（这种方法被称为随机回

退），那么节点A和B再次同时开始选举的可能性就大大降低了。

然而，采用随机回退方法仍然可能存在一种特殊的情况，就是节点

A被选举成为leader，节点B在选举中失败，节点B把自己的任期加1，开

始新的选举，成功地成为leader，节点A连续两次新的选举后，以更大的

任期成为新的leader，节点B也再次连续两次新的选举后成为新的

leader，节点A和B就这样无限地循环下去。虽然出现这种情况的可能性

非常小，但是理论上是存在的，称之为活锁（这个活锁与10.3.3节讲的

Paxos算法中的活锁类似）。在实际中这种情况发生的概率很小，所以

会被忽略不计。

“问题二”的解决

leader的任期会被包含在所有的请求（包括复制请求和心跳请求）

中，其他节点收到请求，如果请求中的任期比自己的大，则用请求中的

任期更新自己的任期，在选举结束后，所有节点的任期最终都会统一成

leader的任期。如果收到的请求中的任期比自己的小，则会拒绝这个请

求。

对于leader宕机后又恢复或者网络分区恢复这样的情况，由于联系

不上leader，follower会转变成candidate，把自己的任期加1，开始选举，

并且成为新的leader，新的leader具有更大的任期，所有投票给新的

leader的节点的任期和leader的任期是一样的。当leader宕机恢复或者网

络分区恢复后，旧的leader仍然在运行，但是它给其他节点发送请求不

会形成大多数，因为大多数节点都具有更大的任期。一旦新的leader发



送请求给旧的leader，旧的leader就会发现有更大的任期存在，它会主动

转变为follower，并且更新自己的任期为新的leader的任期。

11.4.3 完整的选举过程

下面总结前面所讲的内容，对选举过程进行描述。完整的选举过程

如图11.3所示。

（1）节点启动时处于follower状态。

（2）该节点在一段时间内没有收到任何请求，则发生超时，其转

变为candidate。
（3）candidate增加自己的任期，开始新的选举，向所有节点发送

投票请求。candidate发出投票请求后，会有三种结果：

●（3.1）没有得到大多数节点的同意，本次选举超时，开始新的选

举。

●（3.2）得到大多数节点的同意，成为新的leader。
●（3.3）收到其他节点的请求，其任期与自己的相同，说明其他

candidate已经在这次选举中得到大多数follower的同意，成为

leader，这时这个candidate会退回到follower状态；或者请求中

包含更大的任期，这个candidate也退回到follower状态。

（4）在leader收到的请求中包含更大的任期，leader转变为follower
状态。



图11.3 完整的选举过程

11.5 异常处理

上面介绍的选举过程，虽然使集群从leader宕机和网络分区中恢复

回来，重新选出了新的leader，但是这些异常情况已经给集群带来了影

响，导致各节点上的数据不一致。本节就来讲解这种不一致异常及其处

理方式。

在介绍数据不一致异常之前，先来讲讲日志的格式。日志中的每个

entry，除了记录index，还记录了当前的任期，也就是这个entry是在哪

个任期被追加到日志中的。

11.5.1 不一致异常

我们通过图11.4所示的例子来说明不一致的情况（这个例子参考

Raft论文[1]）。





图11.4 异常处理（1）

如图11.4所示，这是一个有7个节点的Raft集群，从图（a）到图

（h），随着时间的推移，集群的leader在不断地切换。

● 图（a），节点1是leader（箭头所指），节点1的term=1，且在

term=1时写入了三个entry，这三个entry被复制到其他节点上。

● 图（b），节点1发生宕机，节点7成为leader，之后立刻发生了网

络分区。虽然发生了网络分区，但是节点7继续写入了三个

entry，然而这三个entry没有被复制到其他节点上。

● 图（c），节点7发生重启，重启完成后网络分区也恢复了，并且

节点7又成为leader，之后马上又发生了网络分区，但是节点7
继续写入了三个entry，同样，这三个entry没有被复制到其他节

点上。

● 图（d），先后发生下面三件事情：

■ 节点1恢复，节点7宕机，节点6被选举成为leader，在index=4
的位置写入了一个entry，这个entry被成功地复制到所有的

节点上。

■ 之后，节点3发生宕机，节点6继续在index=5的位置写入一个

entry，这个entry被成功地复制到除节点3之外的其他节点

上。

■ 之后，节点6发生网络分区，但是节点6继续写入了两个

entry，然而这两个entry没有被复制到其他节点上。

● 图（e），节点6发生宕机，节点2成为leader，它写入了两个

entry，这两个entry被成功地复制到所有活着的节点上。

● 图（f），先后发生下面三件事情：

■ 节点2发生重启，节点4成为leader，节点2重启后成为

follower，节点4写入了两个entry，这两个entry被成功地复

制到其他节点上。

■ 之后，节点2宕机，节点4在index=10的位置写入了一个entry，
这个entry被复制到节点1和节点5上。

■ 之后，节点4发生网络分区，但它继续在index=11的位置写入



了一个entry。
● 图（g），节点4发生宕机，节点2和节点3从宕机中恢复，节点5

成为leader，之后立刻发生了网络分区，但节点5仍然写入了两

个entry。
● 图（h），节点5发生宕机，节点6和节点7恢复，节点1成为

leader。
● 图（i），节点3和节点4恢复。

经过这么多轮的选举，最终集群中每个节点的日志与最终

leader（节点1）的日志都不一致，存在以下三种情况：

● 比leader少，节点2和节点3属于这种情况。

● 比leader多，节点4和节点5属于这种情况。

● 比leader多一部分，又比leader少一部分，节点6和节点7属于这种

情况。

11.5.2 一致性检查

Raft算法强制要求所有follower保持与leader一致，也就是说，不一

致的部分要丢弃，替换成leader相应的部分。所有已提交的entry都会被

包含在leader中，强制follower保持与leader一致，就是强制follower把缺

少的已提交的entry补齐；而对于没有提交的entry，因为还没有给客户端

回复ack，所以既可以按照成功处理，也可以按照不成功处理——按照

成功处理就是保留，按照不成功处理就是丢弃。Raft算法的策略是新的

leader上所有未提交的entry保留，其他节点上未提交的entry丢弃。

Raft算法通过名为一致性检查（consistency check）的过程强制

follower保持与leader一致。虽然这个过程的名字叫检查，但其实可以认

为它是一个恢复的过程。

新的leader并不会专门启动一个一致性检查的过程。当leader发起

AppendEntries RPC发送一个新entry时，会在请求中包含新entry前面一

个entry的index和任期，如果follower在自己的日志中没有找到对应的

index和任期，则拒绝这个新entry。如果leader发现AppendEntries调用失

败，则把前一个entry通过AppendEntries发送给follower；如果还失败，



则发送再往前一个entry，直到AppendEntries调用成功。如果

AppendEntries调用成功，则说明leader和follower的日志已经达到一致的

状态，leader从这个entry开始往后逐个调用AppendEntries。

11.5.3 不提交旧的leader的entry

前面讲过，leader会保留未提交的entry，但是需要注意的是，新的

leader并不会试图提交这些未提交的entry，而是继续追加新entry，当新

entry达到提交状态时，则会自动提交前面未提交的entry。我们用图11.5
所示的例子来说明（这个例子参考Raft论文[1]）。

如图11.5所示，这是一个有5个节点的Raft集群。

● 图（a），节点1成为leader（箭头所指），写入一个entry，并将

这个entry复制到所有节点上。

● 图（b），节点1发生重启，重启后仍然被选为leader，写入第二

个entry，但是这个entry仅仅被复制到节点2上。





图11.5 异常处理（2）

● 图（c），节点1发生宕机，节点5被选为leader，节点5写入一个

entry，但是这个entry并没有被复制到任何节点上。从这里开

始，可能会出现三种不同的情况，其中第一种情况被Raft所避

免，第二种和第三种情况在Raft中可能出现。

■ 第一种情况：新的leader对未提交的entry进行了提交操作，会

导致出现一种丢失更新的异常。

◆ 图（d），节点5发生宕机，节点1被选为leader，节点1在
index=3位置写入一个entry，但这个entry未被复制到其他

节点上；而index=2位置的entry还处于未提交状态，节点

1将这个entry继续复制到节点3上（当然，在Raft算法中

并不存在这样的操作），使这个entry成为达到committed
状态的entry。

◆ 图（e），节点1发生宕机，节点5从宕机中恢复，而节点4
经过两轮选举被选为leader，之后节点1恢复。

◆ 图（f），节点4在index=2位置写入一个entry，并且把这个

entry复制到其他节点上，刚刚被节点1提交的index=2位
置的entry会被删除（因为follower要保持与leader一
致），这就是说已提交的entry被删除了。

■ 第二种情况：未提交的数据被删除。

◆ 图（g），节点5把index=2位置的entry成功地复制到所有节

点上，这个动作会删除节点1和节点2上index=2位置的未

提交的entry。
■ 第三种情况：未提交的数据随着新entry被提交。

◆ 图（h），节点5发生宕机，节点1从宕机中恢复，节点1成
为leader，它写入一个新entry。虽然节点1发现有未提交

的entry，但是它并不试图继续复制未提交的entry，而是

仅仅把新写入的entry复制到其他节点上。由于一致性检

查的存在，之前未提交的entry会被一致性检查流程补

齐。

◆ 图（i），当新entry被复制到大多数节点上时，新entry达到



committed状态，同时，位于新entry之前的未提交的entry
也会被自动提交。

◆ 图（j），新旧entry被复制到所有节点上。
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第12章 原子广播算法Zab

Zab算法的全称是ZooKeeper原子广播（ZooKeeper atomic
broadcast）算法，它被应用在ZooKeeper（见第7章）中。本章详细讲解

Zab算法。

12.1 Zab算法简述

12.1.1 设计的Zab算法与ZooKeeper中实现的Zab算法

虽然ZooKeeper团队设计并且实现了Zab算法，但是Zab算法的设计

与实现差别比较大。设计的Zab算法经过了严格证明，算法的正确性有

保证。而ZooKeeper中的Zab算法的实现过程却比较波折，在ZooKeeper
的早期版本中，Zab算法并没有按照设计来实现，导致出现了bug，不能

保证ZooKeeper数据的正确性。后期版本纠正了这个问题，修正了

ZooKeeper中的Zab实现，将实现尽量与设计对齐。修正过的实现的版本

叫作Zab 1.0，之前有bug的实现的版本叫作Zab Pre 1.0。Zab 1.0的实现

是从ZooKeeper 3.3.3版本开始的。

本章会分别介绍理论设计的Zab算法、Zab Pre 1.0的错误实现和Zab
1.0的实现。虽然Zab 1.0是按照设计的Zab算法实现的，但是与设计的

Zab算法还有些差别，这些差别并不影响正确性，只是进行了一些优

化。本章后面部分会先讲解这三个版本Zab算法的共有部分，再分别讲

解它们的不同部分。

12.1.2 Zab算法的阶段

不管是哪个版本的Zab算法，都由多个阶段组成。设计的Zab算法有

4个阶段：选举（election）、发现（discovery）、同步

（synchronization）、广播（broadcast）。Zab Pre 1.0把这4个阶段简化

成3个阶段：election、recovery、broadcast。为了修复bug，Zab 1.0又恢

复成4个阶段，与设计的Zab算法相同。我们用图12.1来说明它们的差

异。



图12.1 Zab算法的阶段

三个版本Zab算法的最后一个阶段，也就是broadcast阶段，基本上

是一致的，所以后面介绍各版本Zab算法的共有部分时会先讲解

broadcast阶段，再讲解其他阶段。

broadcast阶段可以被看作集群处在广播（broadcast）模式，

broadcast之前的阶段也可以被看作集群处在恢复（recovery）模式。

12.2 各版本Zab算法的共有部分

本节讲解三个版本Zab算法的共有部分，也就是broadcast阶段。

12.2.1 Zab算法的基本概念

Zab算法是一种原子广播算法（关于原子广播可以参看10.7节）。

相对于原子广播，Zab算法中也有着相同的基本概念，比如广播、投

递，后面我们还会在Zab算法的上下文中再次讲解这些概念。与前面介

绍的基于Paxos算法实现的原子广播不同的是，在Zab算法中要广播的值

被称为消息（message）。

现在我们回顾一下ZooKeeper。前面7.3.3节讲过ZooKeeper采用首要

备份模式（primary backup scheme），也就是在所有进程中有一个是

首要（primary）进程，只有首要进程才能够接收客户端的请求，并把

客户端的请求转换成事务（transaction），调用Zab的广播

（broadcast）接口。

在Zab算法中存在一个领导者（leader）进程，用来处理ZooKeeper



的首要进程的广播调用，其他进程都被称为跟随者（follower）进程。

首要进程传给leader的事务，就是Zab算法要广播的消息。

如果这个首要进程出现故障，包括重启或者宕机，则需要选出一个

新的首要进程。如果首要进程发生重启，那么它可能还会被重新选为首

要进程，也就是同一个进程可以多次成为首要进程。不管是新的进程还

是老的进程成为首要进程，我们都认为这是一个新的首要进程。为了区

别前后两个首要进程，我们用纪元（epoch）来表示一个首要进程，

epoch是一个递增的数字，epoch产生的机制后面会详细讲解。每次进程

成为首要进程时都会被分配一个新的epoch。这个选举是在broadcast阶
段的前几个阶段完成的事情，后面会讲解选举功能。

ZooKeeper的首要进程与Zab算法的leader被刻意地由同一个进程来

担任，这样就可以共用相同的选举功能，并且把从首要进程到leader的
广播接口调用变成本地调用。

我们用图12.2来描述上面介绍的一些基本概念。

图12.2 Zab算法的基本概念

在图12.2中，首要进程所在的“进程2”可以调用ABroadcast向Zab算
法提交消息m，Zab算法将消息广播给follower，follower将消息m投递到

两个备份（backup）进程上。这个过程就是在broadcast阶段完成的。

个人感受

本书中出现了三种架构模式，分别是首要备份模式（primary-



backup scheme）[1]、领导跟随模式（leader-follower scheme）和主

仆模式（master-slave scheme）。ZooKeeper和Zab算法分别使用了首

要备份模式和领导跟随模式，而GFS、BigTable、Spanner都使用了主

仆模式。

● 首要备份模式表述了这样的架构：首要（primary）角色是工

作的，它处理客户端的请求；备份（backup）角色是不工

作的，它不会处理客户端的请求，但是会随时准备在primary
出故障时顶替它的工作。

● 领导跟随模式表述了这样的架构：领导者（leader）是工作

的，它处理客户端的请求；跟随者（follower）也是工作

的，而且完全是模仿leader的工作，leader处理一个请求，

follower也会复制leader处理这个请求的结果。

● 主仆模式表述了这样的架构：主（master）只负责给slave分配

任务，它不会做实际的工作，给slave分配完任务之后，

master就处于空闲状态；仆（slave）会负责处理实际的工

作，比如处理客户端的请求。GFS、BigTable、Spanner都有

master角色，但没有显式地命名slave，实际上GFS的
chunkserver、BigTable的tablet server、Spanner的spanserver都
是slave。这是因为slave这个词的本意不佳，实际中会刻意回

避在架构设计中使用这个词。但并不是把master-slave换成其

他两种命名，因为它们的含义不同。

由于客户端请求是由唯一的首要进程处理的，因此首要进程可以为

每个事务都生成一个编号，称之为zxid。zxid是一个64位的整型数字，

它由两部分组成：高32位是当前首要进程的epoch；低32位是一个计数

器（counter）。为了便于理解，本书中将zxid表示成[e，c]，其中e代表

epoch，c代表counter。一个事务可以被表示成<z，v>，其中z是zxid，v
是事务的内容。每个新的首要进程都会从头开始计数。

12.2.2 Zab算法的broadcast阶段

无论是设计的Zab算法还是其他两种Zab算法的实现，开始broadcast



阶段的前提条件都是：只有唯一的一个进程作为leader，并且leader与
follower保持一致，也就是具有相同的数据。

如何满足这个前提条件是一件复杂的事情，本章后面会详细讲解即

便一个集群出现各种故障，也能满足这个前提条件。这里我们先不考虑

这件复杂的事情，或者可以先考虑一个新建的集群，其所有节点的数据

都为空，其中任意一个节点都可以成为leader，那么该集群满足这个前

提条件。

leader和follower通过TCP进行通信，leader按照zxid发送消息，

follower也会按照zxid的顺序收到这些消息。

broadcast阶段的具体过程如图12.3所示，通过三次网络通信完成消

息的广播。

图12.3 broadcast阶段的具体过程

对broadcast阶段的过程详细解释如下：

注：下面过程中每一个步骤开始的（L）或者（F）表示这个步骤的

执行角色，其中（L）代表leader，（F）代表follower，本章后面讲解的

其他过程也采用这种说明方式。

（1）（L）leader收到要广播的一个消息，也就是要广播的事务

（相当于调用ABroadcast（m）方法）后，向所有的follower发送包含这

个事务的PROPOSAL请求，或者说发起一个提议（proposal）。这里

我们暂时认为事务和提议是相同的，其实它们是有区别的（12.3节会讲

解）。

（2）（F）follower收到PROPOSAL请求后，按照zxid的顺序将其

中包含的提议持久化存储到历史（history）中，history是按照zxid的顺



序存储所有提议的一个组件，这样就完成了一个提议的接受（accept）
操作，然后回复ACK给leader。这时我们会说这个提议处于已接受

（accepted）状态，或者说处于已提议（proposed）状态。

（3）（L）leader收到大多数（majority）的follower回复的ACK
后，向所有的follower发送COMMIT请求，同时回复广播请求（相当于

完成Abroadcast（m）方法的调用）。

（4）（F）follower收到COMMIT请求后，执行提交（commit）操

作。提交操作包括：

● 在history中标记这个提议为已提交（committed）状态。

● 应用这个事务（相当于执行m=ADeliver()这个动作，如第7章所

讲，在ZooKeeper中就是在数据库中应用这个事务）。

这个提交操作也就是原子广播的投递（deliver）操作，在完成这个

投递操作后，这个消息（也就是事务）处于已投递（delivered）状态。

这里需要注意的是，leader也会做follower做的事情，就好像在

leader这个进程中同时存在一个leader和一个follower，它们之间也通过

网络通信。这个过程如图12.4所示。

图12.4 leader和follower通信的过程

在实际中，在一个进程内部进行网络通信是没有必要的，所以会像



图12.5所示一样实现。

图12.5 简化的leader和follower通信的过程

12.2.3 Zab算法的消息通道

为了进行网络通信，各节点分别建立了发送缓存队列和接收缓存队

列，在发送请求时，将请求存入发送缓存队列中；当接收缓存队列中有

请求时，节点从中取出进行处理。在leader和follower之间建立一条消息

通道，这条消息通道从发送缓存队列中取出请求，传输到对端的接收缓

存队列中。这条消息通道如图12.6所示。这条消息通道不仅仅用于

broadcast阶段的消息传输，后面讲解的Zab算法的其他阶段也使用这条

消息通道进行通信。



图12.6 Zab算法的消息通道

消息通道要保证传输可靠、有序，leader和follower不会处理请求丢

失的情况。也就是说，leader和follower只会将请求写入缓存中，如果请

求在网络上丢失，消息通道要负责重传丢失的请求，并且保证请求有序

地传输。请求会按照zxid的顺序被写入缓存中，消息通道也要按照zxid
的顺序从缓存中取出请求，并且按照zxid的顺序传输到对端，最后还要

按照zxid的顺序写入对端的缓存中。Zab算法采用TCP保证可靠、有序地

在网络上传输。本节后面所讲的发送一个请求，是指将这个请求写入缓

存中；接收一个请求，一般是指从缓存中读取下一个请求。

leader和follower在broadcast阶段不管请求有没有被成功地传输到对

端，只要将请求写入缓存中，就会继续处理下一个请求。Zab算法具有

处理由于故障导致缓存的消息丢失的能力，这个处理也是我们后面要讲

的broadcast阶段之前的其他阶段要做的一件事情。

12.2.4 Zab算法的broadcast阶段的特性

如果follower的处理速度变慢，请求会被暂存在缓存中，当follower
的处理速度恢复后，则会加快处理缓存中的请求。如果leader收到大多



数follower的ACK，就会完成这次广播，所以少数follower的处理速度变

慢，并不会影响leader处理请求的速度。如果出现节点宕机这种故障，

只要节点宕机的数量不超过大多数，Zab算法就仍然可以继续运行。

12.2.5 已提交的提议

这里需要注意的是，当一个提议被大多数进程（包括leader）接受

时，这个提议就处于已提交状态，与之相对的其他提议处于未提交状

态。

不同的节点通过不同的方法知道一个提议处于已提交状态：

● leader是通过收到大多数进程的ACK回复知道一个提议达到已提

交状态的，leader知道一个提议已提交后，会执行提交操作。

● follower是通过收到leader的COMMIT请求知道一个提议已提交

的，follower知道一个提议已提交后，会执行提交操作。

这里需要注意，Zab算法的提交操作不同于数据库中的提交操作，

在数据库中，一个事务只有执行了提交操作才会变成已提交状态；在

Zab算法中，提议先处于已提交状态，然后再进行提交操作。

另外，不同的节点知道一个提议处于已提交状态的时间是不同的，

执行提交操作的时间也是不同的。在没有故障的情况下，对于已提交的

提议，最终会在所有的节点上执行提交操作。

12.2.6 故障处理

Zab算法需要处理各种故障，本节先介绍Zab算法会遇到哪些故障，

然后介绍处理这些故障时需要给出哪些保证。本章后面会介绍Zab算法

是如何通过在broadcast阶段前添加更多的阶段来处理这些故障并达成保

证的。

Zab算法需要处理下面两种故障。

● follower故障：如果follower发生重启，那么已经存储在接收缓存

和发送缓存中的消息会丢失，follower重启后，重新连接到

leader。为了处理follower重启故障，还需要在broadcast阶段加



入额外的处理过程（12.3.4节会介绍follower的故障处理过

程）。

● leader故障：broadcast阶段在没有故障时工作得非常好，但是当

leader出现故障时，需要重新选出一个新的leader，也就是集群

进入recovery模式，后面介绍的broadcast以外的其他阶段就是

用来处理这种故障的。

不管哪种故障，故障处理流程都必须提供下面两个保证。

保证1：如果一个提议在某个副本上已经被投递，那么一定要保证

这个提议在其他副本上也被投递。

为了达成这个保证，Zab算法要处理很多情况，我们举例来说明

（例子参考Zab论文[2]）。如图12.7所示，一个集群有三台服务器，其

中server1是leader。leader发起三个提议，分别为Proposal1、Proposal2、
Proposal3。我们将PROPOSAL请求简写成P，将COMMIT请求简写成

C，在图12.7中，P1就表示Proposal1的PROPOSAL请求，依此类推。从

图12.7中可以看出，leader已经发送C1和C2，Proposal1和Proposal2两个

提议已提交，但是Proposal1和Proposal2在不同副本上的提交状态是不同

的：

● 在server1（leader）上已经执行了提交操作，所以Proposal1和
Proposal2两个提议在server1上已提交，在history中这两个提议

被标记为已提交，在图12.7中用（c）来表示。

● server2只收到P1、P2、C1这三个请求，所以只执行了Proposal1的
提交操作。

● server3只收到P1、P2这两个请求，所以没有提议被执行提交操

作。

如果这时leader发生宕机，那么新选出来的leader必须保证自己和其

他副本也都提交了Proposal1和Proposal2。



图12.7 保证1

保证2：继续上面的例子（例子参考Zab论文[2]），server2成为新

的leader，server2的epoch增加变成1，并且接受了两个新提议（按照前

面讲的zxid的规则，这两个新提议被记成Proposal[1，1]、Proposal[1，
2]，前面“保证1”里的三个提议实际上可以被记成Proposal[0，1]、
Proposal[0，2]、Proposal[0，3]），提交了Proposal[1，1]。如果这时

server1宕机恢复，加入集群中，那么server1之前接受的Proposal[0，3]这
个提议并不是已提交的提议，所以是不应该存在的，应该被删除，如图

12.8所示。



图12.8 保证2

在图12.8中，Proposal[0，3]是一个应该被跳过（skipped）的提

议。也就是说，在按照zxid排列的提议序列中，提交操作应该跳过

Proposal[0，3]。
Zab算法通过在broadcast阶段前加入更多的阶段，在leader故障恢复

后达成这两个保证。

12.3 设计的Zab算法

前面讲解的broadcast阶段是在leader没有故障的情况下进行的，如

果leader发生故障，则leader需要从故障中恢复，为了恢复到可以继续进

行broadcast阶段的状态，Zab算法需要经过额外的三个阶段。

前面12.2.2节中提到事务和提议是有差别的，在设计的Zab算法[3]

中，一个提议包括事务<z，v>和epoch两部分，提议可以被表示成<e，
<z，v>>，其中e表示epoch。

在设计的Zab算法中，每个节点都持久化存储下面这些信息。

● history：所有接受的提议。



● lastZxid：history中所有提议最大的zxid。
● acceptedEpoch：接受的epoch，这个epoch是接受的最后一个

NEWEPOCH请求中的epoch，NEWEPOCH是discovery阶段的

一个请求（12.3.3节会介绍）。

● currentEpoch：当前的epoch，这个epoch是接受的最后一个

NEWLEADER请求中的epoch，NEWLEADER是
synchronization阶段的一个请求（12.3.4节会介绍）。

在下面的讲述中，我们用F.acceptedEpoch表示某个follower存储的

acceptedEpoch。F.acceptedEpoch=e表示将某个follower的acceptedEpoch
的值修改为e。

12.3.1 Phase0：election阶段

election阶段并不能算作设计的Zab算法的一部分，在设计的Zab算
法中，其实只有Phase1（discovery阶段）、Phase2（synchronization阶
段）和Phase3（broadcast阶段）这三个阶段。

在设计的Zab算法中，仅仅要求在进入正式的Zab算法时满足这样的

条件：在非常大的概率下，选出唯一的一个节点，这个节点是处于运行

状态的，并且大多数节点同意它成为leader。
也就是说，在进入后面的阶段时，所选出的节点可以不是活着的节

点，也可以不是大多数认同的节点（即可以有多个节点被选成

leader），设计的Zab算法保证不会出错。

如果出现上面这些情况，Zab算法会判断为异常，并且退回到

election阶段，重新进行选举。正确选出leader的概率越大，后续阶段成

功运行的概率就越大，Zab算法的效率也就越高，所以说这个条件是一

个效率条件，不是正确性条件。设计的Zab算法并未给出具体的选举算

法。

在这个阶段选出的leader叫作预主（prospective leader），进行完

Phase1（discovery阶段）和Phase2（synchronization阶段），如果没有失

败而回到election阶段，那么这个prospective leader会成为认定主

（established leader）。established leader会满足broadcast阶段的要求



（broadcast阶段的要求见12.2.2节）。如12.2.1节所讲，established leader
也是ZooKeeper的首要进程。

进入election阶段的节点，已经不再是leader或者follower，位于

election阶段的节点处于选举（election）状态，election阶段结束后，

prospective leader会以leader的身份进入下一个阶段；类似地，这个节点

处于领导中（leading）状态，其他节点会以follower的身份进入下一个

阶段；类似地，这个节点处于跟随中（following）状态。

12.3.2 Phase1：discovery阶段

进入discovery阶段后，会执行下面的过程。

注：我们用全部大写的方式来表示一个请求，请求后面括号中的是

其携带的参数。后面其他阶段的过程也采用这种表示方式。

（1）（F）follower发送CEPOCH（F.acceptedEpoch）请求给

prospective leader。
（2）（L）prospective leader从大多数follower收到CEPOCH请求，

这些follower形成一个集合，称为Q。prospective leader生成一个新的

epoch，称这个epoch为e，这个e要比收到的所有CEPOCH请求中的epoch
都大，prospective leader发送NEWEPOCH（e）请求给集合Q中的每个

follower。
（3）（F）follower收到NEWEPOCH（e）请求后：

● 如果e>F.acceptedEpoch，则F.acceptedEpoch=e，且给prospective
leader回复ACK-E（F.currentEpoch，F.history，F.lastZxid）。

● 如果e<F.acceptedEpoch，则回到election阶段。

（4）（L）leader收到集合Q中每个follower的ACK-E回复后，按下

面的条件选出一个follower：
● 选择F.currentEpoch最大的follower。
● 如果F.currentEpoch相同，则选择F.lastZxid最大的follower。
将选出的这个follower的history持久化保存为自己的历史。

在discovery阶段运行结束后，prospective leader已经生成新的



epoch，值为e，并且具有最新的history。如果这个prospective leader在此

之前的broadcast阶段没有收到全部已提交的提议，那么这时它已经具有

了。

这里需要注意的是，currentEpoch在这个阶段并没有被修改过，它

是在synchronization阶段被修改的，在这个阶段仅仅是修改了

acceptedEpoch。

12.3.3 Phase2：synchronization阶段

完成discovery阶段后，会进入synchronization阶段，执行下面的过

程。

（1）（L）leader向集合Q中的所有follower发送

NEWLEADER（e，L.history）请求。

（2）（F）follower收到NEWLEADER（e，L.history）请求后：

● 如果e！=F.acceptedEpoch，则退回到election阶段重新选举。

● 如果e==F.acceptedEpoch，则原子地执行下面的过程。

a.F.currentEpoch=e.
b.将L.history中的每个提议（记为<ei，<zi，mi>>）组成epoch为e的

新提议<e，<zi，mi>>，存储到自己的F.history中，回复ACK给

prospective leader。
（3）（L）leader从大多数follower收到ACK回复后，给所有的

follower发送COMMIT请求。

（4）（F）follower收到COMMIT请求后，为F.history中的每个提议

调用ADeliver()。

12.3.4 Phase3：broadcast阶段

设计的Zab算法的broadcast阶段与前面12.2.2节所讲的broadcast阶段

有些细节上的差别，这里我们描述一下设计的Zab算法的broadcast阶段

的过程。



（1）（L）leader增加zxid（也就是zxid++），给集合Q中的所有

follower发送PROPOSAL请求。

（2）（F）follower收到PROPOSAL请求后，给提议追加history，
回复ACK。

（3）（L）leader收到大多数follower的ACK回复后，发送COMMIT
请求。

（4）（F）follower收到COMMIT请求，提交提议。

除了上面描述的步骤，设计的Zab算法的broadcast阶段还包括额外

一些步骤，即当有新的follower加入集群时，follower会执行discovery阶
段、synchronization阶段、broadcast阶段的过程，位于broadcast阶段的

leader会执行下面的过程。

（1）（L）leader收到CEPOCH请求后，发送

NEWEPOCH（L.currentEpoch）请求和

NEWLEADER（L.currentEpoch，L.history）请求给follower。
（2）（L）leader收到follower的ACK回复后，给follower发送

COMMIT请求。

这个过程用来处理前面12.2.6节所讲的follower故障，也就是对

follower宕机重启后重新加入集群进行处理。follower重新加入集群后，

会进入选举阶段，并且会被告知是follower（在设计的Zab算法中并不包

含选举阶段，实现中只要重启后大概率被指定为follower即可，算法保

证正确性），所以这个follower会执行discovery阶段、synchronization阶
段、broadcast阶段，从leader接收其history，并将history持久化保存，提

交history中的所有提议。

另外，不同于前面所讲的broadcast阶段的过程，设计的Zab算法中

的提交操作，不需要在history中记录哪个提议处于已提交状态，只需要

执行ADeliver()即可。这是因为每次提交时synchronization阶段都把

history中的提议全部提交一遍，没有增量投递，所以不需要记录提议的

已提交状态。

12.3.5 设计的Zab算法的问题



设计的Zab算法经过严格的推导证明，保证了算法的正确性（推导

证明过程这里不详细介绍了，可以参看参考文献[3][4]）。但是算法实

现时并未完全按照设计的算法来进行，因为在设计的Zab算法中，leader
会要求follower把其全部的history发送给自己，并且在选择了其中一个

history后，会将选中的history全部发送给其他所有的follower，follower
需要用leader发送来的history覆盖自己的history。也就是说，完整的

history会经过下面的流动过程：

这种做法在history非常大的情况下是极其耗时的。如果集群运行了

一段时间，积累了大量的事务，那么这个过程就变得不切实际了。

所以在实现算法时，在选举阶段会选举具有最新history的节点作为

leader，这样就可以避免follower-> leader这个方向的history流动。并且在

leader->follower这个环节，history全量传输也是没有必要的，所以在实

际的实现中会根据具体情况进行增量传输。后面在介绍Zab 1.0算法、

Zab Pre 1.0算法时，会详细讲解这些与设计的Zab算法不同的点。

12.3.6 设计的Zab算法处理leader故障

下面我们来分析设计的Zab算法是如何处理leader故障，并且做到

12.2.6节所讲的两个保证的。在synchronization阶段，leader将history发送

给所有的follower，follower收到history后回复ACK给leader，leader收到

大多数follower的ACK后，提交history中的所有提议。follower在收到

UPTODATE消息后，会提交history中的所有提议，所以未被选中的

history中的所有未提交的提议都会被删除，被选中的history中的所有已

提交的提议会在所有节点上再次被投递。但是这里需要注意，已提交的

提议可能会被重复投递。

12.4 Zab Pre 1.0算法

在Zab Pre 1.0算法[5]中，除broadcast阶段外，只有两个阶段。

与设计的Zab算法不同，Zab Pre 1.0算法中的提议只包含事务，并不

包含epoch。也就是说，Zab Pre 1.0算法中的提议与事务没有差别。这是

Zab Pre 1.0算法与设计的Zab算法的一个非常重要的差别，从而也导致了



bug的出现。

follower会持久化存储history中最后一个提议的zxid，称之

为lastZxid，还会持久化存储history中最后一个已提交的提议的zxid，称

之为lastCommittedZxid。leader中有一个配置项L.history.threshold，用

来指定是否增量同步。

12.4.1 leader election阶段

与设计的Zab算法的election阶段相同，Zab Pre 1.0算法的leader
election阶段也是尽最大努力选出一个具有最新历史的leader，并且这个

leader得到大多数follower的认可。但是与设计的Zab算法不同，选举有

一个额外的条件，就是要选举zxid最大的节点作为leader，这个条件是

Zab Pre 1.0算法的正确性条件，而不是效率条件。

这个阶段也被称为fast leader election阶段，其名字来源于ZooKeeper
代码中相关类的名字。关于fast leader election具体的实现这里就不进行

介绍了。

12.4.2 recovery阶段

在Zab Pre 1.0算法中，recovery阶段也被称为Phase 1&2[5]，是epoch
确立和follower同步的阶段。recovery阶段的详细过程如下：

（1）（L）leader将L.lastZxid中的epoch加1，开始接受follower的连

接。

（2）（F）follower连接上leader，发送FOLLOWER（F.lastZxid）
消息。

（3）（L）leader针对每一个follower的连接进行下面的处理：

① 发送NEWLEADER（L.lastZxid）消息。

② 建立一个临时的消息队列。

③ 执行下面的操作：

● 如果follower落后太多（即F.lastZxid<L.history.threshold），则将

SNAP请求加入队列中。



● 如果follower中包含leader没有的提议（即F.lastZxid >
L.lastCommittedZxid），则将TRUN（L.lastCommittedZxid）请

求加入队列中。

● 如果follower缺少leader的提议（即F.lastZxid <
L.lastCommittedZxid），则将DIFF（proposals）请求加入队列

中，其中参数proposals表示所有zxid大于L.lastCommittedZxid的
提议。

④ leader将UPTODATE请求加入队列中。

⑤ leader发送队列中的所有请求。

（4）（F）follower根据接收到的不同请求进行不同的处理：

① 收到NEWLEADER请求，如果

L.lastZxid.epoch<F.lastZxid.epoch，则回到election阶段。

② 执行下面的操作：

● 如果收到SNAP请求，则提交SNAP中的所有数据。

● 如果收到TRUN请求，则删除从L.history.lastCommittedZxid到
F.lastZxid的所有提议。

● 如果收到DIFF请求，则接受消息中携带的所有提议，并且提交它

们。

③ 一旦follower收到UPTODATE请求，follower就回复

ACK（F.lastZxid）。

（5）（L）如果leader从大多数follower收到ACK，则表明leader已
经拿到值为e的epoch的领导权。

需要注意的是，在上面的过程中，leader也需要执行follower的步

骤。

12.4.3 Zab Pre 1.0算法处理leader宕机故障

本节介绍Zab Pre 1.0算法是如何处理leader故障，并且做到前面讲的

两个保证的。

保证1：在图12.7所示的例子中，当server1宕机后，server2可以被选



为新的leader，符合选举条件，server2以leader的状态、server3以follower
的状态进入recovery阶段。

“保证1”的例子按照前面所讲的recovery阶段的流程，server2先向

server3发送TRUNC（1）请求，删除server3上的Proposal2，然后server2
再向server3发送DIFF（Proposal2）请求。需要注意的是，在这个例子

中，server3删除的Proposal2和新收到的Proposal2其实没有差别。server3
收到Proposal2后会提交所有未提交的提议，也就是Proposal1和
Proposal2。leader会执行follower的步骤，所以在这个过程中server3也会

提交Proposal2。
虽然server2没有收到Proposal2的COMMIT消息，但是在收到大多数

副本的ACK后会提交Proposal2。server3没有收到Proposal1和Proposal2的
COMMIT消息，但是在收到UPTODATE消息后会提交lastZxid之前所有

未提交的提议。

保证2：由于Zab Pre 1.0算法未按照设计的Zab算法来实现，所以

Zab Pre 1.0算法不能做到“保证2”（见12.2.6节）。下一节我们讲解为什

么Zab Pre 1.0算法不能做到这一保证。

12.4.4 Zab Pre 1.0算法的缺陷

Zab Pre 1.0算法并没有按照设计的Zab算法来实现，它并不是一个完

全正确的算法，会导致副本间的数据不一致。Zab Pre 1.0算法存在两个

bug，下面分别来说明这两个bug。

第一个bug：举例说明这个bug[6][7][8]。假如一个集群有5台服务器

（A，B，C，D，E），其中A是leader，lastZxid是[1，10]。
A发生宕机，B被选为新的leader，B增加lastZxid为[2，0]。B提出一

个新提议，zxid为[2，1]。但是在其他节点收到这个提议前，B发生宕

机，C被选为新的leader，C的lastZxid也是[1，10]，C增加lastZxid为[2，
0]。C也提出一个新提议，zxid为[2，1]。

当B从宕机中恢复后，B的lastZxid与C的lastCommittedZxid相同，不

会发送TRUNC请求给B删除Proposal[2，1]，因此B与C在[2，1]位置出

现数据不一致。



第二个bug：第二个bug[6]会导致不能达到“保证2”。
我们继续看图12.8，server1从宕机中恢复，server1发送

FOLLOWER（[0，3]），但是server2的lastCommittedZxid是[1，1]，因

为[0，3]<[1，1]，所以server2不会发送TRUNC请求，server1上的

Proposal[0，3]不会被删除。

12.5 Zab 1.0算法

Zab1.0算法[9]恢复了broadcast阶段前面的三个阶段。与设计的Zab
算法相同，Zab 1.0算法持久化保存了history、lastZxid、acceptedEpoch、
currentEpoch四个信息。此外，还有一个非持久化信息nextZxid，也就是

下一个提议要用的zxid。接下来我们介绍前三个阶段，broadcast阶段与

设计的Zab算法的区别不大，就不再重复讲述了。

12.5.1 Phase0：leader election阶段

与设计的Zab算法一样，Zab 1.0的leader election阶段也是尽最大努

力选出一个具有最新历史的leader，并且这个leader得到大多数follower
的认可。

12.5.2 Phase1：discovery阶段

在discovery阶段，主要是确定了epoch，其详细过程如下：

（1）（F）follower连接leader，并发送

FOLLOWINFO（F.acceptedEpoch）消息。

（2）（L）leader一旦具有大多数follower的连接，则停止接受连

接，生成一个新的epoch，这个epoch大于所有的F.acceptedEpoch，把这

个epoch记为e，发送LEADERINFO（e）消息给所有的follower。
（3）（F）follower收到LEADERINFO消息后：

● 如果e>F.acceptedEpoch，则F.accceptedEpoch=e，并发送

ACKEPOCH（F.currentEpoch，F.lastZxid）消息。

● 如果e==F.acceptedEpoch，则不发送ACKEPOCH消息。



● 如果e<F.acceptedEpoch，则关闭到leader的连接，回到leader
election阶段。

（4）（L）leader等待直到收到大多数follower的ACKEPOCH消

息，如果不满足下面的条件，则leader回到leader election阶段。

● F.currentEpoch<=L.currentEpoch.
● 如果F.currentEpoch==L.currentEpoch，则F.lastZxid<=lastZxid。
与设计的Zab算法相同的是，Zab 1.0算法的discovery阶段同样也生

成了新的最大的epoch。但它们的不同之处在于，在Zab 1.0算法中，

follower没有发送history给leader，而是leader检查自己是否具有最新的

history，如果自己不具有最新的history，则重新选举；而在设计的Zab算
法中，election阶段并不要求具有最新的history的节点成为leader，其通

过复制history纠正了该阶段的这个问题。

12.5.3 Phase2：synchronization阶段

在synchronization阶段，主要完成了与follower同步的工作，其过程

如下：

（1）（L）leader对连接的follower做如下处理：

① 建立一个消息队列。

② 根据条件执行下面的操作，将下面的请求放入队列中：

● 如果follower落后太多，则将SNAP请求加入队列中。

● 在L.history中找到epoch为F.currentEpoch的最大的zxid，如果

F.lastZxid > zxid，也就意味着follower存在需要跳过的提议，

并且follower缺少事务，需要执行下面两个操作。

■ 将TRUN（zxid）请求加入队列中。

■ 把大于F.lastZxid的所有提议放入DIFF请求中，将DIFF请求加

入队列中。

③ 将NEWLEADER（e）请求放入队列中。

④ 发送堆积在队列中的请求。

（2）（F）follower接收到SNAP、TRUN、DIFF消息后，并不立即



应用，而是等待NEWLEADER消息，一旦收到NEWLEADER消息，就

原子地完成下面两个操作，之后发送ACK（e）。

● 变更应用状态。

● 设置F.currentEpoch=e。
（3）（L）一旦leader收到大多数follower发送的ACK，它取得了

epoch为e的领导权，也就意味着它成为established leader，并且发送

UPTODATE请求，再次开始接受follower的连接，设置

nextZxid=（e<<32）+1，进入下一个阶段。

（4）（F）follower收到UPTODATE请求后，进入下一个阶段。

与设计的Zab算法不同的是，在Zab 1.0算法的synchronization阶段，

leader并不向follower发送全部的history，而是根据情况发送增量的提

议。

12.5.4 Zab 1.0算法处理leader宕机故障

Zab 1.0算法修复了Zab Pre 1.0算法的bug（参见12.4.4节），下面我

们来分析。

修复第一个bug：A发生宕机，B被选为新的leader，B生成为2的新

epoch，通过NEWLEADER发送给其他节点，其他节点收到

NEWLEADER后，把自己的currentEpoch赋值为2，B提议Proposal[2，
1]。但这个提议被其他节点接受前，B发生宕机，C被选为新的leader，
C生成为3的新epoch，通过NEWLEADER发送给其他节点，其他节点收

到NEWLEADER后，把自己的currentEpoch赋值为3，B提议Proposal[3，
1]。

这时B从宕机中恢复，向C发送ACKEPOCH（1，[2，1]），C在自

己的history中找到epoch为1的最大zxid是[1，10]，因为[1，10]<[3，1]，
所以发送TRUNC（[1，10]），删除B上的提议Proposal[2，1]，再发送

大于[1，10]的提议Proposal[3，1]给B。
修复第二个bug：在图12.8所示的例子中，server1从宕机中恢复，

发送ACKEPOCH（0，[0，3]），server2在自己的history中找到epoch为0
的最大zxid是[0，2]，因为[0，2]<[0，3]，所以发送TRUNC（[0，



2]），再发送大于[0，2]的提议Proposal[1，1]给server1。

参考文献

[1] Budhiraja N, Marzullo K, Schneider FB, et al. Distributed systems
(2nd Ed. ). ch. 8: The Primary-Backup Approach. ACM Press/Addison-
Wesley Publishing Co. , 1993.

[2] Reed B, Junqueira FP. A simple totally ordered broadcast protocol.
LADIS'08: Proceedings of the 2nd Workshop on Large-Scale Distributed
Systems and Middleware, 2008.

[3] Junqueira FP, Reed BC, Serafini M. Zab: High-performance
broadcast for primary-backup systems. DSN'11: Proceedings of the 2011
IEEE/IFIP 41st International Conference on Dependable Systems&Networks,
2011.

[4] Junqueira FP, Reed BC, Serafini M. DISSECTING ZAB.
https://cwiki.apache.org/confluence/download/attachments/24193444/yl-
2010-007.pdf, 2010.

[5] Zab Pre 1.0.
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Zab+Pre+1.0.

[6] Medeiros A. ZooKeeper's atomic broadcast protocol: Theory and
practice. http://www.tcs.hut.fi/Studies/T-79.5001/reports/2012-
deSouzaMedeiros.pdf, 2012.

[7] zookeeper servers should commit the new leader txn to their logs.
https://issues.apache.org/jira/browse/ZOOKEEPER-335.

[8] Divergence in ZK transaction logs in some corner cases.
http://zookeeper-user.578899.n2.nabble.com/Divergence-in-ZK-transaction-
logs-in-some-corner-cases-td2547596.html.

[9] Zab 1.0.
https://cwiki.apache.org/confluence/display/zookeeper/zab1.0.



第4部分 一致性

本部分主要讲解前面章节中出现过的两个比较难于理解的一致性模

型：顺序一致性和线性一致性。

第13章 事务一致性与隔离级别

关系型数据库是很多人熟知的一种存储，也是使用最广泛的一种存

储。相对于其他存储，关系型数据库出现的时间较早，理论也比较完

整。关系型数据库的相关理论体系非常庞大，不是一章能说完的。本章

主要讲解关系型数据库中的事务一致性和隔离级别部分。

简单来说，事务（transaction）是逻辑上的一组操作，也就是一个

客户端将多个增加（insert）、删除（delete）、修改（update）、查询

（select）操作组合在一起，形成一个逻辑上的组。

事务具有“酸”性，也就是ACID。ACID是四个单词首字母的组合，

即Atomicity（原子性）、Consistency（一致性）、Isolation（隔离

性）、Durability（持久性）。有了ACID，即使出现错误和故障，数据

库也仍然可以保证正确性。下面对每一个特性分别进行介绍。

● 原子性：保证事务中所有的操作就像一个单元，要么它们全部成

功完成，要么它们全部失败。

● 一致性：保证事务仅仅能将数据从一种有效的状态变成另一种有

效的状态。也就是说，所有对数据库的写入操作都是根据数据

库的约束规则进行的。举一个常见的例子，比如转账事务，从

一个账户减掉100，再向另一个账户增加100，但无论这个事务

成功还是失败，都要保持两个账户的总额不变。

● 隔离性：数据库的事务往往是并发执行的，隔离性用来定义并发

控制的程度（13.1节将详细介绍）。

● 持久性：保证事务一旦提交，即便出现系统宕机或者断电的情

况，数据也仍然处于提交状态。

13.1 ANSI的隔离级别



为了明确定义一个通用的、与具体实现无关的隔离级别，

ANSI/ISO SQL-92标准采用了一种通过异常现象（phenomena）来定义

隔离级别的方式。

13.1.1 ANSI的隔离级别定义

我们先来看ANSI/ISO SQL-92标准中定义的三种异常现象。

1.脏读（dirty read，DR）

例如，事务T1修改一个数据，事务T2在T1提交或者回滚之前读取

到了这个数据。如果T1执行了回滚，那么T2就读取到了一个不存在的

值。

在这个例子中，每条虚线表示一个事务，从左到右为时间流逝的方

向。w（a=1）表示将值1写入a中；r（a=1）表示读取a，读取到的结果

是1；abort表示取消这个事务。每个操作在虚线中的位置指示了该操作

发生的时间。本章后面采用同样的表达方式来说明。

2.不可重复读（non-repeatable read，NRR）

例如，事务T1读取一个数据，然后事务T2修改或者删除这个数据

并提交。接下来，如果T1试图再次读取这个数据，那么它会读取到一个

修改过的值，或者发现这个数据已经被删除了。

在这个例子中，commit表示提交事务。

3.幻读（phantom read，PR）

例如，事务T1读取一组满足某一查询条件的数据，然后事务T2创
建一组满足T1查询条件的新数据并提交。如果T1再次按这一查询条件

读取，那么它将获得不同于第一次读取的数据。



在这个例子中，r（where 1<a<10）表示读取所有大于1且小于10的
数据项；add（a=3）表示添加一个等于3的数据项。

根据上面三种异常现象，ANSI/ISO SQL-92标准中定义了四种不同

的隔离级别（isolation level），分别是：

● 读未提交（read uncommitted，RU）。

● 读已提交（read committed，RC）。

● 可重复读（repeatable read，RR）。

● 可串行化（serializable）。

在读未提交级别下，会出现前面提到的三种异常现象，每避免一种

异常现象就到达一种新的隔离级别：

● 如果避免了脏读，则到达读已提交级别。

● 如果避免了不可重复读，则到达可重复读级别。

● 如果避免了幻读，则到达可串行化级别。

总结这部分内容，如表13.1所示。

表13.1 ANSI/ISO SQL-92标准中根据异常现象定义的隔离级别

13.1.2 对一致性的破坏

上面我们介绍了三种异常现象以及基于它们的四种隔离级别。读者

可能会有这样的疑问：如果出现脏读、不可重复读或者幻读，重新读一

遍就好了，为什么要避免这三种异常现象呢？其实出现这三种异常现象

不仅仅会导致客户端读取到错误的数据，还会导致数据不一致，也就是



破坏了事务的ACID中的C（一致性）特性。而破坏了一致性，就说明数

据库中的数据出现了错误。

首先，我们来看脏读对一致性的破坏。

假设存在一个消费数据项（c）和一个余额数据项（b），两个数据

加起来要保证总数是1000。在初始状态消费字段是0，余额字段是

1000，加起来是1000。执行下面两个事务：

事务T1执行重新初始化，将c设置成100，将b设置成900；事务T2是
消费事务，要消费50，所以这个事务先读取c，在读取到的c的基础上加

50，将结果写入c，然后读取b，在读取到的b的基础上减去50，再把结

果写入b。最后，事务T1并没有提交，取消了，而事务T2对c的读操作在

取消之前，其他操作在取消之后。这两个事务执行完后，c=150，
b=950，c+b>1000。在这种情况下，虽然两个事务分别执行都可以保证

不打破约束，但是它们并发执行后，数据库的数据将出现不一致，不再

保证c+b是1000。
接下来，我们来看不可重复读对一致性的破坏。

假设有一个根据账户余额发放优惠折扣的功能，读取账户余额，大

于50则发放优惠折扣，再次读取账户余额，按同样的标准，即大于50则
记录到汇总报表中。我们用record()表示这个操作。可想而知，应该存

在这样的约束：优惠折扣与汇总记录同时发生。我们来看下面两个事务

的执行：

事务T1读取账户余额，此时账户余额为0，放弃优惠折扣；事务T2
更新账户余额为100。事务T1再次读取账户余额，记录到汇总报表中。

虽然两个事务单独执行都不会打破约束，但是两个事务并发执行后，优

惠信息出现不一致。

最后，我们来看幻读对一致性的破坏。

假设进行订单统计，如日订单统计、月订单统计，应该存在这样的

约束：日订单统计和月订单统计是一致的。我们来看下面的例子：



事务T2在事务T1的日订单统计和月订单统计之间插入了一笔新的

交易。虽然两个事务单独执行不会打破约束，但是两个事务并发执行

后，日报表和月汇总表数据出现不一致。

从第二个例子和第三个例子可以看出，不可重复读其实是幻读的一

个特例，二者都是不可重复读，只是幻读发生在满足条件的一组数据

上，当只有一条数据满足条件时，就退化成了不可重复读。

13.1.3 脏写

除了ANSI/ISO SQL-92标准中定义的三种异常现象，其实还有一种

脏写（dirty write）异常现象。脏写是这样定义[1]的：

事务T1修改一条数据，然后事务T2在事务T1提交或者回滚前修改

这条数据。如果事务T1或者事务T2执行回滚，那么就不清楚正确的数

据应该是什么。

举例来说，假设数据库存在这样一个约束：x==y。

在这个例子中，事务T1对x写入1，之后事务T2对x写入2，再对y写
入2，提交。事务T2提交后，此时x和y都是2。之后事务T1对y写入1，
提交。在这种情况下，将出现x（2）！=y（1）的结果。

13.1.4 锁机制

基于锁的实现是一种非常常见的数据库实现技术。我们可以从以下

三个维度来区分锁的使用。

● 范围（scope）：这个锁是数据项锁（item lock）还是谓词锁

（predicate lock）。简单来说，数据项锁就是对数据实体加

锁，谓词锁就是对某个条件加锁，比如where a==1。
● 模式（modes）：这个锁是读锁（read lock）还是写锁（write



lock）。

● 持久（duration）：这个锁是长周期锁（long duration lock）还

是短周期锁（short durationlock），长周期锁会保持到事务结

束，短周期锁只在操作执行时加锁。

在基于锁技术实现的数据库中，会出现哪些异常现象，或者说达到

什么隔离级别，取决于锁的使用。

● 基本要求：为了保证数据正确地写入，在某一时刻对于某个数据

项，只能有一个事务进行写入，从而保证写入数据的完整性。

因此需要在写入前对数据加锁，直到写入完成。也就是说，需

要加上短周期数据项写锁（short duration item write lock）。

● 防止脏写：在写入数据前，给数据加上长周期数据项写锁（long
duration item write lock），可以防止脏写的出现。比如前面

脏写的例子，如果加上了long duration item write lock，则执行

过程如下：

在上面的例子中，用wl（x）表示对数据x加写锁，用ul（x，y）表

示对数据x和y加锁结束。

事务T2要写入x和y，必须为x和y加写锁，而这会被事务T1对x和y
加的写锁阻塞，直到事务T1释放x和y上的锁。

● 防止脏读：在读取数据前，给要读取的数据加上短周期数据项读

锁（short duration itemread lock），可以防止脏读的出现。

比如前面脏读的例子，执行过程如下：

加上short duration item read lock后，事务T2读取到的a的值为0。事

务T2要读取a，必须为a加读锁，但是会被事务T1为a加的写锁所阻塞，

直到T1释放锁。

● 防止不可重复读：在读取数据前，给要读取的数据加上长周期数



据项读锁（long durationitem read lock），可以防止不可重复

读的出现。比如前面不可重读的例子，执行过程如下：

加上long duration item read lock后，事务T1的前后两次读取都会读

取到相同的值。事务T2要写入a，需要为a加写锁，而这会被事务T1的读

锁一直阻塞，直到T1提交。

● 防止幻读：在读取数据前，给要读取的数据加上长周期谓词读锁

（long duration predicateread lock），可以防止幻读。比如前

面幻读的例子，谓词锁会锁定1<a<10这个区间，事务T2向这个

区间写入新数据的动作会被阻塞。

13.2 SI和SSI隔离级别

在数据库中，不只有前面介绍的四种隔离级别，在不使用锁技术的

数据库中，还存在SI（Snapshot Isolation）和SSI（Serializable Snapshot
Isolation）隔离级别。

13.2.1 MVCC

除了前面讲解的基于锁的数据库实现技术，还有其他数据库实现技

术，比如MVCC（Multi-Version Concurrency Control）就是非常常见

的一种技术。在MVCC中，一个数据会被保存为多个版本，如第9章所

讲的，CockroachDB就采用这种方式。

采用MVCC技术，一般会以时间戳作为数据的版本号。每个事务都

会依据时间戳，在事务开始的时候建立一个快照（snapshot），事务后

续所有的读操作都会从快照中读取，即使这个数据被修改，也不会读取

到修改后的数据，所以也就不会发生脏读；因为每个读操作都是从快照

中读取的，不管对同一个数据进行多少次读取，都会读取到相同的数

据，所以也就不会出现不可重复读和幻读。

13.2.2 SI隔离级别



虽然采用MVCC技术实现了从快照中读取，从而避免了ANSI/ISO
SQL-92标准中定义的三种异常现象，但实际上仍然没有达到serializable
隔离级别，因为并没有避免所有的异常现象。接下来我们就讲解会出现

哪些异常现象。

基于MVCC技术的实现所达到的隔离级别又不同于ANSI/ISO SQL-
92标准中定义的任何级别。Hal Berenson等人在一篇论文[1]中命名了一

种新的隔离级别，叫作Snapshot Isolation（SI）。

采用SI隔离级别可以带来非常大的好处。由于事务中的读操作都是

从快照中读取数据的，所以不需要对数据加锁，也就不会阻碍写操作，

大大提高了数据库的写入性能。

Hal Berenson等人在提出Snapshot Isolation的同时，也批评了

ANSI/ISO SQL-92标准中定义的隔离级别，因为ANSI的隔离级别并不能

覆盖所有的隔离级别。

使用快照技术的数据库，虽然不会出现脏读、不可重复读、幻读三

种异常现象，但是会出现其他异常现象，也就是不能达到serializable隔
离级别。本节讲解在SI隔离级别中会出现的异常现象。

1.丢失更新

第一种异常现象是丢失更新（lost update，LU）。丢失更新的定义

是：事务T1读取一个数据，之后事务T2更新这个数据，接下来T1也更

新这个数据并提交。也就是出现如下情况时，会发生丢失更新：

此时，w2[x]实际上是没有产生作用的，也就是丢失了。下面举个

具体的例子来解释这种异常现象。假设两个事务都在对一个字段进行累

加操作，事务T1在原有基础上将字段增加30，事务T2在原有基础上将

字段增加40。如果原始字段是100的话，则最终正确的结果应该是170。
但是会出现这样的情况：

可以看出，x的最终结果是130，也就是事务T2增加40的这个操作丢



失了，虽然数据库已经向事务T2的客户端返回了“成功”。
在数据库累加场景中丢失更新是非常可能出现的一种异常现象。比

如下面这样的SQL语句：

这条SQL语句会被拆解成两个操作，其中第一个操作是读取操作，

在读取到的值的基础上加1；第二个操作是写入操作。如果两个事务同

时执行这条SQL语句，假设a的原始值为3，那么会出现下面的丢失更新

的情况，得不到预期的结果a=5，而是得到了a=4，就像其中一个操作没

有执行一样：

2.写偏斜

第二种异常现象是写偏斜（write skew，WS）。假设事务T1读取x
和y，之后事务T2写入x，提交；接下来事务T1写入y，提交。在这种情

况下，x和y的数据项约束可能就被打破。

我们再举一个银行账户的例子，这次是账户合计。假设一个人有两

个账户，只要这个人的账户总额不是负数，单个账户是可以为负数的，

保持这个人的账户总额大于0的约束。两个事务分别开始检查这个约

束，并且分别从两个账户中扣款，事务T1从x中扣款60，事务T2从y中
也扣款60。

在这个例子中，两个事务各自都认为，其执行后这个人的账户总额

是40，没有违反约束。但是两个事务执行完后，这个人的账户总额变成

了负数。

13.2.3 SSI隔离级别



PostgreSQL数据库早期只支持SI隔离级别，从20世纪90年代开始探

索如何在SI隔离级别的基础上，避免脏写和写偏斜，从而达到

serializable隔离级别[2]。并且开始用serializable Snapshot
Isolation（SSI）命名它的最高隔离级别，但实质上它仍然是serializable
隔离级别，只是SSI是完全基于MVCC、镜像等技术实现的serializable隔
离级别，并不是一种新的隔离级别。

与PostgreSQL类似，本书第9章讲解的CockroachDB也是完全基于

MVCC、镜像技术实现的，没有采用任何锁技术，但是它仍然采用了比

较传统的serializable隔离级别的称呼。

对于MySQL和本书第8章讲解的Spanner，虽然它们都采用了MVCC
和镜像技术，但是在实现serializable隔离级别时，仍然采用了基于锁的

实现技术。
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第14章 顺序一致性

本书第7章ZooKeeper提到过顺序一致性，顺序一致性是Lamport在
1979年首次提出的[1]。本章将详细介绍顺序一致性。

14.1 顺序一致性的正式定义

人们遇到一个陌生的概念时，比较常规的做法是，用自己已知的概

念和知识体系来理解这个陌生的概念。这是一种非常有效的学习方法，

但是这里希望读者暂时不要采用这种方法来阅读这一节。比如你之前听

说过顺序一致性，或者听说过强一致性、最终一致性等，这里暂时先放

下你之前的理解，按照本节的思路（也就是Lamport的思路）来理解顺

序一致性。到了14.3节，会讲解在其他一些文字（非Lamport的论文）中

对顺序一致性的描述，到时结合本节所讲来进行综合理解。

如果你之前没有读过Lamport的这篇论文，那么这一节就请跟着

Lamport的思路来看看什么是顺序一致性。

14.1.1 顺序一致性应用的范围

在讲解顺序一致性的定义前，我们先来看看Lamport定义顺序一致

性的这篇论文的题目中出现的一个关键词，然后讨论顺序一致性的应用

范围。Lamport的这篇论文的题目为：

"How to make a multiprocessor computer that correctly executes
multiprocess programs"

论文的题目中包含multiprocessor这个词，multiprocessor是多个处

理器的意思，multiprocessor computer也就是具有多个处理器的计算机

系统（本书后续简称为多处理器计算机）。从这个关键词来看，顺序一

致性是用来定义多处理器计算机和运行在多处理器计算机上的程序的一

个特性。

Lamport的这篇论文的题目可以翻译成“如何产生正确执行多进程程

序的多处理器计算机”。也就是说，如果一个多处理器计算机具有顺序

一致性的特性，那么这个多处理器计算机就可以保证多进程程序正确运



行，后面14.4节会解释这个“正确运行”是什么意思（即顺序一致性的作

用）。从这个题目还可以看出，顺序一致性应该是并发编程

（concurrent programming）领域中的一个概念，但是在分布式系统领域

中也常常讨论顺序一致性，比如本书15.4节就会讨论

ZooKeeper（ZooKeeper很明显是一个分布式系统）是顺序一致性的。实

际上，多处理器计算机上运行的多个程序，其实也是一种分布式系统

（Lamport在他的分布式系统的开山之作[2]中也阐述了这个观点）。所

以，虽然顺序一致性最早是在并发编程领域中提出的，但是它也可以被

应用在分布式系统领域中。另外，比较重要的线性一致性（本书第15章
会讲解线性一致性）最早也是在并发编程领域中提出的，它也被广泛地

应用在分布式系统领域中。

14.1.2 顺序一致性的定义

Lamport的论文中的定义是：当一个系统满足下面的条件时，这个

系统就具有顺序一致性（sequential consistency）：

"The result of any execution is the same as if the operations of all the
processors were executed in some sequential order,and the operations of each
individual processor appear in this sequence in the order specified by its
program."

翻译如下：

任意执行的结果和好像在处理器上执行的所有操作都按照某一种顺

序排序执行的结果是一样的，并且每个处理器上的操作都会按照程序指

定的顺序出现在操作序列中。

这段英文的定义很晦涩，因此本节内容也比较难懂，下面会逐步解

释，请读者耐心阅读。

个人感受

这是Lamport一向的风格，严谨但晦涩，Paxos算法也是如此，比

如10.3.3节讲解的Paxos算法的选择值过程，Lamport也是用最少的文

字描述出来，也颇晦涩。



14.1.3 核心概念的解释

在解析顺序一致性的定义之前，我先来解释定义中的一些核心概

念。

1.执行和结果

多个程序（program）在多处理器计算机上运行，假设有两个程

序，第一个程序为P1，它的代码如下：

第二个程序为P2，其代码如下：

在实际中，如果这两个程序运行在具有两个处理器的计算机系统

上，那么会有很多种可能的执行，每一种可能的执行都可能有不同的结

果。下面列举其中几种来说明。

注：在下面的例子中，带箭头的水平虚线代表从左向右时间流逝的

方向，每条水平虚线都代表一个处理器，操作出现在水平虚线上的位置

描述了这个操作发生的时刻。本节后面的其他例子也采用这种方式说

明。

execution 1:

read的结果是：1。
execution 2:

read的结果是：2。
execution 3:

read的结果是：1。



我们称每一种可能为一个执行（execution），每一种可能的执行都

有结果（result）。例子中read方法读取到的值就是结果。

当然，现实的多处理器计算机不会仅仅有上面列举的三种执行，而

是会有非常多的执行，并且还会有操作并发执行。比如下面的执行：

execution 4:

但是本节暂时不讲解execution 4这样的执行，14.2节会单独重点讲

解execution 4这样的并发操作同一个数据的执行，并且在14.4.1节中会讲

解锁机制与顺序一致性的关系。

2.顺序排序

在处理器的这种上下文中，所有操作（operation）一个接一个地执

行，并且没有重叠，就是顺序（sequential）执行。排序（order）是指

经过一定的调整，让某种东西按照一定的规则排列，变得有序。比如，

算法中的排序算法是ordering，就是让数组按照从大到小或者从小到大

的规则排列。那么，顺序排序（sequential order）就是指让所有操作按

照一个接一个、没有重叠这样的规则排列。

仍然说前面的例子，如果把运行在两个处理器上的所有三个操作按

照一个接一个的规则排列，则可以得到3！（3！是3的排列组合，也就

是1×2×3）个可能的排序。＃

3.序列

我们刚刚解释过sequential order是顺序排序的意思，而排序是一个

动作，这个动作会产生结果，该结果产生了一个操作所组成的序列

（sequence）。这些序列是：＃

sequential order sequence 1(sos1):

sequential order sequence 2(sos2):

sequential order sequence 3(sos3):



sequential order sequence 4(sos4):

sequential order sequence 5(sos5):

sequential order sequence 6(sos6):

如果把每个序列都放在一个处理器上执行，那么也会产生一个结

果。我们继续看前面的例子，有6个序列，并且会有6个结果。

sequential order sequence 1（sos1）的执行：

read的结果是：1。
sequential order sequence 2（sos2）的执行：

read的结果是：2。
sequential order sequence 3（sos3）的执行：

read的结果是：1。
sequential order sequence 4（sos4）的执行：

read的结果是：2。
sequential order sequence 5（sos5）的执行：

read的结果是：0。
sequential order sequence 6（sos6）的执行：

read的结果是：0。



14.1.4 定义解析

解释完几个核心概念后，我们开始解析顺序一致性的定义。在顺序

一致性的定义中包含两部分含义，下面分别进行讲解。

第一部分：结果相同

我们先来看定义的第一部分：任意执行的结果和好像在处理器上执

行的所有操作都按照某一种顺序排序执行的结果是一样的。

定义中的“任意执行”，就是指任意一种可能的执行，在定义中也可

以理解为所有可能的执行。这句话的意思是说，运行在多处理器计算机

上的程序，无论有多少种实际的执行的可能，对于每一种可能的执行结

果，都好像存在一种顺序排序而产生一个序列，这个序列在一个处理器

上执行，每种可能的执行的结果至少与一个序列执行的结果一样。

注意，这个序列不是真实的执行，这里说的是逻辑上的假设，这也

就是为什么定义中有一个“好像”的原因。

前面14.1.3节列举了两个程序的三种执行execution 1、execution 2、
execution 3，并且也得出了这两个程序的6个sequential order sequence的
执行，那么这三种执行的每一种的结果都至少与一个sequential order
sequence的执行结果相同，也就是：

在14.1.3节的例子中，如果这个多处理器计算机针对两个程序只产

生了这三种执行，那么它是符合第一部分定义的。但是实际中的多处理

器计算机还会有更多的执行，14.2节会详细讲解，这里暂时假设例子中

的多处理器计算机只能产生三种执行。

我们从反方向来理解这个定义：如果一个处理器要满足这个定义，

那么这个处理器就只允许满足条件的那些执行存在，其他不满足条件的

执行都不会出现。

第二部分：程序顺序

定义的第二部分是：并且每个处理器上的操作都会按照程序指定的

顺序出现在操作序列中。



定义的这部分是说，如果程序是先write（x），后read（x），那么

只有符合这个顺序的操作序列是满足条件的。在上面的例子中，sos4、
sos5、sos6这三个序列就不满足这部分定义，因为在这三个序列中，

write（x=1）在后，read（x）在前，而在程序P1中，write（x=1）在

前，read（x）在后。

好了，现在我们可以把两部分定义合起来，完整地看一下：

任意执行的结果和好像在处理器上执行的所有操作都按照某一种顺

序排序执行的结果是一样的，并且每个处理器上的操作都会按照程序指

定的顺序出现在操作序列中。

继续上面的例子，满足程序顺序的序列只有三个，它们是sos1、
sos2、sos3，所有的三种可能的执行的结果都与这三个序列的其中一个

的执行结果一样，也就是：

我们可以说在这个多处理器计算机上，这两个程序的执行是满足顺

序一致性的。进一步深入，如果在一个多处理器计算机上运行的所有程

序的所有可能的执行都满足这个定义，那么这个多处理器计算机就是顺

序一致性的。

个人感受

从这个定义中可以看出，这个概念的核心就是sequential order，
这也就是Lamport将这种一致性模型称为sequential consistency的原

因。可以说这个命名是非常贴切的。

到这里，我们已经完整地讲解了什么是顺序一致性。但是，细心的

读者可能会问：如果program是多线程的程序怎么办？我们再将定义中

最后一个细节program解释一下。program是指可以直接运行在处理器上

的指令序列。这并不是program的严格定义，但是要指出的是，这个

program是操作系统中都没有出现的“远古时代”就存在的概念。在这个

定义中，program就是指那个时代的program。这个program里没有进程、



线程的概念，这些概念都是在有了操作系统之后才有的。因为没有操作

系统，也没有内存空间的概念，所以不像我们现在所说的程序

（program），不同的程序有自己独立的内存地址空间。这里说的内存

（memory），对于不同的program来说是shared。另外，需要注意的

是，program可以用来说明各种程序，不管是操作系统内核还是应用程

序都适用。

14.1.5 在分布式系统中的定义

前面讲过，虽然顺序一致性是针对并发编程领域提出的，但它也是

分布式领域中的概念，特别是分布式存储系统。在Distributed
Systems：Principles and Paradigms这本书[3]中，作者稍微修改了一下

Lamport的定义，让这个定义更贴近分布式领域中的概念。我们来看一

下作者是怎么改的：

"The result of any execution is the same as if the (read and write)
operations by all processes on the data store were executed in some
sequential order and the operations of each individual process appear in this
sequence in the order specified by its program."

作者把处理器（processor）换成了进程（process），并且加了在数

据存储中（on the data store）这个限定。在Lamport的定义中没有这个限

定，默认指的是内存（memory）。process就是指进程，以ZooKeeper为
例，就是指访问ZooKeeper的应用进程。program不是底层的概念，它也

是基于操作系统的应用程序。

在后续章节中，为了理解上的方便，我们有时会用多处理器计算机

来举例，有时也会用分布式系统来举例，但两种方式是相同的。

14.1.6 举例说明

下面举例说明如何使用上面的定义来判断一个系统是否满足顺序一

致性。我们拿ZooKeeper来举例。

假设有三个客户端，分别为A、B、C。A向ZooKeeper中的a写入一

个值1，B写入一个值2，C读取a。我们观测到，实际的执行如下：



我们以C的print操作作为结果，A连接到leader，先后发起两个写操

作，B连接到一个follower。从第7章中ZooKeeper的介绍我们知道，写入

复制到follower可能出现延迟，所以B可能读取到三种可能的结果：

null，1，2。
那么，前面的这些ZooKeeper的执行是不是顺序一致性的呢？我们

这样来分析：对于任意排列组合，我们可以得到这三个操作的6个排列

组合，每一个排列组合都是定义中所说的sequential order。
sequential order 1:

结果是2。
sequential order 2:

结果是1。
sequential order 3:

结果是1。
sequential order 4:

结果是2。
sequential order 5:

结果是null。
sequential order 6:

结果是null。
可以看出，在6个sequential order中，sequential order 2、sequential



order 4、sequential order 6不符合程序顺序。而实际的执行的三种结果，

分别与sequential order 1、sequential order 3、sequential order 5的执行结

果相同。也就是说，这些实际的ZooKeeper的执行符合顺序一致性。

这是我们举的一个例子，实际上，ZooKeeper的所有实际执行都符

合顺序一致性。

14.2 理解顺序一致性

前面讲解了顺序一致性的正式定义，表面上看，这个定义有些在说

废话，但实际上顺序一致性的定义是非常严苛的。本节来说明如何理解

顺序一致性的定义是非常严苛的，也就是如何理解顺序一致性的正式定

义。

14.2.1 顺序排序

在前面14.1.3节的例子中，两个程序的运行只产生了三种执行，但

实际中执行要多于三种。我们再列举一些可能的执行，实际中的多处理

器计算机还会有下面的可能的执行，两个操作在两个处理器上同时执

行。

execution 4:

我们知道，多处理器计算机中的两个处理同时操作一个内存会产生

冲突，因此需要一定的机制来解决这种冲突。不管多处理器计算机采用

什么机制，顺序一致性都要求所有可能执行的结果与一个sequential
order的执行结果相同。也就是说，如果execution 4=sos1 or sos2，那么这

个多处理器计算机就满足顺序一致性。能够满足这一点的解决冲突的机

制，往往是一种并发控制机制。

对于分布式系统，如果系统满足顺序一致性，那么多个客户端在这

个分布式系统上同时执行操作，也要存在一定的并发控制机制，两个客

户端并发执行的操作的结果要与某个sequential order的执行结果相同。

总而言之，不管是多处理器计算机还是分布式系统，具体实现内部

可以并发执行，但是结果要与顺序执行的结果相同；而要与顺序执行的



结果相同，往往需要采用一定的并发控制机制，也就是锁机制，其成本

往往是很高的。

14.2.2 程序顺序

除了上面讲的并发执行，在真实的计算机系统中还有可能出现指令

重排。经过编译器的优化，编译器可能对实际执行的指令进行重排，也

就是可能出现下面这种可能的执行。

execution 5:

P1经过编译后，编译器可能把read指令提前到write前执行

（execution 5的例子举得有些生硬，实际中不会出现这种指令重排的优

化）。

可以看出，execution 5=sos 5 or sos 6，但是从前面的定义我们知

道，sos5、sos6都是不符合定义第二部分的要求的，也就是不符合程序

顺序，execution 5是不满足顺序一致性定义的。所以，如果某种多处理

器计算机允许execution 5出现，那么这种多处理器计算机就不符合顺序

一致性。

除了指令重排，处理器中还存在高速缓存，顺序一致性对高速缓存

的使用也有要求——可以使用高速缓存，但是结果必须与sequential
order的执行结果相同。举例说明如下。

execution 6:

实际的计算机系统一般也不会做像这个例子中这样的高速缓存优

化，这里仅仅用来举例说明。execution 6=sos6，但是sos6不符合程序顺

序。所以，如果实际中真的有多处理计算机做了这样的高速缓存优化，

那么该多处理器计算机不是顺序一致性的。

14.2.3 顺序一致性是严苛的



从前面的分析可以看出，顺序一致性是非常严苛的。一种多处理器

计算机要想满足顺序一致性，多个程序在多个处理器上运行的效果

应“等同”于在一个处理器上顺序执行所有操作的效果。如果这样的话，

那么多核的威力基本就消失了。顺序一致性并没有规定多处理器计算机

如何实现并发机制，但是要求这种并发机制能够达到顺序执行的效果。

此外，顺序一致性也大大限制了编译器指令重排和高速缓存优化。

所以，无论是Lamport写顺序一致性这篇论文的1979年，还是现

在，没有任何一个现实的多处理器计算机实现了顺序一致性。那么，为

什么Lamport大神提出这样一个不现实的概念呢？后面14.4节会继续讨论

顺序一致性的作用，也就是为什么Lamport要提出顺序一致性。

14.3 顺序一致性的其他描述

如果你之前关注过顺序一致性，那么你可能听过或者看过顺序一致

性的很多种不同的描述，它们与Lamport的正式定义不尽相同。笔者整

理了其中的两种描述，罗列在本节中。这里并不是说这些描述（或者叫

通俗描述）不对，笔者选取的都是对顺序一致性的正确描述，主要是想

说明如何从正式定义推导出这些描述。即便本节没有把所有对顺序一致

性的描述罗列全，读者以后遇到一种新的描述时，也可以通过定义来判

断该描述是否正确。在实际使用中，这些描述都可以很好地帮助我们理

解一个系统，但是这些描述和正式定义是不等价的，有些描述甚至绕过

了正式定义中最核心的sequential order的概念。

14.3.1 第一种描述：全局视角一致

在Wiki[4]中对Consistency Model有如下描述：

“writes to variables by different processors have to be seen in the same
order by all processors”（不同的处理器对变量的写操作从所有的处理器

角度来看必须是相同的顺序）

我们通过例子来说明如何从正式定义推导出这种描述。下面列出一

种我们观测到的实际执行：



如果这个多核系统符合顺序一致性，那么我们不可能看到这样的执

行结果：

你可以按照14.1节所讲的列出所有排列组合，没有任何排列组合可

以得出上面这样的结果。所有能够得到的排列组合，只能产生这样的结

果：如果一个处理器看到变量x先被赋值1，再被赋值2，那么另一个处

理器绝不可能看到x先被赋值2，再被赋值1。这句描述也可以被理解为

在顺序一致性的系统中，在全局视角下操作是一致的，并且操作要符合

程序顺序。

14.3.2 第二种描述：允许重排序

在Distributed systems for fun and profit[5]这本书中，还有另外一种对

顺序一致性的描述，这种描述经常被引用。这种描述相对简单易懂，并

且绕过了正式定义中比较晦涩的sequential order的概念，所以被接受的

程度还是比较高的。该描述是：

“Sequential consistency allows for operations to be reordered as long as
the order observed on each node remains consistent.”（顺序一致性允许按

照与每个节点保持一致排序的条件重排操作。）

下面我们用正式定义推导出这种描述。假设有下面的执行：

执行结果是打印出a==1。
假设我们能够通过重排序（reorder）来调整操作的实际执行时



间，得到一个满足常理的相同结果，那么执行就是顺序一致性的。例

如，可以通过重排序得到如下执行：

按照常理，上面重排序后的执行结果应该是打印出a==1，那么就可

以说重排序前的执行符合顺序一致性。

按照顺序一致性的正式定义，可以得出，其实原始执行的结果与下

面的sequential order的执行结果相同，并且保持了原始执行的程序顺

序，所以原始执行符合顺序一致性。

可以看出，重排序后的执行顺序与这个sequential order完全一致。

对这种描述有一个更通俗的比喻：每个处理器都是一根烤肉签子，

这些处理器上的操作，就好像是每根签子上的烤肉，你可以任意移动

（reorder）签子上的烤肉。

14.4 顺序一致性的作用

看到了那么多种对顺序一致性的描述，你是否有这样的疑问：顺序

一致性有什么用？为什么人们要研究顺序一致性？为什么Lamport的论

文[1]影响如此之大？Lamport的这篇论文算是发表得非常早的一篇关于

一致性的论文，之后很多关于一致性的论文都会引用它。可以说，这篇

论文对并行计算领域和分布式计算领域产生了巨大的影响。前面14.3节
中列举了一些常见的对顺序一致性的描述，只要是在实际中能够帮助我

们分析系统是否满足顺序一致性的描述，我们就都可以采用。但是，我

们还是需要对正式定义有深刻的理解，因为只有正式定义准确描述了

sequential order，这个概念是顺序一致性的核心，也指明了顺序一致性

的作用。

14.4.1 并发条件

关于顺序一致性的作用，Lamport在论文[1]中已经给出，下面列出



Lamport在论文中给出的一个小例子。例如有两个进程，它们分别执行

的代码如下：

process 1:

process 2:

Lamport在论文中说，如果一个多处理器计算机满足顺序一致性的

条件，那么最多只有一个程序能够进入critical section。
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在论文中，Lamport并没有解释为什么最多只有一个程序能够进

入critical section。而是把这个证明留给了论文的读者，就像教科书中

的课后习题一样，留给读者来做。Lamport应该是认为这个证明太简

单了，不应该花费笔墨来证明它。这篇sequential consistency论文只有

不到两页A4纸，是笔者见过的最短的论文。这是Lamport一向的做事

风格，比如在Lamport的Paxos论文中，有很多细节都是一笔带过的，

给读者留下无尽的遐想。

这个例子说明了什么呢？你也许注意到了，这个例子没有用到任何

锁，但是它实现了critical section。critical section是一种多线程

synchronization机制。如果多处理器计算机是顺序一致性的，那么你写

的并发程序“天然就是正确的”。也就是说，顺序一致性是程序正确执行

的并发条件（concurrency condition）。在第15章中，还会介绍线性一

致性，它也是一种并发条件。所以，为了保证分布式系统的正确性，各



种分布式系统纷纷满足顺序一致性。只要实现了顺序一致性，在各种并

发的场景下分布式系统天然地就能正确执行。

为什么顺序一致性是并发条件呢？因为只要系统满足顺序一致性，

这个系统上任何执行的结果就和在一个处理器上顺序执行的结果是一样

的。也就是说，并发执行的结果和消除并发后顺序执行的结果是一样

的。虽然Lamport给出的定义是不限制任何具体实现的，在实现上可以

让操作并发执行，但是其结果要和顺序执行的结果一样。也就是说，在

定义上只要求了结果，在实现上是可以进行可能并发优化的，只要你能

做到。很多实际的系统告诉我们，没有多少并发优化的手段可以用，实

现顺序一致性就是将所有的请求操作顺序执行，系统中没有并发操作。

14.4.2 原子性

在14.3节中，我们介绍了两种对顺序一致性的描述，这里再介绍一

种，进一步从实现的角度来说明顺序一致性的作用。在Wiki[4]中对

Consistency Model有如下描述：

“In order to preserve sequential order of execution between
processors，all operations must appear to execute instantaneously or
atomically with respect to every other processor.”（为了保留处理器之间的

执行的顺序排序，所有的操作在每个处理器上都必须好像是原子执行或

者瞬间执行。）

举个例子来说明为什么操作需要是原子操作。在举例前，给出一个

非常不严谨的原子操作的定义：原子操作就是指操作是不可分割的、不

可中断的，要么全部成功，要么全部失败。

假设有一个分布式系统，对外提供两个操作：write（a，b）和

read（a，b），其中write（a，b）表示操作接受参数a、b，并将这两个

参数写入系统中；read（a，b）表示从系统中读取a、b这两个变量。只

有当write（a，b）和read（a，b）这两个操作都是原子操作时，整个系

统才可能是顺序一致性的。

如何从顺序一致性的定义推导出这个结论呢？首先假设write（a，
b）和read（a，b）不是原子操作，并且我们观测到下面这样一个实际的

执行：



结果是：a==1，b==null。
因为write（a，b）不是原子操作（在实际中是有这种可能的），对

变量a完成了赋值操作，这时操作被中断，read（a，b）操作开始执行，

当read（a，b）执行完后，write（a，b）操作恢复并且完成对b的赋值。

按照顺序一致性的定义，排列组合这个例子中的两个操作，能够得

到两个sequential order：
sequential order 1:

结果是：a==1，b==1。
sequential order 2:

结果是：a==null，b==null。
两个sequential order的执行结果和实际执行的结果不一样，所以系

统不可能是顺序一致性的。

同样，我们可以推导出，当write（a，b）和read（a，b）是原子操

作时，系统才可能是顺序一致性的。也就是说，当所有操作都是原子操

作，并且符合程序顺序时，系统满足顺序一致性。

但是要注意，我们现在说的这种描述，只是正式定义的一个必要条

件，不是充分条件。也就是说，如果满足这种描述，那么系统是满足顺

序一致性的。但是满足顺序一致性的系统，不一定满足这种描述，也就

是操作不是原子操作，也可能满足顺序一致性。我们看下面的执行：

执行结果是：a==1，b==1。
具体的执行过程如下：

（1）运行程序P1的处理器对a完成赋值操作后，中断。

（2）运行程序P2的处理器开始读取a。



（3）读取完成后，程序P1的处理器中断恢复，继续执行对b的赋

值。

（4）赋值完成后，程序P2的处理器中断恢复，读取b。
在这种情况下，所得到的结果是：a==1，b==1。
同理，排列组合这两个操作，可以得到执行结果相同的sequential

order如下：

执行结果是：a==1，b==1。
最后补充一点，描述中还提到了瞬间（instantaneously），也就是

操作瞬间完成。这与原子操作类似，可以被看作是一种特例的原子操

作，因为操作瞬间完成，也就是不可能被中断。我们也可以通过正式定

义推导出这个结论。

在其他文献中也可以看到类似的描述，比如在Distributed systems
for fun and profit[5]中对顺序一致性也给出了类似的描述：

“Under sequential consistency，all operations appear to have executed
atomically in some order that is consistent with the order seen at individual
nodes and that is equal at all nodes.”（在顺序一致性的条件下，所有操作

好像都是原子操作，并且单个节点看到的顺序与所有节点看到的顺序是

相同的。）

可以看到，本节中提到的描述和正式定义不是等价的，这也是笔者

称之为“描述”的原因，因为不等价，所以不能称之为另一种形式的定

义。
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第15章 线性一致性与强一致性

第14章讲解了顺序一致性的正式定义，本章我们来讲解线性一致性

的正式定义。线性一致性是由Maurice P.Herlihy和Jeannette M.Wing在
1990年首先提出的，论文[1]的题目是“Linearizability：A Correctness
Condition for Concurrent Objects”。

由于篇幅的限制，本章省略了论文中的很多内容，并且在保留的内

容中，也没有按照论文原文直接翻译给出，因为给出原文会引出很多新

的概念需要展开解释。如果你对这个正式定义也感兴趣的话，则可以阅

读原始论文[1]，或者翻看论文的作者Maurice写的一本书The Art of
Multiprocessor Programming[2]，这本书里也详细地给出了与论文相同的

定义。

15.1 什么是线性一致性

不同于顺序一致性只有一句话的定义，线性一致性的定义是一个由

具有紧密关系的一系列概念组合而成的，而且更像一个数学定义。线性

一致性采用顺序一致性的核心概念，如果你已经理解了顺序一致性的正

式定义，那么理解线性一致性就相对简单了。但总体来说，这一节内容

还是比较枯燥的。
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如果你有兴趣阅读线性一致性的论文，这里给你一个提示：论文

中有两处错误，其中一处无伤大雅；另一处会影响你对线性一致性的

理解。笔者向论文的作者进行求证，他表示这两处的确是论文书写的

疏漏。其中一处错误，本节中也会涉及。

接下来，我们还是按照论文的思路，讲解什么是线性一致性。

15.1.1 预备概念



1.操作（operation）
操作包括调用（invocation）事件（也就是操作的开始）和对应的

返回（associated response）事件（也就是操作的结束）。

2.历史（history）
历史是一个非常重要的概念，如果你阅读过一些关于线性一致性的

文章，那么你一定看到过history这个词。基本上，你看到线性一致性的

文章中使用history一词，就是这里要给出的定义。那么，历史是怎么定

义的？论文的原文是：

“A history is a finite sequence of operation invocation and response
events.”（一个历史是一个由有限个操作的调用事件和返回事件组成的

序列。）

3.匹配（match）
同一个操作的调用事件和返回事件是匹配的。

4.顺序（sequential）
顺序是一个非常重要的概念，这里的顺序，其实和顺序一致性中的

sequential order是同一个意思，只不过论文里给出了更明确的定义。论

文的原文是：

"A history H is sequential if:
(1) The first event of H is an invocation.
(2) Each invocation,except possibly the last,is immediately followed by

a matching response.Each response is immediate followed by a
invocation."

翻译如下：

一个历史H在下面的条件下是顺序的：

（1）H的第一个事件是调用事件。

（2）除了最后一个事件，每个调用事件后面都紧跟着匹配的返回

事件。每个返回事件后面都紧跟着一个匹配的调用事件。
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前面我们说过的其中一处错误就在这里，在第二个条件中，不应

该有第二个matching，而应该是“by an invocation”，也就是”紧跟着一

个（其他的）调用事件”。

5.偏序（partial order）

偏序在Lamport的一篇分布式系统的开山之作[3]里也有定义，和线

性一致性论文中的偏序的定义相同。在线性一致性的论文中，偏序的定

义如下：

两个操作e0和e1，如果操作e0的返回事件在操作e1的调用事件之

前，那么e0和e1就存在偏序关系。
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“偏序”这个词不太好理解。偏序（partial order）和全序（total
order）是相对立的，偏序是指部分有序，也就是非全部有序。有一个

成语叫作“以偏概全”，和这里是一个意思。

6.子历史（subhistory）
历史H中某个进程的所有调用事件和返回事件组成的子序列叫作进

程子历史（process subhistory）。

7.complete(H)
论文的原文是：

"complete(H) is the maximal subsequence of H consisting only of
invocations and matching response."

翻译如下：

complete（H）是仅仅包含调用事件和匹配的返回事件的最大子序

列。

8.等价的（equivalent）
两个历史H和H′，如果历史H的每个进程的子历史和历史H′的进程

子历史相等，则H和H′是等价的。



15.1.2 定义

上面介绍完了线性一致性的定义所需要的所有预备概念，下面是线

性一致性的定义。

一个历史H，如果能够通过在末尾添加返回事件成为历史H′，并且

历史H′满足以下两个条件，那么历史H就是线性的。

L1：complete（H′）等价于某个合法的顺序历史S。
L2：H中的偏序关系在S中也存在。

我们对该定义中的历史H进行解释。如果存在一个观测到的执行，

那么按这个执行中的每个调用事件和返回事件的实际执行时间构成的一

个事件序列，就是历史H。
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在通常情况下，每个调用事件和返回事件都有确定的发生时间，

我们按这个发生时间的顺序得到一个确定的历史H，如果恰巧出现了

发生时间完全相同的两个事件怎么办？可以把这两个事件任意排列，

谁先谁后都可以，这并不影响对线性一致性的判断。这一点在论文中

并没有提到，笔者通过邮件从论文的作者Maurice那里得到确认。

那么，如何得到S呢？类似于14.1节中介绍的顺序一致性，我们可

以排列组合所有的事件，从中找到符合顺序要求的历史。如果所找到的

历史也是合法的，那么这个历史就可以是S。由于继续展开要引入很多

概念，本节给出的定义中并未按照论文中的定义说明什么是合法，下一

节会使用一个例子来说明什么是合法。

15.2 判断系统是否满足线性一致性

在上一节中，我们已经讨论了线性一致性的正式定义。本节继续讨

论如何根据线性一致性的正式定义判断一个系统是否满足线性一致性。

如果一个系统满足线性一致性，那么这个系统所有可能的实际执行

的历史都必须是线性的。因此判断一个系统是否满足线性一致性的关

键，就转变成判断一个历史是否是线性一致性的。下面我们举例来说明



如何根据上一节讲解的定义判断一个历史是否是线性一致性的。这里使

用线性一致性论文[1]中的例子，判断一个先进先出的队列是否是线性一

致性的。这个队列支持两个操作：入队（enqueue）操作（简记成E）和

出队（dequeue）操作（简记成D）。

例子1：比如有图15.1所示这样的一个实际执行。

图15.1 execution 1

在图15.1中，有两个客户端A和B一起操作这个队列，我们用

E（x）表示对变量x进行入队操作，用D（x）表示对变量x进行出队操

作。横虚线表示一个操作的执行，竖线表示一个操作的调用事件或者返

回事件。

按照调用事件和返回事件的执行时间，我们可以得到如下实际执行

的历史H：

在这个历史H中，E（x）A表示客户端A对变量x进行入队操作的调

用事件，Ok()B表示客户端B的某个操作的返回事件。根据图15.1我们可

以推断出这个返回事件具体与哪个调用事件相匹配，所以就不进行具体

的区分了。

我们先在历史H的尾部填充一个Ok()A，得到历史H′：

历史H′的complete（H′）为：

排列组合这个序列，可以得到下面的历史S：

这个历史S是一个顺序历史，也就是所有的调用事件后面都紧跟着

匹配的返回事件。



历史H满足定义的两个条件：

● 两个历史是等价的。这是因为历史H对于客户端历史A的子历史

[E（x）A，Ok()A，D（y）A，Ok()A，E（z）A，Ok()A]（把

历史H中所有B进程的事件去掉）等于历史S对于客户端A的子

历史[E（x）A，Ok()A，D（y）A，Ok()A，E（z）A，Ok()A]
（把历史S中所有B进程的事件去掉）；同理，历史H对于客户

端B的子历史等于历史S对于客户端B的子历史。

● 历史H中存在偏序关系，即Ok()A->D（x）B，Ok()B->D（x），

Ok()B->D（y）A，Ok()A->E（z）A，其中->表示两个事件存

在偏序关系（也就是第一个事件在第二个事件之前发生），所

有这些偏序关系在历史S中仍然保持。

所以历史H是线性一致性的，图15.1所示的执行也是线性一致性

的。

例子2：如果有图15.2所示的实际执行，那么可以得到历史H：

但是，排列组合历史H中的所有事件，找不到一个历史S，满足顺

序且合法这样的条件。

图15.2 execution 2

例如有下面的历史S：

这个历史S是顺序的，与历史H是等价的，保持了偏序关系，但是

它不合法。一个队列结构，先入队x，那么一定要先出队x，不能像历史

S那样，先出队y。本书省略了对合法的定义，采用这个例子来说明什么

是合法。

因为找不到符合条件的历史S，所以历史H不是线性一致性的，图



15.2所示的执行也就不是线性一致性的。

15.3 对线性一致性的理解与强一致性

本节讲解如何理解线性一致性。首先，就像讲解顺序一致性一样，

列举线性一致性的其他描述。然后，对顺序一致性和线性一致性进行比

较。最后，讲解普遍为人所知的强一致性，以及强一致性与线性一致性

的关系。

15.3.1 线性一致性的其他描述

我们来看Wiki[4]中线性一致性的定义：

"A historyσis linearizable if there is a linear order of the completed
operations such that:

1.For every completed operation inσ,the operation returns the same
result in the execution as the operation would return if every operation was
completed one by one in orderσ.

2.If an operation op1 completes (gets a response) before op2 begins
(invokes),then op1 precedes op2 inσ.

In other words:
1.its invocations and responses can be reordered to yield a sequential

history;
2.that sequential history is correct according to the sequential definition

of the object;
3.if a response preceded an invocation in the original history,it must still

precede it in the sequential reordering."
将这段拗口的英文翻译如下：

一个历史σ存在满足下面条件的完成的操作的线性排序：

1.对于σ中每个完成的操作，该操作返回的结果与每个操作一个接

一个地完成返回的结果相同；

2.如果操作op1在操作op2开始（也就是调用）之前完成（也就是得



到返回），那么在历史σ中op1在op2之前。

这两个条件也可以被表述成下面三个条件：

1.这个历史中的调用事件和返回事件可以被重排序生成一个顺序历

史；

2.按照对象的顺序定义，顺序历史是正确的（其实就是前面15.2节
的“例子2”中所说的合法）；

3.如果在原始的历史中一个返回事件在一个调用事件之前，那么在

顺序排序中这个返回事件必须还是在前面。

Wiki中的这个定义，无论是两个条件的表述还是三个条件的表述，

基本上与论文中所说的一样，只是具体描述有些不同。

15.3.2 线性一致性与顺序一致性的比较

我们把线性一致性与第14章讲的顺序一致性进行对比。

1.正确性条件

与顺序一致性一样，线性一致性也是一种正确性条件（correctness
condition），我们从线性一致性论文的题目（“Linearizability：A
Correctness Condition for Concurrent Objects”）上可以看出这一点，线性

一致性是一种并发对象的正确性条件。

2.原子性

顺序一致性定义的第一部分与线性一致性定义的第一个条件是一样

的，都是在说实际执行与顺序执行结果相同，即与顺序执行等价，所以

线性一致性同样具有原子性。线性一致性也被称为原子一致性。

3.实时性

顺序一致性定义的第二部分与线性一致性定义的第二个条件是不一

样的。顺序一致性只要求保持程序顺序，而线性一致性要求保持偏序关

系。保持偏序关系是一种更苛刻的要求，所以线性一致性是比顺序一致

性更强的一种一致性。保持偏序关系给线性一致性赋予了顺序一致性所

不具有的一个特性，那就是实时性。

图15.3（a）的上半部分表示了一种实际的顺序一致性的执行，在



P1和P2两个进程的实际执行中，write（x）发生在read（x）之前，顺序

一致性允许实际执行与下半部分的sequential order执行结果相同。这就

好像read（x）的实际执行时间在write（x）方法执行之前；或者说

read（x）方法的生效时间在write（x）执行之前。read（x）方法读取到

历史数据，也叫作陈旧读。

而图15.3（b）的上半部分表示了一种实际的线性一致性的执行，

在线性一致性下，不允许图（a）中的情况出现，只允许图（b）下半部

分中这样的sequential history出现，这是因为要保持偏序关系，也就是在

实际执行中，如果write（x）方法的返回事件在read（x）方法的调用事

件之前，那么在sequential history中也同样是这样的。这就好像所有方法

的实际执行一定是在调用事件之后，并且在返回事件之前；或者说方法

的生效时间一定是在调用事件之后，并且在返回事件之前。read（x）
方法不会读取到旧数据。

图15.3 线性一致性的实时性

15.3.3 强一致性

Werner Vogels在2008年从即时性（recency）的角度定义了强一致性

（strong consistency）[5]：
“After the update completes，any subsequent access will return the

updated value.”（在更新完成之后，任何后续的访问都会返回更新的

值。）



从前面线性一致性的实时性的讨论中，我们可以知道，在线性一致

性下不会读取到旧数据，而是会读取到最新的数据，所以线性一致性符

合强一致性的要求。

Martin Kleppmann用类似的定义非正式地描述了线性一致性[6]：
“If operation B started after operation A successfully completed，then

operation B must see the the system in the same state as it was on completion
of operation A，or a newer state.”（如果操作B在操作A成功完成之后开

始，那么操作B一定能看到与操作A完成时相同的系统状态，或者看到

更新的系统状态。）

15.4 ZooKeeper的一致性分析

本节分析ZooKeeper这个分布式系统的一致性，通过对ZooKeeper的
分析，我们可以更好地理解第14章讲的顺序一致性和本章讲的线性一致

性。

15.4.1 ZooKeeper是顺序一致性的

前面详细讲过线性一致性和顺序一致性，也详细讲过ZooKeeper的
核心算法——Zab算法，基于这些内容，下面来具体分析ZooKeeper的一

致性。

1.Zab算法保证线性写入

虽然一个客户端可以连接任意一台服务器提交对ZooKeeper的数据

修改请求，但是Zab算法会选出一个leader，所有的修改请求都会被转发

到leader，leader会执行原子广播算法，并将这个修改应用到所有服务器

上。leader顺序执行每一个接收到的请求，Zab算法实现了写操作的线性

一致性。

2.陈旧读

如果考虑读操作的话，ZooKeeper系统就不是线性一致性的，从本

章前面对线性一致性的介绍中我们知道，具有线性一致性的系统的读操

作会读取到最新的数据。ZooKeeper的读操作不会被转发给leader执行，

而是在所连接的服务器的本地执行，从第12章Zab算法的介绍中我们得



知，某台服务器上的数据不一定是最新的，客户端可能读取到旧数据，

所以ZooKeeper的读操作是不满足线性一致性的。

3.在follower上读

ZooKeeper的读操作从本地读能够读取到旧数据，不能达到线性一

致性，那么它能不能达到顺序一致性呢？

我们来分析一种特殊的情况：连接到leader的客户端只进行写操

作，连接到follower的客户端只进行读操作。在这样的情况下，

ZooKeeper是满足顺序一致性的。

4.在follower上读和写

如果在follower上接受写请求，那么情况就不一样了。我们回顾第7
章的内容，来说明在follower上接受写请求的场景。如果没有第7章中所

讲的写入等待，那么会出现一种现象，破坏了顺序一致性。第7章中的

图7.5描述的ZooKeeper的执行如下：＃

在这个例子中，C2（follower）表示C2客户端连接到一个follower。
根据第7章所讲的内容，C2可能会读取到以下两种不同的结果。

● 结果1：如果这个follower还没有收到x=1的变更（即没有收到

COMMIT消息），那么C2将读取不到x=1。
● 结果2：如果这个follower收到x=1的变更（即已收到COMMIT消

息），那么C2将读取到x=1。
按照第14章中所讲的顺序一致性的定义，我们知道，从单个进程的

角度来讲，所有操作都是按照程序中的顺序执行的。也就是说，如果写

入了一个值，在同一个进程内后续的读操作一定能够读取到至少比这个

写入更新的值。从这个结论我们可以得出，“结果1”在顺序一致性的系

统中是不应该存在的，也就是不满足顺序一致性。

在第7章ZooKeeper的介绍中，讲解了在follower转发写请求给leader
后，follower要确认这次转发的写入已经通过Zab算法复制到本地，然后

才会给客户端返回成功，这种写入等待使ZooKeeper达到顺序一致性。

5.ZooKeeper整体上是顺序一致性的

综合前面的分析，可以得出结论：ZooKeeper整体上是顺序一致性



的。

6.共识算法与一致性

从前面所讲的内容可以看出，Zab算法是不能保证顺序一致性的，

还要控制好读操作的流程才能让ZooKeeper整体（读+写）达到顺序一致

性。使用Zab算法，仅仅能保证写操作达到线性一致性。与此相同，前

面所讲的Paxos算法、Raft算法也是如此。

15.4.2 ZooKeeper的一致性的作用

至此，我们对ZooKeeper的一致性的完整分析就讲完了。那么，

ZooKeeper实现这样的一致性有什么用处呢？在14.4节中我们介绍过顺

序一致性的作用，接下来就以ZooKeeper为例来进一步说明。

1.ZooKeeper的顺序一致性的作用

我们以使用ZooKeeper实现一个分布式锁为例来说明。使用

ZooKeeper实现分布式锁有类似于下面的伪代码：

这段伪代码能够保证只有一个客户端获得锁，其基本思想是每个客

户端都创建一个znode，所有的znode形成一个单调有序的队列，而排在

队列最前面的客户端获得锁，其余的客户端进入等待状态。可以看出，

这个思想能够成立的核心就是，即便有多个客户端同时创建znode，
ZooKeeper也仍然能满足下面的两个保证：

● 形成单调有序的队列。

● 所有的客户端都会看到队列的同一个视图。

可以看出，顺序一致性能够满足这两个保证。



从顺序一致性的定义可知，满足顺序一致性的系统的任何可能的执

行结果都会与某个sequential order的执行结果相同，相当于依次执行每

一个客户端的create方法，所以能够保证创建出单调有序的znode队列。

从14.3节中顺序一致性的第一种描述可知，所有客户端的全局视角

一致，因此所有的客户端一定都会看到队列的相同的视图。从而可以得

出一个结论：ZooKeeper的顺序一致性保证ZooKeeper具有正确的并发行

为，也就是保证ZooKeeper可以作为协调服务来使用。具体来说，对于

分布式锁来说，顺序一致性保证只有一个客户端能获得锁。

2.ZooKeeper的线性一致性的作用

前面的15.4.1节讲过，ZooKeeper的写操作具有线性一致性。既然

ZooKeeper具有顺序一致性就可以满足ZooKeeper作为协调服务的要求，

那么ZooKeeper为什么还要实现比顺序一致性更强的线性一致性呢？这

是因为从实现难度的角度来讲，顺序一致性读+线性一致性写的实现难

度要比单纯的顺序一致性低。虽然顺序一致性没有ZooKeeper所实现的

一致性强，但顺序一致性反而是不好实现的一种一致性。

15.4.3 ZooKeeper的一致性的描述

下面罗列了三种关于ZooKeeper的一致性的描述。

1.论文中的描述

我们先来看ZooKeeper论文中的描述。ZooKeeper开源项目的两个主

要作者Patrick Hunt和Flavio P.Junqueira，在2010年发表的论文[7]中详细

介绍了ZooKeeper，在论文中这样描述了ZooKeeper的一致性：

"ZooKeeper has two basic ordering guarantees:
● Linearizable writes:all requests that update the state of ZooKeeper are

serializable and respect precedence.
● FIFO client order:all requests from a given client are executed in the

order that they were sent by the client."
翻译如下：

ZooKeeper有两个基本的顺序保证：



● 线性写：所有对ZooKeeper进行更新的请求都是线性的，并且保

持优先顺序。

● FIFO客户端顺序：某个客户端的所有请求都是按照它们被发送的

顺序执行的。

FIFO客户端顺序保证也就是顺序一致性中的程序顺序保证。

2.社区文章的描述

上面介绍的是ZooKeeper的作者在2010年发表的ZooKeeper论文中所

采用的描述，但在ZooKeeper的社区文档[8]中却没有采用这种描述，

ZooKeeper的社区文档是这样描述的：

"ZooKeeper's consistency guarantees:
● Sequential Consistency:Updates from a client will be applied in the

order that they were sent.
● Atomicity:Updates either succeed or fail--there are no partial results.
● Timeliness:The clients view of the system is guaranteed to be up-to-

date within a certain time bound (on the order of tens of
seconds).Either system changes will be seen by a client within this
bound,or the client will detect a service outage."

翻译如下：

ZooKeeper的一致性保证包括：

● 顺序一致性：一个客户端的更新会按照它们被发送的顺序应用。

● 原子性：更新要么成功，要么失败，没有部分生效。

● 及时性：客户端对系统的视图保证在某一时间范围（在10秒的数

量级）内是最新的。系统的变更要么在这个时间范围内会被客

户端看到，要么客户端会检测到服务宕机。

3.其他人的描述

这里还有第三种描述，参考论文“Modular Composition of
Coordination Services”[9]。这篇论文不是专门讨论ZooKeeper的一致性

的，而是讨论一种水平扩展协调服务的方法的，文中以ZooKeeper为例

来说明，在展开自己的讨论前，概括了协调服务的一致性：



"typical semantics of coordination services-atomic (linearizable) updates
and sequentially-consistent reads"

翻译如下：

协调服务的典型语义是原子（线性）更新和顺序一致性读。

参考文献

[1] Maurice P. Herlihy, Jeannette M. Wing. Linearizability: A
Correctness Condition for Concurrent Objects. ACM Transactions on
Programming Languages and Systems, 1990.

[2] Herlihy M, Shavit N. The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

[3] Leslie Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Communications of the ACM, 1978.

[4] Linearizability. https://en.wikipedia.org/wiki/Linearizability.
[5] Vogels W. Eventually Consistent-Revisited, 2008.

http://www.allthingsdistributed.com/2008/12/eventually_consistent.html.
[6] Kleppmann M. Please stop calling databases CP or AP, 2015.

https://martin. kleppmann.com/2015/05/11/please-stop-calling-databases-cp-
or-ap.html.

[7] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, Benjamin Reed.
ZooKeeper: Wait-free Coordination for Internet-scale systems.
USENIXATC' 10: Proceedings of the 2010 USENIX conference on USENIX
annual technical conference, 2010.

[8] Consistency Guarantees.
http://zookeeper.apache.org/doc/current/zookeeperProgrammers.html#ch_zkGuarantees.

[9] Kfir Lev-Ari, Edward Bortnikov, Idit Keidar, Alexander Shraer.
Modular Composition of Coordination Services. USENIX Annual Technical
Conference, 2016.



第16章 架构设计中的权衡

一致性是分布式系统非常核心的特性。之所以说核心，是因为一致

性会影响到其他很多特性，比如可用性、性能等。在分布式系统的架构

设计中，需要在这些分布式特性之间选择一个平衡点，这种平衡被称为

权衡（tradeoff）。分布式系统的专家在不断地探索着这个权衡，并且总

结出几个非常重要的相关理论。本章会介绍其中的三个理论。在这些理

论中最早出现、影响最大的要数CAP定理，本章就从CAP定理说起。

16.1 什么是CAP定理

首先来看一下什么是CAP定理。在互联网行业，分布式系统越来越

重要，对分布式系统的研究也越来越多。使用分布式系统，或多或少、

或早或晚都听说过CAP这个词。相信很多架构师都按照这个定理在指导

自己的架构设计，CAP定理在分布式系统的架构设计中起着非常重要的

作用。

16.1.1 CAP历史：从原则到定理

CAP定理是由Eric A.Brewer提出的，在Eric A.Brewer写的一篇文章
[1]中，介绍了CAP定理的一些历史。

Eric A.Brewer最早在1999年发表的论文“Harvest，Yield，and
Scalable Tolerant Systems”[2]中提到了CAP，在这篇论文中它被称为

CAP原则（CAP principle）。一年之后，在2000年的PODC大会上，

Eric A.Brewer的题目为“Towards Robust Distributed Systems”的演讲[3]让
这个理论被大家广泛知道，就是这次演讲让CAP定理广为流传。虽然

Eric A.Brewer提出了CAP，但是他仅仅提出了一个假设，并没有证明

CAP是正确的。在2002年，Seth Gilbert和Nancy Lynch联合发表了一篇

论文[4]，在这篇论文中证明了CAP的正确性，此后CAP真正成为一个定

理，并且非常深远地影响着分布式领域和数据库领域。



16.1.2 CAP的定义

CAP这三个字母分别代表了Consistency（一致性）、

Availability（可用性）、Partition-tolerance（分区容忍性），CAP定
理总体上讲述了在分布式系统中，这三个属性不能同时获得。

具体来讲，在被证明的CAP定理[4]中，这三个属性的定义分别是：

● 一致性：线性一致性（linearibility）。关于线性一致性已经在第

15章中讲过。

● 可用性：对于分布式系统，如果这个系统持续地可用，那么所有

non-failing（没有失败，也就是能工作）的节点，对于每个接

收到的请求都必须产生一个响应。

这个定义可以被理解为，在这个分布式系统中所使用的算法都

必须最终（eventually）结束。

● 分区容忍性：分区（partition）是指节点之间丢失任意数量的消

息。分区容忍是指能够容忍任意数量的消息丢失。

在被证明的CAP定理中是这样描述的：

在异步网络中，这三个属性不能同时获得。

16.1.3 CAP定理下的三种系统

既然不能同时获得一致性、可用性和分区容忍性这三个属性，那么

就存在三种系统。

● CP类型系统：也就是具有属性C和属性P的系统。这种系统在节

点之间丢失消息的时候，可以达到线性一致性，但是不具有可

用性。

● AP类型系统：也就是具有属性A和属性P的系统。这种系统在节

点之间丢失消息的时候，可以具有可用性，但是不具有线性一

致性。

● CA类型系统：也就是具有属性C和属性A的系统。常见的单机数

据库就是典型的CA类型系统。因为单机数据库是在单个节点

上运行的，所以单机数据库满足一致性的要求。因为所有的请



求都可以完成，所以其满足可用性的定义。

16.1.4 深入理解CAP定理中的P和A

本书第15章对属性C做了详细的定义和说明，但是对属性A和属性P
没有任何阐述。接下来，我们对属性P和属性A做一些说明。

1.属性P
在分布式系统中，是不可能做到不丢失消息的，所以网络分区一定

是存在的。分区容忍是指当出现网络分区时，系统仍然能够保持其所具

有的特性不变。例如，在CP类型系统中，当出现网络分区时，系统仍

然能够保持一致性这个特性；而在AP类型系统中，当出现网络分区

时，系统仍然能够保持可用性这个特性。也就是说，P不是一个独立存

在的特性，它是伴随着其他特性一起存在的，不存在只具有P特性的系

统。

然而，分布式系统必须面对丢失消息这个问题，所以这是分布式系

统的必选项。对于单机数据库这样的单机系统，只有一个节点，所以不

存在节点之间丢失消息，根本不存在网络分区，也就不存在容忍丢失消

息，不存在容忍网络分区。

2.属性A
系统高可用是我们追求的目标，但是CAP定理中的可用性与我们追

求的高可用是不一样的。为了清晰地区分，我们将CAP定理中的可用性

称为CAP-Availability。
CAP-Availability既是一种非常严格的可用性，又是一种非常弱的可

用性定义。严格在于要求每个请求都必须有响应，只要有一个请求没有

响应，就不满足可用性的定义。本书也将CAP-Availability称为完全可用

性。同时CAP-Availability也是非常弱的定义，这个定义没有约束在多长

时间内给出响应，只要最终给出响应就可以。实际中，如果一个请求长

时间没有响应，我们就认为服务是不可用的，虽然这个请求最终会给出

响应。例如，一个系统中的所有请求都是在5分钟后给出正确的响应

的，虽然这符合CAP定理中的可用性，但是实际中会认为这个系统是不

可用的，因为用户不能容忍刷新一个页面要执行5分钟。



CAP-Availability与比较常见的主备模式系统中的高可用性（High
Availability，HA）不一样。我们举例来说明这个差异。类似于单机数

据库这样的单机系统具有CAP-Availability，也就是说，发送给这个系统

的所有请求都会收到相应的响应。但是单机系统并不具有HA，当数据

库节点宕机后，数据库服务将不可用。HA一般是指通过副本方式形成

一个主备系统，当出现节点宕机或者网络分区时，数据库服务仍然可

用。再举一个例子，一个ZooKeeper集群有三个节点，当leader与其他节

点发生网络分区时，连接在leader上的客户端将不能再收到写请求的响

应，所以不满足CAP-Availability。但是这时另外两个节点会发生选举，

重新选出新的leader继续提供服务，所以ZooKeeper是一个具有HA的系

统。同样，当某个follower发生网络分区时，发送给这个follower的写请

求都会失败，不满足CAP-Availability的要求，但是这时发送给其他节点

的请求仍然可以正确执行，所以服务整体是可用的。从定义和这两个例

子中可以看到，CAP-Availability是不考虑节点宕机的，仅仅考虑非宕机

节点是否能够保持可用性。

实际中，一般我们通过SLA（Service Level Agreement）来描述可

用性，即使用可用时间来描述可用性，将其表述成一年之内不可用时长

的百分比如99%、99.9%、99.99%这样的数字指标。比如，99%的意思

就是一年当中有99%的时间是可用的，1%的时间是宕机的。按照一年实

际的时间来算，这个百分比可以被换成小时或者分钟数。假如某个系统

的可用性为99.99%，即一年中99.99%的时间系统都是可用的，0.01%的

时间系统是不可用的，在这个不可用的时间里，所有的请求可能都没有

响应，而实际中，“4个9”的系统是非常高可用的系统，但是并不满足

CAP-Availability。

16.2 关于CAP定理的错误理解

对于CAP定理存在很多错误的理解，本节我们就梳理对CAP定理的

错误理解，逐一看看。

16.2.1 不是三选二，不能不选P

第一个错误理解是，在做系统架构设计时，要在C、A、P三个属性

中选择两个，做“三选二”的选择题。



这个错误理解产生的原因是，在分布式系统中网络分区是不可避免

的，所以P是不能不选的。只有在设计一个单机系统时，你才能不考虑

P。只有当单机系统和分布式系统都能满足需求时，你才能做真正的“三
选二”的选择题。但是实际中，在解决一个现实的需求时，单机性能不

能满足需求，你只能采用分布式架构设计，因此只能在A和C之间进行

选择，在大多数场景下只有一个“二选一”的选择题。

16.2.2 不是三分法

第二个错误理解是，一个系统不是CP类型系统，这个系统就是AP
类型系统。

这个错误理解的根本问题在于，将CAP定理错误地理解为一个三分

法的方法论或者二分法的方法论。

● 所谓三分法，是指认为所有的系统都可以被归为三类，即AP类型

系统、CP类型系统、CA类型系统，任何一种系统都属于其中

之一。

● 所谓二分法，是指认为所有的分布式系统都可以被归为两类，即

AP类型系统、CP类型系统，任何一种分布式系统都属于其中

之一，一个分布式系统要么被划分到CP一边，要么被划分到

AP一边。

这种三分法或者二分法的CAP表述被广泛地使用，这种表述被用来

作为分布式系统的设计指南，人们常常给分布式系统戴一顶CP的帽

子，或者戴一顶AP的帽子，恰巧CAP也是帽子的意思。

那么，这种三分法或者二分法错在哪里呢？错误原因有两个。

第一，在前面讲到的论证CAP定理的Lynch的论文[4]中，证明一个

系统是不能同时拥有C、A、P这三个属性的，并没有证明所有的系统一

定属于三种系统之一。产生这个错误理解可能是因为，论文在给出CAP
定理的定义之后，接着给出了三种系统，也就是AP类型系统、CP类型

系统、CA类型系统。需要注意的是，论文中说明一个系统可以同时具

有两个属性，但是这种表述并不等于说，放弃了一个属性就一定会具有

另外两个属性。



第二，Lynch将一致性限定在了线性一致性，将可用性限定在了完

全可用性，这两个属性都是非常苛刻的条件：

● 线性一致性，是非常强的一致性模型，第15章中讲过。

● 可用性，要求所有的请求都要有结果，不是部分，是所有，这也

是非常苛刻的。

由于论文中的定义非常苛刻，让很多系统既不是CP类型系统，也

不是AP类型系统，而是处于这两个分类之外的状态，AP/CP的二分法就

不准确了。

16.2.3 不该轻易放弃任何一个属性

第三个错误理解是，系统的可用性是至关重要的，所以在做架构设

计时需要放弃一致性；反之，系统的一致性是至关重要的，所以在做架

构设计时需要放弃可用性。

这个错误理解产生的原因同第二个错误理解，因为CAP定理不是一

个二分法的方法论，放弃一个属性，不能将系统推向另外一端。

16.3 CAP中的权衡

CAP定理描述了分布式系统中一个非常重要的架构设计权衡，并且

这个权衡对分布式系统的发展产生了深远的影响。

16.3.1 弱CAP原则

前面讲了Eric A.Brewer在1999年提出了CAP原则。在论文[3]中，

Eric A.Brewer提出了强CAP原则（strong CAP principle），并且之后被

证明，成为CAP定理。同时，Eric A.Brewer在论文中还提出了弱CAP原
则（weak CAP principle）：

“The stronger the guarantees made about any two of strong
consistency，high availability，or resilience to partitions，the weaker the
guarantees that can be made about the third.”（在强一致性、高可用性、分

区容忍性三个属性中，任意两个属性越强，第三个属性就越弱。）



不管是CAP定理还是弱CAP原则，都在说明可用性和一致性之间是

对立的，需要在它们之间做出权衡。但是CAP定理对C和A的定义非常

严苛，只能衡量很少一部分系统，而弱CAP原则则给出了一种更普适的

权衡。

对弱CAP原则的理解，有两点需要注意。

● 一致性不仅仅是线性一致性，也可以是比线性一致性更弱的一致

性模型，例如顺序一致性就是比线性一致性更弱的一种一致性

模型。可用性不仅仅是CAP定理中的CAP-Availability这种完全

可用性，也可以是比完全可用性更弱的一种可用性。比如

ZooKeeper的可用性就是比完全可用性更弱的一种可用性。在

大多数实际系统中，一般都同时存在属性A和属性C，只是相

对弱一些而已。

● 一个属性变弱，另一个属性可以变强。但是反之，放松一个属

性，不一定另一个属性就会自己变强，只是为变强留出了一些

空间。

16.3.2 CAP推动NoSQL

在20世纪90年代，传统的单机数据库被广泛使用。但是随着数据量

的迅猛增长，需要将数据保存在分布式系统中。人们开始研究和应用

NoSQL数据库，NoSQL打破了已经被所有人认可的传统关系型数据库

的ACID特性，NoSQL去除了传统数据库的SQL接口，同时也去除了传

统单机数据库的一致性。为了让NoSQL被人们接受，数据库的BASE特
性被提出来，BASE引起了广泛的关注和讨论。BASE是Basic
Available，Soft state，Eventual consistency的缩写，也就是代表了基本可

用、柔性状态、最终一致性。ACID和BASE是对立的，ACID的支持者

不认同BASE。CAP就是在ACID和BASE之间的争论过程中而产生的。

传统的单机数据库是CA类型系统的代表，新出现的NoSQL数据库是AP
类型系统的代表，CAP的出现有力地支持了NoSQL和BASE出现的合理

性。也就是说，一个分布式系统不能同时获得C、A、P三个属性，即：

一个分布式系统不能在保持ACID特性的同时，再具有可用性属性，而

是必须在CA类型系统和AP类型系统之间做出权衡。CAP定理为NoSQL



运动的落地提供了有力的理论支撑。

16.3.3 分布式系统中的可用性和一致性

为了突破单机数据库的数据存储量的限制，越来越多的分布式系统

被设计出来。根据CAP定理，分布式系统的设计者往往会在一致性和可

用性之间做出权衡。虽然前面16.2.2节讲过二分法的分类并不准确，但

是它却被广泛地用于分布式系统的设计，从而大大推动了不同类型的分

布式系统的出现。同样身为宽表数据库的Dynamo和BigTable，Dynamo
选择了可用性，而具有类似的数据模型和功能的BigTable却选择了一致

性。

16.4 进一步权衡：HAT和PACELC

虽然具有严格定义的CAP定理的适用范围很狭窄，但是与弱CAP原
则一样，它们都反映了分布式系统的一个本质：在分布式系统中，必须

在完全可用性、线性一致性、分区容忍性这三个方面做出权衡取舍。但

实际上，CAP并不是分布式系统权衡取舍的全部，我们来继续讲解分布

式系统权衡取舍的其他部分。

16.4.1 HAT

Peter Bailis在2014年提出了HAT[5，6]（HAT是High Available
Transaction的缩写）。HAT比CAP更加完整地向我们说明了一致性和可

用性之间的权衡取舍关系：

简单来说，就是在CAP-Availability的条件下，系统不但不能拥有线

性一致性，而且实际上很多种一致性模型，系统也不可能拥有。

Peter Bailis用图16.1向我们说明了这种权衡取舍关系。



图16.1 HAT（此图参考HAT论文[5]）

图16.1中的每个节点都表示一种一致性模型。这些一致性模型，在

本书前面的章节中讲过一些，我们再回顾一下。

● RU，即read uncommitted，在13.1.1节详细讲过它。

● RC，即read committed，在13.1.1节详细讲过它。

● RR，即repeatable read，在13.1.1节详细讲过它。

● SI，即Snapshot Isolation，在13.2节详细讲过它。

● 1SR，即One copySeRializability的缩写，也就是13.1.1节讲的

serializable。
● linearizable，即第15章详细讲的线性一致性。

● Strong-1SR，即Strong one copy SeRializability的缩写，这种一致

性模型就是第8章讲Google Spanner系统时，介绍的Spanner系
统所具有的一致性，在Spanner的论文中，将这种一致性称为

外部一致性，也有人将这种一致性称为强串行性（strong
serializability）。它是serializability和linearizability的组合。

HAT理论指出，图16.1中显示的各种一致性模型，与CAP-
Availability不能被同时拥有的不仅仅是线性一致性，还有：

● 所有矩形框和圆形框所显示的一致性都是不能被同时拥有的。

● 所有不带框的那些一致性才能与完全可用性被同时拥有。

本书前面讲过的7种一致性模型，有5种属于前者，有2种属于后

者。



● 不能被同时拥有的是：linearizability，RR，SI，1SR，Strong-
1SR。

● 能被同时拥有的是：RU，RC。
接下来，对于不能被同时拥有的5种一致性模型，我们逐一进行详

细说明。

首先，线性一致性不能与CAP-Availability被同时拥有，CAP定理已

经详细证明了。

其次，RR、SI、1SR不能与CAP-Availability被同时拥有。通过第13
章的介绍我们知道，SI需要阻止丢失更新的出现，而RR和1SR除了要阻

止丢失更新的出现，还要阻止出现写偏斜。其实，具有CAP-Availability
的系统是不能阻止这两种异常现象出现的。

下面举例说明丢失更新。我们看下面两个事务的执行：

如果事务T1和事务T2分别在两台服务器上执行，当这两台服务器

发生网络分区时，按照CAP-Availability定义的要求，两个事务必须都能

提交。但是通过第13章的讲解我们知道，要想阻止丢失更新，在事务T1
提交前，必须阻止事务T2对数据x进行写入，但是两台服务器已经发生

网络分区，这就不可能实现了。

接下来举例说明写偏斜。我们看下面两个事务的执行：

如果事务T1和事务T2分别在两台服务器上执行，当这两台服务器

发生网络分区时，按照CAP-Availability定义的要求，两个事务必须都能

提交。同样，要阻止写偏斜，必须在事务T1提交前，阻止事务T2对x、
y的读取和写入，但是在发生网络分区的情况下，这是不能实现的。

最后，我们来看Strong-1SR。在具有CAP-Availability的系统中，线

性一致性和1SR都不能获得，那么线性一致性和1SR的组合Strong-1SR，
也自然不能获得。



16.4.2 权衡

HAT告诉我们，这么多的一致性模型，只有很少一部分非常弱的一

致性模型能够与CAP-Availability被同时拥有。这是不是令你很失望，难

道为了CAP-Availability只能选择RU、RC、MR这些一致性模型吗？按

照之前对RU、RC这两种模型的介绍，在某些场景下它们不能满足业务

的需求，我们需要更高的一致性。

首先，这大部分不能满足CAP-Availability的一致性模型，它们的可

用性如何呢？虽然这些一致性模型不能达到CAP-Availability，但是根据

具体的实现不同，它们能达到比CAP-Availability低的某种可用性。比如

线性一致性，如果用Paxos协议来实现线性一致性，当三台服务器中的

一台服务器与另外两台服务器发生网络分区时，若客户端连接到有两台

服务器的一侧，那么系统仍然是可用的，并且可以保证线性一致性。

其次，当我们说可用性时，一般有两种含义，其中一种是架构设计

上的可用性，我们讨论的CAP和HAT中的CAP-Availability就属于这种；

另一种是我们实际能感受到的系统的可用性，也就是系统是否宕机、系

统是否可用，我们用另外的数据指标来描述这种可用性更合适一些，那

就是前面16.1.4节讲的SLA。

架构设计上的可用性与SLA没有必然的联系，在架构设计上达到

CAP-Availability，SLA不一定就高；在架构设计上没有采用CAP-
Availability，SLA不一定就低。比如，在MySQL的日常使用中，一般都

会使用默认的RR级别，RR级别不属于CAP-Availability，但一般公司的

DBA都能让MySQL保持不错的SLA。

反过来说，即便是采用CAP-Availability的架构设计，SLA也不一定

高。按照笔者的实际经验，某台机器出现故障所引起的系统不可用的概

率，要小于由于升级、错误的机器配置、错误的网络配置所引起的系统

不可用的概率。后者往往引起一批机器故障、网络断开，甚至整个系统

内的所有机器都受影响，即便架构上是CAP-Availability，这时的系统也

会不可用。另外，出现故障后的恢复方案也是影响SLA的重要因素，虽

然架构上不是CAP-Availability，但是出现故障之后，可以快速地恢复也

能提高SLA。所以说系统具有各种应急方案是很重要的。

到这里，我们就讲完了HAT，可以看出，HAT是一种更宽泛的



CAP。无论是CAP还是HAT，都在讲分布式系统中最重要的一个问题，

那就是权衡（tradeoff）。

16.4.3 PACELC

CAP和HAT都在讲可用性（Availability）和一致性（Consistency）
的权衡，也就是如何在可用性和一致性之间做出选择。但是HAT仍然不

是分布式系统权衡的全部。在CAP提出之后，很多人都在考虑分布式系

统的均衡，HAT是其中之一，还有人提出另外一个非常有参考意义的权

衡——PACELC[7]。
PACELC也是对CAP理论的一种扩展。PACELC这几个字母代表的

含义是：

如果出现Partition，那么需要在Availability和Consistency之间做出

权衡；否则（Else），需要在Latency和Consistency之间做出选择。

这句话的前半部分和CAP定理是一个意思，CAP定理关注发生网络

分区时的情况，但并未涉及没有发生网络分区时的权衡。这句话的后半

部分，就是描述在没有发生网络分区的情况下，我们需要在系统延迟和

一致性之间做出权衡，越高的一致性，会带来越大的系统延迟。
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