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内容提要

数理逻辑是离散数学的重要组成部分之一,是计算机科学的数学基础。本
书内容主要侧重于逻辑演算,即命题逻辑演算和一阶谓词逻辑演算,这些内容
是构成数理逻辑其他分支的共同基础。全书共分5章,分别介绍了数理逻辑的
研究对象、研究内容和研究方法;命题逻辑的基本概念、命题逻辑演算形式系统
的组成、基本定理及其性质定理;一阶谓词逻辑演算形式系统的基本概念、组
成、基本定理及其性质定理、一阶语言的语义等。
本书可用作高等院校计算机专业离散数学的教材或教学参考书,也可供从

事计算机科学、人工智能方面的科技人员参考。

 图书在版编目(CIP)数据

 数理逻辑引论/李涛,张岩,刘峰主编.—2版—哈尔滨:
哈尔滨工业大学出版社,2016.8
 ISBN978 7 5603 6146 8

 Ⅰ.①数… Ⅱ.①李… ②张… ③刘… Ⅲ.①数理逻辑
高等学校 教材 Ⅳ.①O141

 中国版本图书馆CIP数据核字(2016)第179481号
责任编辑 王桂芝
出版发行 哈尔滨工业大学出版社

社  址 哈尔滨市南岗区复华四道街10号 邮编150006
传  真 0451 86414749
网  址 http://hitpress.hit.edu.cn
印  刷 哈尔滨市石桥印务有限公司

开  本 880mm×1230mm 1/32 印张4.625 字数140千字
版  次 2011年11月第1版 2016年8月第2版

2016年8月第1次印刷
书  号 ISBN978 7 5603 6146 8
定  价 19.80元



   (如因印装质量问题影响阅读,我社负责调换)

1



再版前言

离散数学是大学计算机专业的基础数学课程,而数理逻辑是其
重要组成部分之一,在算法设计、程序设计理论以及计算复杂性理论
等方面都涉及数理逻辑的知识和理论。近年来,随着数理逻辑在计
算机科学中的地位越来越被重视,需要加强数理逻辑在计算机专业
中的知识普及与应用。
数理逻辑的内容通常包括证明论、递归论、模型论和公理集合

论,以及作为它们共同基础的逻辑演算。对于计算机专业的本科生
来说,考虑到逻辑演算在数理逻辑中的基础性以及在计算机科学中
的广泛应用,本书把重点放在逻辑演算上,即逻辑演算的推理研究
上。在目前相关的数理逻辑书籍中,有些把计算机科学中用到的数
理逻辑知识放在离散数学书中介绍,但由于受篇幅限制,较难系统地
描述数理逻辑的推理体系,很难满足计算机工作者的需要;有些书中
的数理逻辑通常又过于专业化,其深度对于计算机专业的本科生来
说难以接受。鉴于此,编者根据多年讲授该课的讲义整理而成此书,
以此实现我们的初衷:一是希望能使学生在大学本科期间把数理逻
辑的基本内容掌握好,使他们在学习其他相关课程或阅读相关文献
资料时,不至于对其中的数理逻辑知识产生困难;二是希望通过对逻
辑演算的讲解,即命题逻辑演算和一阶谓词逻辑演算的讲解,使学生
感受到逻辑演算在计算机科学中的重要应用,更重要的是通过严格
的形式化、公理化的逻辑推理方法,培养学生的抽象思维能力、逻辑
推理能力和严密的分析问题与解决问题的能力。
本书在成书过程中,软件教研室的王义和教授提出了许多宝贵

的意见和建议,最后又详细地审阅了原稿,对本书的形成和改进起了
重要作用。同时软件教研室的领导也给予了热情的鼓励和支持,在
此一并表示衷心感谢。
此次修订了部分错误和不当之处,如有疏漏,敬请读者批评指

正。

编 者
2016.6
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第1章  绪  论

逻辑学是研究推理规律的科学。数理逻辑与传统逻辑在研究对

象上没有实质性的区别,都是以逻辑推理本身作为研究的对象,区别

在于研究的工具语言不同,传统逻辑以自然语言作为主要工具语言,

而数理逻辑则是用数学符号语言,即借助于数学的符号化、公理化、

形式化的方法,因此数理逻辑又称为符号逻辑或理论逻辑。在绪论

部分,我们先从数理逻辑的发展简史来引入数理逻辑的研究内容,然

后介绍一下什么是形式化公理系统,最后介绍一下数理逻辑与计算

机科学的关系及其应用。

1.1 数理逻辑的发展简史

数理逻辑作为使用符号语言和数学方法来研究演绎推理和证明

的科学,从17世纪70年代德国数学家、哲学家Leibniz提出之后,发

展至今已有300多年的历史。在它的发展过程中,由逻辑数学化到

数学逻辑化,始终将逻辑的内容和数学的内容交织在一起。就其逻

辑方面来说,它在传统逻辑学的基础上演变成使用数学方法的现代

形式逻辑,有自己独特的方法和组成部分;就其数学方面来说,随着

逻辑问题转化为数学问题,它的很多部分,特别是20世纪以来取得

的许多新成果已成为数学的分支。数理逻辑的发展史大体上可以分

为三个阶段:第一阶段是数理逻辑萌芽和逻辑代数建立时期(17世

纪70年代~19世纪50年代);第二阶段是逻辑演算建立和数理逻辑



定型化时期(19世纪50年代~20世纪30年代);第三阶段是数理逻

辑发展的现代化时期(1930年以来),包括证明论、模型论、递归论、

集合论的形成和发展,以及非古典逻辑出现时期。

1.数理逻辑萌芽和逻辑代数建立时期

把数学应用于思维领域,用数学的方法来研究思维形式和思维

规律,首先得有一种数学类型作为必要条件,也就是符号化数学,而

传统逻辑学的缺陷和不足满足不了这种需要,这就促进了传统逻辑

学的变革,从而预示着新类型的逻辑学,即数理逻辑的产生。

Leibniz不满于Aristotle的形式逻辑,认为应当将形式逻辑加

以改造,使得新的逻辑学像数学那样精确严格。他希望能建立一个

普遍的符号语言,可以区别日常语言的局限性和不规则性,同时一个

完整的符号语言又应该是一个思维的演算,根据这种演算,思维和推

理就可以用计算来代替。这样,推理的错误就只成为计算的错误,而

不必考虑所用到的表达式的含义内容。这一设想涉及数理逻辑的本

质特点,对于数理逻辑的产生具有划时代的意义,后世的研究大体上

也是沿着这个方向前进的。符号语言和思维的演算是Leibniz提出

的重要思想,这也正是数理逻辑的重要特征。

Leibniz成功地将命题形式表达为符号公式,提出了命题演算的

原则和公理,建立了科学史上最早的逻辑演算,从而奠定了数理逻辑

的基础,使他成为公认的数理逻辑发展史上的奠基人。

17世纪数学的发展已日益完善,代数已达到完全符号化,能够

用字母表示已知量和未知量,以及用符号表示运算,可以用代数方法

来描述和研究几何图形,这些成就为用代数方法研究推理提供了线

索。而用代数方法研究推理,就必须把命题的形式结构用符号和公

式来表达,把推理中的前提与结论之间的关系,转化为公式与公式之
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间的运算关系。Leibniz一生中曾作过多次努力,后又经过许多逻辑

学家和数学家的工作,到了19世纪,英国的逻辑学家和数学家

Hamilton和 Morgan使用符号语言和代数的数学方法,通过对传统

逻辑学的修补和改良,精确化了传统逻辑学,他们取得的成果对数理

逻辑的发展起着一定的推动作用,在数理逻辑发展史上占有一定的

重要性,为Boole建立逻辑代数铺平了道路。

19世纪上半叶,在产业革命的影响下,欧洲各国自然科学有了

迅速的发展,特别是数学由长期为天文学、物理学和工程技术等服

务,转向纯数学本身的研究,而这些研究都涉及数学严格性的要求及

深刻的逻辑问题,而这些问题又都是在传统逻辑范围内解决不了的,

这就进一步激励数学家和逻辑学家加快逻辑数学化的研究工作。在

Leibniz逻辑演算设想的基础上,Boole最早把对代数系统的解释推

广到逻辑领域,从而建立了逻辑代数。Boole的主要工作是仿照数学

的方式来发展逻辑,他确信语言的符号化会使逻辑严密化。他成功

地把代数方法应用于逻辑,建立了“布尔代数”,部分实现了Leibniz
的设想,同时也扩展了传统逻辑的范围,解决了许多传统逻辑难以解

决的问题。由于Boole在引进符号时,允许先不加解释,等形式地建

立起代数系统后再做解释,这就加强了数学化的倾向。尽管Boole
取得了上述成就,但他所建立的代数并不成熟。 继Boole之后,

Jevons、Peirce、Huntington等对布尔代数作了改进,并使之逐步完

善。德国的数学家Schröder总结了前人的研究成果,将布尔代数构

成一个演绎体系,从而使布尔代数臻于完善。他在《逻辑代数讲义》

中对类演算、命题演算和关系演算进行了系统的整理。他提出逻辑

代数的定理可以分为两组,而根据一个简单的互换法则就可以从一

组定理的内容推导出另一组定理的内容,成功地用代数方法处理了

演绎推理。
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逻辑代数的建立和完善,打破了传统逻辑学的体系,说明思维的

形式结构可以成功地用数学方法来处理,这对数理逻辑的发展产生

了深远的影响。但是,就整个数理逻辑体系来说,它距离要找到理想

完善的、能把数学纳入其中的公理系统这个目标来说,逻辑代数还只

是初步的成果。

2.逻辑演算建立和数理逻辑定型化时期

进入19世纪后,数学发生了一些本质的变化,许多迫切的问题

已基本得到解决,于是数学的研究转向了基础的重建。这主要是指

对它论证的逻辑严格性进行深入的探讨;对函数、连续性、极限、无穷

等概念做出精确的定义;对负数、无理数等给予仔细的审查。到了

19世纪中叶,终于获得了重要的成果:Frege给出了一个完全的逻辑

演算,使数理逻辑的发展出现了一个飞跃;Cantor建立了集合论,这

标志着数理逻辑由萌芽发展到真正创立的时期。

德国数学家、逻辑学家Frege,在纯逻辑的领域中,他引进了量

词、变量和命题函数,使数理逻辑具备了完全的表达能力,给出了逻

辑的公理基础。数理逻辑创立时期的主要目标是要找到能把数学纳

入其中的理想完善的公理系统,Frege提出的谓词演算被看作是达

到这一目标的最主要成就。另外,他还开辟了数理逻辑应用于数学

基础研究的新方向。他深入研究数学的科学性质和数学思维的规

律,努力把逻辑本身变成一个由公理、规则和定理构成的演绎体系。

他的目标就是要从逻辑推导出全部数学,把数学真理性的证明看成

完全依赖于逻辑的推理和规律。为此他发明了一种表意的概念语

言,并应用于逻辑,结果是构造了初步自足的命题演算和谓词演算系

统;应用于算术,第一次给出了自然数的精确定义。Frege从逻辑推

导出自然数,但这只能说明逻辑可以推导出算术中的一部分,而并不
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能说明逻辑能够推导出全部算术,更不能说明逻辑能够推导出算术

之外的全部数学。就在Frege致力于进一步构造算术基础,写完第

二卷《算术的基本规律》时,Russell于1902年6月16日写信告诉他

发现了逻辑悖论,这使Frege感到极大震惊,因为这直接动摇了他正

在从事工作的基础。这一历史事实也说明,由于数学这门学科的性

质决定,要想把数学全部逻辑化是实现不了的。

19世纪70年代,数学分析研究的发展,促使对不连续函数和连

续统有了进一步的理解,这就直接牵涉到集合论的问题。到了近代,

由于微积分的出现,更引起了对无穷小的讨论。19世纪20年代

Cauchy建立的极限理论,对无穷过程和无穷小的认识大大前进了一

步。后来Bolzano通过对微积分的基本概念的严格表述,认识到实

无穷的存在。但是,所有这些成就比起Cantor取得的成果只是初步

的、不成熟的。

与Frege同时代,在数理逻辑发展史上另一个重要人物是德国

数学家Cantor,他超出算术之外,建立了集合论,是集合论的真正创

始人。集合论的建立为全面理解数学科学的性质打下基础,从而对

数理逻辑的创立和发展起着强有力的推动作用。

Cantor建立的集合论是现代数学中的重要基础理论。这个理

论把哲学中的无穷概念变成精确的数学研究的对象,把数学从潜无

穷的观点转变到实无穷。这一方面把实数系从数的概念推进到集合

概念,从而把数学基础的研究推进到一个新阶段;另一方面它从朴素

的集合论逐步向抽象集合论过渡,这对现代数学的发展也有深刻的

影响。由于Cantor的集合论把集合理解为是把我们的感觉或思维

中的一些确定的、不同的对象(即集合的元素)汇合成一个总体,这

就使得这个概念事实上失去了纯数学的性质,而取得了更有一般性

的逻辑含义,因此集合论密切了数学与逻辑学的关系,集合论也是现
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代数理逻辑的重要理论基础。事实上,从1880年以来,集合论和谓

词演算之间的相互关系,一直影响着数理逻辑的发展。

19世纪20~30年代,Gauss、Bolyai以及Lobachevsky先后发现

的非欧几何,打破了形而上学的空间观,从根本上改变了人们的几何

观,使人们看到感性直观不能成为几何命题真假的根据,真假要靠证

明,而且证明的概念本身要严格。几何学中的进展引起了人们对公

理学的关注,这对数理逻辑的研究和发展产生了深远的、决定性的影

响,促进了公理化方法的研究与发展。Hilbert于1899年发表了名

著《几何基础》,该书第一次给出了一个简明全面的公理系统,在他的

系统中强调了逻辑推理,讨论了公理系统的无矛盾性、完备性和独立

性,给出了证明公理系统独立性的一般方法及证明公理系统完备性

的普遍原则。Hilbert发展了公理方法,使之由古典的实质公理学,

发展为现代的形式公理学,从而成为近代形式公理学的奠基人。同

时期集合论和实数理论的研究也促进了公理法的使用和发展。《几

何基础》的出版,深刻影响着数理逻辑和数学各个分支的产生和发

展。例如命题逻辑、谓词演算、公理集合论、形式数论、近世代数等也

是作为各个分支的公理化和各种不同的形式系统而出现的。

最后真正把逻辑演算定型化,对数理逻辑的发展起着承先启后

作用的是英国的哲学家、数理逻辑学家Russell,他对数理逻辑做出

了多方面的创造性贡献和发展。他和 Whitehead合著的三大卷《数

学原理》,可以说是直到当时为止的数理逻辑成果的总结,总结了从

Leibniz以来数理逻辑产生和发展过程中取得的成果。他构设了一

个完全的命题演算和谓词演算系统,完成了逻辑演算定型化的工作,

这标志着数理逻辑作为一门独立的学科已达到成熟阶段,并为数理

逻辑下一阶段的发展提供了前提。他关于关系逻辑、摹状词、逻辑类

型论以及给自然数下定义等成果,为丰富和扩大数理逻辑内容,推动
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数学基础问题的进一步探讨也做出了积极的贡献。

Russell和 Whitehead合著的《数学原理》发表之后,数理逻辑取

得了迅速的发展。Russell构造的完全的逻辑演算体系,自以为找到

了理想完善的、能把数学纳入其中的公理系统。Hilbert提出了解决

数学基础问题的证明论方案,自以为这种方法解决了包括古典逻辑

和古典数学的形式演绎系统问题。

3.数理逻辑发展的现代化时期

从1930年开始,美籍奥地利数学家、逻辑学家Gödel发表了一

系列重要成果,开辟了数理逻辑的新纪元。1930年,他发表的博士

论文证明了谓词演算系统的完全性。1931年,他发表了著名的不完

全性定理,证明了数论或分析或集合论的形式系统是不完全的,同时

还证明了一个给定的形式系统的相容性。这些定理证明了Russell
的构造是不完善的,Hilbert的方案是达不到的。这一重要发现,对

整个数学产生了极大影响和推动,并开辟了数理逻辑的新纪元。从

此数理逻辑进入了第三个发展阶段。此阶段数理逻辑相继取得了三

个划时代的巨大成就:1931年,Gödel证明了不完全性定理;1933年,

波兰的逻辑学家、逻辑语义学的创始人之一Tarski提出了形式语言

的真理性概念;1937年,英国的逻辑学家 Turing建立了图灵机的

理论。

Gödel用精确的形式化的数学方法证明了形式系统的不完全

性,这就表明尽管公理化、形式化在数学和逻辑中取得了重大成就,

但仍然存在局限性。Gödel的不完全性定理的发现进一步密切了数

学和逻辑的关系,它说明数学的发展离不开精致、协调和有效的逻辑

结构,而逻辑的发展也离不开数学工具的使用和对数学真理的直接

洞察力。
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Tarski在《形式语言中的真理概念》等著作中,探讨了语义学悖

论产生的根源及其解决办法,证明了一个重要的结果,那就是在满足

一定条件的形式语言中,可以无矛盾地建立其形式上正确、实质上充

分的像真句子那样的语义学概念的定义。他首先做出了两对概念上

的区别:一是逻辑与元逻辑的区别。元逻辑以逻辑为对象,研究形式

语言和形式系统本身,也就是形式系统中作为符号串的表达式之间

的关系;表达式与其意义之间的关系;形式系统与其应用之间的关

系。二是对象语言与元语言的区别。通常把被断定的(被分析的)

语言称为对象语言,把进行断定的(分析的)语言称为元语言,这就

是语义层次。但在日常语言中没有做出这种区分,所以会产生语义

悖论。在形式语言中,对象语言和元语言有了明显区分,因而不会产

生语义悖论。

Turing在《论可计算数及其在判定问题上的应用》中,分析了

“可计算性”这一概念,第一次把计算和自动机联系起来,这对后世

产生了巨大的影响,这种自动机后来被人们称为图灵机,并证明了

Hilbert提出的判定问题的不可解性。图灵机虽然很简单,但现在已

证明这种图灵机能够计算全部能行可计算函数。Turing相当完善

地解决了可计算函数的精确定义问题,对数理逻辑的发展起了巨大

的推动作用。

自从Gödel提出不完全性定理,证明无所不包的公理系统是不

存在的之后,数理逻辑学家们开始转向承认这种公理系统有很多,应

该研究他们的共同性,这就促进了有内在联系的四大分支:证明论、

模型论、递归论和公理集合论的形成和发展,逻辑演算则是它们的共

同基础。其中证明论是把数学本身作为研究的对象,用以证明数学

的相容性,以数学推理或证明为研究对象。模型论是研究形式语言

与其解释之间的相互关系的学科,它的主要任务是对数学理论系统
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建立模型,研究各模型之间的关系、模型与数学系统之间的关系等。

递归论是用数学方法研究“可构造性”或“能行过程”的学科,它是20
世纪30年代发展起来的。1931年,Gödel作出严格的但实际上只是

原始递归函数的定义,出现了递归函数论。1934年,Gödel又进一步

提出了一般递归的概念。1936年,Turing给“可计算函数”提供了一

个精确的定义。20世纪60年代后把递归理论应用到计算机上,用于

计算复杂性的理论的研究。公理集合论就是用公理化方法建立集合

论系统,也就是集合论的形式系统。它是在19世纪20年代Cantor
提出的集合论出现悖论后,为了修改集合论而发展起来的。比较著

名的集合论的公理系统是ZF系统和GB系统。

四论构成了数理逻辑的重要组成部分,这标志着数理逻辑的发

展已经成熟,它的理论基础已经奠定。四论之间是相互联系、互为补

充的,但它们研究的对象和侧重点又各不相同。四论的共同点都和

数学有着密切联系,或者说其本身就是数学,或者说其本身是由数学

问题引起的。如果单从逻辑角度对它们作了区分,那么可以说:证明

论具有语法性质,模型论具有语义性质,递归论是证明论的工具,公

理集合论是模型论的工具。

在数理逻辑进入第三个发展阶段后,其基础部分,即逻辑演算方

面也开辟了新的研究领域,这就是许多非古典逻辑系统的相继出现

和发展。所谓非古典逻辑系统是相对于Aristotle的三段论体系和

Frege、Russell提出的命题演算和谓词演算来说的,它包括两个方

面:第一,纯逻辑理论方面,包括多值逻辑、模态逻辑、构造性逻辑、相

干逻辑、模糊逻辑等;第二,应用逻辑体系方面,包括认知逻辑、法律

逻辑、时态逻辑、量子论逻辑、电路分析逻辑等。
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1.2 形式化公理系统

数学区别于其他科学的特点就是它的规律只有加以证明才能被

承认。感性直观只是启发人们发现问题和思考问题的手段,而不能

成为判断数学规律成立的依据,但我们并不能对所有的规律都加以

证明,总要有些初始的规律是不加证明而被承认的,因为不存在证明

它们的更加初始的规律。我们将某些初始的规律称为公理,它们不

需要证明即被承认。由公理出发,按一定的逻辑推理规则推出的规

律称为定理,推导的过程称为证明。

数学的概念要求有精确的定义。所谓定义,就是用已有的概念

去规定新概念的含义,即揭示新概念的内涵。但总有些初始的概念

是不能定义的,因为不存在定义这些概念的更加初始的概念。我们

将这些概念称为基本概念,对它们不予定义,即是不能定义的。用基

本概念和已经定义的概念定义出的概念,称为导出概念。基本概念

与导出概念、公理以及定理组成的结构称为公理系统。公理系统可

以是关于某一数学学科全体的,如平面几何、集合论,也可以是关于

某一数学学科中的一部分,如实数理论。公理学的发展经历了两个

阶段。第一阶段是古典公理学或称为实质公理学,它是密切联系某

种特殊对象的,称为公理的对象域。公理是关于这种对象的认识,表

达这类对象的性质,而且有直观的明显性,如欧式几何中的公理就是

实质公理。第二阶段是现代公理学,或称为形式化公理学,它不要求

给定某种具体对象。群、环、线性空间等都是现代公理学或形式化公

理学。

在形式化公理系统中,原始概念的直觉意义被忽略,甚至没有任

何预先设定的意义。公理也无需任何实际意义为背景,它们仅仅是
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一些选定的有穷符号串,唯一可识别的是它们的表示形式,这也是它

们唯一有意义的东西。推理规则视为符号串的变形规则,推理或证

明视为符号串的变形过程,也就是满足一定条件的有穷符号行的有

穷序列。定理当然也是符号的有穷序列。因此,公理系统不再是一

些有意义的命题的体系,而是一些符号的有穷序列的体系,只是靠符

号形式来区别哪些是公理,哪些是定理。

当然抽象的形式化公理系统的提出往往是有客观背景的,常常

是因为现实世界的某些对象及其性质需要精确的刻画和深入的研

究。但是一旦抽象的形式公理系统建成,它便是超脱客观背景的,它

可刻画的对象已不限于原来考虑的那些对象,而是与它们有着(公理

所规定的)共同结构的相当广泛的一类对象,因而对它们性质的讨

论也必定深刻得多。因此对一个抽象的形式公理系统,一般会有多

种解释(释例)。例如,布尔代数抽象公理系统,可以解释为有关命题

真值的命题代数,有关电路设计研究的开关代数,也可以解释为讨论

集合的集合代数。

形式化是数理逻辑的基本特性和重要工具。借助于形式化过程

和对形式系统的研讨完成对思维规律或其他对象理论的研究。数理

逻辑形式系统的组成如下:

(1)用于将概念符号化的语言,通常为一形式语言(formal

languages),包括符号表Σ及语言的文法,可生成表示对象的语言成

分项(terms),表示概念、判断的公式(formulas)。

(2)表示思维规律的逻辑学公理模式和推理规则模式(抽象的

形式公理系统),及其依据它们推演出的全部定理组成的理论体系。

根据其组成,对数理逻辑形式系统的研究包括以下3个方面:

(1)语构(syntax)的研究。在形式系统内首先是对系统内定理

推演的研究,如哪些是系统内的定理,如何更快地导出这些定理,定
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理之间有怎样的本质联系等等。由于在形式公理系统中推理规则本

质上是一种符号串的重写规则,系统内的推演也只是对给定符号串

的一系列重写而已,从而决定一切都是符号、符号串及重写规则的形

式,公理的识别、系统内的推演都可以依据公理及推理规则的形式机

械地完成,不需要比认读和改写符号及符号串更多的本领和知识,甚

至不需要逻辑。因此,这类研究通常被看作是形式系统的语构的研

究。

(2)语义(semantic)的研究。虽然形式化公理系统并不针对某

一特定的问题范畴,但可以对它做出种种解释,赋予它一定的个体

域,即研究对象的集合,赋予它一定的结构,即用个体域中的个体、个

体上的运算、个体间的关系去解释系统中的抽象符号。这一过程称

作赋予形式系统一个语义结构,或简称语义。在给定语义结构中可

以讨论形式系统中项所对应的个体,公式所对应的真值(真或假)。

对语义的规定以及对形式系统在给定语义下的讨论,便是所谓对形

式系统的语义研究。

(3)语构与语义关系的研究。由于语义结构通常是抽象出形式

系统的那个问题范畴(如抽象出数理逻辑形式系统的问题范畴是“人

类思维”)的数学描述,因此一个好的形式系统中的定理,应当都是

在所有相关语义中的真命题;反之,所有这些真命题所对应的形式表

示,应当都是形式系统的定理。诸如此类的讨论,都可视为对形式系

统语构与语义关系的研究。

在数理逻辑形式系统的研究中,通常使用两种语言。一种是形

式系统自身所使用的形式语言,这些形式语言是我们的研究对象,称

之为对象语言。另一种是用于介绍和研讨该形式系统时使用的语

言,为通常所用的数学语言,称之为元语言。元语言也使用大量符

号,包括沿用形式系统的符号、表示形式系统中同一类符号的符号即
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语法变元以及为表达元语言概念引入的新符号。

对数理逻辑的理论研究包括两方面:一方面是数理逻辑形式系

统内的公理、推理规则及其由它们导出的定理所构成的逻辑学理论;

另一方面是对这个形式系统进行研究所得的关于系统的性质定理所

组成的理论,这个称为元理论(metatheory),其中的系统性质定理

称为元定理(metatheorems)。

1.3 数理逻辑与计算机科学

数理逻辑是计算机科学的理论基础,对计算机科学的发展起着

重要的作用,它是计算机科学工作者必须具备的基本理论。数理逻

辑与计算机科学的密切关系体现在如下几个方面:

(1)随着人类大量思维过程的机械化、计算化的日益发展,数理

逻辑和计算机科学在这方面具有完全相同的宗旨:扩展人类大脑的

功能,帮助人脑正确、高效地思维。只不过它们分别作战在基础理论

和实用技术两条战线。逻辑学作为研究人类思维规律的科学,试图

找出构成人类思维或计算的最基础的机制,例如推理中的代换、匹

配、分离,计算中的运算、迭代、递归等。而计算机程序设计则是要把

问题的求解归结于程序设计语言的几条基本语句,甚至归结于一些

极其简单的机器操作指令。正是在数理逻辑中,把人类的推理过程

分解成一些非常简单原始的、非常机械的动作,才使得用机器代替人

类推理的设想有了实现的可能。

(2)数理逻辑的形式化方法又和计算机科学不谋而合。计算机

系统本身,它的软硬件系统都是一种形式系统,它们的结构都可以形

式地描述;至于程序设计语言更是不折不扣的形式语言系统,要研究

计算机、开发程序设计语言,没有形式化知识和形式化能力是难以取
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得出色的成果的。对于应用计算机求解实际问题,首要任务便是形

式化,离开对问题的正确形式化描述,没有理性的机器是不可能给出

正确的理解和解答的,人们必须用计算机懂得的形式语言告诉它怎

么做以及做什么,而计算机理解这些语言的过程,又正是按照人们赋

予它的形式化规程,并将它们归结为自己的基本操作。

(3)数理逻辑在计算机科学中的直接应用从最初对“计算”的追

根寻源,导致了第一个计算的数学模型 ——— 图灵机的诞生,它被公

认为现代数字计算机的祖先。另外,在计算机线路设计、程序设计及

理论、计算复杂性理论等方面都涉及数理逻辑的知识和理论。在近

年来研究比较热的人工智能领域,数理逻辑有着令人瞩目的应用:一

阶谓词演算系统在计算机的知识表示及定理的机器自动证明等人工

智能的研究领域获得了重要的应用。

(4)作为数学分支的数理逻辑在20世纪末的迅猛发展,很大程

度上得益于计算机科学的广泛应用。目前,从基本逻辑电路的设计,

到巨型机、智能机系统结构的研究;从程序设计过程到程序设计语言

的研究发展;从知识工程到新一代计算机的研制,无不需要数理逻辑

的知识和成果。
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第2章  命题逻辑的基本概念

数理逻辑的研究对象是逻辑推理,研究逻辑推理的形式和规

律。一个推理由若干命题组成,推理中的前提和结论都是命题,命题

是逻辑推理的基本成分。若在推理中只需要分析命题之间的关系,

不需要把命题分解成构成命题的各种非命题成分,那么此类推理的

逻辑研究称作命题逻辑,而对命题加以分解的推理称作谓词逻辑,谓

词逻辑相对命题逻辑来说较复杂。我们的研究先从比较简单的命题

逻辑开始,命题逻辑是数理逻辑中最基本、最简单的部分。

本章介绍命题逻辑的基本知识,包括命题与联结词、命题公式与

真值、逻辑蕴涵与逻辑等价、范式、联结词的功能完备集以及对偶式

等内容。

2.1 命题与联结词

2.1.1 命题符号化

1.命题

命题对于命题逻辑来说是一个原始的概念,因此不能在命题逻

辑的范围内给出它的精确定义,但可以描述它的性质。命题是一个

能唯一确定真假值的陈述句,这包括两层意思:首先,命题必须是一

个陈述句,而疑问句、祈使句、感叹句则都不是命题;其次,这个陈述

句所表达的内容可决定是真还是假,而且不是真的就是假的,不能既



真又假,也不能不真又不假。凡与事实相符的陈述句(命题)为真语

句,与事实不符的陈述句(命题)为假语句,这就是说,一个命题只有

两种可能的取值,为真或为假,并且只能取其一。命题的真或假称为

命题的真假值,也简称为命题的真值,通常用字母 T(或1)和

F(或0)分别表示命题的真值为真和假。真值T 与F 称为命题常

元。由于只有两种取值,因此这样的命题逻辑也称为二值逻辑。

下面举例说明命题概念。

例2.1.1 判定下列语句哪些是命题:

(1)北京是中国的首都。

(2)X+Y=2
(3)2+2=5
(4)火星上有生命存在。

(5)地球是宇宙的中心吗?

(6)太阳从西边出来。

仅有(1)、(3)、(4)、(6)为命题,其余均不是命题。其中(1)为真

命题,其命题真值为T;(3)、(6)为假命题,其命题真值为F;(4)的命

题真值由于受人类目前的认知水平还不能确定其真假值,但从事物

的本质来看该语句的内容真假是可以唯一确定的。(2)含有变元X
与Y,是不确定的判断,而(5)为疑问句,因此(2)、(5)均不是命题。

2.原子命题

原子命题又称为简单命题,它是不包含任何真值联结词的命题,

从语法的角度看就是不能分解为更简单的陈述句的命题。如命题

“雪是白的。”就是一个原子命题。原子命题的符号通常用小写的

英文字母表示。
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3.复合命题

由联结词及简单命题构成的命题通常称为复合命题,其真值依

赖于构成该复合命题的各简单命题的真值及联结词。如命题“今天

是晴天而且今天是星期天。”即为一复合命题,如果命题“今天是晴

天”的真值为真,而且命题“今天是星期天”的真值也为真,那么整个

复合命题的真值为真,其他情况则复合命题的真值为假。命题逻辑

所要讨论的正是由多个命题经联结词联结而成的复合命题的规

律性。

4.命题变元

为了用数学的方法对命题做逻辑演算,首先必须像数学处理问

题那样将命题符号化(形式化)。通常用大写的英文字母或带下标来

表示命题,这种用以表示命题的标识符号称为命题变元。如以字母

P表示命题“北京是中国的首都。”,字母Q表示命题“水在常温下是

液体。”等。当字母P未指定表示某一具体命题时,就称之为命题

变元。对命题变元可以指定任何命题给它。与命题有确定的真值不

同,命题变元的真值不定,只有对命题变元指定为某个具体命题时,

才能确定其真值。如果当它指定表示某一个确定的命题时,则称为

命题常元。

2.1.2 命题联结词及真值表

联结词可以将简单命题联结起来构成复杂的命题,从而构造新

的命题,使命题逻辑的内容变得丰富起来。下面先介绍数理逻辑中

最基本、最常用的5个逻辑联结词:

¬,∧,∨,→,↔
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这5个逻辑联结词符号分别读作 “并非”、“与”、“或”、“蕴涵”、

“等价”,分别表示“否定”、“合取”、“析取”、“如果 …… 那么 ……”、

“当且仅当”,值得注意的是这些逻辑联结词与日常自然语句中的有

关联结词的共同点和不同点。

由于复合命题中各个命题变元的取值只能取值T或F,同时复

合命题本身的真值取值也只能为T或F,因此从映射的角度来看,一

个n元逻辑联结词其实就是一个n元映射,一个从{T,F}n 到{T,F}

的映射,于是可以用一个函数值表的形式反映该映射过程,此函数值

表的形式称为真值表。

1.否定词:¬

否定词“¬”是一个一元逻辑联结词。一个命题P加上否定词

就形成了一个新的命题,记作 ¬P,表示对原命题的否定,读作“并非

P”。一般地,自然语句中的“不”、“无”、“没有”、“并非”等词均可符

号化为“¬”,但这并不意味着在使用否定词的时候可以简单地加个

“不”字就能完成。

否定词的真值规定如下:若命题P的真值为真,则¬P的真值就

为假;若P的真值为假,则 ¬P的真值就为真。对应的真值表如表

2.1所示。 表2.1 ¬P的真值表

P ¬P
T F
F T

  例2.1.2 设P表示命题“所有在北京工作的人都是北京人”,

则¬P表示“并非所有在北京工作的人都是北京人”,即“存在在北京

工作的人但不是北京人”,而不是表示命题“所有在北京工作的人都

不是北京人”。
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2.合取词:∧

合取词“∧”是一个二元逻辑联结词,它将两个命题P,Q联结起

来,构成一个新的复合命题P ∧Q,读作“P 与Q”,表示P,Q 的合

取。一般地,自然语句中常用的联结词如“既 …… 又 ……”、“不

仅 …… 而且……”、“虽然……但是……”、“……和……”通常都可

以化为“∧”。但自然语句中有些“和”、“与”并不表示两个命题的复

合,如“张三和李四是大学同学”就是一个简单命题。

复合命题P∧Q为真,当且仅当P,Q均为真。对应的真值表如

表2.2所示。

表2.2 P∧Q的真值表

P Q P∧Q
T T T
T F F
F T F
F F F

  例2.1.3 设P,Q分别表示命题“今天是星期天”,“今天是晴

天”,则复合命题P∧Q表示命题“今天是星期天而且是晴天”。

3.析取词:∨

析取词“∨”是一个二元逻辑联结词。它将两个命题P,Q联结

起来,构成一个新的复合命题P∨Q,读作“P或Q”,表示P,Q的析

取。自然语句中常用的联结词如“或者”一般可以化为“∨”。但有

些情况下,在使用析取词“∨”表达由“或者”联结的复合命题时,需

要注意自然语句中的“或者”与我们通常所说的“异或”区分开来,比

如复合命题“今天我去图书馆或者去踢足球”,它表达的是一种不可
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兼或,二者只能取一,即我们常说的“异或”,而不是逻辑“或”。

复合命题P∨Q为假,当且仅当P,Q均为假。对应的真值表如

表2.3所示。
表2.3 P∨Q的真值表

P Q P∨Q
T T T
T F T
F T T
F F F

  例2.1.4 设P,Q分别表示命题“计算机系的学生学过离散数

学”,“计算机系的学生学过数据库”,则复合命题P∨Q表示命题“计

算机系的学生学过离散数学或者数据库”。

4.蕴涵词:→

蕴涵词“→”是一个二元逻辑联结词,也称为推断符号,它将两

个命题P,Q联结起来,构成一个新的复合命题P→Q,读作“P蕴涵

Q”,表示如果P,那么Q。其中P称为假设或前提(前件),Q称为结

论或推论(后件)。

复合命题P→Q表达的逻辑关系是“P是Q 的充分条件”或“Q
是P的必要条件”。由于自然语言的复杂性,表示P→Q的术语除了

“如果P,那么Q”外,还有常见的表述如“只要P,就Q”,“P仅当Q”,

“只有Q,才P”以及“除非Q,否则非P”等。

复合命题P→Q只有当命题P为真而命题Q为假时才为假,其

余情况均为真。对应的真值表如表2.4所示。
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表2.4 P→Q的真值表

P Q P→Q
T T T
T F F
F T T
F F T

  例2.1.5 设P,Q分别表示命题“明天下雨”,“我在家看书”,

则复合命题“如果明天下雨,那么我在家看书”可形式化为P→Q。

例2.1.6 设有复合命题“只有你不是大一新生,才能在寝室用

电脑”,用P,Q分别表示命题“你是大一新生”,“你在寝室用电脑”,

则原命题可形式化为:P→¬Q。注意这里“不是大一新生”只是“在

寝室用电脑”的一个必要条件,并非充分条件,因此不能形式化为

¬P→Q。

5.双条件词:↔

双条件词“↔”是一个二元逻辑联结词,也称为等价符号,它将

两个命题P,Q联结起来,构成一个新的复合命题P↔Q,读作“P等

价Q”,表示P当且仅当Q。

复合命题P↔Q为真,当且仅当P,Q的真值相同,对应的真值表

如表2.5所示。

表2.5 P↔Q的真值表

P Q P↔Q
T T T
T F F
F T F
F F T

  例2.1.7 设有复合命题“三角形是等腰三角形当且仅当三角
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形中有两个角相等”,用P,Q分别表示命题“三角形是等腰三角形”,

“三角形中有两个角相等”,则原命题可形式化为P↔Q。

在由上述五个逻辑联结词构成的复合命题中,有时候为了减少

其中的括号使用次数,可以约定它们的运算优先级,按照优先级从高

到低依次为

¬,(∧,∨),→,↔
其中 ∧ 与 ∨ 的优先级相同,在容易引起歧义的地方可以通过

加括号来更改运算的结合顺序。

2.1.3 命题公式及真值

由命题常元、命题变元及逻辑联结词复合而成的表达式即为命

题公式,具体见定义2.1.1。

定义2.1.1 命题公式

(1)原子命题是命题公式;

(2)若A,B是命题公式,则 ¬A,A∨B,A∧B,A→B,A↔B
均是命题公式;

(3)有限次使用(1)与(2)复合所得的结果均是命题公式。

命题公式通常简称为公式,一般用大写的字母A,B等表示。如

果公式A 中含有原子变元符p1,p2,…,pn,那么公式A 通常记为

A(p1,p2,…,pn)。

例2.1.8 ¬p∧q,¬(p∨q),p∨q→r∧s均为命题公式,

其中p,q,r,s均为原子变元符。

对于一个给定的命题公式,通过对其中的命题变元赋值,然后结

合逻辑联结词的含义来给出命题公式的真值取值情况,这其中的赋

值过程称为指派,具体见定义2.1.2。

定义2.1.2 指派
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对公式A(p1,p2,…,pn)中的n个命题变元p1,p2,…,pn 的任

意一种真值赋值称为指派,即为pi=T或F,i=1,…,n,此时公式A
有一个确定的真值。

指派常用符号α来表示。若对公式A的一个给定的指派α,使得

A的真值为真,则记为α(A)=T,表示公式A在指派α的作用下其真

值为真,反之则记为α(A)=F。

很显然,若公式A含有n个命题变元,则共有2n个不同的指派。

根据公式的真值取值情况不同,可以将公式分为以下3类:重言

式、永假式和可满足式。

定义2.1.3 重言式(永真式)

若公式A对任一真值指派其真值均为真,则称为重言式(永真

式)。

例2.1.9 P∨¬P,(A→(B→C))→((A→B)→(A→C))

均为重言式。

定义2.1.4 永假式(矛盾式)

若公式A对任一真值指派其真值均为假,则称为永假式。

例2.1.10 P∧ ¬P为永假式。

定义2.1.5 可满足式

若公式A存在一个指派使其真值为真,则称为可满足式。

例2.1.11 A→ (B→C),A∨B均为可满足式。

根据它们的定义可以看出三者之间的关系:

(1)公式A永真,当且仅当 ¬A永假;

(2)公式A可满足,当且仅当 ¬A非永真;

(3)不是可满足的公式必永假;

(4)不是永假的公式必可满足。

由于重言式通常反映的是一些客观思维规律,因此成为关注的
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重点,下面给出一些常见的重言式:

(1)A∨ ¬A
(2)A→ (B→A)

(3)A→ (A∨B),B→ (A∨B)

(4)A∧B→A,A∧B→B
(5)A∧ (A→B)→B
(6)(A→B)∧ (B→C)→ (A→C)

(7)(A→ (B→C))→ ((A→B)→ (A→C))

(8)¬(¬A)↔A
(9)A∨A↔A,A∧A↔A
(10)A∧ (B∧C)↔(A∧B)∧C

A∨ (B∨C)↔(A∨B)∨C
(11)A∨B↔B∨A,A∧B↔B∧A
(12)A∧ (B∨C)↔(A∧B)∨ (A∧C)

A∨ (B∧C)↔(A∨B)∧ (A∨C)

(13)¬(A∨B)↔¬A∧ ¬B

¬(A∧B)↔¬A∨ ¬B
(14)A∨ (A∧B)↔A,A∧ (A∨B)↔A
(15)(A→B)↔(¬A∨B)

(16)(A→ (B→C))↔((A∧B)→C)

(17)(A→B)↔(¬B→ ¬A)

(18)(A↔B)↔(A→B)∧ (B→A)

(A↔B)↔(A∧B)∨ (¬A∧ ¬B)

(19)A∨T↔T,A∧F↔F

A∧T↔A,A∨F↔A
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2.1.4 逻辑蕴涵与逻辑等价

定义2.1.6 逻辑蕴涵:对公式A,B,如果所有弄真A的指派亦

必弄真公式B,则称A 逻辑蕴涵B,或称B是A 的逻辑推论,记为

A⇒B。

若所有弄真公式集Γ={A1,A2,…,An}中的每个公式的指派,

亦必弄真公式B,则称Γ逻辑蕴涵B,或称B是Γ 的逻辑推论,记为

Γ⇒B。

例2.1.12 判定下列逻辑蕴涵是否成立。

(1)¬A⇒A→B
(2)Γ⇒A→C ,其中公式集Γ={A→ (B→C),B}

解

(1)成立。从表2.6中可以看出使得 ¬A 为真的指派也使得

A →B为真。

表2.6 ¬A蕴涵A →B

A B ¬A A→B
T T F T
T F F F
F T T T
F F T T

  (2)成立。使得Γ中的每个公式为真的指派分别为

α1(B)=T,α1(A)=F,α1(C)=T,此时α1(A→C)=T

α2(B)=T,α2(A)=F,α2(C)=F,此时α2(A→C)=T

α3(B)=T,α3(A)=T,α3(C)=T,此时α3(A→C)=T
故Γ⇒A→C成立。

定理2.1.1 A⇒B当且仅当A →B为重言式。

证明留为作业。
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定义2.1.7 逻辑等价:公式A,B逻辑等价当且仅当A⇒B且

B⇒A,记为A⇔B。

例2.1.13 (¬A→B)⇔(¬B→A)

解  根据逻辑等价的定义只需要验证对任意的指派α使得

¬A→B为真当且仅当α使得 ¬B→A也为真,如表2.7所示,故

(¬A→B)⇔(¬B→A)。

表2.7 ¬A→B逻辑等价 ¬B→A

A B ¬A→B ¬B→A
T T T T
T F T T
F T T T
F F F F

  定理2.1.2 A⇔B当且仅当A↔B为重言式。

证明留为作业。

利用真值表可以得到如下常用的逻辑等价式:

(1)¬(¬A)⇔A
(2)A→B⇔¬A∨B
(3)A→B⇔¬B→ ¬A
(4)A→ (B→C)⇔(A∧B)→C
(5)(A↔B)⇔(A→B)∧ (B→A)

(A↔B)⇔(A∧B)∨ (¬A∧ ¬B)

(6)A→ (B→C)⇔B→ (A→C)

(7)(A→C)∧ (B→C)⇔(A∨B)→C
另外,根据定理2.1.2及前面2.1.3节内容中的常见重言式,即

可得到相应的逻辑等价式。

对于重言式可以做如下的代入操作。
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定理2.1.3 代入原理:设A为含命题变元p的重言式,则将A
中p的所有出现均代换为命题公式B,所得的公式仍为重言式。

例2.1.14 设A=p→(q→p),其中p为命题变元。显然A为

重言式,对p均用公式r∨s代换得公式A′=(r∨s)→ (q→
(r∨s))仍为重言式。

注意代入操作必须是针对重言式中的命题变元进行的,而且必

须是对该命题变元做全部的代入替换。

对于一般的公式A,则可以做等价替换。

定理2.1.4 替换原理:设C为命题公式A中的子命题公式,若

C⇔D,则将C用D替换(未必对所有的子公式C均作替换)后得公式

B,满足A⇔B。

例2.1.15 由于P→Q⇔¬P∨Q,则有

(P→Q)∧ ((R→ (P→Q))∨ (¬S∧ (P→Q)))

⇔(¬P∨Q)∧ ((R→ (P→Q))∨ (¬S∧ (¬P∨Q)))

⇔(¬P∨Q)∧ ((R→ (¬P∨Q))∨ (¬S∧ (¬P∨Q)))

很显然,替换原理可以是部分的等价替换,也可以是全部的等价

替换,但均不改变原命题公式的真值取值。

2.2 范  式

由上节的替换原理可以看到,如果对一个命题公式进行各种等

价变换,最终可以得到该公式的各种不同表现形式,但在本质上它们

都是等值的,那么能否得到此类相互等价的公式的一个标准化或规

范化的表现形式呢? 这就是本节所要解决的问题。下面首先引入几

个基本概念。
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2.2.1 基本概念

定义2.2.1 文字:原子命题变元及其否定称为文字。

例2.2.1 p,¬q均为文字。

定义2.2.2 合取式:文字的合取称为合取式。

例2.2.2 p∧ ¬q,¬p∧ ¬q均为合取式。

定义2.2.3 析取式:文字的析取称为析取式。

例2.2.3 p∨ ¬q,¬p∨ ¬q均为析取式。

定义2.2.4 合取范式:形如下列形式的公式称为合取范式:

A1 ∧A2 ∧ … ∧An(n≥1),其中Ai(i=1,…,n)为析取式。

例2.2.4 (¬p∨q)∧(r∨s),¬p∨r∨s均为合取范式。

定义2.2.5 析取范式:形如下列形式的公式称为析取范式:

A1 ∨A2 ∨ … ∨An(n≥1),其中Ai(i=1,…,n)为合取式。

例2.2.5 (¬p∧q)∨(r∧s),¬p∧r∧s均为析取范式。

2.2.2 范式的求解

定理2.2.1 (范式定理)任一命题公式A都存在与之等价的合

取范式和析取范式。

根据合取范式和析取范式的定义以及替换原理,可以直接求解

出任一命题公式A的合取范式和析取范式。具体求解过程如下:

(1)用如下逻辑等价式消去 → 及 ↔:

A→B⇔¬A∨B
(A↔B)⇔(¬A∨B)∧ (A∨ ¬B)

⇔(A∧B)∨ (¬A∧ ¬B)

(2)运用摩根定律、分配律及双重否定定律进行公式形式转换:

¬(A∨B)⇔¬A∧ ¬B
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¬(A∧B)⇔¬A∨ ¬B

A∧ (B∨C)⇔(A∧B)∨ (A∧C)

A∨ (B∧C)⇔(A∨B)∧ (A∨C)

¬(¬A)⇔A
(3)公式化简:

A∨A⇔A,A∧A⇔A
例2.2.6 求公式(p∧q)→ (¬q∧r)的合取范式和析取

范式。

解  (p∧q)→ (¬q∧r)

⇔¬(p∧q)∨ (¬q∧r)

⇔¬(p∧q)∨ (¬q∧r)

⇔((¬p∨ ¬q)∨ ¬q)∧ ((¬p∨ ¬q)∨r)

⇔(¬p∨ ¬q)∧ (¬p∨ ¬q∨r) 为合取范式

⇔(¬p∧(¬p∨¬q∨r))∨(¬q∧(¬p∨¬q∨r))

⇔ (¬p∧ ¬p)∨ (¬p∧ ¬q)∨ (¬p∧r)

∨ (¬q∧ ¬p)∨ (¬q∧ ¬q)∨ (¬q∧r)

为析取范式

⇔ ¬p∨(¬p∧¬q)∨(¬p∧r)∨¬q∨(¬q∧r) 
为析取范式

⇔¬p∨ ¬q 为析取范式

由此可见合取范式与析取范式的形式不唯一。

2.2.3 主范式

由于一个公式的合取范式与析取范式不唯一,因此使用它们来

判别不同的公式形式是否等价就比较困难了。另外,人们也期望相

互等价的公式有一个唯一的表现形式,为此人们引入主范式的概
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念。下面先给出几个与主范式有关的基本概念。

定义2.2.6 合取项:在命题公式A的合取范式A1∧A2∧ …

∧An(n≥1)中,称析取式Ai(i=1,…,n)为合取项。

例2.2.7 在合取范式(¬p∨ ¬q)∧(¬p∨ ¬q∨r)中,下

列公式均为其合取项:(¬p∨ ¬q),(¬p∨ ¬q∨r)。

定义2.2.7 析取项:在命题公式A的析取范式A1∨A2∨ …

∨An(n≥1)中,称合取式Ai(i=1,…,n)为析取项。

例2.2.8 在析取范式(¬p∧q)∨(¬p∧¬q)∨(¬p∧r)

中,下列公式均为其析取项:¬p∧q,¬p∧ ¬q,¬p∧r。

定义2.2.8 主合取范式:设命题公式A(p1,p2,…,pn)的合取

范式为

A1 ∧A2 ∧ … ∧Ak(k≥1)

若其中每一个合取项Aj(j=1,…,k)的形式为

Aj=Q1 ∨Q2 ∨ … ∨Qn

其中Qi=pi或 ¬pi,i=1,…,n。

则称A1 ∧A2 ∧ … ∧Ak(k≥1)为A的主合取范式。

今后称形如Aj=Q1∨Q2∨ … ∨Qn 的合取项为极大项,通常

用Mj表示。关于极大项Mj有如下性质:

(1)对于命题公式A(p1,p2,…,pn),共有2n 个极大项;

(2)每个极大项 Mj 有2n 种真值指派,其中为F 的真值指派

唯一;

(3)任意两个不相同的极大项的真值取值不能同为F;

(4)所有2n 个极大项之“∧”为F,即∧
2n

j=1
Mj⇔F。

例2.2.9 设公式A(p,q)=(¬p∨q)∧ (p∨q),即为A的

主合取范式。
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定义2.2.9 主析取范式:设命题公式A(p1,p2,…,pn)的析取

范式为

A1 ∨A2 ∨ … ∨Ak(k≥1)

若其中每一个析取项Aj(j=1,…,k)的形式为

Aj=Q1 ∧Q2 ∧ … ∧Qn

其中Qi=pi或 ¬pi,i=1,…,n。

则称A1 ∨A2 ∨ … ∨Ak(k≥1)为A的主析取范式。

今后称形如Aj=Q1∧Q2∧ … ∧Qn 的析取项为极小项,通常

用mj表示。关于极小项mj有如下性质:

(1)对于命题公式A(p1,p2,…,pn),共有2n 个极小项;

(2)每个极小项mj 有2n 种真值指派,其中为T 的真值指派

唯一;

(3)任意两个不相同的极小项的真值取值不能同为T;

(4)所有2n 个极小项之“∨”为T,即∨
2n

j=1
mj⇔T。

例2.2.10 设公式A(p,q,r)=(¬p∧¬q∧r)∨(p∧q∧r),

即为A的主析取范式。

根据主范式的定义,可以在合取范式和析取范式的基础上求解

出公式A的主范式。下面给出具体的求解步骤:

(1)求解命题公式A(p1,p2,…,pn)的合取(析取)范式;

(2)除去合取(析取)范式中所有永真(永假)的项,如p∨¬p,

p∧ ¬p;

(3)合并相同的合取(析取)项和相同的变元,如q∨q⇔q,q∧q⇔q;

对某些合取(析取)项中仅有p1,p2,…,pn 中部分变元的项进行补

齐,即在合取项中添加永假式pl∧ ¬pl(其中pl为该项中缺少的变

元),在析取项中添加永真式pl ∨ ¬pl(其中pl 为该项中缺少的变
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元);然后用分配律展开,再化简。

例2.2.11 求公式p∧q的主合取范式。

解  p∧q⇔(p∨ (q∧ ¬q))∧ ((p∧ ¬p)∨q)

⇔(p∨q)∧ (p∨ ¬q)∧ (p∨q)∧ (¬p∨q)

⇔(p∨q)∧ (p∨ ¬q)∧ (¬p∨q)为主合取范式

例2.2.12 求公式p→q的主析取范式。

解  p→q⇔¬p∨q⇔(¬p∧(q∨¬q))∨((p∨¬p)∧q)

⇔(¬p∧q)∨ (¬p∧ ¬q)∨ (p∧q)∨ (¬p∧q)

⇔(¬p∧q)∨ (¬p∧ ¬q)∨ (p∧q)为主析取范式

例2.2.13 求公式(p∧q)→(¬q∧r)的主合取范式和主析

取范式。

解  (p∧q)→(¬q∧r)⇔(¬p∨¬q)∧(¬p∨¬q∨r)

为合取范式

⇔(¬p∨ ¬q∨ (r∧ ¬r))∧ (¬p∨ ¬q∨r)

⇔(¬p∨ ¬q∨r)∧(¬p∨ ¬q∨ ¬r)为主合取范式

⇔¬p∨ ¬q为析取范式

⇔ (¬p∧(q∨¬q)∧(r∨¬r))∨((p∨¬p)∧¬q

∧ (r∨ ¬r))

⇔ (¬p∧¬q∧r)∨(¬p∧¬q∧¬r)∨(¬p∧q∧r)

∨(¬p∧q∧¬r)∨(p∧¬q∧¬r)∨(p∧¬q∧r)

为主析取范式

定理2.2.2 永真式无主合取范式,永假式无主析取范式。

证明 若命题公式A(p1,p2,…,pn)永真,假设有主合取范式,

设其主合取范式为∧
i
Mi(表示公式A的主合取范式由若干极大项之

“∧”构成),即有A⇔ ∧
i
Mi。根据极大项的性质知:对∧

i
Mi中的极
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大项Mi0
存在指派αi0

,使得αi0
(Mi0

)=F,从而αi0
(∧

i
Mi)=F,即

αi0
(A)=F,这与A永真矛盾。故永真式无主合取范式。

同理可证永假式无主析取范式。

定理2.2.3 任一命题公式(非永真或非永假)都存在唯一与之

等价的主合取范式和主析取范式。

证明  下面以主合取范式的存在性和唯一性为例来证明。

存在性:由上面的求解过程即可知。

唯一性:假设命题公式A(p1,p2,…,pn)的主合取范式不唯一,

分别记为∧
i
Mi 与∧

j
M′j,且两个主合取范式中至少有一个极大项不

同,不妨设∧
i
Mi中的极大项Mi0

与 ∧
j
M′j 中的所有极大项均不同。

根据极大项的性质知Mi0
有 唯一为假的指派αi0

,即有αi0
(Mi0

)=F,

从而αi0
(∧

i
Mi)=F,则由A⇔ ∧

i
Mi知αi0

(A)=F。又因∧
j
M′j中的

所有极大项均与Mi0
不同,故对于∧

j
M′j 中的每个极大项M′j 均有

αi0
(M′j)=T,从而αi0

(∧
j
M′j)=T,又A⇔∧

j
M′j,所以αi0

(A)=T,与

αi0
(A)=F矛盾。

对主析取范式的情况同理可证。

根据前面给出的合取项与析取项的性质,可以得到关于主合取

范式与主合取范式关系的相关结论:

定理2.2.4 若已知命题公式A(p1,p2,…,pn)的主合取范式

为∧
i
Mi,则其主析取范式为 ¬(¬A),其中 ¬A为A 的所有2n 个极

大项中除去主合取范式∧
i
Mi中的极大项后剩下的极大项之“∧”;同

理,若已知命题公式A(p1,p2,…,pn)的主析取范式为∨
i
mi,则其主

合取范式为¬(¬A),其中¬A为A的所有2n个极小项中除去主析

取范式∨
i
mi中的极小项后剩下的极小项之“∨”。
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证明 记A的所有2n个极大项中除去主合取范式∧
i
Mi中的极

大项后剩下的极大项之“∧”为公式B,下面证B⇔¬A。

由A⇔ ∧
i
Mi及∧

2n

i=1
Mi=F知:A∧B⇔F。

① 若对任意指派α,有α(¬A)=F,即α(A)=T,则由A∧B⇔F
知此时必有α(B)=F,从而α(B)=α(¬A);

②若对任意指派α,有α(¬A)=T,即α(A)=F。此时若α(B)=

F,则B中至少有一个极大项Mk使得α(Mk)=F,由于A的主合取范

式∧
i
Mi中的极大项均与Mk 不同,故对∧

i
Mi中的任意极大项Mi有

α(Mi)=T,从而α(∧
i
Mi)=T,即α(A)=T,矛盾。故此时只有

α(B)=T,从而α(B)=α(¬A)。

综上,对任意指派α均有α(B)=α(¬A),从而B⇔¬A。

定理2.2.5 命题公式A(p1,p2,…,pn)的主合取范式中极大

项的数目与主析取范式中极小项的数目之和为2n。

证明  直接由定理2.2.4即可知。

根据上述主合取范式与主析取范式之间的关系,可以给主范式

的求取带来极大方便,只要求出其中一个,则由二者的关系能够很快

求出另一个。

例2.2.14 求公式(p∧q)→(¬q∧r)的主合取范式和主析

取范式。

解  (p∧q)→(¬q∧r)⇔(¬p∨¬q)∧(¬p∨¬q∨r)

⇔(¬p∨ ¬q∨ ¬r)∧(¬p∨ ¬q∨r)为主合取范式

根据主合取范式和主析取范式的关系,则其主析取范式为

(p∧q)→ (¬q∧r)

⇔ ¬((p∨q∨r)∧ (p∨q∨ ¬r)
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∧ (p∨ ¬q∨r)∧ (p∨ ¬q∨ ¬r)

∧ (¬p∨q∨r)∧ (¬p∨q∨ ¬r))

⇔ (¬p∧ ¬q∧ ¬r)∨ (¬p∧ ¬q∧r)

∨ (¬p∧q∧ ¬r)∨ (¬p∧q∧r)

∨ (p∧ ¬q∧ ¬r)∨ (p∧ ¬q∧r)

除了上面求解主范式的方法外,还可以通过命题公式的真值表

来求解相应的主范式。

设命题公式A(p1,p2,…,pn)(非永真、非永假)的真值表如

表2.8所示:
表2.8 公式A的真值表

p1 p2 … pn A
前k个为真的指派 T
后j个为假的指派 F

其中k+j=2n。则根据命题公式A为真的指派可以得到A的主析取

范式求解方法:

(1)令A=m1 ∨m2 ∨ … ∨mk;

(2)对mi(i=1,2,…,k),令mi=P′1 ∧P′2 ∧ … ∧P′n,其中

P′l =
pl

¬pl

若pl在第i行的真值赋值为T
若pl在第i行的真值赋值为{ F

,l=1,2,…,n

同理,可以得到A的主合取范式求解方法:

(1)令A=Mk+1 ∧Mk+2 ∧ … ∧Mk+j;

(2)对Mi(i=k+1,k+2,…,k+j),令Mi=P′1∨P′2∨…∨P′n,

其中

P′l =
pl

¬pl

若pl在第i行的真值赋值为F
若pl在第i行的真值赋值为{ T

,l=1,2,…,n

由此根据真值表能够很快给出公式A的主合取范式与主析取范式。
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例2.2.15 求公式A=p↔q的主合取范式与主析取范式。

解  公式A的真值表如表2.9所示:

表2.9 公式A的真值表

p q p↔q
T T T
T F F
F T F
F F T

则从A为真的指派可得主析取范式为

A=p↔q⇔(p∧q)∨ (¬p∧ ¬q)

则从A为假的指派可得主合取范式为

A=p↔q⇔(¬p∨q)∧ (p∨ ¬q)

根据真值表与主范式的关系可得如下结论:

定理2.2.6 n元命题公式的全体可划分为22
n
个等价类,每一

类中的公式相互逻辑等价,并等价于它们公共的主合取范式(主析取

范式)。

例2.2.16 A=(p∧q)→ (¬q∧r)

⇔(¬p∨ ¬q)∧ (¬p∨ ¬q∨r)

⇔¬p∨ (¬p∧ ¬q)∨ (¬p∧r)∨ ¬q∨ (¬q∧r)

⇔¬p∨ ¬q
⇔(¬p∨ ¬q∨r)∧ (¬p∨ ¬q∨ ¬r)为主合取范式

由此可见,尽管可以对公式A做很多不同的等价变换从而得到

其不同的公式形式,但无论如何变换它均有一个唯一的规范化表现

形式,即主范式。

对于主范式除了在开关代数中用于电路设计外,还可以用以简

单的逻辑推理,如下例所示。
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例2.2.17 派3人A,B,C完成一项任务,需满足如下条件:

(1)若A去,则C也去;

(2)若B去,则C不能去;

(3)若C不去,则A或B 去。

试给出可能的派遣方案。

解  首先对上述命题进行形式化:

令  P:派A去;

Q:派B去;

R:派C去;

则上述派遣条件用命题公式可形式化为

(P→R)∧ (Q→ ¬R)∧ (¬R→ (P∨Q))

⇔(¬P∧ ¬Q∧R)∨ (¬P∧Q∧ ¬R)∨ (P∧ ¬Q∧R)

使得上式为真的指派即为满足派遣条件的派遣方案:

(1)A,B均不去,C去;

(2)A,C均不去,B去;

(3)A,C均去,B不去。

2.3 联结词的扩充与归约

前面介绍了一个n元逻辑联结词其实就是一n元映射,是一个

从{T,F}n 到{T,F}的映射,相应的真值函数表就有22
n
种。因此可

以给出更多的n元逻辑联结词,那么这些未给出的逻辑联结词和前

面介绍的5个逻辑联结词之间有什么关系,这就是本节内容所要介

绍的。下面先以n=1,2为例给出更多的n元逻辑联结词,然后给出

一般情况的结论。
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1.联结词的扩充

下面分别以n=1和n=2为例来给出联结词的扩充。

(1)当n=1时,有4个不同的从{T,F}到{T,F}的映射,即有4
个不同的一元联结词f1,f2,f3,f4,从而对应的真值函数表就有4
个,如表2.10所示。

表2.10 n=1的4个联结词

p f1 f2 f3 f4
T F F T T
F F T F T

  相应的真值函数分别为:

f1(p)=F,为常联结词

f2(p)=¬p,为否定词 ¬

f3(p)=p,为恒等联结词

f4(p)=T,为常联结词

(2)当n=2时,就有16个不同的从{T,F}2到{T,F}的映射,即有

16个不同的二元联结词,相应的真值函数表就有16个,如表2.11所示。

表2.11 n=2的16个联结词

p q f1 f2 f3 f4 f5 f6 f7 f8
F F F F F F F F F F
F T F F F F T T T T
T F F F T T F F T T
T T F T F T F T F T
p q f9 f10 f11 f12 f13 f14 f15 f16
F F T T T T T T T T
F T F F F F T T T T
T F F F T T F F T T
T T F T F T F T F T
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  由表2.11可以看出f2即为∧,f8即为∨,f14即为→,f10即为

↔。另外f1,f16 为常逻辑联结词。f4,f6 的映射结果分别与变元

p,q的取值相同,故通常称为投影联结词;f11,f13的映射结果分别与

变元q,p的取值相反,即有:f11(p,q)=¬q,f13(p,q)=¬p,它们通

常称为二元否定词。对于f12,本质仍为→,因为f12(p,q)=q→p。

对于f3,f5可视为“蕴涵否定词”,一般记为:→/,因为f3(p,q)=p→/q

=¬(p→q),f5(p,q)=q→/p=¬(q→p)。剩下的几个联结词是计

算机科学中用得比较多的:

f9 即为或非词 ↓,f9(p,q)=p↓q⇔¬(p∨q)

f15 即为与非词 ↑,f15(p,q)=p↑q⇔¬(p∧q)

f7 即为异或词∨-,f7(p,q)=p∨-q⇔¬(p↔q)

从上面的讨论可以看出,可以将逻辑联结词扩充得更多,同时也

可以发现新扩充的联结词均可由前面给出的5个基本联结词表示出

来。下面引入联结词的可表示性概念。

2.联结词的归约

定义2.3.1 联结词的可表示性:设h为一n元联结词,A为由

m 个联结词g1,g2,…,gm 构成的命题公式,若有h(p1,p2,…,

pn)⇔A,则称联结词h可由联结词g1,g2,…,gm 来表示。

例2.3.1 如上面给出的逻辑联结词或非词 ↓、与非词 ↑、异

或词∨-均可由联结词 ¬,∧,∨,↔ 表示出来。

定义2.3.2 联结词的完备集:设C为联结词的集合,若对任一

命题公式都可由C中的联结词表示出来的公式与之等值,则称C是

联结词的完备集,或称C是完备的联结词集合。

定理2.3.1 {¬,∧,∨}是完备的联结词集合。

证明  即证对任一n元联结词均可由{¬,∧,∨}表示。只需
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要证明任一n元联结词所对应的n元真值函数f(p1,p2,…,pn)可由

{¬,∧,∨}表示出来即可。下面对n进行归纳证明。

(1)当n=1,2时,由上述真值函数表知它们均可由{¬,∧,∨}

表示出来;

(2)假设当n=k时,即对k元联结词可以由{¬,∧,∨}表示出

来,则当n=k+1时,有

f(p1,p2,…,pk,pk+1)⇔
f(F,p2,…,pk,pk+1),

f(T,p2,…,pk,pk+1
{ ),

p1=F

p1=T

根据归纳假设知f(F,p2,…,pk,pk+1)可由{¬,∧,∨}表示,

记为公式A。同理f(T,p2,…,pk,pk+1)可由{¬,∧,∨}表示,记

为公式B,即

f(p1,p2,…,pk,pk+1)⇔
A,

B{ ,
p1=F

p1=T

⇔(¬p1 →A)∧ (p1 →B)

⇔(p1 ∨A)∧ (¬p1 ∨B)

所以当n=k+1时,f(p1,p2,…,pk,pk+1)也可由{¬,∧,∨}表示。

类似的联结词完备集还有{¬,∧},{¬,∨},{¬,→},{ }↑ ,

{ }↓ 等,因为

p∨q⇔¬(¬p∧ ¬q)

p∧q⇔¬(¬p∨ ¬q)

p∨q⇔¬p→q

¬p⇔¬(p∧p)⇔p↑p

p∧q⇔¬(¬(p∧q))⇔¬(p↑q)⇔(p↑q)↑(p↑q)

¬p⇔¬(p∨p)⇔p↓p

p∨q⇔¬(¬(p∨q))⇔¬(p↓q)⇔(p↓q)↓(p↓q)
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例2.3.2 用{↑}表示公式(p→ ¬q)→ ¬r。

解  (p→ ¬q)→ ¬r⇔(¬p∨ ¬q)→ ¬r

⇔¬(¬p∨ ¬q)∨ ¬r⇔¬((¬p∨ ¬q)∧r)

⇔(¬p∨ ¬q)↑r⇔(¬(p∧q))↑r⇔(p↑q)↑r
在后面的逻辑推理系统中,为了系统和推理的简洁性,将使用只

有两个联结词的完备集{¬,→}。

2.4 对偶式

对偶性反映的是一种逻辑规律,它能给证明公式的等值或求否

定带来很大的方便。下面先给出对偶式的定义,然后介绍几个有关

对偶的性质定理。

定义2.4.1 对偶式:在仅含有联结词¬,∧,∨的命题公式A
中,将 ∧换成∨,∨换成∧,F换成T,T换成F,得到的公式称为A
的对偶式,记为A*。

很显然,对偶是相互的,即有(A*)*⇔A。

例2.4.1 若A=(p∨q)∧r,则A* =(p∧q)∨r。

若A=p∨F,则A* =p∧T
定义2.4.2 内否式:设有命题公式A(p1,p2,…,pn),对公式

A中的变元pi(i=1,…,n)用¬pi做代入所得的结果称为A的内否

式,记为A-,即有:A-=A(¬p1,¬p2,…,¬pn)。

例2.4.2 设A=(p∨q)∧r,则A-=(¬p∨ ¬q)∧ ¬r。

定理2.4.1 (A-)- ⇔A
根据A- 的定义显然成立。

定理2.4.2 ¬(A*)⇔ (¬A)*

证明 设公式A(p1,p2,…,pn)中仅含有联结词¬,∧,∨,下
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面根据公式A中逻辑联结词的个数k进行归纳证明。

(1)当k=0时,此时A 为原子命题公式,即A= p1,从而

¬A= ¬p1。由于p1 为原子变元符,显然有p1 *⇔p1,则 ¬(A*)⇔

¬(p1 *)⇔¬p1,(¬A)*⇔(¬p1)*⇔¬p1,故¬(A*)⇔(¬A)*。

(2)假设当k≤m时,定理成立,则当k=m+1时,根据公式A
的定义,此时不妨设A的形式为以下三种情况:

A=¬A1, A=A1 ∧A2, A=A1 ∨A2

其中公式A1,A2 的联结词个数不超过m,则根据归纳假设有

¬(A1
*)⇔ (¬A1)*

¬(A2
*)⇔ (¬A2)*

当A =¬A1 时,¬(A*)⇔¬((¬A1)*),而 ¬((¬A1)*)⇔

¬(¬(A*
1 ))⇔A*

1 ,则 ¬(A*)⇔A*
1 ,又(¬A)*⇔ (¬(¬A1))*⇔

A*
1 ,故此时 ¬(A*)⇔ (¬A)*;

当A=A1∧A2时,¬(A*)⇔¬((A1∧A2)*)⇔¬(A*
1 ∨A*

2)

⇔(¬(A*
1))∧(¬(A*

2))

由归纳假设知(¬(A*
1 ))∧(¬(A*

2 ))⇔(¬A1)* ∧(¬A2)*,

则¬(A*)⇔(¬A1)* ∧ (¬A2)*。又(¬A)*⇔ (¬(A1 ∧A2))*

⇔(¬A1∨¬A2)*⇔(¬A1)* ∧(¬A2)*,故¬(A*)⇔(¬A)*。

当A=A1 ∨A2 时,证法同A=A1 ∧A2 的情况。

故k=m+1时,¬(A*)⇔ (¬A)* 成立。

定理2.4.3 ¬A⇔ (A*)-,¬(A-)⇔ (¬A)-

同定理2.4.2的证明。

定理2.4.4 (¬A)- ⇔A*

直接由定理2.4.3及定理2.4.1即可得出。

定理2.4.5 若A⇔B,则必有A*⇔B*。
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证明  由A⇔B 得 ¬A⇔¬B,根据定理2.4.3知(A*)- ⇔
(B*)-,再由定理2.4.1知A*⇔B*。

例2.4.3 由p∧ (q∨r)⇔(p∧q)∨ (p∧r),则根据定理

2.4.5得

p∨ (q∧r)⇔(p∨q)∧ (p∨r)

定理2.4.6 若A→B永真,则B* →A* 永真。

证明  由A →B 永真知 ¬B → ¬A 永真,由定理2.4.3知

(B*)-→ (A*)- 永真,则由永真式的代入原理知B* →A* 永真。

例2.4.4 由p→ (p∨q)为永真式,根据定理2.4.6可知

(p∧q)→p也为永真式。

习  题

1.将下列语句形式化为命题公式。

(1)2既是偶数又是素数。

(2)一个整数是奇数当且仅当它不能被2整除。

(3)大学里的学生不是本科生就是研究生。

(4)你的车速超过每小时100公里足以接到超速罚单。

(5)只要你接到超速罚单,你的车速就超过每小时100公里。

(6)要选修离散数学课程,你必须已经选修线性代数或数学分析。

(7)只要不下雨,我就骑自行车上班。

(8)只有不下雨,我才骑自行车上班。

(9)除非你年满18周岁,否则你没有选举权。

2.判定下列逻辑蕴涵和逻辑等价是否成立,其中A,B,C为任意

公式。

(1)A⇒B→A
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(2)¬A→ ¬B⇔B→A
(3)A→ (B→C)⇒(A→B)→ (A→C)

(4)A→ (B→C)⇔A∧B→C
(5)(A∨B)→C⇔(A→C)∧ (B→C)

(6)¬A∨B,A→ (B∧C),D→B⇒¬B→C

3.求下列公式的合取范式与析取范式。

(1)¬(q→p)∧ (r→ ¬s)

(2)(¬p∧q)→r
(3)¬(p∨q)↔(p∧q)

4.求下列公式的主合取范式与主析取范式。

(1)p→ (p∧q)

(2)(p∨q)→ (q→r)

(3)(p→ (p∧q))∨r

5.用{¬,→}等价表示下列公式。

(1)p∨ (p∧q)↔p
(2)((p∨q)∨r)↔(p∨ (q∨r))

(3)((p∧q)∧r)↔(p∧ (q∧r))

(4)(p∧ (q∨r))↔((p∧q)∨ (p∧r))

(5)(p∨ (q∧r)↔(p∨q)∧ (p∨r)

6.用 ↓、↑ 分别等价表示下列公式。

(1)¬p∨q
(2)p∧ ¬q
(3)¬p∨ ¬q
(4)p↔q
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第3章  命题演算形式系统

在上一章里,我们用真值表方法研究命题逻辑,比如用真值表判

定一个命题公式是不是重言式、矛盾式、任意两个公式是否等值、求

解相互等价的命题公式的共同规范化形式即主范式,以及一个命题

公式是不是其他命题公式的逻辑蕴涵结果等,但真值表方法有它的

局限性,比如作为反映逻辑规律的重言式,由于它们不可胜数,真值

表技术不能把所有的重言式作为一个整体来研究,因此反映不了所

有这些逻辑规律构成的系统的整体性质。在本章,我们将用另一种

能将它们包括在一个整体之内的方法,即公理化方法来研究命题逻

辑。为使这种理论讨论较为简洁,先建立一个简明的命题逻辑形式

系统PC(propositionalcalculus),然后再介绍一个更实用、比较符合

人的思维模式的推理演算系统,即自然推理系统 ND(natural

deduction)。

3.1 命题逻辑演算形式系统

一个形式系统通常包括如下几个组成部分:第一部分就是形式

系统的语言,也叫形式语言部分,类似于数学语言、程序设计语言等,

它也是一种人工语言,此部分通常包括语言的基本符号集,并由它们

根据一定的语法规则形成的有穷符号序列的表达式。第二部分是系

统的公理,它是不加证明而接受为系统的推理出发点,系统中的其余

命题,都是从公理出发经证明推导出来的。第三部分是推理规则,也



称为变形规则,它是用来从公理推导定理的。第四部分是定理,就是

从公理出发,通过运用推理规则,推出一个称为结论的结果,就称作

定理。

3.1.1 命题演算形式系统的组成

下面分别从以下几部分来介绍命题逻辑演算形式系统:语言部

分的字符集和命题公式的形成规则,推理部分的公理、推理规则及定

理推导。

1.字符集

(1)原子变元符:p1,p2,…,pn,…

(2)联结词完备集:{¬,→}

(3)辅助符号:圆括号()

通常将字符集部分用符号表示为Σ={(,),¬,→,p1,p2,…,

pn,…}。

2.形成规则

形成规则就是由原子变元符及联结词形成命题公式的规则,即

命题公式的定义部分。

3.公理

在命题演算形式系统中挑选如下三个最基本的重言式作为公

理,使得它们能作为推导其他所有重言式的依据。

A1:A→ (B→A)

A2:(A→ (B→C))→ ((A→B)→ (A→C))

A3:(¬A→ ¬B)→ (B→A)

其中A,B,C为语法变元,可代表任意命题公式,因此上述每一个重
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言式都不是代表一个公理,而是代表无穷多个公理,凡是和它们具有

相同形式结构的命题公式都是公理,因此它们代表的是三类公理模

式,即对它们根据带入原理得到的任何结果均仍为公理,如

¬P→ (B→ ¬P)

(A→ (¬B→ ¬C))→ ((A→ ¬B)→ (A→ ¬C))

(¬¬A→ ¬¬B)→ (¬B→ ¬A)

均仍为公理,但(¬A→B)→ (¬B→A)不是公理。

4.推理规则

推理规则用于从已有的公理和已推理出来的结论来推理另一结

论。在命题演算形式系统中仅有一个推理规则,称为分离规则

(rmp):即若有结论A及A→B成立,则必有结论B成立,可用形式化

推理序列表示为

A,A→B,B
根据分离规则可看出,如果A及A →B为真,则必有B为真,若

A及A →B为永真,则必有B为永真,此属性称为分离规则的保真

性。

5.定理推导

定理推导是PC形式系统中的重要内容,包括所有的推理结论

及其推理过程。

3.1.2 命题演算形式系统的基本定理

在给出命题演算形式系统的常见基本定理的推导前,先给出几

个与逻辑推理相关的基本定义。

定义3.1.1 证明:称下列公式序列为公式A在PC中的一个证
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明

A1,A2,…,Am(=A)

其中Ai(i=1,…,m-1)或为PC的公理,或为Aj(j<i),或为Aj,

Ak(j,k<i)使用rmp 导出的,而Am 即为公式A。

定义3.1.2 定理:如果公式A在PC中有一个证明序列,则称

A为PC的定理,记为 ├PCA,或简记为 ├A。其中符号“├”表示其

后的公式在PC中是可证明的。从语义的角度来看就是表示后面的

公式为重言式。

定义3.1.3 演绎:设Γ为PC中若干公式构成的公式集,称下

列公式序列为公式A以Γ为前提的演绎,即

A1,A2,…,Am(=A)

其中Ai(i=1,…,m-1)或为PC的公理,或为Γ中的成员,或为

Aj(j<i),或为Aj,Ak(j,k<i)使用rmp 导出的,而Am 即为公式

A。记为Γ├PCA或简记为Γ├A,并称A为Γ的演绎结果。

若Γ中仅有一个成员,如Γ={B},此时Γ├A即为B├A,表示公

式A可由前提B在PC中演绎出来,若此时还有A├B,则称公式A,

B演绎等价,记为A├┤B。

下面给出PC中的若干基本定理。正如公理为公理模式,下面

推导出来的定理也均为定理模式,每个都代表无穷多个定理。

定理3.1.1 证明A→A是PC的定理,即证 ├A→A。

证明

(1)(A → ((B → A)→ A))→ ((A → (B → A))→
(A→A)) A2

(2)A→ ((B→A)→A) A1
(3)(A→ (B→A))→ (A→A) (1)(2)rmp

(4)A→ (B→A) A1
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(5)A→A (3)(4)rmp

为了便于查看具体的推理过程或者说符号串的变换过程,我们

将每一步推理过程中用到的公理、已证定理或如何运用推理规则注

释在后面,以下类同。

定理3.1.2 若 ├P,则有 ├A→P。

即若假设公式P为PC的定理,则公式A→P也为PC的定理。

证明

(1)P定理

(2)P→ (A→P) A1
(3)A→P (1)(2)rmp

定理3.1.3 ├¬A→ (A→B)

证明

(1)(¬B→ ¬A)→ (A→B) A3
(2)¬A→ ((¬B→ ¬A)→ (A→B)) (1)定理3.1.2
(3)(¬A→ ((¬B→ ¬A)→ (A→B)))

→ ((¬A→ (¬B→ ¬A))→ (¬A→ (A→B))) A2
(4)(¬A→ (¬B→ ¬A))→ (¬A→ (A→B))

(2)(3)rmp

(5)¬A→ (¬B→ ¬A) A1
(6)¬A→ (A→B) (4)(5)rmp

定理3.1.4 ¬¬A├A,即证A是 ¬¬A的演绎结果。

证明

(1)¬¬A 前提

(2)¬¬A→ (¬¬¬¬A→ ¬¬A) A1
(3)¬¬¬¬A→ ¬¬A (1)(3)rmp

(4)(¬¬¬¬A→ ¬¬A)→ (¬A→ ¬¬¬A) A3

94第3章  命题演算形式系统



(5)¬A→ ¬¬¬A (3)(4)rmp

(6)(¬A→ ¬¬¬A)→ (¬¬A→A) A3
(7)¬¬A→A (5)(6)rmp

(8)A (1)(7)rmp

定理3.1.5 ├(B→C)→ ((A→B)→ (A→C))

证明

(1)(A→ (B→C))→ ((A→B)→ (A→C))A2
(2)(B→C)→ ((A→ (B→C))→ ((A→B)→ (A→C)))

(1)定理3.1.2
(3)((B→C)→((A→(B→C))→((A→B)→(A→C))))

→ (((B→C)→(A→(B→C)))→((B→C)→((A→
B)→ (A→C)))) A2

(4)((B→C)→ (A→ (B→C)))→ ((B→C)

→ ((A→B)→ (A→C))) (2)(3)rmp

(5)(B→C)→ (A→ (B→C)) A1
(6)(B→C)→ ((A→B)→ (A→C)) (4)(5)rmp

定理3.1.6 ├(A→ (B→C))→ (B→ (A→C))

证明

(1)(A→ (B→C))→ ((A→B)→ (A→C)) A2
(2)((A→ (B→C))→ ((A→B)→ (A→C)))

→ (((A→(B→C))→(A→B))→((A→(B→C))→
(A→C)))A2

(3)((A→ (B→C))→ (A→B))→ ((A→ (B→C))→ (A

→C)) (1)(2)rmp

(4)(A→B)→ (((A→ (B→C))→ (A→B))

→ ((A→ (B→C))→ (A→C))) (3)定理3.1.2
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(5)((A→B)→ ((A→ (B→C))→ (A→B)))

→((A→B)→((A→(B→C))→(A→C)))

(4)A2rmp

(6)(A→B)→ ((A→ (B→C))→ (A→B)) A1
(7)(A→B)→((A→(B→C))→(A→C)) (5)(6)rmp

(8)B→ ((A→B)→ ((A→ (B→C))→ (A→C)))

(7)定理3.1.2
(9)(B→(A→B))→(B→((A→(B→C))→(A→C)))

(8)A2rmp

(10)B→ (A→B) A1
(11)B→ ((A→ (B→C))→ (A→C)) (9)(10)rmp

(12)(A→ (B→C))→ (B→ (A→C))

对(11)重复(1)~ (7)的过程

定理3.1.7 ├(A→B)→ ((B→C)→ (A→C))

证明

(1)(B→C)→ ((A→B)→ (A→C)) 定理3.1.5
(2)((B→C)→ ((A→B)→ (A→C)))

→ ((A→B)→ ((B→C)→ (A→C))) 定理3.1.6
(3)(A→B)→ ((B→C)→ (A→C)) (1)(2)rmp

定理3.1.8 ├(¬A→A)→A
证明

(1)¬A→ (A→ ¬(¬A→A)) 定理3.1.3
(2)(¬A→(A→ ¬(¬A→A)))→((¬A→A)→(¬A→

¬(¬A→A))) A2
(3){(¬A→A)→ (¬A→ ¬(¬A→A))} (1)(2)rmp

(4)(¬A→ ¬(¬A→A))→ ((¬A→A)→A) A3
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(5)(¬A→A)→((¬A→A)→A) (3)(4)定理3.1.7rmp

(6)((¬A→A)→ (¬A→A))→ ((¬A→A)→A)

(5)A2rmp

(7)(¬A→A)→ (¬A→A) 定理3.1.1
(8)(¬A→A)→A (6)(7)rmp

定理3.1.9 ├¬¬A→A
证明

(1)(¬A→A)→A 定理3.1.8
(2)¬¬A→ ((¬A→A)→A) (1)定理3.1.2
(3)(¬¬A→ (¬A→A))→ (¬¬A→A) (2)A2rmp

(4)¬¬A→ (¬A→A) 定理3.1.3
(5)¬¬A→A (3)(4)rmp

定理3.1.10 ├A→ ¬¬A
证明

(1)(¬¬¬A→ ¬A)→ (A→ ¬¬A) A3
(2)¬¬¬A→ ¬A 定理3.1.9
(3)(A→ ¬¬A) (1)(2)rmp

定理3.1.11 ├(A→ ¬B)→ (B→ ¬A)

证明

(1)(¬¬A→A)→((A→¬B)→(¬¬A→¬B)) 定理3.1.7
(2)¬¬A→A 定理3.1.9
(3)(A→ ¬B)→ (¬¬A→ ¬B) (1)(2) rmp

(4)(¬¬A→ ¬B)→ (B→ ¬A) A3
(5)(A→ ¬B)→ (B→ ¬A) (3)(4)定理3.1.7rmp

定理3.1.12 ├(A→B)→ (¬B→ ¬A)

证明
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(1)(¬¬A →A)→((A→B)→(¬¬A→B)) 定理3.1.7
(2)¬¬A→A 定理3.1.9
(3)(A→B)→ (¬¬A→B) (1)(2)rmp

(4)B→ ¬¬B 定理3.1.10
(5)¬¬A→ (B→ ¬¬B) (4)定理3.1.2
(6)(¬¬A→B)→ (¬¬A→ ¬¬B) (5)A2rmp

(7)(A→B)→ (¬¬A→ ¬¬B) (3)(6)定理3.1.7rmp

(8)(¬¬A→ ¬¬B)→ (¬B→ ¬A) A3
(9)(A→B)→ (¬B→ ¬A) (7)(8)定理3.1.7rmp

定理3.1.13 ├(¬A→B)→ (¬B→A)

证明

(1)B→ ¬¬B 定理3.1.10
(2)¬A→ (B→ ¬¬B) (1)定理3.1.2
(3)(¬A→B)→ (¬A→ ¬¬B) (2)A2rmp

(4)(¬A→ ¬¬B)→ (¬B→A) A3
(5)(¬A→B)→ (¬B→A) (3)(4)定理3.1.7
定理3.1.14 ├(A→C)→ ((B→C)→ ((¬A→B)→C))

证明

(1)(¬A→B)→ (¬A→B) 定理3.1.1
(2)¬A→ ((¬A→B)→B) (1)定理3.1.6rmp

(3)((¬A→B)→B)→(¬B→ ¬(¬A→B))定理3.1.12
(4)¬A→ (¬B→ ¬(¬A→B)) (2)(3)定理3.1.7rmp

(5)¬C→(¬A→(¬B→¬(¬A→B))) (4)定理3.1.2
(6)(¬C→ ¬A)→ (¬C→ (¬B→ ¬(¬A→B)))

(5)A2rmp

(7)(¬C→(¬B→¬(¬A→B)))→((¬C→¬B)→(¬C
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→ ¬(¬A→B))) A2
(8)(¬C→ ¬A)→((¬C→ ¬B)→(¬C→ ¬(¬A→B)))

(6)(7)定理3.1.7rmp

(9)(¬C→ ¬(¬A→B))→ ((¬A→B)→C) A3
(10)(¬C→¬B)→((¬C→¬(¬A→B))→((¬A→B)→C))

(9)定理3.1.2
(11)((¬C→ ¬B)→ (¬C→ ¬(¬A→B)))

→ ((¬C→ ¬B)→ ((¬A→B)→C)) (10)A2rmp

(12)(¬C→ ¬A)→ ((¬C→ ¬B)→ ((¬A→B)→C))

(8)(11)定理3.1.7rmp

(13)(A→C)→ (¬C→ ¬A) 定理3.1.12
(14)(A→C)→ ((¬C→ ¬B)→ ((¬A→B)→C))

(12)(13)定理3.1.7rmp

(15)(¬C→ ¬B)→ ((A→C)→ ((¬A→B)→C))

(14)定理3.1.6rmp

(16)(B→C)→ (¬C→ ¬B) 定理3.1.12
(17)(B→C)→ ((A→C)→ ((¬A→B)→C))

(15)(16)定理3.1.7rmp

(18)(A→C)→ ((B→C)→ ((¬A→B)→C))

(17)定理3.1.6rmp

同理可证 ├(¬A→C)→ ((B→C)→ ((A→B)→C))。

对于命题公式中涉及联结词∧,∨,↔等的公式,可以先将这些

联结词用完备集{¬,→}表示出来,然后再证明。如以下定理所

示。

定理3.1.15 ├A→A∨B及 ├A→B∨A
即证 ├A→ (¬A→B)及 ├A→ (¬B→A)
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先证 ├A→ (¬A→B)

(1)¬A→ (A→B) 定理3.1.3
(2)A→ (¬A→B) (1)定理3.1.6rmp

再证 ├A→ (¬B→A),显然。

定理3.1.16 ├A∧B→A及 ├A∧B→A
即证 ├¬(A→ ¬B)→A及 ├¬(A→ ¬B)→B
先证 ├¬(A→ ¬B)→A
(1)¬A→ (A→ ¬B) 定理3.1.3
(2)(¬A→(A→¬B))→(¬(A→¬B)→A) 定理3.1.13
(3)¬(A→ ¬B)→A  (1)(2)rmp

再证 ├¬(A→ ¬B)→B
(1)¬B→ (A→ ¬B) A1
(2)(¬B→(A→¬B))→(¬(A→¬B)→B) 定理3.1.13
(3)¬(A→ ¬B)→B (1)(2)rmp

定理3.1.17 ├(A→ (B→C))↔(A∧B→C)

即证 ├((A→ (B→C))↔(¬(A→ ¬B)→C)

先证 ├((A→ (B→C))→ (¬(A→ ¬B)→C)

(1)(B→C)→ (¬C→ ¬B) 定理3.1.12
(2)A→ ((B→C)→ (¬C→ ¬B)) (1)定理3.1.2
(3)(A→ (B→C))→ (A→ (¬C→ ¬B)) (2)A2rmp

(4)(A→(¬C→¬B))→(¬C→(A→¬B)) 定理3.1.6
(5)(¬C→(A→¬B))→(¬(A→¬B)→C) 定理3.1.13
(6)(A→ (¬C→ ¬B))→ (¬(A→ ¬B)→C)

(4)(5)定理3.1.7rmp

(7)(A→ (B→C))→ (¬(A→ ¬B)→C)

(3)(6)定理3.1.7rmp
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再证 ├(¬(A→ ¬B)→C)→ (A→ (B→C))

(1)(¬C→ ¬B)→ (B→C) A3
(2)A→ ((¬C→ ¬B)→ (B→C)) (1)定理3.1.2
(3)(A→ (¬C→ ¬B))→ (A→ (B→C)) (2)A2rmp

(4)(¬C→(A→¬B))→(A→(¬C→¬B)) 定理3.1.6
(5)(¬C→ (A→ ¬B))→ (A→ (B→C))

(3)(4)定理3.1.7rmp

(6)(¬(A→¬B)→C)→(¬C→(A→¬B)) 定理3.1.13
(7)(¬(A→ ¬B)→C)→ (A→ (B→C))

(5)(6)定理3.1.7rmp

定理3.1.18 ├A→ (B→A∧B)

即证 ├A→ (B→ ¬(A→ ¬B))

证明

(1)(A→ ¬B)→ (A→ ¬B) A1
(2)A→ ((A→ ¬B)→ ¬B) (1)定理3.1.6rmp

(3)((A→¬B)→¬B)→(B→¬(A→¬B)) 定理3.1.11
(4)A→ (B→ ¬(A→ ¬B)) (2)(3)定理3.1.7rmp

定理3.1.19 ├(A→B)→ ((A→C)→ (A→B∧C))

即证 ├(A→B)→ ((A→C)→ (A→ ¬(B→ ¬C)))

证明

(1)(B→ ¬C)→ (B→ ¬C) A1
(2)B→ ((B→ ¬C)→ ¬C) (1)定理3.1.6rmp

(3)((B→ ¬C)→ ¬C)→(C→ ¬(B→ ¬C) 定理3.1.11
(4)B→ (C→ ¬(B→ ¬C) (2)(3)定理3.1.7rmp

(5)A→ (B→ (C→ ¬(B→ ¬C)) (4)定理3.1.2
(6)(A→B)→ (A→ (C→ ¬(B→ ¬C))) (5)A2rmp
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(7)(A→ (C→¬(B→¬C)))→((A→C)→(A→¬(B→
¬C))) A2

(8)(A→B)→ ((A→C)→ (A→ ¬(B→ ¬C)))

(6)(7)定理3.1.7rmp

定理3.1.20 ├A∨B↔B∨A
即证 ├(¬A→B)↔(¬B→A)

由定理3.1.13即可知。

定理3.1.21 ├A∧B↔B∧A
即证 ├¬(A→ ¬B)↔¬(B→ ¬A)

只需证:├(A→ ¬B)↔(B→ ¬A)

由定理3.1.11即可知。

定理3.1.22 ├(A∨B)∨C↔A∨ (B∨C)

即证 ├(¬(¬A→B)→C)↔(¬A→ (¬B→C))

先证 ├(¬(¬A→B)→C)→ (¬A→ (¬B→C))

(1)(¬C→B)→ (¬B→C) 定理3.1.13
(2)¬A→ ((¬C→B)→ (¬B→C)) (1)定理3.1.2
(3)(¬A→ (¬C→B))→ (¬A→ (¬B→C)) (2)A2rmp

(4)(¬C→ (¬A→B))→(¬A→(¬C→B)) 定理3.1.6
(5)(¬C→ (¬A→B))→ (¬A→ (¬B→C))

(3)(4)定理3.1.7rmp

(6)(¬(¬A→B)→C)→(¬C→(¬A→B)) 定理3.1.13
(7)(¬(¬A→B)→C)→ (¬A→ (¬B→C))

(5)(6)定理3.1.7rmp

再证 ├(¬A→ (¬B→C))→ (¬(¬A→B)→C)

(1)(¬B→C)→ (¬C→B) 定理3.1.13
(2)¬A→ ((¬B→C)→ (¬C→B)) (1)定理3.1.2
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(3)(¬A→ (¬B→C))→ (¬A→ (¬C→B)) (2)A2rmp

(4)(¬A→ (¬C→B))→(¬C→(¬A→B)) 定理3.1.6
(5)(¬A→ (¬B→C))→ (¬C→ (¬A→B))

(3)(4)定理3.1.7rmp

(6)(¬C→(¬A→B))→(¬(¬A→B)→C) 定理3.1.13
(7)(¬A→ (¬B→C))→ (¬(¬A→B)→C)

(5)(6)定理3.1.7rmp

定理3.1.23 ├((A∧B)∧C)↔(A∧ (B∧C))

即证 ├¬(¬(A→ ¬B)→ ¬C)↔¬(A→ (B→ ¬C))

只需证:├(¬(A→ ¬B)→ ¬C)↔(A→ (B→ ¬C))

先证 ├(¬(A→ ¬B)→ ¬C)→ (A→ (B→ ¬C))

(1)(C→ ¬B)→ (B→ ¬C) 定理3.1.11
(2)A→ ((C→ ¬B)→ (B→ ¬C)) (1)定理3.1.2
(3)(A→ (C→ ¬B))→ (A→ (B→ ¬C)) (2)A2rmp

(4)(C→ (A→ ¬B))→ (A→ (C→ ¬B)) 定理3.1.6
(5)(C→ (A→ ¬B))→ (A→ (B→ ¬C))

(3)(4)定理3.1.7rmp

(6)(¬(A→ ¬B)→ ¬C)→ (C→ (A→ ¬B)) A3
(7)(¬(A→ ¬B)→ ¬C)→ (A→ (B→ ¬C))

(5)(6)定理3.1.7rmp

再证 ├(A→ (B→ ¬C))→ (¬(A→ ¬B)→ ¬C)

(1)(B→ ¬C)→ (C→ ¬B) 定理3.1.11
(2)A→ ((B→ ¬C)→ (C→ ¬B)) (1)定理3.1.2
(3)(A→ (B→ ¬C))→ (A→ (C→ ¬B)) (2)A2rmp

(4)(A→ (C→ ¬B))→ (C→ (A→ ¬B)) 定理3.1.6
(5)(A→ (B→ ¬C))→ (C→A→ ¬B))
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(3)(4)定理3.1.7rmp

(6)(C→(A→¬B))→(¬(A→¬B)→¬C) 定理3.1.12
(7)(A→ (B→ ¬C))→ (¬(A→ ¬B)→ ¬C)

(5)(6)定理3.1.7rmp

定理3.1.24 ├A∧ (A∨B)↔A
即证 ├¬(A→ ¬(¬A→B))↔A
先证 ├¬(A→ ¬(¬A→B))→A
(1)¬A→ (A→ ¬(¬A→B)) 定理3.1.3
(2)(¬A→(A→¬(¬A→B)))→(¬(A→¬(¬A→B))→A) 
定理3.1.13

(3)¬(A→ ¬(¬A→B))→A (1)(2)rmp

再证 ├A→ ¬(A→ ¬(¬A→B))

(1)¬A→ (A→B) 定理3.1.3
(2)A→ (¬A→B) (1)定理3.1.6rmp

(3)(A→(¬A→B))→(((¬A→B)→¬A)→(A→¬A)) 
定理3.1.7

(4)((¬A→B)→ ¬A)→ (A→ ¬A) (2)(3)rmp

(5)(A→ ¬A)→ (¬¬A→ ¬A) 定理3.1.12
(6)(¬¬A→ ¬A)→ ¬A 定理3.1.8
(7)(A→ ¬A)→ ¬A (5)(6)定理3.1.7rmp

(8)((¬A→B)→ ¬A)→ ¬A (4)(7)定理3.1.7rmp

(9)(A→¬(¬A→B))→((¬A→B)→¬A) 定理3.1.11
(10)(A→ ¬(¬A→B))→ ¬A (8)(9)定理3.1.7rmp

(11)((A→¬(¬A→B))→¬A)→(A→¬(A→¬(¬A→B))) 
定理3.1.11

(12)A→ ¬(A→ ¬(¬A→B)) (10)(11)rmp
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定理3.1.25 ├A∨ (A∧B)↔A
即证 ├(¬A→ ¬(A→ ¬B))↔A
先证 ├A→ (¬A→ ¬(A→ ¬B))

(1)¬A→ (A→ ¬(A→ ¬B)) 定理3.1.3
(2)A→ (¬A→ ¬(A→ ¬B)) (1)定理3.1.6rmp

再证 ├(¬A→ ¬(A→ ¬B))→A
(1)(¬A→(A→¬B))→(((A→¬B)→A)→(¬A→A)) 
定理3.1.7

(2)¬A→ (A→ ¬B) 定理3.1.3
(3)((A→ ¬B)→A)→ (¬A→A) (1)(2)rmp

(4)(¬A→A)→A 定理3.1.8
(5)((A→ ¬B)→A)→A (3)(4)定理3.1.7rmp

(6)(¬A→ ¬(A→ ¬B))→ ((A→ ¬B)→A) A3
(7)(¬A→ ¬(A→ ¬B))→A (5)(6)定理3.1.7rmp

定理3.1.26 ├A∧ (B∨C)↔(A∧B)∨ (A∧C)

即证├¬(A→ ¬(¬B→C))↔(¬¬(A→ ¬B)

→ ¬(A→ ¬C))

先证├¬(A→ ¬(¬B→C))→ (¬¬(A→ ¬B)

 → ¬(A→ ¬C))

(1)(¬B→C)→ (¬C→B) 定理3.1.13
(2)¬C→ ((¬B→C)→B) (1)定理3.1.6rmp

(3)((¬B→C)→B)→(¬B→¬(¬B→C)) 定理3.1.12
(4)¬C→ (¬B→ ¬(¬B→C)) (2)(3)定理3.1.7rmp

(5)A→ (¬C→ (¬B→ ¬(¬B→C))) (4)定理3.1.2
(6)(A→¬C)→(A→(¬B→¬(¬B→C))) (5)A2rmp

(7)(A→ (¬B → ¬(¬B →C)))→ ((A → ¬B)→ (A →

06 数理逻辑引论



¬(¬B→C))) A2
(8)(A→ ¬C)→ ((A→ ¬B)→ (A→ ¬(¬B→C)))

(6)(7)定理3.1.7rmp

(9)((A→ ¬B)→ (A→ ¬(¬B→C)))

→(¬(A→¬(¬B→C))→¬(A→¬B)) 定理3.1.12
(10)(A→ ¬C)→ (¬(A→ ¬(¬B→C))→ ¬(A→ ¬B))

(8)(9)定理3.1.7rmp

(11)¬(A→ ¬(¬B →C))→ ((A → ¬C)→ ¬(A → ¬B)) 
(10)定理3.1.6rmp

(12)((A→¬C)→¬(A→¬B))→(¬¬(A→¬B)→¬(A→¬C)) 
定理3.1.12

(13)¬(A→ ¬(¬B→C))→ (¬¬(A→ ¬B)→ ¬(A→ ¬C)) 
(11)(12)定理3.1.7rmp

再证├(¬¬(A→ ¬B)→ ¬(A→ ¬C))

 → ¬(A→ ¬(¬B→C))

根据定理3.1.14,如果能够证明A→C及B→C,那么由rmp 可

得:(¬A→B)→C。下面分两部分分别证明¬(A→¬B)→¬(A

→ ¬(¬B→C))及 ¬(A→ ¬C)→ ¬(A→ ¬(¬B→C)),然后

由定理3.1.14及分离规则rmp 即可知该定理成立。

第一部分证:¬(A→ ¬B)→ ¬(A→ ¬(¬B→C))

(1)¬B→ (B→C) 定理3.1.3
(2)B→ (¬B→C) (1)定理3.1.6rmp

(3)(B→(¬B→C))→(¬(¬B→C)→¬B) 定理3.1.12
(4)¬(¬B→C)→ ¬B (2)(3)rmp

(5)A→ (¬(¬B→C)→ ¬B) (4)定理3.1.2
(6)(A→ ¬(¬B→C))→ (A→ ¬B) (5)A2rmp
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(7)((A→ ¬(¬B→C))→ (A→ ¬B))

→(¬(A→¬B)→¬(A→¬(¬B→C))) 定理3.1.12
(8)¬(A→ ¬B)→ ¬(A→ ¬(¬B→C)) (6)(7)rmp

第二部分证:¬(A→ ¬C)→ ¬(A→ ¬(¬B→C))

(9)C→ (¬B→C) A1
(10)(C→(¬B→C))→(¬(¬B→C)→¬C) 定理3.1.12
(11)¬(¬B→C)→ ¬C (9)(10)rmp

(12)A→ (¬(¬B→C)→ ¬C) (11)定理3.1.2
(13)(A→ ¬(¬B→C))→ (A→ ¬C) (12)A2rmp

(14)((A→ ¬(¬B→C))→ (A→ ¬C))

→(¬(A→¬C)→¬(A→¬(¬B→C)))定理3.1.12
(15)¬(A→ ¬C)→ ¬(A→ ¬(¬B→C)) (13)(14)rmp

(16)(¬(A→¬B)→¬(A→¬C))→¬(A→¬(¬B→C))

(8)(15)定理3.1.14rmp

定理3.1.27 ├A∨ (B∧C)↔(A∨B)∧ (A∨C)

即证├(¬A→ ¬(B→ ¬C))↔¬((¬A→B)

 → ¬(¬A→C))

先证├(¬A→ ¬(B→ ¬C))→ ¬((¬A→B)

 → ¬(¬A→C))

同样考虑运用定理3.1.14分两部分来证明。

第一部分证:A→ ¬((¬A→B)→ ¬(¬A→C))

(1)¬A→ (A→B) 定理3.1.3
(2)A→ (¬A→B) (1)定理3.1.6rmp

(3)(A→(¬A→B))→(¬(¬A→B)→¬A) 定理3.1.12
(4)¬(¬A→B)→ ¬A (2)(3)rmp

(5)¬A→ (A→C) 定理3.1.3
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(6)A→ (¬A→C) (5)定理3.1.6rmp

(7)(A→(¬A→C))→(¬(¬A→C)→¬A) 定理3.1.12
(8)¬(¬A→C)→ ¬A (6)(7)rmp

(9)((¬A→B)→ ¬(¬A→C))→ ¬A
(4)(8)定理3.1.14rmp

(10)(((¬A→B)→ ¬(¬A→C))→ ¬A)

→ (A→ ¬((¬A→B)→ ¬(¬A→C)))定理3.1.11
(11)A→ ¬((¬A→B)→ ¬(¬A→C)) (9)(10)rmp

第二部分证:¬(B→ ¬C)→ ¬((¬A→B)→ ¬(¬A→C))

只需证:((¬A→B)→ ¬(¬A→C))→ (B→ ¬C)

(12)(B→ (¬A→B))→ (((¬A→B)→ ¬(¬A→C))

→ (B→ ¬(¬A→C))) 定理3.1.7
(13)B→ (¬A→B) A1
(14)((¬A→B)→ ¬(¬A→C))→ (B→ ¬(¬A→C))

(12)(13)rmp

(15)C→ (¬A→C) A1
(16)(C→(¬A→C))→(¬(¬A→C)→¬C) 定理3.1.12
(17)¬(¬A→C)→ ¬C (15)(16)rmp

(18)B→ (¬(¬A→C)→ ¬C) (17)定理3.1.2
(19)(B→ ¬(¬A→C))→ (B→ ¬C) (18)A2rmp

(20)((¬A→B)→ ¬(¬A→C))→ (B→ ¬C)

(14)(19)定理3.1.7rmp

(21)(((¬A→B)→ ¬(¬A→C))→ (B→ ¬C))

→ (¬(B→ ¬C)→ ¬((¬A→B)→ ¬(¬A→C))) 
定理3.1.12

(22)¬(B → ¬C)→ ¬((¬A → B)→ ¬(¬A → C)) 
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(20)(21)rmp

(23)(¬A→¬(B→¬C))→¬((¬A→B)→¬(¬A→C))

(11)(22)定理3.1.14rmp

再证├¬((¬A→B)→ ¬(¬A→C))

 → (¬A→ ¬(B→ ¬C))

(1)(¬A→C)→ (¬C→A) 定理3.1.13
(2)¬C→ ((¬A→C)→A) (1)定理3.1.6rmp

(3)((¬A→C)→A)→(¬A→¬(¬A→C)) 定理3.1.12
(4)¬C→ (¬A→ ¬(¬A→C)) (2)(3)定理3.1.7rmp

(5)B→ (¬C→ (¬A→ ¬(¬A→C))) (4)定理3.1.2
(6)(B→¬C)→(B→(¬A→¬(¬A→C))) (5)A2rmp

(7)(B→(¬A→¬(¬A→C)))→(¬A→(B→¬(¬A→C))) 
定理3.1.6

(8)(B→ ¬C)→ (¬A→ (B→ ¬(¬A→C)))

(6)(7)定理3.1.7rmp

(9)(¬A→ (B→ ¬(¬A→C)))→ ((¬A→B)→ (¬A→
¬(¬A→C))) A2

(10)(B→ ¬C)→ ((¬A →B)→ (¬A → ¬(¬A →C))) 
(8)(9)定理3.1.7rmp

(11)((¬A→B)→ (¬A→ ¬(¬A→C)))

→ (¬A→ ((¬A→B)→ ¬(¬A→C)))定理3.1.6
(12)(B→ ¬C)→ (¬A→ ((¬A→B)→ ¬(¬A→C)))

(10)(11)定理3.1.7rmp

(13)((B→ ¬C)→ (¬A→ ((¬A→B)→ ¬(¬A→C))))

→ (¬A→((B→¬C)→((¬A→B)→¬(¬A→C)))) 
定理3.1.6
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(14)¬A→ ((B → ¬C)→ ((¬A →B)→ ¬(¬A →C))) 
(12)(13)rmp

(15)((B→ ¬C)→ ((¬A→B)→ ¬(¬A→C)))

→ (¬((¬A→B)→ ¬(¬A→C))→ ¬(B→ ¬C)) 
定理3.1.12

(16)¬A→(¬((¬A→B)→¬(¬A→C))→¬(B→¬C)) 
(14)(15)定理3.1.7rmp

(17)¬((¬A→B)→¬(¬A→C))→(¬A→¬(B→¬C)) 
(16)定理3.1.6rmp

定理3.1.28 演绎定理:对PC中任意公式集Γ和公式A,B,有

Γ∪ {A}├B(或简记为Γ;A├B)当且仅当Γ├A→B
证明  充分性:由Γ├A→B知从前提集Γ出发,在PC中能够

得到公式A→B的一个演绎序列,即A1,A2,…,An(=A→B),则从

前提集Γ∪{A}出发,可以得到如下的演绎序列:A1,A2,…,An(=A

→B);A,B,即第n+2步的结论可由已知的第n步的结论A →B加

上第n+1步的已知前提条件A通过rmp 所得,即Γ;A├B。

必要性:由Γ;A├B知从前提集Γ∪ {A}出发,在PC中能够得

到公式B的一个演绎序列,即:B1,B2,…,Bk(=B),下面通过对此演

绎序列的长度k进行归纳假设来证明Γ├A→B。

(1)当k=1时,根据演绎的定义知此时B或为公理,或者B∈Γ

∪{A}。若B为公理,又B→(A→B)为公理,则由rmp 知A→B为

定理,当然有Γ├A→B;若B∈Γ,则从前提集Γ出发存在如下的演

绎序列:

B(前提),B→ (A→B)(公理),A→B(rmp)

即Γ├A→B;若B∈{A},即B=A,则A→B即为A →A,而

A→A为PC已证的定理,当然有Γ├A→A。
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(2)假设当k<n时,原命题成立,即对上述演绎序列中的公式

Bi(i<n),均有Γ├A→Bi。则当k=n时,此时Bk=Bn=B或为

公理,或B∈Γ∪{A},或由Bi,Bj(i,j<n)通过rmp 所得。若此时

Bk=Bn=B为公理,或B∈Γ∪{A},则讨论情况同(1);若B由Bi,

Bj(i,j<n)通过rmp 所得,则不妨设Bj=Bi→B,根据归纳假设有

Γ├A→Bi,Γ├A→Bj

即有 Γ├A→Bi,Γ├A→ (Bi→B)

又 (A→ (Bi→B))→ ((A→Bi)→ (A→B))

所以 Γ├(A→Bi)→ (A→B)

从而Γ├A→B。

例3.1.1 利用演绎定理在PC中证明下列定理:

(1)├(A→ (B→C))→ ((C→D)→ (A→ (B→D)))

(2)├((A→B)→ (A→C))→ (A→ (B→C))

(3)├(A→C)→ ((B→C)→ ((¬A→B)→C)))

证(1)├(A→ (B→C))→ ((C→D)→ (A→ (B→D)))

根据演绎定理只需证:

A→ (B→C)├(C→D)→ (A→ (B→D))

只需证:A→ (B→C),C→D├A→ (B→D)

只需证:A→ (B→C),C→D,A├B→D
只需证:A→ (B→C),C→D,A,B├D

①A          前提

②A→ (B→C) 前提

③B→C ①②rmp

④B 前提

⑤C ③④rmp

⑥C→D 前提
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⑦D ⑤⑥rmp

证(2)├((A→B)→ (A→C))→ (A→ (B→C))

根据演绎定理只需证:(A→B)→ (A→C)├A→ (B→C)

只需证:(A→B)→ (A→C),A├B→C
只需证:(A→B)→ (A→C),A,B├C

①B 前提

②B→ (A→B) A1

③A→B ①②rmp

④(A→B)→ (A→C) 前提

⑤A→C ③④rmp

⑥A 前提

⑦C ⑤⑥rmp

证(3)├(A→C)→ ((B→C)→ ((¬A→B)→C))

根据演绎定理只需证:

A→C├(B→C)→ ((¬A→B)→C)

只需证:A→C,B→C├(¬A→B)→C
只需证:A→C,B→C,¬A→B├C

①¬A→B 前提

②B→C 前提

③¬A→C ①② 定理3.1.7

④(¬A→C)→ (¬C→A) 定理3.1.13

⑤¬C→A ③④rmp

⑥A→C 前提

⑦¬C→C ⑤⑥ 定理3.1.7

⑧(¬C→C)→C 定理3.1.8

⑨C ⑦⑧rmp
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通过上面的例子可以发现演绎定理通常会给我们的证明带来较

大的方便,当然也可以尝试不用演绎定理完成上面的证明,然后对比

一下二者的区别。

在上一章,我们从真值指派的角度讨论了什么是永真式,以及与

永真式相关的原理如代入原理等,这些都属于语义研究的范畴,即通

过对其中的命题变元赋予特定的真值含义来讨论它们的性质。本章

从公理出发,通过基于分离规则的符号串变形规则来研究永真式,这

是属于语构研究的范畴。而关于PC的语义与语构关系的研究,是

有关PC的重要系统性质定理,下面将从三个方面来给出PC的性质

定理,包括合理性、一致性、完备性。

3.1.3 PC的性质定理

逻辑演算系统的合理性是指在该形式系统中推演出来的形式定

理,都在实际上反映了某种逻辑规律,即确实是真命题,因此也称可

靠性。关于PC的合理性由如下定理所表述。

定理3.1.29 PC是合理的:若A为PC的定理,即├A,则A永

真。更一般地,若对任意的公式集Γ 及公式A,如果Γ├A,则

Γ⇒A。

证明 若A为PC的定理,根据定理的定义,则由公理的永真性

及推理规则rmp 的保真性知A 永真。下证定理的后半部分。

设Γ├A的演绎序列为A1,A2,…,Am(=A),α为弄真Γ中所有

公式的任一指派,下面对演绎序列长度m进行归纳证明α(A)=T。

当m=1时,Am =A或为公理或为Γ中的成员,则α(A)=T。

假设当m<k时,命题成立。则当m=k时,Am =A或为公理或

为Γ中的成员或为Al(l<k)或为Ai,Aj(i,j<k)通过分离规则rmp

所得。若Am 为公理或为Γ中的成员,则显然有α(A)=T;若Am 为
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Al(l<k),则由归纳假设知α(A)=T;若Am为Ai,Aj(i,j<k)通过

分离规则rmp 所得,不妨设Aj=Ai→Am,由归纳假设知α(Ai)=T,

α(Aj)=α(Ai→Am)=T,从而α(Am)=T即α(A)=T,因此Γ⇒A。

PC的合理性定理说明:在反映命题逻辑范围内的推理规律方

面,PC是可靠的,其推理的定理都是重言式。而一个命题如果是在

PC中从一定的前提推演出来的,那么它一定是这些前提的逻辑推

论,也就是从为真的前提一定得出为真的结论。

合理性定理同时也表明了PC是一致的,即在PC中不可能推出

相互矛盾的结论来。一致性是形式系统,也是逻辑演算系统所要关

心的一个基本要求。如果一个形式系统是不一致的,那么在该系统

中就会推出相互矛盾的结论来,从而导致该系统是毫无意义的。下

面给出有关PC的一致性定理。

定理3.1.30 PC是一致性的:PC中不存在公式A与 ¬A均为

PC的定理,即不存在公式A使得 ├A及 ├¬A同时成立。

证明 若存在公式A使得├A及├¬A同时成立,则由定理3.

1.29知:A及 ¬A均永真,这是不可能的。

注意,这里说在PC中不存在公式A使得 ├A及 ├¬A同时成

立,并不意味着对任一公式A,├A与├¬A至少有一个是成立的。

由此给出一个相关的定义如下。

定义3.1.1 完全的:一个系统Φ是完全的,当且仅当该系统中

的任一公式A,或者Φ├A,或者Φ├¬A。

定理3.1.31 PC不是完全的:即在PC中存在公式A使得 ├A
及 ├¬A均不成立。

例3.1.2 设公式A=p→q,其中p,q为原子变元符,显然

├p→q及├¬(p→q)均不成立,因为A=p→q是一个非永真也

非永假的公式。
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从PC的合理性定理可以看出,在PC中一个语法角度的形式逻

辑推理对应着一个语义角度的逻辑蕴涵,那么反过来,在PC中一个

语义上的逻辑蕴涵是否一定也对应着系统中的一个形式化的逻辑推

理? 这就是所谓的形式化系统的完备性问题。如果一个逻辑系统是

完备的,那么该系统就把所有成立的逻辑蕴涵关系均反应和包括进

来,因此也就称为完备性。下面在给出PC的完备性定理之前,先给

出几个相关定义和基本引理。

定义3.1.2 PC的理论:称下列集合为PC的理论,即

Th(PC)={A|├PCA}

称下列集合为PC的基于前提Γ的扩充,即

Th(PC∪Γ)={A|Γ├PCA}

对于PC的基于前提Γ的扩充,通常情况下考虑的是前提Γ是一

致的扩充。如果前提Γ是一致的,那么Th(PC∪Γ)显然是一致

的。而若Γ不一致,即存在公式B,使得Γ├¬B且Γ├B,对于任意

的公式A,由 ¬B→(B→A)为定理知Γ├A,从而Th(PC∪Γ)是

完全的。

引理3.1.1 设PC的公式集Γ是一致的,且Γ|췍A,则Γ∪
{¬A}也是一致的。

证明 若Γ∪{¬A}不一致,则存在公式B,使得Γ;¬A├B且

Γ;¬A├¬B,又 ¬B→(B→A)为PC的定理,所以Γ;¬A├A,由

演绎定理得Γ├¬A →A,又(¬A →A)→A 为PC的定理,从而

Γ├A,矛盾。

引理3.1.2 若Γ是PC的一致的公式集,则存在公式集Δ,使得

Γ⊆Δ,Δ是一致的且完全的。

证明  设公式序列A0,A1,…,An,… 为PC的所有公式的枚

举。构造公式集序列如下:
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Δ0=Γ

Δ1=
Δ0 ∪ {A0}  Δ0├A0

Δ0 ∪ {¬A0}  Δ0|췍A{
0

……

Δn+1=
Δn ∪ {An}  Δn├An

Δn ∪ {¬An}  Δn|췍A{
n

令Δ=∪
∞

n=0
Δn,则公式集Δn 及Δ有如下性质:

(1)Γ⊆Δ,Δn ⊆Δn+1。

显然。

(2)Δn 是一致的。

证  用归纳法证之。

当n=0时,Δ0=Γ,显然是一致的;

当n=1时,若Δ1=Δ0∪ {A0},此时Δ0├A0,而Δ0=Γ是一致

的,则此时Δ1 为Δ0 的一致扩充,由定义3.1.2知Δ1 为一致的;若

Δ1=Δ0 ∪ {¬A0},此时Δ0|췍A0,而Δ0 =Γ是一致的,则由引理

3.1.1知Δ1 为一致的。

假设当n=k时,Δk是一致的。则当n=k+1时,若Δk+1=Δk∪
{Ak},此时Δk├Ak,由归纳假设知Δk是一致的,则此时Δk+1为Δk的

一致扩充,由定义3.1.2知Δk+1为一致的;若Δk+1=Δk∪{¬Ak},此

时Δk|췍Ak,则由引理3.1.1知Δk+1 为一致的。

(3)Δ是完全的。

证 由Δ的构造知,对PC中任一公式A,要么A∈Δ,要么¬A

∈Δ,二者必取一,即对任一公式A,要么Δ├A,要么Δ├¬A,故Δ
是完全的。

(4)对PC的公式A,若Δ├A,则存在充分大的正整数k使得
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Δk├A。

证 由Δ├A知存在证明序列B0,B1,…,Bm(=A),其中Bi(i=

1,…,m-1)或为PC的公理,或为Δ中的成员,或为Bj(j<i),或为

Bj,Bk(j,k<i)使用rmp导出的,而Bm即为公式A。记Δ′={B0,B1,

…,Bm}∩Δ={C0,C1,…,Cr},0≤r≤m,则有Δ′├A,又由Cj ∈

Δ(j=0,1,…,r)知存在整数n0,n1,…,nr使得

Cj∈Δnj
(j=0,1,…,r)

取k=max(n0,n1,…,nr),则由Δn的构造知Δnj ⊆Δk,所以Cj∈Δk,

则Δ′⊆Δk,从而Δk├A。

(5)Δ是一致的。

证  若Δ不一致,则存在公式Ai,使得Δ├Ai及Δ├¬Ai,由

Δ├Ai及性质4)则存在充分大的正整数n1 使得Δn1├A,同理由

Δ├¬Ai,则存在充分大的正整数n2使得Δn2├¬A,取k=max(n1,

n2),由Δn的构造知Δn1 ⊆Δk,Δn2 ⊆Δk,从而Δk├A,Δk├¬A,则Δk

不一致,与Δn 是一致的矛盾。

引理3.1.3 对PC中任一公式A,A∈Δ,当且仅当Δ├A。

证明

⇒:若A∈Δ,则由演绎的定义知Δ├A。

⇐:若Δ├A,则由Δ的一致性知 ¬A ∉Δ,又由Δ的构造知

¬A∉Δ当且仅当A ∈Δ。

引理3.1.4 设Γ是PC的一致的公式集,则存在一个指派α,使

得Γ中每一个公式A,有α(A)=T。

证明  定义指派α如下:

α(p)=
T 当且仅当p∈Δ

F 否则(p∉Δ{ )
,其中p为原子变元符。

下证对任一公式A,α(A)=T当且仅当A ∈Δ。
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对公式A中联结词个数k(仅考虑由完备集{¬,→}组成的公

式)进行归纳证明:

(1)当k=0时,此时A为原子命题公式,则显然成立。当k=1
时,此时A=¬p或A=p→q,其中p,q为原子变元符。

若A=¬p,则有

α(A)=α(¬p)=T⇔α(p)=F⇔p∉Δ⇔¬p∈Δ,即A∈Δ。

若A=p→q,则有

α(A)=α(p→q)=T⇔α(p)=F或α(q)=T⇔p∉Δ或q∈Δ

⇔¬p∈Δ或q∈Δ。

下证 ¬p∈Δ或q∈Δ⇔p→q∈Δ。

①⇒:先证若 ¬p∈Δ或q∈Δ,则有p→q∈Δ。

若 ¬p∈Δ,则由引理3.1.3知Δ├¬p,又¬p→(p→q)为定

理,所以Δ├p→q,从而p→q∈Δ;

若q∈Δ,则由引理3.1.3知Δ├q,又q→(p→q)为公理,所以

Δ├p→q,从而p→q∈Δ。

②⇐:再证若p→q∈Δ,则有 ¬p∈Δ或q∈Δ。

假设不成立,则有 ¬p∉Δ且q∉Δ,即p∈Δ且¬q∈Δ,由引

理3.1.3知Δ├p且Δ├¬q,又p→q∈Δ,则Δ├p→q,从而Δ├q,

与Δ├¬q矛盾。

由 ①② 知 ¬p∈Δ或q∈Δ⇔p→q∈Δ即A ∈Δ
(2)假设当k=n时,原命题成立。则当k=n+1时,此时若A

=¬B,其中对公式B根据归纳假设有α(B)=T⇔B∈Δ,则

α(A)=α(¬B)=T⇔α(B)=F⇔B∉Δ⇔¬B∈Δ,即A∈Δ。

此时若A=B→C,其中对公式B,C根据归纳假设有

α(B)=T⇔B∈Δ,α(C)=T⇔C∈Δ
则α(A)=α(B →C)=T⇔α(B)=F 或α(C)=T⇔B ∉Δ 或

37第3章  命题演算形式系统



C ∈Δ⇔¬B∈Δ或C ∈Δ。

下证 ¬B∈Δ或C ∈Δ⇔B→C∈Δ。

①⇒:先证若 ¬B∈Δ或C ∈Δ,则有B→C∈Δ。

若 ¬B∈Δ,则由引理3.1.3知Δ├¬B,又 ¬B→ (B→C)为

定理,所以Δ├B→C,从而B→C∈Δ;

若C∈Δ,则由引理3.1.3知├C,又C→(B→C)为定理,所以

├B→C,从而B→C∈Δ。

②⇐:再证若B→C∈Δ,则有 ¬B∈Δ或C ∈Δ。

假设不成立,则有 ¬B∉Δ且C∉Δ,即B∈Δ且 ¬C∈Δ,由

引理3.1.3知Δ├B且Δ├¬C,又B→C∈Δ,则Δ├B→C,从而

Δ├C,与Δ├¬C矛盾。

由 ①② 知 ¬B∈Δ或C ∈Δ⇔B→C∈Δ,即A∈Δ。

综上,“对任一公式A,α(A)=T 当且仅当A ∈Δ”成立。又

Γ⊆Δ,则对Γ中每一个公式A,均有A∈Δ,从而α(A)=T。

从引理3.1.4可以得出这样一个事实:对PC的公式集Γ,若Γ是

一致的,则Γ是可满足的,即由公式集的一致性可推出其可满足性。

定理3.1.32 PC是完备的:对PC中任一永真式A,必为PC的

定理,即有 ├PCA。一般地,对PC的公式集Γ,若Γ⇒A则Γ├PCA。

证明  只需证明后者即可,前者可以看作Γ=Ø。

(1)若公式集Γ不一致,此时显然有Γ├PCA;

(2)设公式集Γ是一致的,此时若Γ|췍PCA,则由引理3.1.1知Γ∪
{¬A}一致,根据引理3.1.4知Γ∪{¬A}是可满足的,即存在指派α
使得Γ∪{¬A}中的每个公式均为真,即α使得Γ中的每个公式均为真

且有α(¬A)=T,又由Γ⇒A知任意使得Γ中的每个公式均为真的指

派一定使得公式A为真,从而α(A)=T,与α(¬A)=T矛盾。
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3.2 自然演绎推理系统

与PC不同,自然演绎推理系统(ND)是基于多规则少公理的推

理系统,它采用了5个逻辑联结词 ¬,∧,∨,→,↔,与此对应的推

理规则较命题演算系统更接近人的思维,在反映演绎推理方面比命

题逻辑演算更直接,比较符合人的逻辑推理思维习惯,因此称为自然

推理。它与PC相比是一个更加实用的逻辑推理系统。

3.2.1 自然演绎推理系统组成

与PC系统的语言部分相似,ND系统只是将联结词由完备集

{¬,→}扩充到¬,∧,∨,→,↔,下面我们重点介绍ND的推理部

分,即ND的公理、推理规则及定理的推导。

1.公理

ND仅采用一个公理模式:Γ;A├A。

其中Γ为公式集,即在逻辑推理中常说的前提集。Γ也可以为空集,

此时该公理模式即为:A├A。

该公理模式所反映的逻辑现象相当于在逻辑推理中常用的肯定

前提规则。

2.推理规则

ND的推理规则主要围绕5个联结词展开,共14个推理规则。

(1)假设引入规则

Γ├B
Γ;A├B

它源于重言式B→ (A→B)。
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(2)假设消除规则

Γ;A├B;Γ;¬A├B
Γ├B

该规则反映了人在推理中常用的模式:分别假设A及 ¬A后均

能导出B,则B可不依赖假设A 或 ¬A就能推出。

(3)∨ 引入规则

Γ├A
Γ├A∨B

, Γ├A
Γ├B∨A

它们源于重言式A→A∨B和A →B∨A。

(4)∨ 消除规则

Γ;A├C,Γ;B├C,Γ├A∨B
Γ├C

它源于重言式(A→C)∧(B→C)∧(A∨B)→C,它反映了

数学推理中分别进行证明的思想。另外,如果接受Γ├A∨ ¬A,那

么假设消除规则可看作本规则的一个特例。

(5)∧ 引入规则

Γ├A,Γ├B
Γ├A∧B

它源于重言式A→B→ (A∧B)。

(6)∧ 消除规则

Γ├A∧B
Γ├A

,Γ├A∧B
Γ├B

它源于重言式A∧B→A和A ∧B→B。

(7)→ 引入规则

Γ;A├B
Γ├A→B

即PC中的演绎定理。

(8)→ 消除规则
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Γ├A,Γ├A→B
Γ├B

即PC中的分离规则。

(9)¬ 引入规则

Γ;A├B,Γ;A├¬B
Γ├¬A

即常用的反证法。

(10)¬ 消除规则

Γ├A,Γ├¬A
Γ├B

它源于重言式 ¬A→ (A→B)。

(11)¬¬ 引入规则

Γ├A
Γ├¬¬A

(12)¬¬ 消除规则

Γ├¬¬A
Γ├A

规则(11)与(12)源于重言式A↔¬¬A。

(13)↔ 引入规则

Γ├A→B,Γ├B→A
Γ├A↔B

(14)↔ 消除规则

Γ├A↔B
Γ├A→B

,Γ├A↔B
Γ├B→A

规则(13)与(14)源于重言式(A↔B)↔(A→B)∧(B→A)。

从上面可以看出,ND中的规则及其直观逻辑含义都比较明显,

这给逻辑推理带来了很大的方便。
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3.2.2 自然演绎推理系统的基本定理

在给出ND中的常用基本定理的推导前,先给出几个相关的基

本定义。

定义3.2.1 演绎:在ND中,若有Γ├NDA(以下省去ND),即存

在序列:

Γ1├A1,Γ2├A2,…,Γm├Am(即Γ├A)

使得Γi├Ai(i=1,…,m-1)或为ND的公理,或为Γj├Aj(j<i),

或为Γj1├Aj1
,…,Γjk├Ajk

(j1,…,jk <i)使用推理规则导出的。

若Γ=⌀,此时Γ├A即为 ├A,则称A为ND的定理。

定理3.2.1 对ND中任一公式A有 ├NDA∨ ¬A。

由于此处前提集Γ=⌀,即证A∨ ¬A为ND的定理。

在以下的证明及推理结论中,如果不做特殊声明均表示是在

ND中的推理。

证明

(1)A├A 公理

(2)A├A∨ ¬A ∨ 引入

(3)¬A├¬A 公理

(4)¬A├A∨ ¬A ∨ 引入

(5)├A∨ ¬A (2)(4)假设消除规则

定理3.2.2 ├¬(A∨B)↔¬A∧ ¬B
证明

根据 ↔ 的引入规则只需证

├¬(A∨B)→ ¬A∧ ¬B及 ├¬A∧ ¬B→ ¬(A∨B)

先证 ├¬(A∨B)→ ¬A∧ ¬B
根据 → 的引入规则只需证 ¬(A∨B)├¬A∧ ¬B
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又根据 ∧ 的引入规则只需证

¬(A∨B)├¬A及 ¬(A∨B)├¬B
(1)¬(A∨B);A├A 公理

(2)¬(A∨B);A├A∨B (1)∨ 引入

(3)¬(A∨B);A├¬(A∨B) 公理

(4)¬(A∨B)├¬A (2)(3)¬ 引入

(5)¬(A∨B);B├B 公理

(6)¬(A∨B);B├A∨B (5)∨ 引入

(7)¬(A∨B);B├¬(A∨B) 公理

(8)¬(A∨B)├¬B (6)(7)¬ 引入

(9)¬(A∨B)├¬A∧ ¬B (4)(8)∧ 的引入

再证 ├¬A∧ ¬B→ ¬(A∨B)

根据 → 的引入规则只需证 ¬A∧ ¬B├¬(A∨B)

(1)¬A∧ ¬B,A∨B;A├A 公理

(2)¬A∧ ¬B,A∨B;A├¬A∧ ¬B 公理

(3)¬A∧ ¬B,A∨B;A├¬A (2)∧ 消除

(4)¬A∧ ¬B,A∨B;A├A∧ ¬A (1)(3)∧ 引入

(5)¬A∧ ¬B,A∨B;B├B 公理

(6)¬A∧ ¬B,A∨B;B├¬A∧ ¬B 公理

(7)¬A∧ ¬B,A∨B;B├¬B (6)∧ 消除

(8)¬A∧ ¬B,A∨B;B├A∧ ¬A (5)(7)¬ 消除

(9)¬A∧ ¬B,A∨B├A∨B 公理

(10)¬A∧ ¬B,A∨B├A∧ ¬A (4)(8)(9)∨ 消除

(11)¬A∧ ¬B,A∨B├A (10)∧ 消除

(12)¬A∧ ¬B,A∨B├¬A (10)∧ 消除

(13)¬A∧ ¬B├¬(A∨B) (11)(12)¬ 引入
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定理3.2.3├¬(A∧B)↔¬A∨ ¬B
证明

根据 ↔ 的引入规则只需证 ├¬(A ∧B)→ ¬A ∨ ¬B 及

├¬A∨ ¬B→ ¬(A∧B)

先证 ├¬(A∧B)→ ¬A∨ ¬B
根据 → 的引入规则只需证 ¬(A∧B)├¬A∨ ¬B
(1)¬(A∧B);¬A├¬A 公理

(2)¬(A∧B);¬A├¬A∨ ¬B (1)引入

(3)¬(A∧B);A;B├A 公理

(4)¬(A∧B);A;B├B 公理

(5)¬(A∧B);A;B├A∧B (3)(4)∧ 引入

(6)¬(A∧B);A;B├¬(A∧B) 公理

(7)¬(A∧B);A├¬B (5)(6)¬ 引入

(8)¬(A∧B);A├¬A∨ ¬B (7)∨ 引入

(9)¬(A∧B)├¬A∨ ¬B (2)(8)假设消除

再证 ├¬A∨ ¬B→ ¬(A∧B)

根据 → 的引入规则只需证 ¬A∨ ¬B├¬(A∧B)

(1)¬A∨ ¬B,A∧B;¬A├¬A 公理

(2)¬A∨ ¬B,A∧B;¬A├A∧B 公理

(3)¬A∨ ¬B,A∧B;¬A├A (2)∧ 消除

(4)¬A∨ ¬B,A∧B;¬A├A∧ ¬A (1)(3)∧ 引入

(5)¬A∨ ¬B,A∧B;¬B├¬B 公理

(6)¬A∨ ¬B,A∧B;¬B├B (2)∧ 消除

(7)¬A∨ ¬B,A∧B;¬B├A∧ ¬A (5)(6)¬ 消除

(8)¬A∨ ¬B,A∧B├¬A∨ ¬B 公理

(9)¬A∨ ¬B,A∧B├A∧ ¬A (4)(7)(8)∨ 消除
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(10)¬A∨ ¬B,A∧B├A (9)∧ 消除

(11)¬A∨ ¬B,A∧B├¬A (9)∧ 消除

(12)¬A∨ ¬B├¬(A∧B) (10)(11)¬ 引入

定理3.2.4 ¬A→B├┤A∨B
证明

即证 ND 中的演绎等价,只 需 证 ¬A → B├A ∨ B 及

A ∨B├¬A→B
证明

先证 ¬A→B├A∨B
(1)¬A→B;A├A 公理

(2)¬A→B;A├A∨B (1)∨ 引入

(3)¬A→B;¬A├¬A 公理

(4)¬A→B;¬A├¬A→B 公理

(5)¬A→B;¬A├B (3)(4)→ 消除

(6)¬A→B;¬A├A∨B (5)∨ 引入

(7)¬A→B├A∨B (2)(6)假设消除

再证A∨B├¬A→B
(1)A∨B;¬A;A├¬A 公理

(2)A∨B;¬A;A├A 公理

(3)A∨B;¬A;A├B (1)(2)¬ 消除

(4)A∨B;¬A;B├B 公理

(5)A∨B;¬A├A∨B 公理

(6)A∨B;¬A├B (2)(4)(5)∨ 消除

(7)A∨B├¬A→B (6)→ 引入

定理3.2.5 A→B├┤¬A∨B
证明
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先证A→B├¬A∨B
(1)A→B;A├A 公理

(2)A→B;A├A→B 公理

(3)A→B;A├B (1)(2)→ 消除

(4)A→B;A├¬A∨B (3)∨ 引入

(5)A→B;¬A├¬A 公理

(6)A→B;¬A├¬A∨B (5)∨ 引入

(7)A→B├¬A∨B (4)(6)假设消除

再证 ¬A∨B├A→B
(1)¬A∨B;A;¬A├¬A 公理

(2)¬A∨B;A;¬A├A 公理

(3)¬A∨B;A;¬A├B (1)(2)¬ 消除

(4)¬A∨B;A;B├B 公理

(5)¬A∨B;A├¬A∨B 公理

(6)¬A∨B;A├B (3)(4)(5)∨ 消除

(7)¬A∨B├A→B (6)→ 引入

定理3.2.6 ├(A∧ (B∨C))↔((A∧B)∨ (A∧C))

证明

先证 ├(A∧ (B∨C))→ ((A∧B)∨ (A∧C))

根据→的引入规则只需证A∧(B∨C)├(A∧B)∨(A∧C)

(1)A∧ (B∨C);B├A∧ (B∨C) 公理

(2)A∧ (B∨C);B├A (1)∧ 消除

(3)A∧ (B∨C);B├B 公理

(4)A∧ (B∨C);B├A∧B (2)(3)∧ 引入

(5)A∧ (B∨C);B├(A∧B)∨ (A∧C) (4)∨ 引入

(6)A∧ (B∨C);C├A∧ (B∨C) 公理
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(7)A∧ (B∨C);C├A (6)∧ 消除

(8)A∧ (B∨C);C├C 公理

(9)A∧ (B∨C);C├A∧C (7)(8)∧ 引入

(10)A∧ (B∨C);C├(A∧B)∨ (A∧C) (9)∨ 引入

(11)A∧ (B∨C)├A∧ (B∨C)公理

(12)A∧ (B∨C)├B∨C (12)∧ 消除

(13)A∧ (B∨C)├(A∧B)∨ (A∧C)

(5)(10)(12)∨ 消除

再证 ├((A∧B)∨ (A∧C))→ (A∧ (B∨C))

只需证(A∧B)∨ (A∧C)├A∧ (B∨C)

只需证(A∧B)∨(A∧C)├A及(A∧B)∨(A∧C)├B∨C
证(A∧B)∨ (A∧C)├A
(1)(A∧B)∨ (A∧C);A∧B├A∧B 公理

(2)(A∧B)∨ (A∧C);A∧B├A (1)∧ 消除

(3)(A∧B)∨ (A∧C);A∧C├A∧C 公理

(4)(A∧B)∨ (A∧C);A∧C├A (3)∧ 消除

(5)(A∧B)∨ (A∧C)├(A∧B)∨ (A∧C) 公理

(6)(A∧B)∨ (A∧C)├A (2)(4)(5)∨ 消除

证(A∧B)∨ (A∧C)├B∨C
(1)(A∧B)∨ (A∧C);A∧B├A∧B 公理

(2)(A∧B)∨ (A∧C);A∧B├B (1)∧ 消除

(3)(A∧B)∨ (A∧C);A∧B├B∨C (2)∨ 引入

(4)(A∧B)∨ (A∧C);A∧C├A∧C 公理

(5)(A∧B)∨ (A∧C);A∧C├C (4)∧ 消除

(6)(A∧B)∨ (A∧C);A∧C├B∨C (5)∨ 引入

(7)(A∧B)∨ (A∧C)├(A∧B)∨ (A∧C)公理
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(8)(A∧B)∨ (A∧C)├B∨C (3)(6)(7)∨ 消除

同理可证 ├(A∨ (B∧C))↔((A∨B)∧ (A∨C))

定理3.2.7 PC的公理均为ND的定理,即

(1)├NDA→ (B→A)

(2)├ND(A→ (B→C))→ ((A→B)→ (A→C))

(3)├ND(¬A→ ¬B)→ (B→A)

证明

(1)├NDA→ (B→A)

①A,B├NDA 公理

②A├NDB→A ① → 引入

③├NDA→ (B→A) ② → 引入

(2)├ND(A→ (B→C))→ ((A→B)→ (A→C))

①A→ (B→C),A→B,A├NDA 公理

②A→ (B→C),A→B,A├NDA→ (B→C) 公理

③A→ (B→C),A→B,A├NDB→C ①② → 消除

④A→ (B→C),A→B,A├NDA→B 公理

⑤A→ (B→C),A→B,A├NDB ①④ → 消除

⑥A→ (B→C),A→B,A├NDC ③⑤ → 消除

⑦A→ (B→C),A→B├NDA→C ⑥ → 引入

⑧A→ (B→C)├ND(A→B)→ (A→C) ⑦ → 引入

⑨├ND(A→(B→C))→(A→B)→(A→C) ⑧→引入

(3)├ND(¬A→ ¬B)→ (B→A)

①¬A→ ¬B,B;¬A├ND¬A 公理

②¬A→ ¬B,B;¬A├ND¬A→ ¬B 公理

③¬A→ ¬B,B;¬A├ND¬B ①② → 消除

④¬A→ ¬B,B;¬A├NDB 公理
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⑤¬A→ ¬B,B├ND¬¬A ③④¬ 引入

⑥¬A→ ¬B,B├NDA ⑤¬¬ 消除

⑦¬A→ ¬B├NDB→A ⑥ → 引入

⑧├ND(¬A→ ¬B)→ (B→A) ⑦ → 引入

由定理3.2.7及→消除规则知PC的定理均可在ND中证得,因

此今后在ND中的证明都可以直接调用PC中已证的相关定理。

习  题

1.在PC中证明下列事实:

(1)├(A→ (A→B))→ (A→B)

(2)¬A├A→B
(3)A→B,¬(B→C)→ ¬A├A→C
(4)├(A→(B→C))→((A→(D→B))→(A→(D→C)))

(5)├(A→ (B→C))→ ((C→D)→ (A→ (B→D)))

(6)├((A→B)→C)→ (B→C)

(7)├((A→B)→ (B→A))→ (B→A)

(8)├A→ ((A→B)→ (C→B))

(9)├((A→B)→A)→A
(10)├((A→B)→C)→ ((C→A)→A)

(11)├((A→B)→C)→ ((A→C)→C)

(12)├(((A→B)→C)→D)→ ((B→D)→ (A→D))

(13)├(A→C)→ ((B→C)→ (((A→B)→B)→C))

(14)├(A→C)→ ((B→C)→ (((B→A)→A)→C))

2.利用演绎定理在PC中证明:

(1)├(B→A)→ (¬A→ ¬B)
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(2)├(A→B)→ ((B→C)→ (A→C))

(3)├((A→B)→A)→A
(4)├¬(A→B)→ (B→A)

3.将PC中公理A3改为(¬A→¬B)→((¬A→B)→A),记

所得系统为PC′。证明:

(1)├PC(¬A→ ¬B)→ ((¬A→B)→A)

(2)├PC′(¬A→ ¬B)→ (B→A)

4.证明:对PC有下列导出规则:

(1)若 ├A→ (B→C),├B,那么 ├A→C
(2)若Γ;¬A├B,及Γ;¬A├¬B,那么Γ├A

5.证明(¬A→B)→ (A→ ¬B)不是PC的定理。

6.在ND中证明:

(1)├(¬A→A)→A
(2)├A→ (B→C)↔(A∧B→C)

(3)├(A∨B)→C↔(A→C)∧ (B→C)

(4){A→B,¬(B→C)→ ¬A}├A→C
(5)├¬(A→B)↔A∧ ¬B
(6)├(A∨B)∧ (¬B∨C)→A∨C
(7)├(A∧B)↔A∧ (¬A∨B)

(8)├((A↔B)↔A)↔B
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第4章  一阶谓词逻辑演算基本概念

一阶谓词逻辑演算FC(firstorderpredicatecalculus)是最重要

的符号逻辑系统,也称为狭义谓词演算,其他的逻辑系统都被看作是

它和命题演算系统的扩充、推广和归约。它在计算机科学中有着广

泛的应用,如在程序设计理论、语义形式化、程序逻辑研究、定理证明

及知识表示等方面。

对一阶谓词逻辑的研究分为语法和语义两个方面。语法研究由

形成部分和推理部分构成。其中形成部分的主要内容是由基本符号

集、语法规则来构造它的语言。这些语法规则称为形成规则,由此构

造的语言称为一阶语言,也就是由基本符号和形成规则构成的符号

串的特定集合,所以它也是形式语言。推理部分的主要内容是系统

逻辑演算的公理和推理规则,并由此给出定理和证明的精确定义及

其推理过程。这里公理、定理和证明都是形式的,推理规则为符号串

的变形规则,因此一阶谓词逻辑演算系统是一个形式系统。将形式

系统加以解释,赋予这些语法范畴的概念以具体语义,使之与数学系

统、或程序系统、或物理系统等联系起来,这就是语义的研究。

4.1 引  言

在命题逻辑中,把原子命题看作是不可再分的基本单位,仅仅对

于复合命题公式进行分析,研究联结词的意义和使用规则,研究与联

结词有关的推理形式和规律,而对原子命题内部的逻辑结构与逻辑



形式是不加分析和讨论的,但在演绎推理中,有许多推理的正确性依

赖于前提与结论中各原子命题的内部逻辑结构,这使得命题逻辑在

知识表达和逻辑推理方面存在很大的局限性,主要表现在以下三个

方面:

(1)命题逻辑的知识表达能力的局限性。比如在表达具有相同

类型的命题时,需要用到多个命题变元,如下例所示:

例4.1.1 设有如下三个命题:

(1)北京是中国的城市。

(2)上海是中国的城市。

(3)天津是中国的城市。

则用命题变元对它们形式化时,需要引入三个命题变元P,Q,R来分

别表示它们。此时通过这种简单的命题变元形式化的弊端显然:一

是不能揭示上述命题之间的共性,即都在描述某城市“是中国的城

市”这一共性,同时也看不出各个命题中研究对象的不同;二是如果

增加形如上述的命题,就必须同时引入新的命题变元符号。

(2)命题逻辑对于一些含有变元的判断不能处理,因为含有变

元的判断通常在未对变元赋值前是不能确定真假值的。比如数学中

一些常用的含有变元的判断:x≥100,其中x为变元,很显然该判断

的真假依赖于变元x的取值,这种判断用命题是无法表达的。

(3)命题逻辑的推理能力有限,在自然语言及数学中有些推理

也不能仅仅用命题演算加以描述和研究,如下列所示:

例4.1.2 对于著名的苏格拉底三段论:

(1)所有的人都是要死的;

(2)苏格拉底是人;

(3)所以苏格拉底是要死的。

很显然上述自然语句描述的推理是正确的。如果用命题逻辑来
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表示上述推理,首先对上述三个命题依次引入命题变元P,Q,R,则

上述推理的命题形式为:P∧Q→R,由于该命题公式不是一个永真

式,因此也就看不出原来正确的逻辑推理。

例4.1.3 设有如下的数学论断:

(1)所有实数的平方都是非负的;

(2)-3是一个实数;

(3)所以-3的平方是非负的。

这也是一个正确的推理,与苏格拉底三段论很类似。此时如果

仍用命题逻辑来表述上述逻辑推理,将会得到与例4.1.2除了仅变

元符号差异外的命题形式结果,那么这种表达方式不仅保留了例

4.1.2中所说的缺点,而且体现不出来它们是分属于两个不同范畴

的推理。

通过上面几个例子可以看出,上述问题的根源就在于命题演算

里把原子命题看作是不可再分的基本单位,对原子命题的内部结构

不再进行分析,也就体现不出命题中研究对象的特性以及研究对象

之间的逻辑关系,而有些推理的正确性正是依赖于命题的内部结

构。因此要反映此类推理的正确性,必须对构成原子命题的各种成

分再作进一步的分析,对命题的内部结构作更深入的分析,研究命题

的形式结构,以便建立的符号系统能表达原子命题各成分之间的关

系,进而研究相关的推理形式和规律,这种研究就是属于谓词逻辑研

究。

4.2 一阶谓词演算基本概念

在谓词逻辑中,将对命题逻辑中的原子命题进行拆分。由于原

子命题必是一个陈述句,而陈述句又可分为主语和谓语两部分,其中
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主语一般代表所研究的对象或由某些研究对象组成的群体,谓语部

分表示研究对象的性质或研究对象之间的关系。下面对这两部分分

别引入两个概念。

定义4.2.1 个体词:用于表示研究对象的词称为个体词,分为

个体常元与个体变元。

通常用字母表靠后的小写英文字母表示个体变元,靠前的小写

字母表示个体常元。

定义4.2.2 谓词:表示研究对象的性质或研究对象之间关系

的词称为谓词。通常用大写字母来表示。

例4.2.1 分析下列自然语句中的个体词和谓词并形式化:

(1)2是无理数。

(2)张三与李四是计算机专业的学生。

(3)实数x比实数y大。

解

(1)“2”是研究对象,为个体词,是一个个体常元;“…… 是无

理数”是谓词,用来表示研究对象“2”的性质的。

引入谓词符号P表示“…… 是无理数”;个体常元符号a表示

“2”,则原命题可形式化为:P(a)。

(2)这里可以把“张三”、“李四”看作研究对象,为个体词,也是

个体常元,“…… 与 …… 是计算机专业的学生”看作谓词,用来表示

研究对象“张三”与“李四”的关系。

引入谓词符号R表示“……与……是计算机专业的学生”;个体常

元符号a,b分别表示“张三”、“李四”,则原命题可形式化为:R(a,b)。

当然这里也可以把“张三”看作研究对象,为个体词,把“…… 与

李四是计算机专业的学生”看作谓词。或者将“李四”看作研究对
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象,为个体词,把“张三与 …… 是计算机专业的学生”看作谓词。

由此可见,个体词与谓词并不仅限于主语与谓语范围之内,需要

根据研究的问题和对象来确定。

(3)这里的研究对象是两个实数变元“x”和“y”,谓词部分为

“实数 …… 比实数 …… 大”,用来表示两个研究对象之间的大小关

系的。显然这种含有变元的自然语句是不能用命题变元来简单形式

化的。

引入谓词符号G表示“实数……比实数……大”;个体变元符号

为x,y,则原命题可形式化为:G(x,y)。

定义4.2.3 n元谓词:含有n个个体变元的谓词称为n 元谓

词。仅含有一个个体变元的谓词称为一元谓词。

如例4.2.1中谓词P为一元谓词;谓词G为二元谓词。

定义4.2.4 个体域(论域):个体变元的取值范围称为个体

域。通常用D表示。

定义4.2.5 函词:用于描述从一个个体域到另一个个体域的

映射。

函词的定义同基本意义上的函数定义,作为谓词的一部分,常用

小写字母或小写英文单词来表示。对于含有n个个体变元的函词常

记为f(n)。

例4.2.2 用谓词对命题“张三的父亲是工程师”进行形式化。

解  用谓词P表示“…… 是工程师”;

用函词f(x)表示“x的父亲”;

用个体常元a表示“张三”;

则上述命题可表示为:P(f(a))。

与命题逻辑的知识表达能力的缺陷相比,谓词逻辑更重要的是

在知识表达中引入了量词的概念。
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定义4.2.6 量词:用于限制个体词的数量,分为全称量词与存

在量词。

(1)全称量词(∀):表任意的,从量上表示“所有的”。

例4.2.3 设谓词P(x)表示“x是有理数”,则在P(x)加上全

称量词 ∀ 的约束后为“∀xP(x)”,表示对任意的研究个体x均有性

质P,即为“所有的x是有理数”。

(2)存在量词(∃):表存在的,从量上表示“至少有一个”。

例4.2.4 设谓词Q(x)表示“x是无理数”,则在Q(x)加上存

在量词 ∃ 的约束后为“∃xP(x)”,表示至少存在一个研究个体x具

有性质Q,即为“存在x是无理数”。

全称量词与存在量词有如下关系:

∀xP(x)=¬∃x¬P(x)

∃xP(x)=¬∀x¬P(x)

有了谓词、函词、量词、个体变元和个体常元的概念,便可以定义

谓词演算中的项和公式的定义。

定义4.2.7 项:

(1)个体常元、个体变元是项;

(2)若 f(n) 是 一 个 n 元 函 词,且t1,t2,…,tn 为 项,则

f(n)(t1,t2,…,tn)是项;

(3)由(1)(2)有限次复合所产生的结果是项。

例4.2.5 设有一元函词father(x)表示x的父亲,个体常元a
表示“张三”;则father(a),father(father(a))均为项。

定义4.2.8 合式公式:

(1)不含联结词的单个谓词即原子谓词公式是合式公式;

(2)若A为合式公式,则 ¬A也是合式公式;

(3)若A,B为合式公式,且无变元x在A,B中一个是约束的,而在
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另一个是自由的,则A∧B,A∨B,A→B,A↔B均是合式公式;

(4)若A为合式公式,而x在A 中为自由变元,则 ∀xP(x),

∃xP(x)均是合式公式;

(5)由(1)~ (4)有限次复合所形成的公式均为合式公式。

合式公式也称为谓词公式,或简称为公式。

例4.2.6 如例4.2.1中的原子谓词G(x,y)为谓词公式,

¬∀xP(x),∀xP(x) ∨ ∃yQ(y),∀xR(x) → ∃yQ(y,v),

∀x(P(x)∧ Q(x))↔(∀xP(x)∧ ∀xQ(x))及 ∀xP(x)∧
∃y(Q(y)→ ¬R(y))均为谓词公式。

定义4.2.9 约束变元与自由变元:

(1)约束变元:受量词约束的个体变元称为约束变元。

例4.2.7 设∀xP(x),∃xQ(x)均为谓词,则其中的变元x均

为约束变元。

(2)自由变元:不受量词约束的个体变元。

例4.2.8 设∀xP(x)∨Q(y)为谓词,则其中变元x为约束变

元,而变元y为自由变元。

定义4.2.10 辖域:量词所约束的范围。

例4.2.9 ∀y(∃xP(x,y)→Q(y))→∃vR(y,v),其中“∀y”

所约束的范围为∃xP(x,y)→Q(y),而∃vR(y,v)中的变元y则不

受“∀y”所约束,它为自由变元。

定义4.2.11 易名规则:将量词辖域中出现的某个约束变元改

成另一个在该辖域中未出现的个体变元,公式中的其余部分保持不

变。改名后的公式称为原公式的改名式。 如 ∀yP(y)称为

∀xP(x)的改名式,或将其改名式记为 ∀yP(x)xy。

运用易名规则的时候需要注意待改名的变元在其辖域内的此变

元应均被改掉,而其余的保持不变,另外新引进的变元符不应该在该
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量词的辖域内出现。

例4.2.10 设P,Q,R为谓词公式,则表达式 ¬R(x,y,z)∧
∀xQ(x,y)→∃yP(y)中的变元x,y既为自由变元又为约束变元,

易混淆故改名为

¬R(x,y,z)∧ ∀vQ(v,y)→ ∃uP(u)

修改后前面的自由变元x,y仍保持不变。

例4.2.11 设有谓词 ∀x(P(x,y)→Q(x)),则对约束变元x
可易名为变元v,即有

∀v(P(v,y)→Q(v))

这里对约束变元x的易名不能用变元y来代替。

定义4.2.12 可代入:设v为谓词公式A中的自由变元,且项t
中不含A中的约束变元符(若有可易名),则称项t对v是可代入的。

例4.2.12 令A=∀v1P(v1,v2),设t为不含约束变元v1的项,

则t项对变元v2是可带入的。但若项t=f(v1),其中f为函词,则项

t对变元v2 是不可带入的。

定义4.2.13 代入:对公式A中的自由变元v的所有自由出现

都换为项t(必须是可代入的),记为Av
t。若A中无v则Av

t =A。

例4.2.13 令A=R(x)→N(x),项t=f(3),则

Ax
t =Ax

f(3)=R(f(3))→N(f(3))

定义4.2.14 全称化:设v1,v2,…,vn为公式A中的自由变元,

则公式∀vi1∀vi2
…∀virA称为A的全称化,其中1≤i1,i2,…,ir≤

n,1≤r≤n。

公式 ∀v1∀v2…∀vnA 称为A 的全称封闭式。

例4.2.14 令A=P(x,y,z)→¬Q(x,y),变元x,y,z为公式

A中的自由变元。则∀xA,∀yA,∀zA,∀x∀yA均为A的全称化,

∀x∀y∀zA 称为A 的全称封闭式。
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4.3 自然语句的形式化

使用谓词逻辑来描述和推理以自然语句表达的问题,首先需要

形式化。该形式化的过程需要先将问题分解成一些原子谓词,然后

引入谓词符号,进而使用量词、函词、逻辑联结词来构成合式公式。

下面通过一些具体例子来说明。

例4.3.1 将下列语句翻译成谓词公式。

(1)任意的有理数都是实数。

(2)有的实数是有理数。

解  令:

谓词P(x):x是有理数

谓词R(x):x是实数

则上述语句形式化为:

(1)∀x(P(x)→R(x))

(2)∃x(R(x)∧P(x))

例4.3.2 将4.1节中例4.1.2、例4.1.3的推理用谓词的形式

表示出来。

解  在例4.1.2中令:

谓词M(x):x是人

谓词D(x):x是要死的

个体常元a表示“苏格拉底”

则例4.1.2中的语句形式化为:

(1)∀x(M(x)→D(x))

(2)M(a)

(3)D(a)
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在例4.1.3中令:

  谓词R(x):x是实数

  谓词N(x):x是非负的

  函词f(x):x的平方

则例4.1.3中的语句形式化为:

(1)∀x(R(x)→N(f(x)))

(2)R(-3)

(3)N(f(-3))

这里对常元“-3”,也可以仿照前面引入个体常元来表示。

例4.3.3 将命题“并非所有在北京工作的人都是北京人”用谓

词形式化。

解  令:谓词W(x):x是在北京工作的人

谓词B(x):x是北京人

则上述语句形式化为:¬∀x(W(x)→B(x))

例4.3.4 将命题“过平面上的两个不同点有且仅有一条直线

通过”用谓词形式化。

解  令:谓词D(x):x为平面上的点

谓词G(x):x为平面上的直线

谓词L(x,y,z):z通过x,y
谓词E(x,y):x与y相等

则上述语句形式化为:

∀x∀y(D(x)∧D(y)∧ ¬E(x,y)→ ∃z(G(z)∧L(x,y,z)∧
∀u(G(u)∧Lx,y,u)→E(u,z))))

对于这种含有“存在且唯一”的命题,通常先将存在性形式化,

然后再形式化唯一性。

例4.3.5 将下列自然语句描述的推理用谓词公式表示出来:
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大学里的学生不是本科生就是研究生。有的学生是高材生。

John不是研究生,但是高材生。则如果John是大学里的学生必是本

科生。

解  令:谓词S(x):x是大学里的学生

谓词B(x):x是本科生

谓词G(x):x是研究生

谓词P(x):x是高材生

则上述语句形式化为:

(1)∀x(S(x)→B(x)∨-G(x))

(2)∃xP(x)

(3)¬G(John)∧P(John)

(4)S(John)→B(John)

这里需要引起注意的是对命题“大学里的学生不是本科生就是

研究生”形式为 ∀x(S(x)→B(x)∨G(x))是不准确的,因为大学

里的学生要么是本科生,要么是研究生,只能二者取一,应该是异或

关系。

例4.3.6 将下列自然语句描述的推理用谓词公式表示出来:

每个自然数不是偶数就是奇数。自然数为偶数当且仅当它能被

2整除。并不是所有的自然数都能被2整除。所以有的自然数为奇

数。

解  令:谓词N(x):x是自然数

谓词E(x):x是偶数

谓词O(x):x是奇数

谓词G(x):x能被2整除

则上述语句形式化为:

(1)∀x(N(x)→E(x)∨-O(x))
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(2)∀x(N(x)→ (E(x)↔G(x)))

(3)¬∀x(N(x)→G(x))

(4)∃x(N(x)∧O(x))

其实这里由于每个句子中都对研究对象作了限制,也就是都在

自然数的前提下,因此在进行形式化的时候可以去掉其中对自然数

的限制。

例4.3.7 将下列自然语句描述的推理用谓词公式表示出来:

没有不守信用的人是可以信赖的。有些可以信赖的人是受过高

等教育的。因此有些受过高等教育的人是守信用的。

解  令:谓词P(x):x是守信用的人

谓词Q(x):x是可以信赖的人

谓词E(x):x是受过高等教育的人

则上述语句形式化为:

(1)¬∃x(¬P(x)∧Q(x))

(2)∃x(Q(x)∧E(x))

(3)∃x(E(x)∧P(x))

根据例4.3.6的分析,这里每个命题都对人作了限制,因此在形

式化的时候就不需要考虑该限制了。

习  题

1.指出下列谓词公式中的自由变元与约束变元,并说明什么样

的项对这些自由变元是可代入的。

(1)∃xP(x)∧P(y)

(2)∀x(P(x)∧Q(v)→ ∃y(R(y)∧S(x)))

2.用Av
t′与tv

t′分别表示公式A和项t中的变元v用项t′代入后
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的代入实例。试根据公式A和项t的构成归纳定义Av
t′和tv

t′,定义中

不能使用类似“代换”的字样。

3.假设论域为整数集合,确定下列语句的真值。

(1)∀n∃m(n2 <m)

(2)∃n∀m(n<m2)

(3)∀n∃m(n+m=0)

(4)∃n∀m(nm=m)

(5)∃n∃m(n2+m2=6)

(6)∀n∀m∃p(p=(n+m)/2)

4.假设论域为实数集合,确定下列语句的真值。

(1)∀x∃y(x2=y)

(2)∀x∃y(x=y2)

(3)∃x∀y(xy=0)

(4)∀x(x≠0→ ∃y(xy=1))

(5)∃x∀y(y≠0→xy=1)

(6)∀x∃y(x+y=1)

(7)∀x∃y(x+y)=2∧2x-y=1
(8)∀x∀y∃z(z=(x+y)/2)

5.将下列公式中的否定词等价变换到谓词中去,即否定词不在

量词外边,也不在含逻辑联结词的表达式的外边。

(1)¬∃x∃yP(x,y)

(2)¬∀x∃yP(x,y)

(3)¬∃y(Q(y)∧ ∀x¬R(x,y))

(4)¬∃y(∃xR(x,y)∨ ∀xS(x,y))

(5)¬∃y(∀x∃zT(x,y,z)∨ ∃x∀zW(x,y,z))

6.将下列自然语句形式化为谓词公式。
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(1)所有能被2整除的整数都是偶数。

(2)有些偶数能被3整除。

(3)是金子都闪光,但闪光的并不都是金子。

(4)每个自然数都有唯一一个自然数是它的直接后继。

(5)有些学生相信所有的教师。任何一个学生都不相信骗子。

所以教师都不是骗子。

(6)计算机系的每个研究生要么是推荐免试生要么是统考生。

所有推荐免试生的本科课程成绩都很好。但并非所有研究生本科课

程成绩都很好。所以一定有研究生是统考生。

(7)一名学生要想取得硕士学位,必须至少修满60个学分,或

至少修满45分并通过硕士论文答辩,并且所有必修课程的成绩不低

于B。
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第5章  一阶谓词演算形式系统

在这一章中,先介绍一个简明的一阶谓词逻辑演算形式系统。

作为一个形式系统,与命题演算形式系统相似,首先介绍其语法部

分,主要包括一阶语言、公理、推理规则和定理推演,其中定理推演,

即研究推理的形式是本章的重点内容。然后介绍一阶谓词逻辑的语

义部分,通过对语法范畴的符号串赋以给定的结构来确定其语义,从

语义的角度来阐释一个正确的形式推理是一个以推理的前提为前

件,以推理的结论为后件的逻辑蕴涵关系,由此给出一阶谓词逻辑演

算系统的重要性质定理,主要包括合理性、一致性和完备性。最后再

介绍两个较实用的一阶谓词演算系统。

5.1 一阶谓词演算形式系统组成

在这一节中,将建立一个简明的一阶谓词逻辑演算的形式化公

理系统,也简称为一阶谓词演算(FC)。首先给出其一阶语言部分,

为了简化有关公式的某些性质的讨论以及简化定理的证明,在一阶

语言的初始符号中将不包括 ∧、∨、↔ 和存在量词 ∃。通常用L表

示一阶语言,记作L(FC)。

1.一阶语言

(1)字符集

个体变元:x,y,z,u,v,w,…



个体常元:a,b,c,d,e

n元函词:f(n),g(n),h(n),…

n元谓词:P(n),Q(n),R(n),…

真值联结词:¬,→
量词:∀
技术性括号:(,)

(2)形成规则

就是指由基本字符集形成项和谓词公式的定义。

由于L(FC)中的联结词使用了完备集{¬,→},因此联结词∧,

∨,↔ 完全可以通过{¬,→}用定义的形式表示出来:

A∧B=¬(A→ ¬B)

A∨B=¬A→B

A↔B=(A→B)∧ (B→A)

由此可见,完全可以把含有联结词∧、∨、↔的公式看作是对一

阶语言中的公式的一种缩写而已,从本质上来说并没有改变一阶语

言本身。与此相似,对于存在量词 ∃,由于它和全称量词 ∀ 存在关

系:∃xP(x)=¬∀x¬P(x),因此存在量词 ∃ 也可以在L(FC)中

省略,这样便于我们讨论问题的简明性。

另外在L(FC)中也可以引入命题符号(相当于零元谓词),这样

命题演算系统PC的语言部分就成为L(FC)的子集了。

2.一阶逻辑系统的理论

(1)公理

下列公理模式及其全称化均为公理。其中A,B,C为语法变元,

可代表FC中的任意公式,v为任意变元,t为任意项。

AX1.1:A→ (B→A)
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AX1.2:(A→ (B→C))→ ((A→B)→ (A→C))

AX1.3:(¬A→ ¬B)→ (B→A)

AX2:∀vA →Av
t(项t对v可代入)

AX3:∀v(A→B)→ (∀vA → ∀vB)

AX4:A→ ∀vA(v在A 中无自由出现)

前三个公理模式除了其中的语法变元代表一阶语言L(FC)中

的任意公式外,它们和命题演算中三个公理模式是相同的,因此它们

都是重言式。对于公式AX2、AX3、AX4为重言式将在下一节的内

容中介绍,这里需要注意的是AX2与AX4的使用附加条件是不可缺

少的,否则它们将不再是重言式。

(2)推理规则

与PC的推理规则相同仍为分离规则(rmp),即若有结论A 及

A →B成立则必有结论B 成立,只不过这里的公式A,B为FC中的

公式,用形式化序列表示为:A,A→B,B。

(3)定理

这是FC中的重要内容,包括所有的推理结论及其推理过程。

从以上FC的组成可以发现,PC的语言和公理均为FC的子集,

且它们的推理规则也相同,因此命题演算系统PC可以看作一阶谓

词演算系统FC的子系统,从而PC的定理均可看作FC的定理,今后

在FC的证明中,对于PC中已证的定理和结论都可以直接调用,这

将给一阶谓词演算的推理带来很大的方便。

另外关于FC中的定理、证明以及演绎、演绎结果的定义与PC

中的定义是一样的,只不过将其中的公式均改为L(FC)中的公式即

可。

下面给出一些FC中比较常用的基本定理的推理。
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5.2 FC的基本定理

在这一节中,将给出一阶谓词演算中的若干基本定理和几个关

于量词的导出规则,使用这些基本定理和导出规则可以加速一般的

逻辑推理过程。

定理5.2.1 对FC中任意的公式A,变元v,有├FC∀vA →A。

证明 由∀vA→Av
i(项t对v可代入)为公理,特取项t=v则

有:∀vA →Av
v,即 ∀vA →A。

下面如果不作特殊说明均为FC中的证明。

定理 5.2.2 对 FC 中 任 意 的 公 式 A, 变 元 v, 有

├A→ ¬∀v¬A或 ├A→ ∃vA。

证明

(1)∀v¬A→ ¬A 定理

(2)(∀v¬A→ ¬A)→ (A→ ¬∀v¬A) 定理3.1.11
(3)A→ ¬∀v¬A (1)(2)rmp

即A→ ∃vA。

定理5.2.3 ├∀vA → ∃vA
证明  直接由定理5.2.1及定理5.2.2即可知。

定理5.2.4(全称推广) 对FC中任意的公式A,变元v,若├A
则 ├∀vA。

证明 若变元v在A中无自由出现,此时A→∀vA为公理,则

由 ├A知 ├∀vA。下面不妨假设变元v在A 中自由出现。对公式

A的证明长度k进行归纳证明。

(1)当k=1时,根据证明的定义知此时A为公理,则其全称化

∀vA 仍为公理,故有 ├∀vA。
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(2)假设当k<n时,命题成立。

则当k=n时,存在证明序列A1,A2,…,An(An =A)。

根据归纳假设,对任意Ai(i<n)有├∀vAi。根据证明的定义

知此时An或为公理,或为Ai(i<n),或为Ai,Aj(i,j<n)rmp所得。

① 若An 为公理则由(1)知 ├∀vAn,即 ├∀vA;

② 若An为Ai(i<n)则由归纳假设知├∀vAi,即├∀vAn,则

有 ├∀vA;

③若An为由Ai,Aj(i,j<n)rmp 所得,则不妨设Aj=Ai→An,

根据归纳假设有 ├∀vAi 及 ├∀vAj 即 ├∀v(Ai → An),由

∀v(Ai→An)→ (∀vAi→ ∀vAn)为公理,则根据分离规则rmp 得

├∀vAi→ ∀vAn,再由分离规则rmp 得 ├∀vAn,即 ├∀vA。

例5.2.1 若 ├A→B且变元v在B 中无自由出现,则

├∃vA →B。

证明

(1)A→B已知定理(假设)

(2)(A→B)→ (¬B→ ¬A) 定理3.1.12
(3)¬B→ ¬A (1)(2)rmp

(4)∀v(¬B→ ¬A) (3)全称推广

(5)∀v(¬B→ ¬A)→ (∀v¬B→ ∀v¬A)公理

(6)∀v¬B→ ∀v¬A (4)(5)rmp

(7)¬B→ ∀v¬B 公理(变元v在 ¬B中无自由出现)

(8)¬B→ ∀v¬A (6)(7)定理3.1.7rmp

(9)(¬B→ ∀v¬A)→ (¬∀v¬A→B)定理3.1.13
(10)¬∀v¬A→B (8)(9)rmp

即 ∃vA →B。

可以将全称推广定理扩充到一般的情形。
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定理5.2.5 对FC中任意的公式集Γ,公式A及变元v,且v不

在Γ的任一公式里自由出现。若Γ├A则Γ├∀vA。

证明 证明同定理5.2.4的证明,区别就在于多了一个前提集Γ。

若变元v在A中无自由出现,则由A→∀vA为公理及Γ├A知

Γ├∀vA。下面不妨假设变元v在A中自由出现。对公式A的证明

长度k进行归纳证明。

(1)当k=1时,根据演绎的定义知此时A或为公理,或为Γ中的

成员。

① 若A为公理,则其全称化∀vA仍为公理,当然有Γ├∀vA。

② 若A为Γ中的成员:由于v不在Γ的任一公式里自由出现,且

此时我们假设变元v在A 中是自由出现的,故A 不能为Γ 中的成

员。

(2)假设当k<n时,命题成立。

则当k=n时,存在证明序列A1,A2,…,An(An =A)。

根据归纳假设,对任意Ai(i<n)有Γ├∀vAi。

又由演绎的定义知此时An或为公理,或为Ai(i<n),或为Γ中

的成员,或为Ai,Aj(i,j<n)rmp 所得。

① 若An 为公理则由(1)知Γ├∀vAn,即Γ├∀vA;

② 若An为Ai(i<n)则由归纳假设知Γ├∀vAi,即Γ├∀vAn,

则有Γ├∀vA;

③ 若An 为Γ中的成员:由(1)中的分析知此种情况不能发生;

④ 若An为由Ai,Aj(i,j<n)rmp所得,则不妨设Aj=Ai→An。

根据归纳假设有Γ├∀vAi 及Γ├∀vAj 即Γ├∀v(Ai →An),由

∀v(Ai→An)→ (∀vAi→ ∀vAn)为公理,则根据分离规则rmp 得

Γ├∀vAi→ ∀vAn,再由分离规则rmp 得Γ├∀vAn,即Γ├∀vA。

注意全称推广定理的应用条件:“v不在Γ的任一公式里自由出
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现”很重要,如果没有该条件,则由Γ├A推导不出结论Γ├∀vA。

如由(v<1)├(v<100)推导不出(v<1)├∀v(v<100)。

例5.2.2 ∃x¬A→ ∀xB├∀x(¬A→B)

根据全称推广定理,只需证 ∃x¬A→ ∀xB├¬A→B。

证明

(1)∃x¬A→ ∀xB 前提

(2)∀xB →B 定理

(3)∃x¬A→B (1)(2)定理3.1.7rmp

(4)¬A→ ∃x¬A 定理
(5)¬A→B (3)(4)定理3.1.7rmp

(6)∀x(¬A→B) (5)全称推广(因为此时前提中无变元x
的自由出现)

定理5.2.6(演绎定理) 设Γ为FC的公式集,A,B为FC的公

式,则Γ;A├B当且仅当Γ├A→B。

该定理的证明同PC中的演绎定理的证明,区别仅在于这里的

公式及公式集均为FC的公式和公式集。

例5.2.3 证明 ∀x(A →B)├A → ∀xB,x在A 中无自由

出现。

根据演绎定理只需证 ∀x(A→B),A├∀xB。

证明

(1)∀x(A→B),A├∀x(A→B) 前提

(2)∀x(A→B)→ (A→B) 定理
(3)∀x(A→B),A├A→B (1)(2)rmp

(4)∀x(A→B),A├A 前提

(5)∀x(A→B),A├B (3)(4)rmp

(6)∀x(A→B),A├∀xB
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(5)全称推广(注意要满足应用的条件)

(7)∀x(A→B)├A→ ∀xB (6)演绎定理

这里为了便于看清楚每一步的演绎前提条件是什么,我们在推

理序列里带上了相关的前提条件。如果省略不写,那么在应用诸如

第(6)步的全称推广定理时,必须要保证推理序列中在公式B之前

均无x的自由出现。

定理5.2.7 设Γ为FC的公式集,A,B为FC的公式。则

Γ;A├¬B当且仅当Γ;B├¬A。

证明  Γ;A├¬B⇔Γ├A→ ¬B (演绎定理)

⇔Γ├B→¬A (已证定理(A→¬B)↔(B→¬A))

⇔Γ;B├¬A (演绎定理)。

定理5.2.8(反证法) 若FC的公式集Γ∪ {A}不一致,则

Γ├¬A。

证明  由Γ ∪ {A}不一致,则存在公式B,使得Γ;A├B,

Γ;A├¬B。又 ¬B→ (B→ ¬A)为定理,所以Γ;A├¬A,则由演

绎定理得Γ├A→¬A,又(A→¬A)→¬A为定理,从而Γ├¬A。

例5.2.4 证明 ∀x¬A→ ∃xB├∃x(¬A→B)。

根据存在量词与全称量词的关系只需证

∀x¬A→ ∃xB├¬∀x¬(¬A→B)

证明

(1)∀x¬A→∃xB;∀x¬(¬A→B)├∀x¬(¬A→B) 前提

(2)∀x¬A→ ∃xB;∀x¬(¬A→B)├∀x¬(¬A →B)→
¬(¬A→B) 定理

(3)∀x¬A→ ∃xB;∀x¬(¬A→B)├¬(¬A→B)

(1)(2)rmp

(4)¬A→ (A→B) 定理3.1.3
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(5)A→ (¬A→B) (4)定理3.1.6rmp

(6)¬(¬A→B)→ ¬A (5)定理3.1.12rmp

(7)∀x¬A→ ∃xB;∀x¬(¬A→B)├¬A (3)(6)rmp

(8)∀x¬A→∃xB;∀x¬(¬A→B)├∀x¬A (7)全称推广

(9)∀x¬A→∃xB;∀x¬(¬A→B)├∀x¬A→∃xB 前提

(10)∀x¬A→ ∃xB;∀x¬(¬A→B)├∃xB (8)(9)rmp

即 ∀x¬A→ ∃xB;∀x¬(¬A→B)├¬∀x¬B
(11)B→ (¬A→B) 公理

(12)¬(¬A→B)→ ¬B (11)定理3.1.12rmp

(13)∀x¬A→ ∃xB;∀x¬(¬A→B)├¬B (3)(12)rmp

(14)∀x¬A→∃xB;∀x¬(¬A→B)├∀x¬B
(13)全称推广

(15)∀x¬A→∃xB├¬∀x¬(¬A→B) (10)(14)反证法

定理5.2.9 设Γ为FC的公式集,A,B为FC的公式,且变元v
不在Γ的任一公式里自由出现,则

Γ;A├B蕴涵Γ;∀vA├B 及  Γ;∀vA├∀vB
证明 由Γ;A├B及演绎定理得:Γ├A→B,又变元v不在Γ的

任一公式里自由出现,则由全称推广定理得:Γ├∀v(A →B),又根

据公理∀v(A→B)→(∀vA→∀vB),从而Γ├∀vA→∀vB,则由

演绎定理得Γ;∀vA├∀vB,又由定理 ∀vB →B得Γ;∀vA├B。

定理5.2.10(存在消除) 设Γ为FC的公式集,A,B为FC的公

式,且变元v不在Γ 的任一公式里及公式B 里自由出现,则由

Γ├∃vA 及Γ;A├B可推出Γ├B。

证明  由Γ;A├B及演绎定理得:Γ├A →B,又(A →B)→
(¬B→ ¬A)为定理,从而Γ├¬B→ ¬A,则有Γ;¬B├¬A,又变

元v不在Γ的任一公式里及公式B 里自由出现,则由全称推广定理
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得Γ;¬B├∀v¬A,从而Γ├¬B→∀v¬A,又(¬B→∀v¬A)→
(¬∀v¬A→B)为定理,则有Γ├¬∀v¬A→B,即Γ├∃vA→B,

又Γ├∃vA,所以Γ├B。

例5.2.5 ├∃v(A →B)→ (A → ∃vB),v在A 中无自由

出现。

根据演绎定理只需证:∃v(A→B),A├∃vB,记Γ={∃v(A→
B),A},则变元v不在Γ的任一公式里自由出现。

证明

(1)Γ├∃v(A→B) 前提

(2)Γ;A→B├A 前提

(3)Γ;A→B├A→B 前提

(4)Γ;A→B├B (2)(3)rmp

(5)B→ ∃vB 定理
(6)Γ;A→B├∃vB (4)(5)rmp

(7)Γ├∃vB 由(1)(6)及存在消除定理

定理5.2.11(替换原理) 设 A,B 为 FC 的公式,且满足

A├┤B(即A├B且B├A)。A是C的子公式,D是将公式C中若干

个(未必全部)A的出现换为公式B 所得的公式,则C├┤D。

证明  对公式C的组成进行归纳证明(仅考虑由联结词 ¬,→
组成的公式)。

(1)若C为原子公式,则此时A即为C,C=A,从而D=B,而

A├┤B,故有C├┤D;

(2)若C=¬C1,其中对公式C1进行归纳假设,即对C1中若干

个A 的出现换为公式B 所得的公式D1 有 C1 ├┤D1,则有

¬C1 ├┤¬D1,即C├┤D;

(3)若C=C1→C2,其中对公式C1,C2进行归纳假设,即对C1,
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C2 中若干个A的出现换为公式B 所得的公式分别为D1,D2,则有

C1 ├┤D1,C2 ├┤D2。下证C1 →C2 ├┤D1 →D2。

先证C1 →C2├D1 →D2:

由C1├┤D1知├D1→C1,又(D1→C1)→((C1→C2)→(D1

→C2))为定理,所以 ├(C1 →C2)→ (D1 →C2)。

又由C2 ├┤D2 知 ├C2→D2,又(C2→D2)→ ((D1→C2)→
(D1→D2))为定理,所以 ├(D1 →C2)→ (D1 →D2),则由传递得

├(C1 →C2)→ (D1 →D2),从而C1 →C2├D1 →D2。

同理有D1 →D2├C1 →C2。

(4)若C=∀xC1,其中对公式C1进行归纳假设,即对C1中若干

个A 的出现换为公式B 所得的公式为D1 有C1 ├┤D1,下证

∀xC1 ├┤∀xD1。

先证∀xC1├∀xD1:由C1├┤D1得C1├D1,从而├C1→D1,

则根据全称推广定理得 ├∀x(C1→D1)。又由公理 ∀x(C1→D1)

→ (∀xC1 → ∀xD1)得 ├∀xC1 → ∀xD1,从而 ∀xC1├∀xD1。

同理可证 ∀xD1├∀xC1。

综上可得 ∀xC1 ├┤∀xD1。

例5.2.6 ∀x(A→B)├(∃xA → ∃xB)

由A →B ├┤¬B → ¬A,则根据替换原理知 ∀x(A →B)

├┤∀x(¬B→¬A),故只需证∀x(¬B→¬A)├(∃xA→∃xB)

即可。

证明

(1)∀x(¬B→ ¬A)→ (∀x¬B→ ∀x¬A)公理

(2)∀x(¬B→ ¬A)前提

(3)∀x¬B→ ∀x¬A (1)(2)rmp

(4)(∀x¬B→∀x¬A)→(¬∀x¬A→¬∀x¬B) 定理3.1.12
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(5)¬∀x¬A→ ¬∀x¬B (3)(4)rmp

即 ∃xA → ∃xB。

定理5.2.12(改名定理) 在FC中,若A′是A 的改名式,且A′
改用的变元不在A中出现,则A├┤A′。

证明  不妨设公式A=∀vB,其改名式A′=∀uBv
u(变元u不

在公式B中出现,为改名式中新引入的变元,即将公式B中的变元v
改为变元u),下证A├┤A′,即证 ∀vB ├┤∀uBv

u。

先证∀vB├∀uBv
u:由├∀vB→Bv

t=u为公理,即├∀vB→Bv
u,

根据演绎定理有 ∀vB├Bv
u,又由全称推广定理得 ∀vB├∀uBv

u。

再证 ∀uBv
u├∀vB:由 ├∀uBv

u → (Bv
u)ut=v 为公理,即 ├∀uBv

u

→B,根 据 演 绎 定 理 有 ∀uBv
u├B,又 由 全 称 推 广 定 理 得

∀uBv
u├∀vB。

对于较复杂的公式,根据替换原理上述定理仍然成立,如公式

A=C→ ∀vB,不妨假设变元v不在C中出现,则将A中的变元v改

为变元u后所得的改名式A′=C→ ∀uBv
u,根据改名定理有∀vB

├┤∀uBv
u,而∀vB为A的子公式,则由替换原理得C→∀vB├┤C

→ ∀uBv
u,即A├┤A′。

对于存在量词的情况可根据存在量词与全称量词的关系直接可

得,如A=∃vB,其改名式A=∃uBv
u,则由存在量词与全称量词的关

系得 A =¬∀v¬B,由改名定理得 ∀v¬B ├┤∀u¬Bv
u,从而

¬∀v¬B├┤¬∀u¬Bv
u,即 ∃vB ├┤∃uBv

u,从而A├┤A′。

例5.2.7 设A为FC的公式,则有 ∀u∀vA├∀vAu
v。

证明

(1)∀u∀vA├┤∀u∀xAv
x 改名定理,其中变元x在A中无出现

(2)├∀u∀xAv
x →(∀xAv

x)ut=v,公理(这里v对u显然可代入)

211 数理逻辑引论



即 ├∀u∀xAv
x → ∀x(Av

x)uv。

(3)├∀x(Av
x)uv → ((Av

x)uv)xt=v 公理(这里v对x也可代入)

即 ├∀x(Av
x)uv → ((Av

x)uv)xv,即 ├∀x(Av
x)uv →Au

v。

(4)├∀u∀xAv
x →Au

v (2)(3)传递

(5)∀u∀xAv
x├Au

v (4)演绎定理

(6)∀u∀vA├Au
v (1)(5)替换原理

(7)∀u∀vA├∀vAu
v (6)全称推广

注意  这里不能直接运用 ∀u∀vA → (∀vA)ut=v,因为此时v
在子公式 ∀vA 中有约束出现,故v对u不可代入,不满足运用此公

理的条件,于是上述证明中为了能够运用此公理首先运用改名定理

将子公式 ∀vA 中的约束变元v进行了改名。

定理5.2.13 设Γ为FC的公式集,A为FC的公式,c为不在Γ
的任一公式中出现的常元。则存在不在A 中出现的变元v,使得

Γ├A蕴涵Γ├∀vAc
v,并且在由Γ推出∀vAc

v的演绎序列中也无c的

出现。

证明  设Γ├A的演绎序列为:A1,A2,…,Am(Am =A)

令变元v为不在Ai(i=1,…,m)中出现的变元。

下面先证序列A1
c
v,A2

c
v,…,Am

c
v(Am

c
v=Ac

v)是由Γ推出Ac
v的演

绎。

对演绎长度m进行归纳证明。

(1)当m=1时,则A为公理或A ∈Γ。

① 若A为公理,则此时Ac
v 仍为公理,当然有Γ├Ac

v。

② 若A∈Γ,此时由于Γ中成员均无c的出现,则Ac
v=A,从而

Γ├Ac
v。

(2)假设当m<k时,A1
c
v,A2

c
v,…,Am

c
v(Am

c
v=Ac

v)是由Γ推出
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Am
c
v 的演绎。

则当m=k时,序列A1,A2,…,Ak(Ak=A)为由Γ推出Ak的演

绎,其中Ak或为公理或Ak∈Γ或为Aj(j<k)或为分离规则所得。

① 若Ak或为公理或Ak∈Γ,则由(1)知Γ├Ak
c
v,即Γ├Ac

v(Ak
c
v

=Ac
v)。

② 若Ak=Aj(j<k),此时直接由归纳假设知Γ├Aj
c
v,即Γ├

Ak
c
v。

③若Ak由分离规则所得,不妨设Ak由Ai,Aj(i,j<k)分离所

得,其中Aj=Ai→Ak。根据归纳假设对Ai,Aj有从Γ推出Ai
c
v及Aj

c
v

的演绎,即

A1
c
v,A2

c
v,…,Ai

c
v

A1
c
v,A2

c
v,…,Aj

c
v

其中Aj
c
v=Ai

c
v→Ak

c
v,即有Γ├Ai

c
v及Γ├Ai

c
v→Ak

c
v,根据分离规则

得Γ├Ak
c
v,即有从Γ推出Ak

c
v 的演绎如下:

A1
c
v,A2

c
v,…,Aj

c
v(=Ai

c
v →Ak

c
v),Ak

c
v(=Ac

v)

综上,A1
c
v,A2

c
v,…,Am

c
v(Am

c
v=Ac

v)确是由Γ推出Ac
v 的演绎。

令Γ′=Γ∩{A1
c
v,A2

c
v,…,Am

c
v},则Γ′即为在由Γ推出Ac

v的演

绎中所用到的Γ中的前提条件组成的集合,但除去了演绎序列中调

用的公理和中间结果,很显然此时仍有Γ′├Ac
v且常元c不在Γ′中出

现,根据变元v的引入条件知v也不在Γ′中出现,则由全称推广定理

得Γ′├∀vAc
v,且由Γ′演绎 ∀vAc

v 的过程中无c的出现。

该定理将在后面FC的系统性质定理的证明中有重要的应用。

5.3 一阶谓词形式系统的语义

一阶语言中的个体常元、变元、项、函词、谓词等属于语法范畴的
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概念,只是一些字符串,并没有实际的意义。因此要讨论谓词演算公

式的真值,就需要对函词、谓词进行指称,对个体常元、变元取值的指

派,即对这些语法符号串赋予一定的意义,这就是一阶谓词的语义的

研究内容之一。

另外,在一阶谓词演算系统中,证明、推演只是公式的符号组合

的形式变换,是完全不作语义方面的考虑的。但是建立和研究演算

系统,最终目的是通过对演算系统的研究来研究正确的逻辑推理形

式及其规律。因此,当对一阶谓词演算给予解释后,其中的公理和定

理应当是逻辑规律的反映,即公理和定理应当都是重言式,同时一个

正确的形式推理,从语义的角度来看是一个以推理的前提为前件,以

推理的结论为后件的逻辑蕴涵关系,于是可以使用解释的方法来证

明一个推理在形式上是无效的:比如能找到一个解释,使得推理的前

提在此解释下为真,而形式推理的结论在此解释却为假,那么该蕴涵

关系不成立,从而说明原推理在形式上是不正确的、无效的。这种通

过解释说明一个推理形式无效的方法,其实就是通常所说的“举反

例”的方法。

由于一阶语言中引入了谓词、函词、量词等符号,与命题公式的

解释只需要对其中的命题变元符赋以真假值就构成了它的解释相比

较,对谓词公式的解释就相对复杂,其语义解释通常是一个数学结

构,包括论域D及对常元、函词、谓词进行指称的解释I。

在给出一阶语言的精确语义描述前,先通过几个例子做一些直

观的说明。

例5.3.1 设∀xP(x,a)为FC的公式,显然这只是一个没有任

何意义的符号串,但是,当确定个体域D、把谓词符号P解释成D 上

的一个二元关系、把常元a解释为一个具体的D中的个体后,上式就

有确定的意义。如:设论域D为自然数集N,把二元谓词P解释成N
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上的“≥”二元关系,用“0”来指派给常元a,则此时∀xP(x,a)即为

∀x(x≥0),为一真命题,但若用“100”来指派给常元a,则此时为假

命题。

当公式中含有n元函词符号时,那么对公式的解释除了确定的

个体域、谓词符号的解释及常元的指派外,还必须把n元函词符号解

释为个体域中的具体的n元运算。如下例所示:

例5.3.2 设∀xQ(f(x,a),x)为FC的公式,假定论域D为实

数集R,二元谓词Q(x,y)∶x=y,常元a指派为“0”,二元函词

f(x,y)=x+y,则此时 ∀xQ(f(x,a),x)即为 ∀x(x+0=x),为

一真命题,但若将二元函词f解释为f(x,y)=xy,则为假命题。

一个闭公式经上述解释后就能成为一个命题,但当一个公式中

包含有自由变元时,得到的公式还不一定是命题,而是命题函数。

例5.3.3 设∃xG(x,y)为FC的公式。假定论域D为自然数

集N,二元谓词G(x,y)表示 N 上的二元关系“x <y”,则此时

∃xG(x,y)即解释为∃x(x<y),显然其真值结果依赖于对自由变

元y在论域N 上的赋值,只有在对自由变元y指定确定的值后,才能

得到一个命题,如令y=5,则为真命题,如令y=0,则为假命题。

上述对一阶语言中的项和公式的解释,称作一个结构,它包括两

部分,一个是论域D,另一个是对项和公式的解释I。下面对解释I
给出具体说明。

1.解释I的组成

一个解释就是一个映射I,它指称一阶语言中的常元、函词、谓

词为:

(1)对任一常元a指定为论域D中的一个个体,记为I(a),简记

为a;
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(2)对每一n元函词f(n) 指定为D 上一个n 元函数,记为

I(f(n)),简记为f(n);

(3)对每一n元谓词P(n) 指定为D 上一个n 元关系,记为

I(P(n)),简记为P(n)。

有了确定的结构,一阶语言中的合法符号串便有了一定的语义,

通常用U=<D,I>来表示这样的一个结构,表示以D为论域,以I
为解释的一个结构,将全体结构的集合记为T(因为这种结构集合常

称为Tarski语义结构类)。

为了讨论一阶语言中公式的真值,对公式中可能含有的个体变

元在论域D中确定取值的过程称为指派。

2.指派

一阶谓词演算中的指派是对个体变元指定为论域D 中的个体

作为其取值,即为映射s:{v1,v2,v3,…}→D。即对任一变元vi,

s(vi)∈D。

指派s可扩展为从项集合到个体域的映射s:对任意的项t,

s(t)=

s(v)       当t为变元v时

a        当t为常元a时

f(n)(s(t1),…,s(tn))当t为n元函词f(n)(t1,…,tn)

ì

î

í

ï
ï

ï
ï 时

由此可见指派s与解释I是相对独立的,但指派s却是依赖于解

释I的。

有了结构U=<D,I>及指派s,于是对公式A在结构U=<D,

I> 及指派s下取值为真记为 ⊧UA[s],反之则记为|≠UA[s]。而

⊧UA 则表示在结构U 中,对一切可能的指派s,公式A 均为真;而

⊧A或 ⊧TA 则表示公式A 在任何结构中均为真,即公式A永真。
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除了解释和指派外,另外还需要对量词、联结词的意义做出规

定。下面根据公式A的组成给出下列递归定义来明确⊧UA[s]的严

格定义。

3.⊧UA[s]的严格定义

(1)当A为原子公式P(n)(t1,…,tn)时

⊧UA[s] iff <s(t1),…,s(tn)>∈P(n)

即此时n元谓词所描述的n元关系成立。

(2)当A为公式 ¬B时

⊧UA[s] iff|≠UB[s]

(3)当A为公式B →C时

⊧UA[s] iff|≠UB[s] 或  ⊧UC[s]

(4)当A为公式 ∀vB 时

⊧UA[s] iff 对每一个d∈D有 ⊧UB[s(v|d)]

其中指派s(v|d)表示除了对变元v用指定元素d赋值外,对其他变

元的指派与s相同。

当我们使用联结词 ∨,∧ 和存在量词 ∃ 时,可补充如下规定:

(1)⊧UB ∨C[s] iff ⊧UB[s]或 ⊧UC[s];

(2)⊧UB ∧C[s] iff ⊧UB[s]且 ⊧UC[s];

(3)⊧U∃vB[s] iff存在d∈D使得 ⊧UB[s(v|d)]。

例5.3.4 证明 ⊧U¬∀v¬B[s] iff ⊧U∃vB[s]。

证明

  ⊧U¬∀v¬B[s]

iff|≠U∀v¬B[s]

iff并非对 ∀d∈D,均有

⊧U¬B[s(v|d)]
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    iff存在d′∈D使得

|≠U¬B[s(v|d′)]

    iff存在d′∈D使得 ⊧UB[s(v|d′)],即

⊧U∃vB[s]

例5.3.5 设论域D为自然数集N;

一元函词f(x)=x+1,即N 上的后继函数;

二元谓词P(x,y):x≤y,即N 上的“小于等于”二元关系;

常元a=0
则在此结构U 下有如下结论:

(1)当公式A=P(a,f(x))时,则有 ⊧UA;

(2)当公式A=P(f(x),a)时,则有|≠UA;

(3)当公式A=∀xP(a,x)时,则有 ⊧UA;

(4)当公式A=∀x∃yP(f(x),y)时,则有 ⊧UA;

(5)当公式A=∃yP(f(y),y)时,则有|≠UA;

由(4)(5)可 以 看 出 由 ∀x∃yP(f(x),y)为 真 推 导 不 出

∃yP(f(y),y)成 立,事 实 上 根 据 公 理 ∀x∃yP(f(x),y)→
∃yP(f(x),y)xt,它的成立是有条件的,即要求这里的项t对变元x
是可代入的,如果项t=y,则有

∃yP(f(x),y)xt =∃yP(f(x),y)xt=y =∃yP(f(y),y)

但由于此时项t中含有公式∃yP(f(x),y)中的约束变元y,故

此时 不 满 足 代 入 的 条 件,因 此 不 满 足 ∀x∃yP(f(x),y)→
∃yP(f(x),y)xt 的成立条件了。

例5.3.6 证明FC的公理A在所有的语义结构里均真,即有

⊧TA。

(1)对任意的结构U 和指派s,对第一组公理AX1.1,AX1.2,

AX1.3中的公式A,B,C在结构U 和指派s的作用下均取得唯一确
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定的真值(真或假),根据PC的知识,此时每个公理均为真。

(2)证 ⊧T∀vA →Av
t(项t对v可代入)。

只需证对任意的结构U 和指派s,若 ⊧U∀vA[s]则必有

⊧UAv
t[s]。由 ⊧U∀vA[s]知对 ∀d∈D有 ⊧UA[s(v|d)],根据d

的任意性,特取d =s(t),则有 ⊧UA[s(v|s(t))],这里指派

s(v|s(t))表示对公式A中除了变元v用s(t)指派以外,其余的变元

由s指派,这等同于在公式A中将变元v用项t代入后(只要t对v可

代入即可)所得的公式Av
t中实施指派s,从而⊧UA[s(v|s(t))]即为

⊧UAv
t[s]。

(3)证 ⊧T∀v(A→B)→(∀vA → ∀vB)(项t对v可代入)。

只需证对任意的结构U 和指派s,若 ⊧U∀v(A →B)[s]及

⊧U∀vA[s]时则必有 ⊧U∀vB[s]。由 ⊧U∀v(A →B)[s],对 ∀d

∈D 有 ⊧UA →B[s(v|d)],则有|≠UA[s(v|d)]或 ⊧UB[s(v|
d)];又由⊧U∀vA[s]知对∀d∈D有⊧UA[s(v|d)],从而必有对

∀d∈D有 ⊧UB[s(v|d)],即 ⊧U∀vB[s]。

(4)证 ⊧TA → ∀vA(变元v在A 中无自由出现)。

只需 证 对 任 意 的 结 构 U 和 指 派s,若 ⊧UA[s]则 必 有

⊧U∀vA[s]。 由 ⊧UA[s]及变元v 在A 中无自由出现,则对

∀d∈D,指派s将变元v指派为d,不会影响A 的真值,即此时对

∀d∈D,仍有 ⊧UA[s(v|d)],即 ⊧U∀vA[s]。

有了公式A在结构U=<D,I> 及指派s下取值为真的定义,

下面可以仿照PC中的逻辑蕴涵与逻辑等价给出一阶谓词演算相应

的概念。

4.逻辑蕴涵与逻辑等价

设Γ为FC的任意公式集,B为FC的公式,若对任意使得Γ中每
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个公式均为真的结构U及指派s,也使得B为真即有⊧UB[s],则称Γ
逻辑蕴涵B,记为Γ⊧TB 或Γ⊧B。若Γ={A},则有A⊧TB,称作A
逻辑蕴涵B,若同时还有B⊧TA,则称A,B逻辑等价。

5.4 FC的性质定理

下面给出几个关于一阶谓词演算FC的系统特性的重要元定

理,包括FC的合理性、一致性及完备性定理。

定理5.4.1 FC是合理的:对FC中的任一公式A,如果├FCA,

则有 ⊧TA。

证明 由├FCA知在FC中存在一个证明序列A1,A2,…,Am(=A),

由于该证明序列的出发点为公理是永真的,同时所使用的推理规则

rmp 具有保真性,因此使得该序列中的每一个公式均为永真,当然包

括了结论Am(即A)也为永真,即 ⊧TA。

FC的合理性还可以推广到更一般的情况:

定理5.4.2 设Γ为FC的公式集,A为FC的公式,若Γ├FCA,

则有Γ⊧TA。

证明 设Γ├FCA,下证对任意使得Γ中的每个公式都为真的结

构U 和指派s,必有 ⊧UA[s]。

令A1,A2,…,Am(=A)是公式A从Γ出发在FC中得出的演绎

序列,施归纳于m。当m=1时,Am=A或为公理或为Γ中的成员,显

然有 ⊧UA[s]。

假设当m<k时,命题成立。则当m=k时,Am =A或为公理或

为Γ中的成员或为Al(l<k)或为Ai,Aj(i,j<k)通过分离规则rmp

所得。若Am 为公理或为Γ 中的成员,则显然有 ⊧UA[s];若Am 为

Al(l<k),则由归纳假设知⊧UA[s];若Am 为Ai,Aj(i,j<k)通过
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分离规则rmp 所得,不妨设Aj=Ai→Am,由归纳假设知 ⊧UAi[s],

⊧UAj[s]即 ⊧UAi → Am[s],从而 ⊧UAm[s]即 ⊧UA[s],因此

Γ⊧TA。

由FC的合理性定理可以给出若干相关推论:

推论5.4.1 对FC中的公式A,B,若A├┤B(A,B演绎等价),

即A├B且B├A,则有A,B逻辑等价,即A⊧TB 且B⊧TA。

证明  由A├B,根据合理性定理得A⊧TB,同理,由B├A得

B⊧TA。

推论5.4.2 在FC中,若A′是A 的改名式,且A′改用的变元

不在A中出现,则A,A′逻辑等价。

证明  根据改名定理有A├┤A′,则由推论5.4.1知A,A′逻

辑等价。

推论5.4.3 设A,B为FC的公式,且满足A├┤B(即A├B且

B├A)。A是C的子公式,D是将公式C中若干个(未必全部)A的出

现换为公式B所得的公式,则C,D逻辑等价。

证明  根据替换原理有C├┤D,则由推论5.4.1知C,D逻辑

等价。

此外,系统的合理性还蕴涵系统的一致性,因此可有下列关于的

一致性定理。

定理5.4.3 FC是一致的:在FC中不存在公式A,使 ├A 及

├¬A同时成立。

证明  若 ├A 及 ├¬A 同时成立,则根据合理性有:⊧TA 及

⊧T¬A,即公式A及 ¬A均永真,这是不可能的。

由FC的合理性还可推证FC的不完全性。

定理5.4.4 FC是不完全的,即存在FC的公式A,使 ├A 及

├¬A都不成立。
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证明  设公式A为原子公式P(x),则├P(x)及├¬P(x)均

不成立,否则将有 ⊧TP(x)或 ⊧T¬P(x)之一成立,但这是不可能

的,因为总可以找到一个U=<D,I>,使得公式P(x)在某些指派s
不真,还有某些指派s使得 ¬P(x)不真。

关于FC的一致扩充有如下定理:

定理5.4.5 FC的不一致扩充必定是完全的,但至少有一公式

不是FC的一致扩充的定理。特别地,当公式集Γ不一致时,扩充

Th(FC∪Γ)是完全的;当公式集Γ一致时,至少有一公式A 使得

A ∉Th(FC∪Γ)。

证明同PC中的相关证明。

下面给出FC的完备性定理:FC是完备的。也就是说,所有永真

式均为FC的定理,Gödel首先发现并证明了这一事实,下面的定理

5.4.6即为著名的Gödel完备性定理。

定理5.4.6 FC是完备的:对FC中的任一公式B,如果 ⊧TB,

则有 ├FCB。更一般地,设Γ为FC的公式集,B 为FC的公式,若

Γ⊧TB,则有Γ├FCB。

该定理的证明比较复杂,其主要工作是要完成由FC的公式集Γ
的一致性来推得Γ的可满足性。在证明定理5.4.6之前,先给出以

下几个引理。

引理5.4.1 设 FC的公式集Γ 是一致的,且Γ|췍 A,则

Γ∪ {¬A}也是一致的。

该引理的证明同PC中的相关证明。

引理5.4.2 设L′=L∪C,其中L为一阶语言,集合C为由可

列多个常元c1,c2,c3,… 组成,且常元ci(i=1,2,3,…)不在L中出

现,若Γ是L 中一致的公式集,则Γ在L′中仍然一致。

证明 假设Γ在L′中不一致,则存在公式α∈L′,使得Γ├α及

321第5章  一阶谓词演算形式系统



Γ├¬α。则存在从Γ出发推出α和 ¬α的演绎序列如下:

α1,α2,…,αn(=α)

β1,β2,…,βm(=¬α)

由演绎序列长度的有限性知在αi(1≤i≤n)与βj(1≤j≤m)

中出现C中的个体常元符号为有限多个,设为c1,c2,…,ck,同理在

αi(1≤i≤n)与βj(1≤j≤m)中出现的自由变元的个数也为有限

多个,从而总有无限多个不在αi 与βj 中出现的个体变元符号,任取

其中k个记为y1,y2,…,yk,由于L′与L的差别仅在于常元的区别,

因此有yl∈L(1≤l≤k)。

将上述演绎序列中公式αi与βj里的常元c1,c2,…,ck 分别换为

y1,y2,…,yk,记为αi(c1/y1,c2/y2,…,ck/yk)与βj(c1/y1,c2/y2,…,

ck/yk),则由定理5.2.13知,替换之后的序列即为由Γ出发推出公式

αn(c1/y1,c2/y2,…,ck/yk)与βm(c1/y1,c2/y2,…,ck/yk)的演绎序

列,则有

Γ├αn(c1/y1,c2/y2,…,ck/yk)

Γ├βm(c1/y1,c2/y2,…,ck/yk)

即

Γ├α(c1/y1,c2/y2,…,ck/yk)

Γ├¬α(c1/y1,c2/y2,…,ck/yk)

显然这里的公式α(c1/y1,c2/y2,…,ck/yk)与 ¬α(c1/y1,c2/y2,

…,ck/yk)均为L中的公式,从而Γ在L 中不一致,矛盾。因此原假

设不成立,这表明Γ在L′中仍然一致。

引理5.4.3 设Γ为L(FC)上的一致公式集,L′同引理5.4.2
中的定义,则存在L′(FC)上的公式集Σ′使得Σ′一致。

证明 对L′中的每一公式α及每一变元v,根据L′的可列性,建立

有序二元对:<v0,α0>,<v1,α1>,<v2,α2>,…,<vn,αn >,…
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令:Σ0=Γ

   Σ1=Σ0∪{¬∀v0α0→¬α0v0c0},其中c0不在α0及Σ0中出现

……

   Σn+1=Σn∪{¬∀vnαn→¬αn
vncn
},其中cn不在αn及Σn中出现

显然有

Σ0 ⊆Σ1 ⊆Σ2 ⊆ … ⊆Σk ⊆ …

下面对k进行归纳证明Σk 是L′中的一致公式集。

(1)当k=0时,Σ0=Γ,由引理5.4.2知Σ0是L′中的一致公式

集。

(2)假设当k=n时,Σn 是L′中的一致公式集。

则当k=n+1时,Σn+1=Σn ∪ {¬∀vnαn → ¬αn
vncn
},其中cn 不

在αn 及 Σn 中 出 现。 若 Σn+1 不 一 致,则 根 据 的 构 造 必 有

Σn├¬(¬∀vnαn →¬αn
vncn
)。因为若Σn|췍¬(¬∀vnαn→¬αn

vncn
),

则由引理5.4.1知Σn∪¬(¬(¬∀vnαn→¬αn
vncn
))一致,即Σn+1一

致,矛盾。故当Σn+1 不一致时必有Σn├¬(¬∀vnαn → ¬αn
vncn
)成

立。

由(∀vnαn→(¬∀vnαn→¬αn
vncn
))→(¬(¬∀vnαn→¬αn

vncn →

¬∀vnαn)为定理,及 ∀vnαn → (¬∀vnαn → ¬αn
vncn
)为定理(由

¬∀vnαn→(∀vnαn→¬αn
vncn
)为定理及定理3.1.6即可知),则根据

上述公式及分离规则得:Σn├¬∀vnαn。

又由(¬αn
vncn →(¬∀vnαn→¬αn

vncn
))→(¬(¬∀vnαn→¬αn

vncn
)

→αn
vncn¬为定理,及¬αn

vncn →(¬∀vnαn→¬αn
vncn
)为公理,则由分离

规则得Σn├αn
vncn
。由于这里αn

vncn
中常元cn不在前提集Σn中出现,则

由定理5.2.13知Σn├∀v(αn
vncn
)cnv ,即Σn├∀vαn,其中变元v不在Σn

中出现。又由改名定理知 ∀vαn ├┤∀vnαn,从而Σn├∀vnαn,与
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Σn├¬∀vnαn 矛盾,所以当k=n+1时Σn+1一致。从而Σk是L′中

的一致公式集。

令Σ′=∪
n∈N

Σn,则Σ′为L′中的一致公式集。否则,根据Σn 的构

造知存在充分大的n使得Σn 不一致,这与上述证明是矛盾的。

引理5.4.4 设Γ是FC的一致的公式集,则存在公式集Δ,使得

Γ⊆Δ,Δ是一致的且完全的。

证明  设α0,α1,…,αn,… 为FC的全体公式的一个枚举,令:

Δ0=Σ′
……

Δn+1=
Δn ∪ {αn}   ifΔn├αn

Δn ∪ {¬αn}  ifΔn|췍α{
n

Δ=∪
∞

i=0
Δi

则Δ是一致的、完全的,且对任意公式α,α∈Δ当且仅当Δ├α。其具

体的证明过程参见PC中相关定理的证明。

引理5.4.5 在L中,存在结构U* 及指派s*,使得对FC中任

意公式α,有 ⊧U*α[s*]当且仅当α∈Δ。

证明

1.构造结构U* =<D*,I* > 及指派s*。

设D* 为L中所有项的集合。

解释I*:I*(c)=c=c。

I*(f(m))=f(m)=f(m)(t1,…,tm),即将每个m元函词符号f(m)

解释为D* 上的一个m元函数。

I*(P(n))=P(n)={<t1,…,tn > ├ti ∈D*,i=1,…,n,且

P(n)(t1,…,tm)∈Δ},即将每个n元谓词符号P(n)解释为D* 上的一

个n元关系。
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指派s*:

s*:{v0,v1,…,vn,…}→D*,s*(vi)=vi

则对任意项t∈D*,有s*(t)=t。下面根据t的组成归纳证之:

(1)当t为个体变元时,显然成立。

(2)当t为个体常元时,s*(c)=c=c。

(3)当t=f(m)(t1,…,tm)元时,根据归纳假设对项ti有s*(ti)=ti,

则s*(f(m))=f(m)(s*(t1),…,s*(tm))=f(m)(t1,…,tm)=t。

2.下证对FC中任意公式α,⊧U
*α[s*]当且仅当α∈Δ。

下面根据公式α的结构归纳证明:

(1)当α为原子公式时,设α=P(n)(t1,…,tn),则

⊧U*P(n)(t1,…,tn)[s*]

  ⇔ <s*(t1),…,s*(tn)>∈P(n)⇔ <t1,…,tn >∈P(n)

  ⇔P(n)(t1,…,tn)∈Δ,即α∈Δ。

(2)当α=¬β时,对公式β归纳假设 ⊧U*β[s*]⇔β∈Δ,则

⊧U*α[s*]⇔⊧U*¬β[s*]⇔|≠U*β[s*]⇔β∉Δ⇔¬β∈Δ,即

α∈Δ。

(3)当α=β→γ时,对公式β与γ分别归纳假设 ⊧U*β[s*]⇔

β∈Δ,⊧U*γ[s*]⇔γ∈Δ,则

⊧U*α[s*]⇔⊧U*β→γ[s*]⇔|≠U*β[s*]或⊧U*γ[s*]⇔β∉Δ
或γ∈Δ⇔¬β∈Δ或γ∈Δ⇔β→γ∈Δ(证明同PC中相关结论的

证明方法),即α∈Δ。

(4)当α=∀vβ时,对公式β归纳假设 ⊧U*β[s*]⇔β∈Δ。

先证:若 ⊧U*∀vβ[s*],则 ∀vβ∈Δ。

由 ⊧U*∀vβ→βv
c[s*],其中c不在β中出现,则由归纳假设知

⊧U*βv
c[s*]。
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由 ⊧U*βv
c[s*]⇒βv

c∈Δ⇒¬βv
c∉Δ,又¬∀vβ→¬βv

c∈Δ,则由

¬βv
c ∉Δ可得 ¬∀vβ∉Δ,从而 ∀vβ∈Δ,即α∈Δ。

再证:若 ∀vβ∈Δ,则 ⊧U*∀vβ[s*]。

欲 证 ⊧U*∀vβ[s*], 只 需 证 对 任 意 项 t ∈ D* 有

⊧U*β[s*(v/t)],即只需证 ⊧U*βv
t[s*]。

由 ∀vβ∈Δ⇒Δ├∀vβ,又 ∀vβ→βv
t,其中对任意的项t对v要

求可代入。若项t含有公式β中的约束变元,此时为了保证项t对v
可代入,可对β中相应的约束变元运用改名定理进行改名即可。从

而Δ├βv
t,则βv

t ∈Δ,由归纳假设知 ⊧U*βv
t[s*]。

综上,对FC中任意公式α,有 ⊧U*α[s*],当且仅当α∈Δ。

根据上述各引理,下面来完成FC的完备性的证明:

不妨设Γ是FC的一致的公式集,若Γ|췍FCB,则由引理5.4.1知

Γ∪{¬B}也是一致的,从而根据引理5.4.4知存在一致且完全的公

式集Δ,使得Γ∪{¬B}⊆Δ,再由引理5.4.5知存在结构U* 及指派

s*,使得对任意的公式α∈Δ,有 ⊧U*α[s*]成立,而 ¬B∈Δ,所以

⊧U*¬B[s*]成立,即|≠U*B[s*]。又Γ⊆Δ,所以对任意公式A∈

Γ均有 ⊧U*A[s*],又Γ⊧TB,则由逻辑蕴涵的定义知 ⊧U*B[s*],

与|≠U*B[s*]矛盾。

FC的性质定理反映了一阶谓词逻辑的语义与语构之间的内在

关系,如合理性和完备性将形式系统的可推演性这一语法概念与逻

辑蕴涵这一语义概念联系起来,并且建立了它们之间的等价性。应

用合理性和完备性的系统性质定理,能得到许多重要的结果,其中包

括紧致性定理、Löwenheim-Skolem定理和Herbrand定理等。相关

的结论不在本书所关心的范畴内,感兴趣的读者可以去参阅相关

文献。
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例5.4.1 利用FC的性质定理证明如下结论:设Γ为FC的公

式集,A,B为FC的公式,则Γ;A⊧TB 当且仅当Γ⊧TA →B。

证明

⇒:由Γ;A⊧TB,根据FC的完备性有Γ;A├B,又由演绎定理可

得Γ├A→B,则由合理性得Γ⊧TA →B。

⇐:由Γ⊧TA →B,根据FC的完备性有Γ├A→B,又由演绎定

理可得Γ;A├B,则由合理性得Γ;A⊧TB。

当然这里也可以直接从FC的语义出发,根据逻辑蕴涵的定义

来做。

5.5 其他形式的一阶谓词演算系统

前面通过对一个简洁的一阶谓词演算形式系统FC的讨论,对

一阶谓词演算有一个本质、清晰的认识,但在实际应用中使用这样一

个系统是不方便的。因此,本节从实用的角度介绍两个更理想一些

的一阶谓词演算系统,使得系统的表述方便性更强,同时使得系统的

推理更加直观。

5.5.1 FCM谓词演算系统

先介绍一个使用5个逻辑联结词和两个量词的一阶谓词演算形

式系统。这种系统一般就是对FC直接进行扩充得到的,即一阶语

言部分增加逻辑联结词 ∨,∧,↔ 及存在量词 ∃,与此相对应,对公

式的定义也做相应的添加,同时公理部分当然也要相应地增加公理

模式,例如:

(A∨B)→ (¬A→B)

(¬A→B)→ (A∨B)
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(A∧B)→ ¬(¬A∨ ¬B)

¬(¬A∨ ¬B)→ (A∧B)

(A↔B)→ ((A→)∧ (B→A))

((A→B)∧ (B→A))→ (A↔B)

∃vA↔¬∀v¬A
显然这里由于联结词、量词的增加,使系统的表达方便性增强

了,但这种简单的扩充对推理来说并未带来多少便利,因为上述做法

完全可以看作对 ∨,∧,↔ 及 ∃ 的补充定义,或者说仅把 ∨,∧,↔
及 ∃ 看作缩写记号而已,因此需要重新系统地引入新公理。下面介

绍莫绍揆教授提出的、使用五个逻辑联结词和两个量词的一阶谓词

演算形式系统,简称为FCM。

对于FCM的一阶语言部分做同样地添加,其公理部分包括以下

七组公理模式及其全称化:

第一组(关于蕴涵词 →)

(1.1)A→A
(1.2)(A→ (B→C))→ (B→ (A→C))

(1.3)(A→B)→ ((B→C)→ (A→C))

(1.4)(A→ (A→B))→ (A→B)

第二组(关于双条件词 ↔)

(2.1)(A↔B)→ (A→B)

(2.2)(A↔B)→ (B→A)

(2.3)(A→B)→ ((B→A)→ (A↔B))

第三组(关于析取词 ∨)

(3.1)A→ (A∨B)

(3.2)B→ (A∨B)

(3.3)(A→C)→ ((B→C)→ ((A∨B)→C))
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第四组(关于合取词 ∧)

(4.1)A∧B→A
(4.2)A∧B→B
(4.3)A→ (B→A∧B)

第五组(关于否定词 ¬)

(5.1)(A→ ¬B)→ (B→ ¬A)

(5.2)¬¬A→A
第六组(关于全称量词 ∀)

(6.1)∀vA →Av
t(项t对v可代入)

(6.2)∀v(A→B)→ (∀vA → ∀vB)

(6.3)A→ ∀vA(v在A 中无自由出现)

第七组(关于存在量词 ∃)

(7.1)∃vA → ¬∀v¬A
(7.2)¬∀v¬A→ ∃vA

FCM的推理规则仍为分离规则rmp。

下面通过几个例子来说明FCM系统内的逻辑推演。

例5.5.1 对FCM中的任意公式A,B,C,证明:

(1)├FCMA→ ((A→B)→B)

(2)├FCM((A∨B)∨)C→ (A∨ (B∨C))

(3)├FCM(A→ ¬A)→ ¬A
证(1)├FCMA→ ((A→B)→B):

①(A→B)→ (A→B) 公理1.1

②((A→B)→(A→B))→(A→((A→B)→B)) 公理1.2

③A→ ((A→B)→B) ①②rmp

证(2)├FCM((A∨B)∨C)→ (A∨ (B∨C))

①A→ (A∨ (B∨C)) 公理3.1
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②B→ (B∨C) 公理3.1

③(B∨C)→ (A∨ (B∨C)) 公理3.2

④B→ (A∨ (B∨C)) ②③ 公理1.3rmp

⑤(A∨B)→ (A∨ (B∨C)) ①④ 公理3.3rmp

⑥C→ (B∨C) 公理3.2

⑦C→ (A∨ (B∨C)) ⑥③ 公理1.3rmp

⑧(A∨B)∨C→ (A∨ (B∨C)) ⑤⑦ 公理3.3rmp

证(3)├FCM(A→ ¬A)→ ¬A

①(A→ ¬A)→ (A→ ¬A) 公理1.1

②A→ ((A→ ¬A)→ ¬A ① 公理1.2rmp

③((A→ ¬A)→ ¬A)→ (A→ ¬(A→ ¬A)) 公理5.1

④A→ (A→ ¬(A→ ¬A)) ②③ 公理1.3rmp

⑤ (A→ (A→ ¬(A→ ¬A)))→ (A→ ¬(A→ ¬A))

公理1.4

⑥A→ ¬(A→ ¬A) ④⑤rmp

⑦(A→ ¬(A→ ¬A))→ ((A→ ¬A)→ ¬A) 公理5.1

⑧(A→ ¬A)→ ¬A ⑥⑦rmp

例5.5.2 设A 为FCM 的公式,项t对变元v 可代入,证明

Av
t → ∃vA 是FCM的定理,即 ├FCMAv

t → ∃vA。

证明

(1)∀v¬A→ ¬Av
t 公理6.1

(2)(∀v¬A→ ¬Av
t)→ (Av

t → ¬∀v¬A) 公理5.1
(3)Av

t → ¬∀v¬A (1)(2)rmp

(4)¬∀v¬A→ ∃vA 公理7.2
(5)Av

t → ∃vA (3)(4)公理1.3rmp

下面是一些FCM中给出的导出规则,使用它们可以使推理更加
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快捷。

全0 规则:若Γ├FCMA,则Γ├FCM∀vA,v在Γ中无自由出现。
全n 规则:若Γ├FCMA1 → (A2 → … → (An →B)…),则

Γ├FCMA1 → (A2 → … → (An → ∀vB)…)
其中v在Γ及A1,A2,…,An 中无自由出现。
存规则:若Γ├FCMA→B,则Γ├FCM∃vA →B,v在Γ及B 中无

自由出现。

例5.5.3 证明对FCM中任意的公式A,B,且变元v在B中无

自由出现,则

∀v(A→B)├┤∀vA →B
证明

先证 ∀v(A→B)├∃vA →B。

(1)∀v(A→B)→ (A→B) 公理6.1
(2)∀v(A→B)前提
(3)A→B (1)(2)rmp

(4)∃vA →B (3)存规则

再证 ∃vA →B├∀v(A→B)。

(1)A→ ∃vA 已证定理
(2)∃vA →B 前提
(3)A→B (1)(2)公理1.3rmp

(4)∀v(A→B) (3)全0 规则

FCM的语义规定也是FC语义规定的简单推广,只要增加对联

结词∨,∧,↔及存在量词∃的赋值规定即可。与FC一样,可以证

明FCM也是合理的、一致的、完备的。

5.5.2 FND谓词演算系统

在命题演算的自然推理系统ND的基础上,容易扩展出一个谓
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词演算的自然推理系统,称为FND。FND是在ND中添加下列规则

扩展而成,主要是增加有关量词的推理规则,其余保持不变。

1.∀ 引入规则

Γ├A
Γ├∀vA

,v在Γ中无自由出现。

∀ 引入规则其实就是对应着FC中全称引入定理。

2.∀ 消除规则

Γ├∀vA
Γ├Av

t
,项t对变元v可代入。

它依据FC的公理 ∀vA →Av
t(项t对变元v可代入)。

3.∃ 引入规则

Γ├Av
t

Γ├∃vA
,项t对变元v可代入。

它依据FC定理Av
t → ∃vA(项t对变元v可代入)

4.∃ 消除规则

Γ├∃vA,Γ;Av
c├B

Γ├B
,其中常元c在Γ及公式A,B中均无出现。

它依据FC的存在消除定理。

下面通过几个例子来说明FND系统内的逻辑推演。

例5.5.4 ├FND∀v(A→B)→ (∀vA → ∀vB)

证明

(1)∀v(A→B),∀vA├∀vA 公理

(2)∀v(A→B),∀vA├A (1)∀ 消除
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(3)∀v(A→B),∀vA├∀v(A→B) 公理

(4)∀v(A→B),∀vA├A→B (3)∀ 消除

(5)∀v(A→B),∀vA├B (2)(4)→ 消除

(6)∀v(A→B),∀vA├∀vB (5)∀ 引入

(7)∀v(A→B)├∀vA → ∀vB (6)→ 引入

(8)├∀v(A→B)→ (∀vA → ∀vB) (7)→ 引入

例5.5.5 ├FND∃vA → ¬∀v¬A
证明

(1)∃vA,∀v¬A├∃vA 公理

(2)∃vA,∀v¬A;Av
c├∀v¬A 公理(c为新引入常元)

(3)∃vA,∀v¬A;Av
c├¬Av

c (2)∀ 消除

(4)∃vA,∀v¬A;Av
c├Av

c 公理

(5)∃vA,∀v¬A;Av
c├B∧¬B (3)(4)¬消除(c在B中无出现)

(6)∃vA,∀v¬A├B∧ ¬B (1)(5)∃ 消除

(7)∃vA,∀v¬A├B (6)∧ 消除

(8)∃vA,∀v¬A├¬B (6)∧ 消除

(9)∃vA├¬∀v¬A (7)(8)¬ 引入

(10)├∃vA → ¬∀v¬A (9)→ 引入

例5.5.6 ∃v(A∨B)├┤∃vA ∨B,变元v在B 中无自由

出现。

证明

先证:∃v(A∨B)├FND∃vA ∨B。

(1)∃v(A∨B)├∃v(A∨B) 公理

(2)∃v(A∨B);Av
c ∨B;Av

c├Av
c 公理

(c为新引入常元,v在B 中无自由出现)

(3)∃v(A∨B);Av
c ∨B;Av

c├∃vA (2)∃ 引入
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(4)∃v(A∨B);Av
c ∨B;Av

c├∃vA ∨B (3)∨ 引入

(5)∃v(A∨B);Av
c ∨B;B├B 公理

(6)∃v(A∨B);Av
c ∨B;B├∃vA ∨B (5)∨ 引入

(7)∃v(A∨B);Av
c ∨B├∃vA ∨B (4)(6)∨ 消除

(8)∃v(A∨B)├∃vA ∨B (1)(7)∃ 消除

再证:∃vA ∨B├FND∃v(A∨B)。

(1)∃vA ∨B;∃vA├∃vA 公理

(2)∃vA ∨B;∃vA;Av
c├Av

c 公理

(3)∃vA ∨B;∃vA;Av
c├Av

c ∨Bv
c (2)∨ 引入

(4)∃vA ∨B;∃vA;Av
c├∃v(A∨B) (3)∃ 引入

(5)∃vA ∨B;∃vA├∃v(A∨B) (1)(4)∃ 消除

(6)∃vA ∨B;B├B 公理

(7)∃vA ∨B;B├A∨B (6)∨ 引入

(8)∃vA ∨B;B├∃v(A∨B) (7)∃ 引入

(9)∃vA ∨B├∃v(A∨B) (5)(8)∨ 消除

例5.5.7 ∀v(A∧B)├┤∀vA ∧ ∀vB
证明

先证:∀v(A∧B)├FND∀vA ∧ ∀vB。

(1)∀v(A∧B)├∀v(A∧B) 公理

(2)∀v(A∧B)├A∧B (1)∀ 消除

(3)∀v(A∧B)├A (2)∧ 消除

(4)∀v(A∧B)├∀vA (3)∀ 引入

(5)∀v(A∧B)├∀vB 同理(4)

(6)∀v(A∧B)├∀vA ∧ ∀vB (4)(5)∧ 引入

再证:∀vA ∧ ∀vB├FND∀v(A∧B)。

(1)∀vA ∧ ∀vB├∀vA ∧ ∀vB 公理

631 数理逻辑引论



(2)∀vA ∧ ∀vB├∀vA (1)∧ 消除

(3)∀vA ∧ ∀vB├A (2)∀ 消除

(4)∀vA ∧ ∀vB├B 同理(3)

(5)∀vA ∧ ∀vB├A∧B (3)(4)∧ 引入

(6)∀vA ∧ ∀vB├∀v(A∧B) (5)∀ 引入

由于FND是在ND的基础上扩建而来,而FC的公理均为ND的

定理,因此FC的公理也为FND的定理。同样地,也可以验证FND
的合理性、一致性和完备性。

习  题

1.设有如下推理语句:

(1)没有无知的教授。

(2)所有无知者均爱虚荣。

(3)则没有爱虚荣的教授。

试问由(1)和(2)能否推出(3)?

2.判断下列各论断是否正确。

(1)班上的所有学生都理解逻辑。John是班上的同学。因此

John理解逻辑。

(2)每个计算机专业的学生都要学习离散数学。Tom在学离

散数学。因此Tom是计算机专业的学生。

(3)所有的鹦鹉都喜欢水果。我养的鸟不是鹦鹉。因此我养的

鸟不喜欢水果。

(4)每天吃麦片的人都很健康。Linda不健康。因此Linda没

有每天吃麦片。

3.设A,B为FC中任意公式,v在A 中无自由出现,试证:
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(1)├(A→ ∃vB)→ ∃v(A→B)

(2)├∃v(A→B)→ (A→ ∃vB)

(3)├(∀vB →A)→ ∃v(B→A)

(4)├∃v(B→A)→ (∀vB →A)

(5)若 ├A→B,则 ├∀vA → ∀vB。

(6)A→B⊧∀uA → ∀uB 未必成立,从而A →B├∀uA →

∀uB 不真。

4.在FC中证明:

(1)∀x(A→B)├┤A→ ∀xB,x在A 中无自由出现。

(2)∀x(A→B)├┤∃xA →B,x在B 中无自由出现。

(3)∀x(A∧B)├┤∀xA ∧ ∀xB
(4)∃x(A∨B)├┤∃xA ∨ ∃xB
(5)设Γ={P(Sam),G(Clyde)∧L(Clyde,Oscar),(P(Oscar)

∨-G(Oscar))∧L(Oscar,Sam)},则有Γ├∃x∃y(G(x)

∧P(y)∧L(x,y))。

(6) 设 Γ = {∀x(N(x)→ E(x)∨-O(x)),∀x(N(x)→
(E(x)↔G(x))),¬∀x(N(x)→G(x))},则有

Γ├∃x(N(x)∧O(x))。

(7) 设 Γ = {∃x(P(x) ∧ ∀y(D(y) → L(x,y))),

∀x∀y(P(x) ∧ Q(y) → ¬L(x,y))}, 则 有

Γ├∀y(D(y)→ ¬Q(y))。

5.证明

(1)P(1)
1 (v1)|≠ ∀v1P(1)

1 (v1)

(2)|≠TP(1)
1 (v1)→ ∀v1P(1)

1 (v1)

(3)⊧T∃v1(P(1)
1 )(v1)→ ∀v1P(1)

1 (v1))

(4)¬P(1)
1 (v1)→ ∀v1P(1)

1 (v1)是可满足的。
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6.给出下列公式为真的解释和指派。

(1)∀x(P(x)→Q(x))

(2)∃x(F(x)∨G(x))

(3)∀x(F(x)∧G(x))

7.设Γ为FC任一公式集,A,B为其公式,要求直接由⊧T 的定

义进行证明:

(1)Γ;A⊧TB 当且仅当Γ⊧TA →B。

(2)⊧TA 当且仅当 ⊧T∀vA(v为任一变元)。

(3)∀v(A→B),∀vA⊧T∀vB。

8.证明:对FCM的任意公式A,B,C有:

(1)├(¬A→A)→A
(2)├((A∨B)→C↔((A→C)∧ (B→C))

9.在FND中,对任意公式A,B,C,证明:

(1)A→ (B→C)├┤(A∧B)→C
(2)∃v∀uA├∀u∃vA
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