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前言

为什么要写这本书

大概但凡写文章，都应该是在夜深人静的时候吧。

回顾来沪四年，思绪一下子回到了到沪的第一天。那是我第一次来
上海。虽然没有小马哥勇闯上海滩的豪情万丈，但似乎也并未十分惆
怅。拖着行李箱去新公司报到，当时住的地方尚未找好，新公司的名字
竟也还未确定。报到的新公司，真的是一家“新”公司，刚刚成立不久，
办公室在一个略显陈旧的大楼内，后来才知道那个办公室内还有另外一
个公司的人员在那儿办公。当时辉哥接待了我，交给我一个Mac电脑，
给我讲了一下公司的业务和系统现状。那是我第一次使用Mac电脑，操
作还十分生疏。而现在，我正用着这台电脑，写着这篇自序（前言）。
后来海阳到了，他给我展示和讲解了公司当时的产品。再后来，他还教
了我怎样用Mac电脑。下午的时候我提前下班，拖着行李箱找住的地方
去了。那天，当忙完一切躺到床上时，我意识到一切真的都是新的开始
了。新的城市、新的公司、新的同事、新的业务、新的领域和新的工作
内容。

之后就是正式的工作了。

因为是做Java开发的，所以花一天半时间学了Django，之后接手了
Python后台开发。

因为是做Java开发的，所以花一天时间装了Android Studio，开始了
SDK与后台的适配。

因为是做Java开发的，所以Java后台服务更是当仁不让了。

因为是做Java开发的，所以也要负责业务核心算法的开发。

因为是做Java开发的，所以DevOps也得负责推进吧。

因为是做Java开发的，所以……



那应该是我最专心地做开发的一段时间，甚至在一年之后的公司年
会上，我还因此获得了一个“最佳沉默奖”。其实并非我不说话，而是每
次市场部的同事看到我时，我都是在座位上写程序，好像我从来没离开
过座位一样。是的，我一直在开发着，但是并不感到忙碌和紧迫，因为
有充足的时间去思考问题、验证猜想并最终解决问题。

从2015年开始，公司因为业务需要，开始涉及实时流计算领域。当
时流计算技术远非像现在这样普及，Flink还没有在国内流行起来，
Spark Streaming处于“半吊子”状态，Storm则还是简单的
TopologyBuilder。不过最主要的问题还是，虽然当时公司意识到要使用
实时流计算技术，但没有人真正理解实时流计算系统到底该怎么用，应
该怎样将流计算真正贴切地运用到我们的业务需求中。

在这种情况下，作为后台开发的我开始了自己的思考和探索。其实
解决问题的思路非常简单，用最自然、最贴切、最实际、最节省资源的
方式去解决真实的业务问题。最开始，我们选择Akka来作为流计算框
架，但是因为对Akka的特性理解不到位，后来开发出的程序出现各种问
题。例如，在Actor中光明正大地休眠（sleep）、对反向压力不管不
顾，结果程序总是时不时宕掉、错误使用Akka Cluster导致集群脑裂
等。

在程序开发过程中，我是一个谨小慎微的人，对于任何不确定性的
因素，只要想到了就一定会尽力去避免，即使当时其他人不甚理解。所
以从一开始，我就在自己负责的模块中，对Akka添加了反向压力的支
持，就是为了避免执行步调不一致时导致的OOM。从后来的结果看，
当时的做法是非常正确的。虽然在Akka中添加了反向压力的支持，但回
看起来，实现得过于复杂。虽然保证了反向压力带来的程序稳定性，可
是在50行的代码中，只有1行代码是涉及业务处理的。这种解决方案显
然非常不明智。

当时，我还在极力尝试尽可能提高程序的性能，希望充分“榨干”机
器的CPU和I/O资源，以尽可能降低硬件成本。经过一段时间的调研和
思考，我逐渐发现，NIO和异步才是彻底“榨干”CPU与I/O资源的关键所
在。虽然纤程（或协程）也是一种充分利用资源的完美手段，但可惜当
时JVM领域尚无一个公开好用的完美纤程实现方案。

那时候，我开始隐隐约约地意识到，似乎“流”是一种非常好的编程
模式。



首先，“流”与“异步”不谋而合。“流”的各个节点通过队列传递消
息，不同节点的执行正好就是完全异步的。另外，由于队列隔离，不同
节点的执行完全不用考虑并发安全的问题。

其次，如果“流”的执行节点间使用的是阻塞队列，那么整个流的各
个执行环节就天然地带有了反向压力能力，不需要像之前在Akka中那样
非常复杂的实现。

再次，“流”能够非常自然地描述业务执行的流程。不管是大到整个
产品线的各个服务模块，还是小到每个服务模块中的具体实现步骤，就
像“分形”一样，“流”能够做任意细粒度的划分。这是一种非常普遍的描
述事情发生过程的模式。

最后，通过Kafka这种消息中间件的隔离，我可以非常清晰地定义
好自己负责开发模块的责任边界，与其他同事的程序隔离开来，避免纠
缠不清。当然，这是一种自私的想法，但是从设计模式高内聚、低耦合
的角度来看，这又何尝不是一种非常不错的实践呢？更何况Kafka这种
好用到“爆”的消息队列，真的是让人爱不释手！

于是，说干就干，我花了一个周末的时间，编写了第一个版本的流
计算框架。之后又经过几次大大小小的调整和改进，最终，这个流计算
框架进入了公司所有产品的主要业务模块中。再后来，我又在这个流计
算框架上开发了一个特征引擎，支持DSL和脚本，可以非常灵活、方
便、快速地在流数据上即写即算地实现各种特征计算。所有特征计算都
是并发处理，并且自动解析特征依赖与优化执行过程，可以说还是有一
丁点儿小小的惊艳了。

4年的时光转瞬即逝。其实这4年还有太多太多的事情，从后台到前
端、从开发到运维、从数据到系统、从服务器到嵌入式，编写程序、负
责项目、担任架构师，一路走来，我有太多的收获，也有太多的感触。
所以，我希望赶在而立之年前，对自己的这些收获和感触做一个总结，
一方面是给自己人生阶段的交代，另一方面希望这些经验能够给后来的
开发者带来些许帮助。

读者对象

本书主要适合于以下读者：



·Java软件开发人员；

·实时计算工程师和架构师；

·分布式系统工程师和架构师。

本书特色

本书总结了实时流计算系统的通用架构模式。通过从无到有构建一
个流计算编程框架，让读者了解流计算应用计算的任务类型，学会解决
计算过程遇到的各种问题和难点。本书希望让读者领会Java程序开发
中“流”这种编程方式的优势和乐趣所在。另外，通过将单节点流计算应
用扩展为分布式集群，让读者理解分布式系统的架构模式，并能准确看
待开源社区中各种眼花缭乱的流计算框架，看透这些流计算框架的本
质，避免选择恐惧症。本书还探讨了实时流计算能够与不能够解决的问
题，让读者对流计算系统的能力了然于胸，不至于钻牛角尖。总而言
之，读者在阅读本书后，能够对实时流计算系统有清晰的认识和理解，
在架构设计、系统实现和具体应用方面都能做到心有丘壑，最终做出优
秀的实时流计算应用产品。

如何阅读本书

首先需要澄清的是，本书的“非目标”是什么：

·各种流计算框架实战，诸如教读者如何使用Storm、Spark、Flink
等流计算框架。笔者相信，针对每一种具体的流计算框架已经有许多优
秀的书籍了。如果笔者再讲，就是不自量力、班门弄斧、狗尾续貂了。

澄清了本书的“非目标”，就可以定义本书的“目标”了：

·总结实时流计算系统的通用架构模式。所谓架构模式，是一
种“形而上”的东西，也就是所谓的“道”。实时流计算系统体现出的
软件设计之“道”，是笔者试图阐述的东西。

·从无到有构建一个“麻雀虽小，五脏俱全”的单节点实时流计算



框架。通过这个造轮子的过程，我们会深入理解流计算系统中最本质、
最困难、最容易混淆的概念。之后通过在多种开源流计算框架中多次验
证这些概念，实现“道”向“形而

·下”的具象，让我们以后面对各种流计算框架时，都能够做到胸
有成竹。

·通过将单节点的实时流计算框架扩展为分布式实时流计算框架，
让读者理解多种不同的分布式系统构建模式。

·通过“流”这种异步编程模式，让读者理解并掌握编写高性能程
序的编程之道，领略Java高并发编程的乐趣。

·不仅探讨实时流计算能够解决的问题，而且要明白当实在做不
到“实时”时该如何进行架构设计。

·尽可能全面覆盖一个完整的实时流计算系统，包括许多周边系
统，如存储系统、服务治理和配置管理等。如果这些“绿叶”点缀得不
好，有时也会给实时流计算系统带来不利影响。

整体而言，本书的内容按照“总分”的结构组织。全书分为11章。

第1章介绍实时流计算技术的产生背景、使用场景和通用架构。

第2章通过实时流计算数据的采集，详细分析Java平台NIO和异步编
程的基础，并初步讨论了“异步”和“流”这两种编程模式之间的关系。

第3～5章通过从零开始构造分布式实时流计算应用，详细剖析了实
时流计算系统的计算任务类型、核心概念和技术关键点。

第6章通过多种开源流计算框架，验证第3～5章所讨论的实时流计
算系统核心概念和技术关键点。

第7章讨论当实在做不到“实时”时，我们应该做出的备选方案。

第8～10章讨论构建完整实时流计算系统时必要的周边辅助系统。



第11章详细讨论两个实时流计算应用的具体案例。

另外，本书包含许多示例代码，但由于篇幅有限，这些代码不能完
全展现在书中。读者可从GitHub仓库
（https://github.com/alain898/real_time_stream_computing_book_source_code
获取本书完整的配套源代码。

勘误和支持

由于笔者水平有限，编写时间仓促，书中难免有一些错误或者不准
确的地方，恳请读者批评指正。大家可以通过电子邮箱
347041583@qq.com联系笔者。期待得到大家的真挚反馈，在技术之路
上互勉共进。
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第1章　实时流计算

两千多年以前，孔老夫子站在大河边，望着奔流而去的河水，不禁
感叹：“逝者如斯夫，不舍昼夜。”老夫子是在叹惜着韶华白首，时光
易逝！

两千多年以后的今天，当你我抱着手机读书、追剧、抢票、“剁
手”、刷小视频、发红包的时候，一道道信息流正在以光速在世界范围
内传递和传播。自从互联网和物联网诞生以来，人与人、人与物、物与
物之间的互联和互动愈加紧密与频繁，大量各式各样的数据在互联和互
动的过程中产生。海量的数据洪流将我们的时间和空间越占越满，以至
于让我们开始疲于奔命，鲜有时间和能力再去感受与思考那些一瞬间的
百万种可能。



1.1　大数据时代的新挑战：实时流计算

社会需求和科技进步是螺旋式相互促进和提升的。“大数据”一词最
早由Roger Mougalas在2005年提出，所以我们姑且认为2005年是大数据
时代的元年吧。大数据技术之所以出现，是因为社会发展的程度已经开
始要求我们具备处理海量数据的能力。之后，大数据技术逐渐发展和日
趋完善的过程又反过来进一步促进社会产生更多、更丰富的数据。随着
大数据技术的普及，IBM公司为我们总结了大数据的五大特点（也称为
5V特点），即Volume（大量）、Velocity（快速）、Variety（多样）、
Veracity（真实）和Value（价值），如图1-1所示。

图1-1　大数据的五大特点

大数据时代为人们带来了丰富多彩的生活方式，让人们充分享受着
从大数据中挖掘而来的价值。但也正因为大数据产生得太多太快，让我
们开始疲于对正在发生的事情做出及时反应。就像火灾已经爆发后才知



道救火，交通已经阻塞后才知道疏通，羊毛已经被“羊毛党”薅光后才知
道堵上漏洞，股价已经拉升后才知道后悔……为什么我们不能在这些事
情发生之前，或者至少是刚刚发生的时候就提前收到预警和通知，并且
及时采取应对措施呢？

是的，面对无穷无尽的数据洪流，我们急需一种手段来帮助我们抓
住并思考那些一闪而逝的瞬间。在这样的背景下，实时流计算技术应运
而生。虽然不能像电影《超体》中女主角直接用手抓住并分析电磁波信
息那样，但至少实时流计算技术能够帮助我们抓住数据流的瞬间，分析
并挖掘出数据的实时价值。千万不要小瞧了数据的实时价值。据说在很
久以前的欧洲战场上，每次最先知道战争结果的不是后方的政府机构，
而是股票交易所里的那些股票投资者。俗话说，时间就是金钱，效率就
是生命。所有实时流计算的目的都是为了获得数据的实时价值。如果数
据没有实时价值，那么实时流计算也就失去了它存在的意义。



1.2　实时流计算使用场景

话说有一句至理名言：“天下武功，无坚不摧，唯快不破！”由此足
可见“快”的重要性。更快、更完整地获取数据，更快、更充分地挖掘出
数据价值，已成为大数据时代各行各业的共识。在线系统监控、移动数
据和物联网、金融风控、推荐系统等，虽然行业各不相同，但是它们有
个共同点——实时流计算技术在这些领域发挥着越来越重要的作用。

1.在线系统监控

互联网行业蓬勃发展的背后，是各家企业机房里成千上万的服务
器。服务器在7×24小时（传说中的007工作制）的作业过程中产生大量
监控数据。这些数据包含着服务器本身的健康状况，如硬件状态、资源
使用情况和负载压力等。第一时间知道服务器的健康状况是非常重要
的，可以避免因为一台服务器宕机而后续造成的各种雪崩效应。除了服
务器本身以外，复杂的线上业务系统产生着更多的数据。如今一个每天
亿万级别访问量的系统已经司空见惯，产品花样更是层出不穷。业务系
统产生日志的数量级由GB变TB，再由TB变PB。将线上日志导入实时流
计算系统，我们可以实现一系列有实时价值的功能。最基本的功能是监
控业务是否运营正常，如监控业务关键指标、发现故障模式等。高级些
的功能是最大程度优化业务使用服务器的成本，如根据CPU、内存和
I/O等资源的使用率动态扩展或缩减业务使用的服务器数量。更高级的
功能是挖掘和探索新的业务模式，如CEP（Complex Event Processing，
复杂事件处理）和在线统计学习或机器学习模型的各种运用等。通过实
时流计算技术，实时展现业务系统的健康状况，提前避免可能的业务故
障，最大程度优化业务使用服务器的成本，抢先发现新的业务模式和商
机……这些都是实时流计算技术在在线系统监控领域价值的体现。

2.移动数据和物联网

移动终端、智能交通、共享单车、5G、工业4.0……如今在我们生
活的时代，一波又一波的新名词层出不穷。“移动”和“物联”让数据变得
随时随地可得。数据越来越多，单位数据自身的价值却越来越小。实时
处理海量数据洪流，已成为移动和物联网领域的当务之急。例如，对于
智能交通系统，传统智能交通系统采用离线方式对交通数据做分析，交
通决策不能及时做出；而通过对交通数据流进行实时分析，实时展现交



通热点路段、优化信号灯配时、指导行车线路，可实实在在减轻当前热
点路段压力、缩减平均行车时间，如图1-2所示。像智能交通这样，优
化生活环境，正是实时流计算技术在移动数据和物联网领域体现的价值
之一。

图1-2　基于Spar.Streaming的Uber交通热点路段分析及可视化系统[1]

3.金融风控

金融风控是实时流计算技术又一常用领域，如图1-3所示。通常针
对贷款的风控，可以分为贷前、贷中和贷后。在贷中和贷后，大多采用
离线数据分析和数据可视化技术来实现风险控制。但是在贷前，特别是
在许多现金贷产品中，为了给用户带来更好的产品体验，必须在很短的
时间内对用户的信用、还款能力和还款意愿等做出评估。除了针对用户
本身的信用风险作分析外，还需要防止金融欺诈问题，如“薅羊毛”和多
头借贷。通过实时流计算技术，在秒级甚至亚秒级，对用户信用和欺诈
风险做出判定，在保证可控风险的同时，提供良好的用户体验，进一步
提高现金贷产品整体的竞争力。



图1-3　基于Flink的实时欺诈检测平台[2]

4.实时推荐

实时推荐是实时流计算技术的另一个常见应用场景。如今手机几乎
成为每一个年轻人的必备品。打开手机，听音乐、浏览新闻、阅读小
说、看到心仪的东西买买买……有一天你突然发现，手机应用越来越了
解自己。它们知道推荐什么样的音乐、新闻、小说和商品，并且推荐的
东西大抵还是你所喜欢的。现代推荐系统（见图1-4）背后越来越多地
出现了实时流计算技术的影子，通过实时分析从用户手机上收集而来的
行为数据，发掘用户的兴趣、偏好，给用户推荐可能感兴趣的内容或商
品。或许很多人并不喜欢这种被机器引导的感觉，但是我们还是不可避
免地越来越多地被它们所影响。



图1-4　基于Spar.Streaming的实时零售推荐系统[3]

这里只是简单地列举了几个流计算技术使用的场景。其实在越来越
多的行业，很多传统上用离线批处理技术完成的事情也逐渐转变为采用
实时流计算技术完成。所以，读者不妨大胆发挥想象力，试着将实时流
计算技术运用到生活的各个方面去，挖掘实时信息的潜在价值，说不定
就会获得一份惊喜。

[1] 图1-2源自https://mapr.com/blog/real-time-analysis-popular-uber-
locations-spark-structured-streaming-machine-learningkafka-and-mapr-db，这
篇博客详细讲解了使用Kafka、Spark Streaming 和机器学习等技术实现



Uber 交通数据实时分析和展现的方法，感兴趣的读者可自行查阅。
[2] 图1-3引用自https://www.linkedin.com/pulse/fraud-detection-fi ntech-
ecosystem-oluwaseyi-otun，这篇博客描述了使用Flink 流计算平台实现实
时欺诈检测的方法，对实时风控系统感兴趣的读者可自行查阅。
[3] 图1-4引用自https://www.talend.com/blog/2016/11/01/setting-up-an-
apache-spark-powered-recommendation-engine，这篇博客介绍了一种基于
Spark Streaming 流计算平台的实时零售推荐系统，感兴趣的读者请自行
查阅。



1.3　实时流数据的特点

1.3节介绍了实时流计算技术的使用场景。实时流计算技术的处理
对象是实时流数据。尽管实时流数据的来源千变万化、丰富多彩，但归
纳起来，实时流数据通常具有实时性、随机性、无序性和无限性。

1.实时性

之所以要采集实时流数据，并对其进行实时处理，是因为这些数据
具有实时价值。例如，提前预警避免火灾，贷前反欺诈避免骗贷，量化
交易抢得市场先机等。如果事后再分析这些数据，这个时候火灾已经发
生，骗子已经卷款而逃，市场机会已经错过，分析数据带来的价值也只
限于“前事不忘，后事之师”了。因此，对实时流数据的计算和分析一定
要在其实时价值消退之前完成，这就要求计算的时延必须小。有时候数
据量大、计算复杂的原因会导致实时计算无法完成，这时甚至会牺牲结
果的准确性，在保证误差在可接受范围的前提下，优先满足计算的实时
性。

2.随机性

流数据是真实世界发生各种事件的体现。真实世界事件的随机发
生，使得流数据的产生在时间和数量上具有随机性。有时候在很长一段
时间内只产生少量数据，有时候又会在很短时间内产生大量数据。实时
流数据的随机性对实时流计算系统在各种流量和突发情况下的处理能力
与服务稳定性提出要求。我们可以从数据采样、数据缓冲、计算资源动
态调整3个角度来解决实时流数据随机性的问题。有些情况下，流数据
量很大，暂时超过了系统的处理能力，如果业务需求允许，则可以考虑
丢弃部分数据，或者使用带采样性质的算法，减少计算压力。如果数据
不允许丢失，则可以采用带缓冲和持久化能力的消息中间件来暂时缓冲
数据，让系统平稳处理数据流，削平流量高峰。另外，在一些资源敏感
的情况下，可能还需要实时流计算系统能够根据流量压力情况，动态增
加或减少计算资源，使得在满足实时流计算的同时，最大化计算资源的
使用效率。

3.无序性



流数据是一个关于时间的事件序列。我们通常希望事件会按照它们
发生的时刻依次到达系统，但由于异步、并发、网络延时、时间不同步
和系统故障等诸多原因，严格意义上的全局有序是很难保证的，甚至几
乎不可能。于是退而求其次，我们可以让数据在局部时间窗口内有序。
在目前主流的实时流计算框架中，常见的做法是将接收到的事件，按时
间戳分发到一个个的时间窗口分片中，在等待一段时候后，再触发时间
窗口分片内数据的统一处理操作。流数据中的时间有两类：事件发生时
间和事件处理时间。事件发生时间是指事件发生的时刻，而事件处理时
间则是系统处理事件的时刻。这两种时间会导致流计算的过程和结果都
有所不同，具体使用哪种时间因场景而异。

4.无限性

流数据是一种随时间无限增长的数据序列。这是流数据和批数据最
本质的区别。批数据在每次处理时数据量是有限的，而流数据没有“每
次”的概念，它总在不断产生，无穷无尽。流数据和批数据的区别，导
致它们在系统架构和算法实现上都有所不同。

在系统架构上，实时流数据的无限性要求系统必须具备高可用性和
实时处理能力。一方面，当系统发生故障时，如果系统没有高可用性，
则流数据会丢失，并会暂停流计算。这与实时流计算的目标（即在实时
流数据上获取实时价值）是相违背的，因此不可容忍。另一方面，当系
统处理能力不能跟上数据流产生的速度时，待处理的消息会越积越多。
当积压数量超过阈值后，具有有限存储空间的系统必然会崩溃。为了消
除已经存在的积压消息，系统处理能力必须超过数据流产生的速度，否
则积压情况会一直存在。

在算法实现上，实时流数据的无限性对原本针对批数据设计的算法
提出挑战。一方面，实时流计算过程中的可用空间和可用时间都有更严
苛的限制；另一方面，流计算的输入数据随时间无限增加，这和批处理
算法的输入是有限数据集有本质区别。因此，实时流计算使用的算法相
比批处理算法，在算法实现和算法复杂度方面会有明显不同。

在实时流数据的四大特点中，无限性是流数据相比批数据最大的区
别，这直接导致了流处理和批处理的查询模式有所不同。批处理是在固
定数据集上进行不同的查询，而流处理是在无限数据集上进行固定的查
询。实时性、随机性和无序性既是实时流计算系统的特点，也是我们要
解决的问题。在1.4节中，我们将针对这些问题来分析实时流计算系统



的架构特点。



1.4　实时流计算系统架构

1.2节介绍了实时流计算系统的多种使用场景。仔细分析这些系统
的组成，我们不难发现，虽然使用场景多种多样、不尽相同，但这些系
统都包含了5个部分：数据采集、数据传输、数据处理、数据存储和数
据展示。事实上，也正是这5个部分构成了一般通用的实时流计算系
统，如图1-5所示。

图1-5　实时流计算系统的组成部分



1.4.1　数据采集

数据采集是接收来自于各种数据源的数据，并将这些数据经过初步
的提取和转换后，发送到数据传输系统的过程。为了使数据接收的性能
最优，在设计数据采集方案时，必须充分考虑所接收数据的特点。例
如：

·数据接收的性能要求如何？

·数据是逐条发送还是批次发送？

·客户端到服务器的连接是长连接还是短连接？

·最大并发连接数是多少？

表1-1列举了部分数据特点及相应处理方案。

表1-1　部分数据特点及相应处理方案



大多数情况下，数据采集服务器选择诸如Netty的非阻塞I/O方案会
更加合适。数据被接收后，一般还需要对其做简单的处理，主要是一些
字段提取和转化操作，最终将数据表示为统一的数据格式，如JSON、
AVRO、Protobuf等。通常而言，数据组织的结构越简单越好，平坦的
数据结构比嵌套式数据结构更好，嵌套浅的数据结构比嵌套深数据结构
更好。最后，将整理好的数据序列化发往数据传输系统。



1.4.2　数据传输

数据传输是流数据在各个模块间流转的过程。数据传输系统的核心
是消息中间件，常用的消息队列中间件有Apache Kafka、RabbitMQ等。
数据传输系统就像人体的血管系统，承载着整个实时流计算系统的数传
输工作。选择消息中间件时，需要考虑以下因素。

1）吞吐量：消息中间件每秒能够处理的消息数。消息中间件自身
的吞吐量决定了实时流计算系统吞吐量的上限，所以选择消息中间件
时，首先要确定消息中间件本身的吞吐量对业务没有明显的限制。

2）延迟：消息从发送端到消费端所消耗的时间。如同吞吐量一
样，消息中间件自身的延迟决定了实时流计算系统延迟的下限。选择消
息中间件时，需确定消息中间件本身延迟对业务没有明显限制。

3）高可用：消息中间件的一个或多个节点发生故障时，仍然能够
持续提供正常服务。高可用消息中间件必须支持在转移故障并恢复服务
后，客户端能自动重新连接并使用服务。千万不能让客户端进入僵死状
态，否则即便消息中间件依然在提供服务，而上层的业务服务已然停
止。

4）持久化：消息中间件中的消息写入日志或文件，在重启后消息
不丢失。大部分业务场景下，支持持久化是一个可靠线上系统的必要条
件。数据持久化从高可用角度看，还需要提供支持数据多副本存储功
能。当一部分副本数据所在节点出现故障，或这部分副本数据本身被破
坏时，可以通过剩余部分的副本数据恢复出来。

5）水平扩展：消息中间件的处理能力能够通过增加节点来提升。
当业务量逐渐增加时，原先的消息中间件处理能力逐渐跟不上，这时需
要增加新节点以提升消息中间件的处理能力。例如，Kafka可以通过增
加Kafka节点和topic分区数的方式水平扩展处理能力。



1.4.3　数据处理

数据处理是实时流计算系统的核心。从数据传输系统读取数据流
后，需要对数据流做处理。数据处理的目标可以分为4类：数据转化、
指标统计、模式匹配以及模型学习和预测。

·数据转化包括数据抽取、清洗、转换和加载，如常见的流式函数
filter和map，分别用于完成数据抽取和转化的操作。

·指标统计是在流数据上统计各种指标，如计数、求和、均值、标
准差、极值、聚合、关联、直方图等。

·模式匹配是在流数据上寻找预先设定的事件序列模式，我们常说
的CEP（复杂事件处理）就属于模式匹配。

·模型学习和预测是数据挖掘和机器学习在流数据上的扩展应用，
基于流的模型学习算法可以实时动态地训练或更新模型参数，进而根据
模型做出预测，更加准确地描述数据背后当时正在发生的事情。

我们通常使用DAG（Directed Acyclic Graph，有向无环图）来描述
流计算过程。常见的开源流处理框架有Apache Storm、Apache Spark、
Apache Flink、Apache Samza 和Akka Streams等。在这些流处理框架
中，都会使用DAG或类似的概念来表示流计算应用。



1.4.4　数据存储

数据存储方案的选型要充分考虑计算类型和查询目标。由于实时流
数据的无限性和实时性特点，针对流处理的算法经常需要专门设计。

例如，针对“过去一天同一设备上登录的不同用户数”这种查询目
标，在数据量较小时，传统关系型数据库（RBDM）和结构化查询语言
（SQL）是不错选择。但当数据量变得很大后，基于关系型数据库的方
案会变得越来越吃力，直到最后根本不可能在实时级别的时延内完成查
询。

相同的查询目标，采用NoSQL数据库不仅能够做到实时查询，而且
能获得更高的吞吐能力。相比传统SQL数据库，实时流计算中会更多地
使用NoSQL数据库。越来越多的NoSQL数据库开始提供类似于SQL的查
询语言，但查询语言不是数据库的本质所在，数据库的本质是底层的查
询执行和数据存储。选择数据存储方案时，上层查询语言的通用性和易
用性是重要的考虑因素。但更重要的是，所选数据库的查询和存储本身
能够贴合所要进行查询的计算复杂度。

除了在实时流计算过程中需要使用数据库外，数据本身和计算结果
通常需要保存起来，以做数据备份、离线报表或离线分析等。离线数据
存储一般选择诸如HDFS或S3这样的分布式文件系统。特别是如今
Hadoop已经非常成熟，构建在其上的查询和分析工具多种多样，如
MapReduce、Hive和Spark等都是非常好的分析工具。这些工具统一在
Hadoop生态体系内，为以后的工具选择留下很大的余地。

如果需要针对实时流计算结果构建实时点查询服务，即根据一个或
多个键来查询一条特定的实时流计算结果记录，则可以选择NoSQL数据
库并配置缓存的方案。

有时候实时流计算的结果使用UI呈现。很多UI会提供交互式查询体
验，这就涉及Ad-Hoc查询。设计用于Ad-Hoc查询的存储方案时，一定
要考虑UI可能的需求变化，而不能选择一个“僵硬”的数据存储方案，否
则当未来UI需求变化、各种查询条件调整时，后端数据库的变更将是一
个巨大而且痛苦的挑战。这种情况下，使用搜索引擎一类的存储方案
（如ElasticSearch）会是一个明智的选择。



综合而言，在相对复杂的业务场景下，实时流计算只是系统中的一
个环节。针对不同计算类型和查询目的，要合理选择相应的数据存储方
案。更有甚者，很多时候必须将相同内容的数据根据不同的需求，同时
存入多种不同功能的存储方案中。至少目前为止，还没有一种称之
为“银弹”的数据库。在本书第9章中，我们将详细讨论各种数据存储方
案。



1.4.5　数据展示

数据展示是将数据呈现给最终用户的过程。数据呈现的形式可以是
API，也可以是UI。API的方式通常以REST服务形式提供。大多数UI是
以We.UI的方式实现的，在移动终端大行其道的今天，诸如手机的客户
端应用程序也是常用的数据呈现方式。对于We.UI而言，基于Web的数
据展示方式有很多优点。一方面，Web服务实现和部署都非常简单，只
需提供Web服务器就可以在浏览器中进行访问了。另一方面，各种丰富
的前端框架和数据可视化框架为开发提供了更多的便利和选择，如前端
常用的框架有React、Vue、Angular等，常用的数据可视化框架有
ECharts、D3.js等。

数据可视化是数据展示的核心所在，数据可视化的内容也很丰富、
精彩。本书会讨论如何为数据展示选择最合适的数据存储方案。但因为
数据可视化部分更加偏向于前端（包括JS、CSS、HTML和UI设计
等），这与实时流计算的主体并无太强关联，所以除了部分涉及针对数
据展示该如何设计数据存储方案的内容以外，本书不会再用专门的章节
讨论数据展示的有关内容。感兴趣的读者可以自行参考前端和数据可视
化的有关资料和书籍。



1.5　本章小结

整体而言，本书内容按照“总分”的结构组织。阅读本章，我们对实
时流计算系统的使用场景和通用架构组成有了一个整体的了解。在后续
的章节中，我们将对实时流计算系统的各个部分进行具体的分析和讨
论。



第2章　数据采集

从本章开始，我们将逐一讨论实时流计算系统各方面的内容。为了
更加方便和清楚地阐述问题，本书将以互联网金融风控为场景，构建一
个实时流计算风控系统。虽然是以互联网金融风控为场景，但大多数情
形下实时流计算系统在架构上是大同小异的，或者具有异曲同工之妙。
所以，本书在互联网金融风控场景下讨论的有关实时流计算系统的各种
概念、问题和解决方法也能推广应用到其他使用场景。

常言道“巧妇难为无米之炊”，没有数据，我们就没有了讨论的基
础。大多数情况下，数据采集是我们构建实时流计算系统的起点，所以
本书将首先从数据采集讲起。事实上，我们不能小瞧数据采集的过程。
数据采集通常涉及对外提供服务，涵盖许多I/O、网络、异步和并发的
技术，在性能、可靠和安全等方面都不容大意。

本章将讨论实时流计算系统的数据采集部分，不过我们会将重心放
在讲解有关BIO和NIO、同步和异步、异步和流之间的关联关系等内
容。这些内容不仅有助于我们在实际生产中构建高性能数据采集服务
器，而且有助于我们加深对异步和高并发编程的理解，并为后续章节
对“流”的讨论和理解打下坚实基础。



2.1　设计数据采集的接口

在本书中，我们以互联网金融风控场景来展开对实时流计算系统的
讨论。在金融风控场景下，分析的风险总体上可以分成两类：一类是贷
款对象信用风险，另一类是贷款对象欺诈风险。两类风险的风控因素和
模型不同。

贷款对象信用风险关注的是贷款对象自身的信用状况、还款意愿和
还款能力。信用风险评估常用的分析因素有四要素认证和征信报告，使
用的风控模型主要是可解释性强的逻辑回归评分卡。

贷款对象欺诈风险关注的则是贷款对象是不是在骗贷。在欺诈情形
下，贷款对象提供的所有征信信息可能都是正常的，但是这些信息是通
过伪造或“黑产”渠道得来的，贷款对象以大量具有良好信用的不同身份
获得贷款后，欺诈成功，卷款而逃。欺诈风险评估使用的分析因素多种
多样。例如，网络因素（如IP是否集中），用户属性因素（如年龄和职
业），用户行为因素（如是否在某个时间段集中贷款），社会信用因素
（如社保缴纳情况），第三方征信（如芝麻信用得分），还有各种渠道
而来的黑名单等。总体而言，欺诈风险评估使用的因素来源更多，使用
的模型也更加多样，如决策树、聚类分析等。

互联网金融风控的一般流程如下所述。用户在手机或网页等客户端
发出注册、贷款申请等事件时，客户端将用户属性、行为、生物识别、
终端设备信息、网络状况、TCP/IP协议栈等信息发送到数据采集服务
器；数据采集服务器收到数据后，进行字段提取和转化，发送给特征提
取模块；特征提取模块按照预先设定的特征清单进行特征提取，然后以
提取出来的特征清单作为模型或规则系统的输入；最终依据模型或规则
系统的评估结果做出决策。

根据上面描述的业务流程，完整的互联网金融风控系统架构设计如
图2-1所示。



图2-1　完整的互联网金融风控系统架构设计

从手机或网页等客户端，通过互联网发送事件到采集服务器，是金
融风控场景下常用的数据采集方式之一。客户端发送的事件包含用户属
性、行为、生物识别、终端设备信息、网络状况、TCP/IP协议栈等信
息。HTTP/HTTPS协议筑造了整个互联网的基石，也是当前最主要的应
用层通信协议。没有特别必要，我们采用HTTP/HTTPS协议来进行客户
端和数据采集服务器之间的数据通信。

确定数据通信协议后，还需要制定事件上报API。以REST风格为代
表的API设计方式提供了相对标准的API设计准则。依照REST风格，设
计事件上报API如下。

POST event/

{

    "user_id": "u200710918",

    "client_timestamp": "1524646221000",

    "event_type": "loan",

    "amount": 1000,

    "……": "……"

}

上面的RES.API表示向服务器上报一个事件，其中：用户账
号“user_id”是“u200710918”，发送时间
戳“client_timestamp”是“1524646221000”，事件类
型“event_type”是“loan”，金额“amount”是“1000”，其他信息用“……”表
示。

至此通信协议和API都确定了，接下来实现采集服务器。



2.2　使用Sprin Boot实现数据采集服务器

说到REST风格Web服务器开发，大部分Java编程开发者首先想到的
是Spring系列中的Spring Boot。毫无疑问，Spring Boot使得用Java做Web
服务开发的体验相比过去有了极大的提升。几乎在数分钟之内，一个可
用的Web服务就可以开发完毕。所以，我们也用Spring Boot来实现数据
采集服务器，具体实现如下。

@Controller

@EnableAutoConfiguration

public class SpringDataCollector {

    private static final Logger logger = LoggerFactory.getLogger

(SpringDataCollector.class);

    private JSONObject doExtractCleanTransform(JSONObject event) {

        // TODO: 实现抽取、清洗、转化的具体逻辑
        return event;

    }

    private final String kafkaBroker = "127.0.0.1:9092";

    private final String topic = "collector_event";

    private final KafkaSender kafkaSender = new KafkaSender(kafkaBroker);

    @PostMapping(path = "/event", produces = MediaType.APPLICATION_JSON_UTF8_VALUE)

    @ResponseBody()

    public String uploadEvent(@RequestBody byte[] body) {

        // step1: 对消息进行解码
        JSONObject bodyJson = JSONObject.parseObject(new String(body, Charsets.UTF_8));

        // step2: 对消息进行抽取、清洗、转化
        JSONObject normEvent = doExtractCleanTransform(bodyJson);

        // step3: 将格式规整化的消息发到消息中间件Kafka

        kafkaSender.send(topic, normEvent.toJSONString().getBytes(Charsets.UTF_8));

        

        // 通知客户端数据采集成功
        return RestHelper.genResponse(200, "ok").toJSONString();

    }

    public static void main(String[] args) throws Exception {

        SpringApplication.run(SpringDataCollector.class, args);

    }

}

注意：为了节省篇幅，本书中的样例代码均只保留了主要逻辑以
阐述问题，大部分略去了异常处理和日志打印。如需将这些代码用于真
实产品环境，则需要读者自行添加异常处理和日志打印相关内容。异常
处理和日志打印是可靠软件的重要因素，在编程开发时务必重视这两



点。

在上面的示例代码中，uploadEvent实现了事件上报接口。收到上报
事件后，首先对数据进行解码，解码结果用FastJson中的通用JSON类
JSONObject表示；然后在JSONObject对象基础上进行抽取、清洗和转
化，规整为统一格式数据；最后将规整好的数据发往数据传输系统
Kafka。这个程序在实现功能上并没有特别的地方，我们只是感觉到基
于Spring Boot的服务开发体验是如此轻松、愉快。



2.3　BIO与NIO

我们使用Spring Boot非常迅速地开发好了数据采集服务器，之后的
测试和上线工作也一帆风顺。客户开始接入流量，服务运转良好，似乎
一切都预示着程序员的工作就是这样轻松、美好。但好景不长，随着业
务流量的增加，晴朗天空不知不觉飘来两朵“乌云”。

·随着用户越来越多，采集服务器连接数逐渐增加，甚至在高峰时
出现成千上万并发连接的情况。每个连接的服务质量急剧下降，不时返
回408或503错误。

·监控显示，客户请求响应的时延非常大，进一步分析发现是
doExtractCleanTransform函数比较耗时。这个函数耗时的原因可能是计
算比较复杂，也可能是有较多的I/O操作，还可能是有较多的外部请求
调用。数据采集服务器的性能表现很差，但是看系统监控又发现CPU和
I/O的使用效率并不高，似乎它们都在“偷懒”不干活。

基本上，当我们初次开始认真关注程序的性能问题时，都会碰到上
面的问题。根据笔者经验，如果此时能够深入地钻研下去，我们将从此
掌握编写高性能程序的高级技能点，将在以后的程序开发过程中受益良
多。

我们先看采集服务器的连接问题。当使用Spring Boot做Web服务开
发时，默认情况下Spring Boot使用Tomcat容器。早期版本的Tomcat默认
使用BIO连接器。虽然现在的版本已经去掉BIO连接器，并默认采用
NIO连接器，但是我们还是来比较下BIO和NIO连接器的区别，这样对
理解BIO和NIO、同步和异步的原理，以及编写高性能程序都有很大的
帮助。



2.3.1　BIO连接器

在Java中，最基础的I/O方式是BIO（Blocking I/O，阻塞式I/O）。
BIO是一种同步并且阻塞式的I/O方式。图2-2描述了BIO连接器的工作原
理，当接收器（acceptor）线程接收到新的请求连接套接字（socket）
时，从工作线程栈（worker stack）中取出一个空闲的工作线程
（worker），用于处理新接收的连接套接字。如果工作线程栈没有空闲
工作线程，且创建的工作线程数量没有达到设置的上限值，则新建一个
工作线程用于处理连接套接字。而如果工作线程栈没有空闲工作线程，
且创建的工作线程数量已达到设置上限值，则接收器被阻塞，它将暂停
接收新的连接请求。只有当某个工作线程处理完其对应的请求后，它会
被重新放入工作线程栈，成为空闲线程之后，接收器才能继续接收新的
请求，并交由工作线程栈中的空闲工作线程处理。工作线程从连接套接
字中读取请求数据并进行处理，处理完成后再将结果通过连接套接字发
送回客户端。



图2-2　BIO连接器的工作原理

在请求连接数比较小、请求处理逻辑比较简单、工作线程请求处理
时延很短的场景下，使用BIO连接器是很合适的。但很显然，在实际工
作中的大多数场景下，这些前提条件都是可遇而不可求的。就如在互联
网金融风控系统中，上报数据的客户端是分布在全世界各地的成千上
万，甚至数十万、数百万的手机、平板和个人电脑，这些终端平均下来
每秒发送到数据采集服务器的请求少则数千，多则上万。

再考虑工作线程处理较慢的情况，如计算逻辑较复杂或外部I/O较
多。当所有工作线程都在工作时，可用工作线程耗尽，这时请求接收器
将阻塞，等待工作线程可用，而不能接收新的请求套接字。当工作线程
处理完请求后，由于没有立即可用的新请求需要处理，它必须等到请求
接收器接收新的请求之后，才能继续工作。经过以上分析就会发现，这
种处理方案的性能比较低下。一方面请求接收线程和工作线程都很忙
碌，另一方面请求接收线程和工作线程却要时不时地相互等待，这就导
致请求接收器和工作线程时不时处于空闲状态。进一步深入到操作系统
层面，表现在CPU和网络I/O很多时候处于空闲状态。操作系统资源大
量空闲，造成资源浪费，性能却还十分低下。很显然，这是我们不能接
受的情况，必须对其做出改进和提升。

为了在使用BIO连接器时提高资源的使用效率，一种行之有效的方
法是增加工作线程数量。理想情况下，如果有成千上万甚至上百万个工
作线程来处理连接套接字，那么请求接收器不用担心工作线程不够用，
因为任何时候总会有工作线程可用。这样，数据采集服务器的并发连接
数也能够达到成千上万。当然，如果要支持百万并发连接，还需要专门
配置一些操作系统参数，这里不做详细讨论，感兴趣的读者可以自行搜
索相关资料。

当前大多数操作系统在处理上万个甚至只需几千个线程时，性能就
会明显下降。这是因为，当需要调度的线程变得非常多后，操作系统在
进行线程调度和上下文切换时，需要占用大量CPU时间，使得真正用于
有效任务计算的CPU时间变少。以Linux操作系统为例，在现代处理器
上一次线程上下文切换的典型时延为数微秒（microsecond）。如果以5
微秒来计算，则全部1万个线程各做一次上下文切换就要占用50毫秒，
这个时延已相当明显。除了线程切换的时间显著增加外，由于每个线程
拥有自己独立的线程栈，过多的线程还会占用大量内存，这也是一个主



要的资源消耗和性能损耗因素。虽然启用过多线程会对CPU资源和内存
资源造成浪费，但是充足的线程还是有一定好处的，毕竟足够多的线程
能够同时触发足够多的I/O任务，从而使I/O资源使用得更加充分。

Linux操作系统线程调度原理如图2-3所示。我们在开发多线程应用
时常说的线程，在Linux操作系统中实际上被实现为轻量级进程。而每
个轻量级进程以1︰1的关系对应一个内核线程。所有内核线程会根据其
运行已消耗CPU时间、线程所处状态及线程优先级等多种因素被调度器
不停轮流调度执行。通常而言，当有数千个线程时，调度器尚可以高效
处理；但当有数十万、数百万线程时，调度器就会“累趴下”了。

图2-3　Linux操作系统线程调度原理



既然不能在一台机器上运行太多线程，我们很自然地想到可以用多
台机器来分担计算任务。不错，这是一个很好的办法。在多个对等的服
务节点之前，架设一个负载均衡器（如Nginx），可以有效地将请求分
发到多台服务器，这既可以提高服务整体的吞吐能力，也能在一定程度
上降低因为请求积压造成的服务响应时延。但除非是线上情况紧急，需
要立刻提升服务处理能力以应对突发的流量高峰冲击，否则我们不应该
立刻这样做！作为有极客精神的程序员，同时为了降低成本着想，在将
一台机器的资源充分利用前，我们不能简单地寄希望于通过横向增加机
器数量来提高服务的性能。

既不能运行太多线程，也不愿意水平扩展机器数量，那怎样才能提
升程序的性能呢？我们不妨这样思考，接收器无阻塞地接收连接套接
字，并将新接收的连接套接字暂存到一个缓冲区。当工作线程在处理完
一个连接套接字后，从缓冲区取出暂存的连接套接字进行处理。如此一
来，接收器可以不停地接收新的连接套接字，而工作线程的任务也被安
排得满满当当。

因此，BIO连接器的本质缺陷是接收器和工作线程执行步调耦合太
紧。如果将接收器和工作线程通过缓冲区隔离开来，让它们互不干扰地
独立运行，那么接收器和工作线程的工作效率都会得到提高，进而提升
程序性能。图2-4展示了改进BIO的方法，在接收器接收到新的连接套接
字时，不再需要获取一个处于空闲状态的工作线程，而是只需将其放入
连接套接字队列即可。而工作线程则完全不需要理会接收器在做什么，
它只需要看队列有没有待处理的连接套接字即可：如果有，就将连接套
接字取出来处理；如果没有，说明暂时没有请求，它可以休息一会儿
了。接下来我们将看到，Tomcat的NIO连接器正是按照类似的思路做
的。



图2-4　改进BIO的方法



2.3.2　NIO连接器

在编写本书时，最新版本的Tomcat已经将NIO作为默认连接器。图
2-5描述了NIO连接器的工作原理，当接收器接收新的连接套接字时，先
将其依次封装成NioChannel对象和PollerEvent对象，再将PollerEvent对
象放入PollerEvent队列。与此同时，轮询器不断从其PollerEvent队列中
取出新的PollerEvent对象，获得代表连接套接字的NioChannel，再将其
SocketChannel注册到选择器。选择器从注册在其上的SocketChannel中挑
选出处于Rea.Ready状态的SocketChannel，再将其交到工作线程池的队
列。工作线程池中的各个工作线程从队列中取出连接套接字，并读取请
求数据进行处理，在处理完成时再将结果通过连接套接字发送回客户
端。

图2-5　NIO连接器的工作原理

从NIO连接器的工作过程可以看出，Tomcat的NIO连接器相比BIO
连接器，主要做出了两大改进。除了类似于我们在图2-4中提到的使



用“队列”将接收器和工作线程隔离开的改进方法之外，Tomcat的NIO连
接器还引入选择器（包含在轮询器中）来更加精细地管理连接套接字，
也就是说，选择器只有在连接套接字中的数据处于可读（Read Ready）
状态时，才将其交由工作线程来处理，避免了工作线程等待连接套接字
准备数据的过程。NIO连接器的这两点改进带来了两种好处。

1）接收器和工作线程隔离开，让它们彼此之间不会因为对方阻塞
而影响自己的连续运行。这样接收器和工作线程都能尽其所能地工作，
从而更加充分地使用I/O和CPU资源。

2）因为有了队列缓存待处理的连接套接字，NIO连接器能够保持
的并发连接数也就不再受限于工作线程数量，而只受限于系统设置的上
限值（由LimitLatch指定）。这样，无须分配大量线程，数据采集服务
器就能支持大量并发连接了。



2.4　NIO和异步

晴朗天空上的第一朵“乌云”终于被我们驱散了，但还有另外一
朵“乌云”在悠悠然地飘着，它仿佛正眯着眼俯视着我们，幸灾乐祸地等
待着发生什么事情。于是我们小心翼翼地查看了在线监控系统。不看不
知道，一看吓一跳。我们注意到，虽然并发处理的连接数增加了，但是
请求的平均响应时间依然很高，数据采集服务器的吞吐能力还是很低，
这可与我们的预想相差甚远！于是，我们进一步使用JVisualVM（参见
3.4.2节）这个“神器”连接到运行着的数据采集服务器，希望能够找到造
成程序性能依旧低下的“元凶”。在对JVM的运行时状态进行采样后，我
们立刻发现原来是doExtractCleanTransform（）函数的执行耗时占用了
整个请求处理用时的90%以上，处理时延明显过高！现在我们就来仔细
分析下doExtractCleanTransform（）可能耗时的原因。



2.4.1　CPU密集型任务

CPU密集型（CPU-intensive）任务也叫CPU受限型（CPU-bound）
任务，是指处理过程中主要依靠CPU（这里不考虑协处理器，如GPU、
FPGA或其他各种定制型处理器）运算来完成的任务。这种任务的执行
速度会受限于CPU本身的处理能力。当用单核执行CPU密集型任务时，
如果此时用top命令查看系统状态，则会发现CPU负载接近100%。

图2-6所示的冯·诺依曼结构是最常见的计算机系统结构，在冯·诺依
曼结构的计算机系统中，CPU密集型任务主要发生在CPU和内存之间。
所以，针对CPU密集型任务的优化，主要是提高CPU和内存的使用效
率。具体实施起来，CPU密集型任务优化的方向有两个：一是优化算法
本身，二是将CPU的多核充分利用起来。算法优化包括降低算法复杂
度、优化内存使用率、使用GPU或FPGA等协处理器、针对JVM和CPU
的执行机制做特定的编程优化等[1]。除了优化算法本身以外，充分利用
CPU的多核也是提升CPU密集型任务性能的有效方法，表现在代码编写
上，就是利用多线程或多进程执行CPU密集型任务。但需要注意的是，
CPU密集型任务中的线程或进程的数量应该与CPU的核数相当，否则过
多的线程上下文切换反倒会减少有效计算时间，降低程序性能。通常而
言，当任务是CPU密集型任务时，比较合适的线程数应该介于CPU核数
至两倍的CPU核数之间。



图2-6　冯·诺依曼结构的计算机系统
[1] 针对JVM和CPU的执行机制做编程优化的理论基础是编译原理，读者
们可以参考Steven S.Muchnick所著的《高级编译器设计与实现》一书，
该书的第11章到第20章详细讲解了代码优化的内容，非常值得阅读。另
外，针对JVM算法优化的一个非常漂亮的例子是高性能消息框架LMAX
Disruptor，感兴趣的读者可以自行查阅相关资料，如
https://itnext.io/understanding-the-lmax-disruptor-caaaa2721496?
gi=105f0a884e6a这篇博客。



2.4.2　I/O密集型任务

I/O密集型（I/O-intensive）任务也叫I/O受限型（I/O-bound）任务，
是指在处理过程中有很多I/O操作的任务，这种任务的执行速度会受限
于I/O的吞吐能力。通常情况下，我们在编写服务端程序时，涉及的I/O
操作主要有磁盘I/O操作和网络I/O操作。常见的磁盘I/O一般发生在诸如
日志输出、数据持久化等与本地文件读写相关的地方。常见的网络I/O
则主要发生在诸如消息中间件收发消息、调用外部服务、访问数据库等
涉及远程服务交互的地方。相比CPU密集型任务而言，I/O密集型任务
是大多数Java开发者面临更多、更现实的问题。因为大部分业务系统和
基础框架都涉及文件读写、数据库访问、远程方法调用等与I/O相关的
操作。

在讨论I/O时，我们需要明白一个很重要的事实。引起I/O耗时的原
因，既可能确实是因为硬件资源有限，I/O的数据量已经达到了磁盘或
者网络吞吐能力的上限，但也可能是因为I/O调用的远程服务本身时延
比较大。在做整体系统优化时，我们需要仔细区分究竟是哪种原因引起
了I/O的高时延。在编写代码时，我们却不需要做这种区分，只需要认
定I/O具有较大时延即可。

对于计算逻辑简单、计算量不大的I/O密集型任务，提高程序性能
最方便、最有效的方法是增加线程数。让大量的线程同时触发更多的
I/O请求，可以将I/O资源充分利用起来。为什么这时可以简单、粗暴地
使用大量线程呢？这是因为，操作系统调度线程时占用的是CPU资源。
如果计算逻辑本身比较简单，对CPU资源要求不高，那么将更多的CPU
资源留给操作系统做线程调度也未尝不可。对于I/O密集型任务，比较
合适的线程数可以设置在10倍的CPU核数到百倍的CPU核数之间。当
然，由于相比CPU密集型任务而言，I/O密集型任务的场景会更多、更
复杂，所以最合适的线程数还是需要通过实际的一系列压力测试来最终
确定。比如笔者在工作中就曾经遇到过在8核16GB内存的云主机上，需
要将线程数量调整到1400才达到最佳性能（QPS和latency都满足要求且
比较稳定）的情况，而且测试过程中还发现更多或更少的线程数都会降
低程序性能。当时笔者获得这个测试结果后，着实觉得有些出乎意料，
因为测试前确实没有想到会需要这么多线程，也没想到Linux操作系统
在支持千级别的线程调度时，也并非像之前所想的那么不堪。这里举出



这个实际开发和测试的例子，也是为了让读者了解压力测试对程序优化
的重要性。



2.4.3　I/O和CPU都密集型任务

当I/O和CPU都比较密集时，问题就复杂了很多。而且不幸的是，
这又是我们在平时软件开发时最常遇见的情况。以微服务系统为例，每
个微服务模块都不是孤立存在的，除了自己特有的计算逻辑需要由CPU
计算完成以外，在实现业务功能过程中，还需要时不时访问其他微服务
模块提供的REST或RPC服务，或者时不时需要访问数据库或消息中间
件等。因此，在这类程序执行的过程中，会频繁地在CPU计算和等待
I/O完成这两种状态之间切换，图2-7正描述了这种情况的程序流程图。

图2-7　 CPU和I/O都密集型任务

下面我们来分析在I/O和CPU都比较密集时，该如何提升程序的性



能。前边提到，使用大量线程可以提高I/O利用率。这是因为当进程执
行到涉及I/O操作或sleep之类的函数时，会引发系统调用。进程执行系
统调用操作，会从用户态进入内核态，之后在其准备从内核态返回用户
态时，操作系统会提供一次进程调度的机会。对于正在执行I/O操作的
进程，操作系统很有可能将其调度出去。这是因为触发I/O请求的进程
通常需要等待I/O操作完成，操作系统就让其晾在一旁等着，先调度其
他进程。当I/O请求数据准备好的时候，进程再次获得被调度执行的机
会，然后继续之前的执行流程。

图2-8　进程进行I/O操作时触发进程调度

图2-8描述了进程在进行I/O操作时触发进程调度的过程，具体如



下。

步骤1:进程A调用read，进入内核态。
步骤2.1：处于内核态的进程A触发DMA后继续执行，DMA开始从磁盘读数据到内存。
步骤2.2：处于内核态的进程A在准备返回用户态前，会触发一次进程调度，结果调度器选择了进程B，于是返回用户态时，CPU执行的不是进程A，而是进程B。
步骤3.1：当DMA完成数据传送时，给CPU发出中断信号，从而让正在运行的进程B停止，并陷入内核态。
步骤3.2：进程B因为DMA中断而陷入内核态。
步骤4: CPU在处理完DMA中断后准备返回进程B的用户态时，再次触发一次进程调度，这一次被选中的是进程A，进程A返回用户态继续运行。
步骤5: 进程A在处理完read返回的数据后，调用write函数将结果写入磁盘，此时再次进入内核态。
之后，步骤6.1~步骤8的过程就与2.1~步骤8的过程类似了。

从上面线程执行I/O系统调用的过程可以看出，当线程执行I/O操作
时，线程本身并不会因等待I/O返回而阻塞，而是由操作系统将其暂时
调度出去，让其他线程使用CPU。因此，当大量线程进行I/O请求时，
这些I/O请求都会被触发，使I/O任务被安排得满满的，从而尽可能充分
地利用了I/O资源。操作系统采取这种调度策略的主要考虑是能更加充
分地使用CPU资源，同时如果I/O请求较多，则I/O资源也会被充分利
用，所以操作系统这样做是非常合理的。只不过，如果线程过多，则操
作系统将频繁地进行线程调度和上下文切换，耗费过多的CPU时间，而
执行有效计算的时间变少，造成另一种形式的CPU资源浪费。

所以，针对I/O和CPU都密集型任务的优化思路是尽可能地让CPU
不把时间浪费在等待I/O完成上，同时尽可能地减少操作系统进行上下
文切换的耗时。在本章接下来的3节中，我们将讨论3种实现这种优化思
路的方法。



2.4.4　纤程

前面提到，使用更多的线程可以让CPU尽可能地不把时间浪费在等
待I/O完成上，但过多的线程又会引起更频繁的上下文切换。那有没有
一种类似于线程，在碰到I/O调用时不会阻塞，能够让出CPU执行其他
计算，等I/O数据准备好了再继续执行，同时还不占用过多CPU在线程
调度和上下文切换的办法呢？

有！这就是纤程（fiber），也叫作协程（coroutine）。图2-9是纤程
的工作原理，纤程是一种用户态的线程，其调度逻辑在用户态实现，从
而避免了过多地进出内核态进行进程调度和上下文切换。事实上，纤程
才是最理想的线程！那纤程是怎样实现的呢？就像线程一样，关键是要
在执行过程中，能够在恰当的时刻和恰当的地方被中断，然后调度出
去，CPU让给其他线程使用。先来考虑I/O，前面说到进程执行I/O操作
时，一定会不可避免地提供给操作系统一次调度它的机会，但问题的关
键不是避免I/O操作，而是避免过多的线程调度和上下文切换。我们可
以将I/O操作委托给少量固定线程，使用其他少量线程负责I/O状态检查
和纤程调度，再用适量线程执行纤程，这样就可以大量创建纤程，而且
只需要少量线程即可。



图2-9　纤程的工作原理

回想下之前Tomcat NIO连接器的实现机制，是不是这种纤程的实现
机制和Tomcat NIO连接器的工作机制有异曲同工之妙？事实上正是如
此，理论上讲，纤程才是将异步执行过程封装得最好的方案。因为它封
装了所有异步复杂性，在提供同步API便利性的同时，还拥有非阻塞I/O
的一切优势！

更进一步讲，最理想的纤程应该完全像线程那样，连CPU的执行都
不阻塞。也就是说，纤程在执行非I/O操作的时候，也能够随时被调度
出去，让CPU执行其他纤程。这样做是可能的，但需要CPU中断支持，
或者通过特殊手段在程序的特定地方安插调度点。线程的调度在内核态
完成，可以直接得到CPU中断支持。但位于用户态的纤程要得到中断支
持相对会更加烦琐，需要进出内核态，这就再次需要频繁进出内核，严
重降低了性能。所以，通常而言，用户态的纤程只会做到I/O执行非阻
塞，CPU执行依旧阻塞。当然，有些纤程的实现方案（如Python中的绿
色线程）提供了主动让出CPU给其他程序片段执行的方法。这种在程序
逻辑中主动让出CPU调度其他程序片段执行的方案，虽然只是由开发人
员在编写代码时自行控制的，但也算是对实现CPU非阻塞执行的尝试
了。

既然纤程有这么多好处，提供同步API的同时拥有非阻塞I/O的性
能，可以大量创建而不用增加操作系统调度开销，这样不管多么复杂的
逻辑只需要放在纤程里，然后起个几十万甚至上百万个纤程，不就可以
轻松做到高并发、高性能了？一切都很美好是不是？可是为什么到现在
为止，我们大多数Java开发人员还没有用上纤程呢？或者说，为什么至
少在Java的世界里，时至今日纤程还没有大行其道呢？这是一个比较尴
尬的现状。从前面的分析中我们知道，实现纤程的关键在于进程执行
I/O操作时拦截住CPU的执行流程。那怎样拦截呢？这就用到我们常说
的AOP（Aspec Oriente Programming，面向切面编程）技术了。在纤程
上对所有与I/O操作相关的函数进行AOP拦截，给调度器提供调度纤程
的机会。在JVM平台上，可以在3个层面进行拦截。

·修改JVM源码，在JVM层面拦截所有I/O操作API。

·修改JDK源码，在JDK层面拦截所有I/O操作API。



·采用动态字节码技术，动态拦截所有I/O操作API。

其中，对于第三种方案，已有开源实现Quasar，读者如果感兴趣可
以自行研究，在此不展开叙述。但是笔者认为，Quasar虽然确实实现了
I/O拦截，实现了纤程，但是对代码的侵入性还是太强，如果读者要在
生产环境使用，那么要做好严格的测试才行。



2.4.5　Actor

在纤程之上，有一种称为Actor的著名设计模式。Actor模式是指用
Actor来表示一个个的活动实体，这些活动实体之间以消息的方式进行
通信和交互。Actor模式非常适用的一种场景是游戏开发。例如，
DotA（Defens of the Ancients）游戏中的每个小兵就可以用一个个的
Actor表示。如果要小兵去攻击防御塔，就给这个小兵Actor发送一条消
息，让其移动到塔下，再发送一条消息，让其攻击塔。当然Actor设计
模式本身不只是为了游戏开发而诞生，它是一种通用、应对大规模并发
场景的系统设计方案。最有名的Actor系统非Erlang莫属，而Erlang系统
正是构建在纤程之上。再如Quasar也有自己的Actor系统。

并非所有的Actor系统都构建在纤程之上，如JVM平台的Actor系统
实现Akka。由于Akka不是构建在纤程上，它在I/O阻塞时也只能依靠线
程调度出去，所以Akka使用的线程也不宜过多。虽然在Akka里面能够
创建上万甚至上百万个Actor，但这些Actor被分配在少数线程里面执
行。如果Akka Actor的I/O操作较多，则势必分配在同一个线程中的
Actor会出现排队和等待现象。排在后面的Actor只能等前面的Actor完成
I/O操作和计算后才能被执行，这极大地影响了程序的性能。虽然Akka
采用ForkJoinPool的work-stealing工作机制，可以让一个线程从其他线程
的Actor队列获取任务执行，对Actor的阻塞问题有一定缓解，但这并没
有从本质上解决问题。究其原因，正是因为Akka使用的是线程而非纤
程。线程过多造成性能下降，限制了Akka系统不能像基于纤程的Actor
系统那样给每个Actor分配一个纤程，而只能是多个Actor共用同一个线
程。不过如果Actor较少，每个Actor都能分配到一个线程的话，那么使
用线程和使用纤程的差别就不是非常明显了。



图2-10　Actor系统

必须强调的是，如果Actor是基于线程构建的，那么在存在大量
Actor时，Actor的代码逻辑就不宜做过多I/O，甚至是sleep操作。当然大
多数情况下，I/O操作是难以避免的。为了减少I/O对其他Actor的影响，
应尽量将涉及I/O操作的Actor与其他非I/O操作的Actor隔离开。给涉及
I/O操作的Actor分配专门的线程，不让这些Actor和其他非I/O操作的
Actor分配到相同的线程。



2.4.6　NIO配合异步编程

除了纤程外，还有没有方法能够同时保证CPU资源和I/O资源都能
高效使用呢？当然有。前面说到纤程是封装得最好的非阻塞I/O方案。
所以，如果不用纤程，那就直接使用非阻塞I/O，再结合异步编程，可
以充分发挥出CPU和I/O的能力。

何为异步呢？举一个生活中的例子。当我们做饭时，在把米和水放
到电饭锅并按下电源开关后，我们不会傻乎乎地站在一旁等着米饭煮
熟，而是会利用这段时间去做一些其他事情，如洗菜、炒菜。当米饭煮
熟后，电饭锅会发出嘟嘟的声音——通知我们米饭已经煮好，我们这才
会去开锅盛饭。同时，这个时候我们的菜肴也差不多做好了。在这个例
子中，我们没有等待电饭锅煮饭，而是让其在饭熟后提醒我们，这种做
事方式就是“异步”的。反过来，如果我们一直等到米饭煮熟后再做菜，
这就是“同步”的做事方式。如果对应到程序中，我们的角色就相当于
CPU，电饭锅煮饭的过程就相当于一次耗时的I/O操作，而炒菜的过程
就相当于在执行一段算法。很显然，异步的方式能更加有效地使用CPU
资源。

针对异步编程，在Jav.8之前，ExecutorService类提供了初步的异步
编程支持。在ExecutorService的接口方法中，execute（）用于异步执行
任务且无须等待执行返回，属于完全异步方案。submit（）则用于异步
执行任务但同步等待执行结果，属于半异步半同步方案。图2-11演示了
submit（）和execute（）的执行原理。submit（）从单个线程中一次性
提交多个任务，每个任务分别被一个线程执行，从而实现了任务的多核
并行执行。execute（）则将任务分成多个步骤后，依次提交给负责每个
步骤的线程执行，将执行的过程流水线化。从图2-11中可以很直观地发
现，流水线化后的CPU被使用得更加充分，因为代表任务执行的线段更
加密集。

来自Google的第三方Java库Guava提供了更好的异步编程方案。特
别是其中的SettableFuture类，在Future基础上提供了回调机制，初步实
现了方便、好用的链式异步编程API。

受到诸多优秀异步编程方案的启发和刺激后，在Jav.8中JVM平台迎
来了全新的异步编程方法，即CompletableFuture类。可以说，



CompletableFuture类汇集了各种异步编程的场景和需求，是异步编程
API的集大成者，而且还在继续完善中。强烈建议读者仔细阅读
CompletableFuture类的API文档，这会对理解和编写高性能程序有极大
帮助。本书后面的章节也会讲解并运用到CompletableFuture类。

除了这些偏底层的异步编程方案外，还有很多更高级和抽象的异步
编程框架，如Akka、Vert.x、Reactive、Netty等。这些框架大多基于事
件或消息驱动，抛开各种不同的表现形式，从某种意义上来讲，异步和
事件（或消息）驱动这两个概念是等同的。

图2-11　submit（）和execute（）的执行原理



2.5　使用Netty实现数据采集服务器

为了更好地讲解如何结合NIO和异步编程以实现支持高并发、高性
能的数据采集服务器，本节采用Netty框架重构数据采集服务器。Netty
是一个基于NIO的异步事件驱动网络应用框架，用于快速开发具有可维
护性的高性能协议服务器和客户端。Netty中的一些概念和设计模式有
些复杂，但是非常有用，初次接触Netty的读者还是需要对其有所了
解。

可以说，Netty把NIO和异步编程的哲学发挥到了淋漓尽致。在
Netty中，几乎所有涉及网络操作的地方均采用异步回调的方式。图2-12
展示了Netty的工作原理。首先，Netty用reactor线程监听
ServerSocketChannel，每个ServerSocketChannel对应一个实际的端口。
如果需要监听多个端口，则需要为reactor线程池配置多个线程。当
reactor线程监听的ServerSocketChannel监测到连接请求事件
（OP_ACCEPT）时，就为接收到的连接套接字建立一个
SocketChannel，并将该SocketChannel委托给工作线程池中的某个工作线
程做后续处理。之后，当工作线程监测到SocketChannel上有数据可读
（OP_READ）时，就调用相关的回调句柄（handler）对数据进行读取
和处理，并返回最终的处理结果。另外，在Netty相关代码中，通常将
reactor线程池称为boss group，而将工作线程池称为work group，大家在
阅读Netty相关代码时知晓这两个概念即可。



图2-12　Netty的工作原理



2.5.1　使用Netty实现数据采集API

下面我们使用Netty来实现数据采集服务器。

public static void main(String[] args) {

    final int port = 8081;

    final EventLoopGroup bossGroup = new NioEventLoopGroup(1);

    final EventLoopGroup workerGroup = new NioEventLoopGroup();

    try {

        final ServerBootstrap bootstrap = new ServerBootstrap()

                .group(bossGroup, workerGroup)

                .channel(NioServerSocketChannel.class)

                .childHandler(new ServerInitializer())

                .option(ChannelOption.SO_BACKLOG, 1024);

        final ChannelFuture f = bootstrap.bind(port).sync();

        logger.info(String.format("NettyDataCollector: running on port[%d]", port));

        f.channel().closeFuture().sync();

    } catch (final InterruptedException e) {

        logger.error("NettyDataCollector: an error occurred while running", e);

    } finally {

        bossGroup.shutdownGracefully();

        workerGroup.shutdownGracefully();

    }

}

public class ServerInitializer extends ChannelInitializer<SocketChannel> {

    private static final int MAX_CONTENT_LENGTH = 1024 * 1024;

    @Override

    public void initChannel(SocketChannel ch) throws Exception {

        ch.pipeline().addLast("http-codec", new HttpServerCodec());

        ch.pipeline().addLast(new HttpObjectAggregator(MAX_CONTENT_LENGTH));

        ch.pipeline().addLast("handler", new ServerHandler());

    }

}

public class ServerHandler extends

    SimpleChannelInboundHandler<HttpRequest> {

        private static final Logger logger = LoggerFactory.getLogger(NettyData

Collector.class);

        private final String kafkaBroker = "127.0.0.1:9092";

        private final String topic = "collector_event";

        private final KafkaSender kafkaSender = new KafkaSender(kafkaBroker);

        private JSONObject doExtractCleanTransform(JSONObject event) {

        // TODO: 实现抽取、清洗、转化具体逻辑
        return event;

    }

    @Override

    protected void channelRead0(ChannelHandlerContext ctx, HttpRequest req)



            throws Exception {

        byte[] body = readRequestBodyAsString((HttpContent) req);

        // step1: 对消息进行解码
        JSONObject bodyJson = JSONObject.parseObject(new String(body, Charsets.UTF_8));

        // step2: 对消息进行抽取、清洗、转化
        JSONObject normEvent = doExtractCleanTransform(bodyJson);

        // step3: 将格式规整化的消息发送到消息中间件Kafka

        kafkaSender.send(topic, normEvent.toJSONString().getBytes(Charsets.UTF_8));

        // 通知客户端数据采集成功
        sendResponse(ctx, OK, RestHelper.genResponse(200, "ok").toJSONString());

    }

}

在上面的代码中，我们分别在boss group和work group中设置了一个
和两倍CPU 核数的线程数。在Netty服务器只监听一个端口时，启用一
个ServerBootstrap实例即可，这时boss group也只需配置一个线程，更多
的线程并不会提升性能。而如果Netty服务器启动多个端口，则需要为
每一个端口启动一个ServerBootstrap实例，并最好给boss group配置与端
口数相同的线程数，更多的线程不会提升性能，更少的线程则会降低性
能。

在工作线程的回调处理过程中，我们使用HttpServerCodec将接收的
数据按照HTTP格式解码，解码后的数据再交由ServerHandler处理，之
后的处理逻辑就与用Spring Boot实现数据采集服务器的处理逻辑相同
了。



2.5.2　异步编程

Netty实现的数据采集服务器在处理网络I/O时，充分发挥出了异步
的潜力，但是不是这样就让CPU和I/O的能力彻底释放出来了呢？这可
不一定。仔细查看前面的实现过程会发现，虽然采用NIO使请求的接收
和请求的处理隔离开了，但是在处理请求的时候依然使用的是同步方
式。也就是说，对消息读取、解码、ECT、发送至消息中间件及最终将
结果返回给客户端这全部的步骤都是在工作线程中依次执行完成的，并
且我们只给work group分配了两倍于CPU核心数的线程数。很明显，这
种处理逻辑还是将网络I/O数据读取的过程与具体请求处理的过程耦合
起来了。我们可以通过增加work group线程数的方式来提升服务器的处
理能力，但显然这不是正确的方法。毕竟Netty花了九牛二虎之力为我
们构建了异步处理网络I/O事件的完整框架，但到最后我们依旧用耗时
的同步处理逻辑阻塞了本应该用于快速处理网络读写事件的工作线程，
严重影响工作线程处理网络读写事件的效率，实在是暴殄天物了！

所以，我们应该将请求处理的逻辑从工作线程的职责中剥离出来，
让工作线程专心于处理网络读写事件，而用其他线程来执行请求的处理
逻辑。图2-13就说明了这种异步方案。

下面我们就来看看如何将请求处理改造成异步执行的方式。

private static class RefController {

    private final ChannelHandlerContext ctx;

    private final HttpRequest req;

    public RefController(ChannelHandlerContext ctx, HttpRequest req) {

        this.ctx = ctx;

        this.req = req;

    }

    public void retain() {

        ReferenceCountUtil.retain(ctx);

        ReferenceCountUtil.retain(req);

    }

    public void release() {

        ReferenceCountUtil.release(req);

        ReferenceCountUtil.release(ctx);

    }

}

protected void channelRead0(ChannelHandlerContext ctx, HttpRequest req)



        throws Exception {

    logger.info(String.format("current thread[%s]", Thread.currentThread().toString()));

    final RefController refController = new RefController(ctx, req);

    refController.retain();

    CompletableFuture

            .supplyAsync(() -> this.decode(ctx, req), this.decoderExecutor)

            .thenApplyAsync(e -> this.doExtractCleanTransform(ctx, req, e), this.ectExecutor)

            .thenApplyAsync(e -> this.send(ctx, req, e), this.senderExecutor)

            .thenAccept(v -> refController.release())

            .exceptionally(e -> {

                try {

                    logger.error("exception caught", e);

                    sendResponse(ctx, INTERNAL_SERVER_ERROR,

                            RestHelper.genResponseString(500, "服务器内部错误"));

                    return null;

                } finally {

                    refController.release();

                }

            });

}

在上面的代码中，channelRead0函数的输入参数是一个
ChannelHandlerContext对象和一个HttpRequest对象，它们针对每次的请
求处理而创建，所以并非全局的，可以在不同线程间自由地传递和使用
它们，并且不用担心并发安全的问题。

虽然channelRead0函数依旧在工作线程中被执行，但是这个函数是
将具体的处理逻辑委托给其他线程后就立刻返回了。channelRead0函数
执行的耗时极短，不会影响工作线程继续快速处理其他的网络读写事
件。

我们将请求的处理逻辑细分为解码、ECT和发送到消息队列3个步
骤，然后使用CompletableFuture的各种异步执行API将这3个步骤构造成
异步执行链。具体来说，首先使用supplyAsync方法将解码过程委托给
专门的解码执行器decoderExecutor。然后连续使用两次thenApplyAsync
指定当解码和ECT结束之后，分别委托给ectExecutor和senderExecutor执
行器进行ETL和发送。最后由thenAccept指定当ETL完成时，由发送执
行器将数据发送给消息中间件。以上整个过程都只是在制订异步执行的
计划，不涉及真实的执行过程，所以channelRead0耗时极少，可以立刻
返回。



图2-13　将回调句柄由同步改成异步执行

由于Netty会对其使用的部分对象进行分配和回收管理，在
channelRead0方法返回时，Netty框架会立刻释放HttpRequest对象。而
channelRead0方法将请求提交异步处理后立刻返回，此时请求处理可能
尚未结束。因此，在将请求提交异步处理之前，必须先调用
refController.retain（）来保持对象，而在请求处理完后，再调用
refController.release（）来释放HttpRequest对象。



2.5.3　流量控制和反向压力

上面的改造已经将请求处理的过程彻底异步化，至此CPU和I/O才
可以毫无阻碍地尽情“干活”，它们的生产力得到充分解放。但是，有关
异步的问题还没有彻底解决。

由于请求处理使用了异步执行方案，请求的具体逻辑实际上交由各
个步骤的执行器（executor）进行处理。这个过程中没有任何阻塞的地
方，只不过各个步骤待处理的任务都被隐式地存放在了各个执行器的任
务队列中。如果各执行器处理得足够快，那么它们的任务队列都能被及
时消费，这样不会存在问题。但是，一旦某个步骤的处理速度比不上请
求接收线程接收新请求的速度，那么必定有部分执行器任务队列中的任
务会不停增长。由于执行器任务队列默认是非阻塞且不限容量的，这样
当任务队列积压的任务越来越多时，终有一刻，JVM的内存会被耗尽，
抛出OOM系统错误后程序异常退出。图2-14说明了这种问题。

图2-14　任务在各个执行器任务队列中积压

实际上，这是所有异步系统都普遍存在且必须引起我们重视的问
题。在纤程中，可以通过指定最大纤程数量来限制内存的使用量，非常
自然地控制了内存和流量。但是，在一般的异步系统中，如果不对执行
的各个环节做流量控制，就很容易出现OOM问题。因为当每个环节都
不管其下游环节处理速度是否跟得上，不停将其输出塞给下游的任务队
列时，只要上游输出速度超过下游处理速度的状况持续一段时间，必然
会导致内存不断被占用，直至最终耗尽，抛出OOM灾难性系统错误。

为了避免OOM问题，我们必须对上游输出给下游的速度做流量控
制。一种方式是严格控制上游的发送速度，如每秒控制其只能发1000条



消息，但是这种粗糙的处理方案非常低效。例如，实际下游每秒处理
2000条消息，那么上游每秒1000条消息的速度就使得下游一半的性能没
发挥出来。又如，下游因为某种原因性能降级为每秒只能处理500条，
那么在一段时间后同样会发生OOM问题。

更优雅的一种解决方法是反向压力方案，即上游能够根据下游的处
理能力动态调整输出速度。当下游处理不过来时，上游就减慢发送速
度；当下游处理能力提高时，上游就加快发送速度。反向压力方案的思
想实际上正逐渐成为流计算领域的共识，如与反向压力相关的标准
Reactive Streams正在形成过程中。图2-15演示了Reactive Streams的工作
原理，下游的消息订阅者从上游的消息发布者接收消息前，会先通知消
息发布者自己能够接收多少消息，消息发布者之后就按照这个数量向下
游的消息订阅者发送消息。这样，整个消息传递的过程都是量力而行
的，不存在上下游处理能力不匹配造成的OOM问题了。

图2-15　Reactive Streams的工作原理



2.5.4　实现反向压力

回到Netty数据采集服务器的实现问题，那该怎样加上反向压力功
能呢？

由于请求接收线程接收的新请求及其触发的各项任务被隐式地存放
在各步骤的执行器任务队列中，并且执行器默认使用的任务队列是非阻
塞和不限容量的，因此要加上反向压力功能，只需要从以下两个方面来
控制。

·执行器任务队列容量必须有限。

·当执行器任务队列中的任务已满时，就阻塞上游继续向其提交新
的任务，直到任务队列重新有空间可用为止。

图2-16　使用容量有限的阻塞队列实现反向压力

按照上面这种思路，我们可以很容易地实现反向压力。图2-16展示
了使用容量有限的阻塞队列实现反向压力的过程，当“处理”这个步骤
比“解码”步骤慢时，位于“处理”前的容量有限的阻塞队列会被塞满。
当“解码”操作继续要往其写入消息时，就会被阻塞，直到“处理”操作从
队列中取走消息为止。下面是一个具备反向压力能力的ExecutorService
的具体实现细节。

private final List<ExecutorService> executors;



private final Partitioner partitioner;

private Long rejectSleepMills = 1L;

public BackPressureExecutor (String name, int executorNumber, int coreSize, int maxSize, int capacity, long rejectSleepMills) {

    this.rejectSleepMills = rejectSleepMills;

    this.executors = new ArrayList<>(executorNumber);

    for (int i = 0; i < executorNumber; i++) {

        ArrayBlockingQueue<Runnable> queue = new ArrayBlockingQueue<>(capacity);

        this.executors.add(new ThreadPoolExecutor(

                coreSize, maxSize, 0L, TimeUnit.MILLISECONDS,

                queue,

                new ThreadFactoryBuilder().setNameFormat(name + "-" + i + "-%d").build(),

                new ThreadPoolExecutor.AbortPolicy()));

    }

    this.partitioner = new RoundRobinPartitionSelector(executorNumber);

}

@Override

public void execute(Runnable command) {

    boolean rejected;

    do {

        try {

            rejected = false;

            executors.get(partitioner.getPartition()).execute(command);

        } catch (RejectedExecutionException e) {

            rejected = true;

            try {

                TimeUnit.MILLISECONDS.sleep(rejectSleepMills);

            } catch (InterruptedException e1) {

                logger.warn("Reject sleep has been interrupted.", e1);

            }

        }

    } while (rejected);

}

@Override

public Future<?> submit(Runnable task) {

    boolean rejected;

    Future<?> future = null;

    do {

        try {

            rejected = false;

            future = executors.get(partitioner.getPartition()).submit(task);

        } catch (RejectedExecutionException e) {

            rejected = true;

            try {

                TimeUnit.MILLISECONDS.sleep(rejectSleepMills);

            } catch (InterruptedException e1) {

                logger.warn("Reject sleep has been interrupted.", e1);

            }

        }

    } while (rejected);

    return future;

}

在上面的代码中，BackPressureExecutor类在初始化时新建
ThreadPoolExecutor对象作为实际执行任务的执行器。创建
ThreadPoolExecutor对象时采用ArrayBlockingQueue，这是实现反向压力



的关键之一。将ThreadPoolExecutor拒绝任务时采取的策略设置为
AbortPolicy，这样在任务队列已满再执行execute或submit方法时会抛出
RejectedExecutionException异常。在execute和submit方法中，通过一个
do...while循环，循环体内捕获表示任务队列已满的
RejectedExecutionException异常，直到新任务提交成功才退出，这是实
现反向压力的关键之二。

接下来就可以在数据采集服务器中使用这个带有反向压力功能的
MultiQueueExecutor-Service了。

final private Executor decoderExecutor = new BackPressureExecutor("decoderExecutor",

        1, 2, 1024, 1024, 1);

final private Executor ectExecutor = new BackPressureExecutor("ectExecutor",

        1, 8, 1024, 1024, 1);

final private Executor senderExecutor = new BackPressureExecutor("senderExecutor",

        1, 2, 1024, 1024, 1);

@Override

protected void channelRead0(ChannelHandlerContext ctx, HttpRequest req)

        throws Exception {

    logger.info(String.format("current thread[%s]", Thread.currentThread().toString()));

    final RefController refController = new RefController(ctx, req);

    refController.retain();

    CompletableFuture

            .supplyAsync(() -> this.decode(ctx, req), this.decoderExecutor)

            .thenApplyAsync(e -> this.doExtractCleanTransform(ctx, req, e), this.ectExecutor)

            .thenApplyAsync(e -> this.send(ctx, req, e), this.senderExecutor)

            .thenAccept(v -> refController.release())

            .exceptionally(e -> {

                try {

                    logger.error("exception caught", e);

                    if (RequestException.class.isInstance(e.getCause())) {

                        RequestException re = (RequestException) e.getCause();

                        sendResponse(ctx, HttpResponseStatus.valueOf(re.getCode()), re.getResponse());

                    } else {

                        sendResponse(ctx, INTERNAL_SERVER_ERROR,

                                RestHelper.genResponseString(500, "服务器内部错误"));

                    }

                    return null;

                } finally {

                    refController.release();

                }

            });

}

从上面的代码可以看出，我们只需把decode、
doExtractCleanTransform和send等各个步骤用到的执行器替换成
BackPressureExecutor，即可实现反向压力功能，其他部分的代码不需要



做任何改变。

通过以上改造，当上游步骤往下游步骤提交新任务时，如果下游处
理较慢，则上游会停下来等待，直到下游将执行器队列中的任务取走，
上游才能继续提交新任务。如此一来，上游自动匹配下游的处理速度，
最终实现了反向压力功能。

在BackPressureExecutor的实现中，之所以采用封装多个执行器的方
式，是考虑到要使用M×N个线程，有下面3种不同的使用场景。

·每个执行器使用1个线程，使用M×N个执行器；

·每个执行器使用M×N个线程，使用1个执行器；

·每个执行器使用M个线程，使用N个执行器。

在不同场景下，3种使用方式的性能表现也会稍有不同。读者如果
需要使用这个类，请根据实际场景做出合理设置和必要测试。



2.5.5　异步的不足之处

在前面有关异步的讨论中，我们总在“鼓吹”异步比同步更好，能够
更有效地使用CPU和I/O资源，提高程序性能。那是不是同步就一无是
处，而异步毫无缺点呢？其实不然。从一开始我们就说过，理论上讲纤
程是最完美的线程。纤程虽然在内部使用异步机制实现，但基于纤程开
发程序只需采用同步的方式，完全不需要考虑异步问题。这说明我们在
程序开发的时候，并不是为了异步而异步，而是为了提高资源使用效
率、提升程序性能才使用异步的。如果有纤程这种提供同步编程方式，
而且保留非阻塞I/O优势的方案，那么我们大可不必选择异步编程方
式。毕竟通常情况下，异步编程相比同步编程复杂太多，稍有不慎就会
出现各种问题，如资源泄漏和反向压力等。

除了编程更复杂外，异步方式相比同步方式，对同一个请求的处理
也会有更多的额外开销。这些开销包括任务在不同步骤（也就是不同线
程）之间的辗转、在任务队列中的排队和等待等。所以，对于一次请求
的完整处理过程，异步方式相比同步方式通常会花费更多的时间。

还有些时候，系统会更加强调请求处理的时延。这时一定要注意，
应该先保证处理的时延能够达到性能指标要求，在满足时延要求的情况
下，再尽可能提升每秒处理请求数。这是因为，在CPU和I/O等资源有
限的情况下，为了提升每秒处理请求数，CPU和I/O都应尽可能处于忙
碌状态，这就需要用到类似于异步编程中用任务队列缓存未完成任务的
方法。这样做的结果是，系统每秒处理的请求数可能通过拼命“压
榨”CPU和I/O得到了提升，但同时各个环节任务队列中的任务过多，增
加了请求处理的时延。因此，如果系统强调的是请求处理的时延，那么
异步方式几乎不会对降低请求处理时延带来任何好处。这时只能先通过
优化算法和I/O操作来降低请求处理时延，然后通过提高并行度以提升
系统每秒处理的请求数。提高并行度既可以在JVM内实现，也可以在
JVM外实现。在JVM内增加线程数，直到再增加线程时处理时延满足不
了时延指标要求为止；在JVM外，在多个主机上部署多个JVM进程，直
到整个系统的每秒请求处理数满足TPS指标要求为止。需要注意的是，
在提高并行度的整个过程中，任何时候都必须保证请求处理的时延是满
足时延指标要求的。



2.6　本章小结

本章围绕着数据采集模块，详细分析了NIO和异步编程相关的问
题。当读者读到这里的时候可能会感到疑惑，本书的主题是实时流计
算，但到目前为止，讨论最多的却是异步和NIO，是不是跑题了？其实
不然，“流”与“异步”之间存在千丝万缕的关系，“流”是“异步”的一种重
要表现方式，“异步”则是“流”在执行时的内禀性质。现在流式编程越来
越流行，一方面是因为“流”本身是对真实世界事件发生过程的自然表
示，另一方面则是由于“流”在内部执行时是异步和并行的，能最大限度
提高资源使用效率，提高程序执行性能。在前面讲解有关异步编程的内
容时，我们已经非常自然地使用诸如“上游”“下游”这些很明显有
关“流”的概念了。可以说，理解透彻NIO和异步是编写高性能程序的基
础，即使不实现流计算系统，这些知识也会非常有用。以上正是本章如
此着重讨论NIO和异步的原因所在。

在接下来的章节中，我们将详细地讲解如何以流的方式来设计和实
现金融风控系统中的特征提取模块。在此过程中，我们会更加真切地体
会到流和异步这两种编程方式的异曲同工之妙！



第3章　实现单节点流计算应用

在第2章中，我们实现了互联网金融风控系统的数据采集模块。在
本章中，我们接着实现风控场景下的特征提取模块。我们先以“流”的
方式来实现，然后采用Jav.8中的CompletableFuture异步编程框架实现同
样的逻辑。通过对比这两种实现方式在本质上的一致性，我们将更加深
刻地理解“流”和“异步”的相通之处。

常言道，万丈高楼平地起。在开始研究分布式流计算应用前，我们
先从最基本的单节点流计算应用分析开始，这将让我们更加聚焦于分析
和讨论“流”这种计算模式的本质。所以，本章将围绕怎样构造一个单
节点的实时流计算应用展开，在后续的章节中，我们再继续讨论如何将
单节点的实时流计算应用扩展为分布式系统。在基于我们自己构造的流
计算框架实现特征提取模块后，本章还将讨论如何对这样一个实时流计
算应用进行针对性的性能优化。性能调优一方面可以提升实时流计算系
统的性能，另一方面能够让我们更加深刻地理解高性能编程之道。



3.1　自己动手写实时流计算框架

互联网金融风控系统的一个重要目标是判断贷款对象的信用风险和
欺诈风险。评估信用风险和欺诈风险会用到风控模型，如评分卡、统计
学习模型和机器学习模型等。风控模型的输入是各种各样的特征，如年
龄、性别、学历、登入时间频率、登入空间频率、借款金额、修改个人
信息的次数等。因此，在进行风险判断前，我们需要进行特征提取。在
笔者曾经参与的一个风控系统项目中，模型的输入特征就有十几个到数
十个甚至上百个不等。

如果考虑特征的来源，那么风控模型使用的原始特征可以从以下3
个地方提取。

·从上报事件的原始字段直接或间接转化而来。这类特征常见的有
借贷金额、还款时间等。

·从过往的事件历史中推衍而来。这类特征常见的有用户登入频
率、登入的不同地点数、登入的不同设备数等。

·从已有知识库查询而来。这类特征有各种第三方征信库提供的用
户年龄、性别、黑白名单等信息。



3.1.1　用DAG描述流计算过程

确定了风控系统的特征提取模块要实现的功能之后，接下来我们使
用“流”的方式来实现特征提取模块。通常在流计算系统中，我们采用
DAG（有向无环图）来描述流的执行过程，如图3-1所示。

图3-1　DAG

DAG有两种不同的表达含义。

·如果不考虑并行度，那么每个节点表示的是计算步骤，每条边表
示的是数据在计算步骤间的流动。

·如果考虑并行度，那么每个节点表示的是计算单元，每条边表示
的是数据在计算单元间的流动。

在第2章的数据采集服务器实现中，我们将规整好的事件发送到了
消息中间件Kafka。因此，现在我们要实现特征提取模块，首先需要从
Kafka中将事件拉取出来，然后解码为JSON对象，再进行特征提取，最
后重新发送到Kafka。在风控场景下，一个事件通常需要提取数十个甚
至上百个特征，而采用串行逐个计算每个特征的方式，必然导致每个事
件的处理时延很大。为了降低事件处理时延，我们需要将特征计算方式
设计成并行计算的方式。也就是说，同时计算所有不同的特征，之后再
将这些特征汇总起来，这样就完成了一个事件的所有特征计算。根据上
面的流程，我们可以设计特征提取模块的DAG，如图3-2所示。



图3-2　特征提取模块的DAG

在图3-2中，接收节点从Kafka拉取事件，然后发送给解码节点。解
码节点将事件解码为JSON对象，并交由特征分解节点。特征分解节点
在将事件需要提取的特征分解后，将其分发给多个特征计算节点。特征
计算节点在计算完特征后，将结果发送给聚合节点。当聚合节点收集完
一个事件要计算的所有特征后，将这些特征合并起来，并最后将提取了
特征的事件再次发往Kafka。



3.1.2　造一个流计算框架的轮子

有一天，物理学家和数学家参加一场有关超弦理论的讲座。结果一
场讲座下来，物理学家一脸茫然，而数学家显得意犹未尽。于是物理学
家问数学家：“你是怎么想象一个11维空间的啊？”结果数学家得意地
说：“我先想象一个N维的空间，然后再将N替换为11就可以了。”

这个笑话告诉我们，有时候用抽象的概念更能帮助我们理解和解决
具体的问题。所以，在开始实现具体的特征提取模块前，我们先实现一
个更加抽象的实时流计算框架。我们用这个自己构造的实时流计算框
架“轮子”，帮助我们理解更一般的实时流计算模式。之后我们再用这个
框架来实现具体的特征提取模块。

对照着特征提取模块的DAG，我们很容易想到，图3-2中的每个节
点是一个完成特定功能的计算单元，不妨将每个节点抽象为一个服务
类。在节点之间，用有向边来描述节点间的事件传递，因此很容易想到
用队列Queue来作为服务类之间事件传递的载体。比较难实现的是特征
分解计算后再聚合的步骤，这里我们对问题稍微做些转化，即借用
Future类来实现这种类似于Map/Reduce或Fork/Join的计算模式。

我们先来实现服务类接口ServiceInterface。

public abstract class AbstractStreamService<I, O> implements ServiceInterface {

    //省略代码……

    private boolean pipeline(boolean checkStop, boolean exitWhenNoInput) throws Exception {

        //省略代码……

        List<I> inputs = poll(inputQueues);

        List<O> outputs = process(inputs);

        offer(outputQueues, outputs)

        //省略代码……

    }

    @Override

    public void start() {

        thread = new Thread(() -> {

                //省略代码……

                beforeStart();

                while (!stopped) {

                        if (pipeline(true, false)) {

                            break;

                        }

                }



                //省略代码……

                beforeShutdown();

        });

        //省略代码……

        thread.start();

    }

}

public abstract class SimpleStreamService<I, O> extends AbstractStreamService<I, O> {

    //省略代码……

    @Override

    protected List<I> poll(List<Pipe<I>> inputQueues) throws Exception {

        inputsList.clear();

        Pipe<I> inputPipe = inputQueues.get(0);

        I event = inputPipe.poll(inputTimeout, TimeUnit.MILLISECONDS);

        if (event != null) {

            inputsList.add(event);

            return inputsList;

        } else {

            return null;

        }

    }

    @Override

    protected boolean offer(List<Pipe<O>> outputQueues, List<O> outputs) throws Exception {

        Pipe<O> outputQueue = outputQueues.get(0);

        O event = outputs.get(0);

        return outputQueue.offer(event, outputTimeout, TimeUnit.MILLISECONDS);

    }

}

在上面的代码中，我们定义了一个抽象类AbstractStreamService和
它的一个子类SimpleStreamService。它们的功能是从其输入队列
inputQueues中不断读取（poll）消息，经过处理（process）后，再发送
到下游的输入队列outputQueues中去。

在实现服务类的时候，我们还定义了消息传递的载体Queue接口，
以及它的实现类BackPressureQueue。

public interface Queue<E> {

    E poll(long timeout, TimeUnit unit) throws InterruptedException;

    boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException;

}

public class BackPressureQueue<E> extends ArrayBlockingQueue<E> implements Queue<E>{

    public ArrayBlockingQueuePipe(int capacity) {

        super(capacity);

    }

}

可以看出，我们实现的BackPressureQueue是基于



ArrayBlockingQueue的，也就是说，它的容量是有限的，而且是一个阻
塞队列。这有助于实现我们在第2章谈到的反向压力功能。



3.1.3　实现特征提取DAG节点

现在我们已经实现了节点和节点之间消息传递的机制。接下来，我
们就用它们来实现特征提取的DAG。按照图3-2的DAG，我们用代码
来“画”出这个DAG拓扑图。

首先实现Receiver节点，Receiver的功能是从Kafka拉取数据。

public class Receiver extends SimpleStreamService<byte[], byte[]> {

    //省略代码……

    @Override

    protected List<byte[]> poll(List<Pipe<byte[]>> inputQueues) throws Exception {

        if (stopped) return null;

        inputsList.clear();

        if (kafkaReader.hasNext()) {

            byte[] event = kafkaReader.next();

            inputsList.add(event);

            return inputsList;

        } else {

            return null;

        }

    }

}

在上面的实现中，Receiver的poll方法在Kafka中有数据可读时，就
将其读取出来，并发送到其输出队列，也就是其下游Decoder的输入队
列。

再来看Decoder节点。Decoder节点的功能是将从Kafka中读取的数
据解码为JSON对象。

public class Decoder extends SimpleStreamService<byte[], JSONObject> {

    //省略代码……

    @Override

    protected List<JSONObject> process(List<byte[]> inputs) throws Exception {

        //省略代码……

        byte[] event = inputs.get(0);

        JSONObject eventJson = JSONObject.parseObject(new String(event, Charsets.UTF_8));

        outputsList.clear();

        outputsList.add(eventJson);

        return outputsList;

    }

}



在Decoder的实现中，process方法从其输入队列中读取byte[]类型的
消息后，解析为JSON对象，然后发送到其输出队列，也就是其下游
FeatureForker的输入队列。

数据解析为JSON对象后，就可以进行特征提取了。前文已经提
到，为了减小特征提取的时延，需要让所有特征的计算并行起来。因
此，在FeatureForker节点中，我们对特征提取进行了分解。

public class FeatureForker extends SimpleStreamService<JSONObject, EventFutureWrapper> {

    //省略代码……

    private JSONObject doFeatureExtract(JSONObject event, String feature) {

        // TODO: 实现具体的特征提取
        JSONObject result = new JSONObject();

        result.put(feature, feature);

        return result;

    }

    private class ExtractorRunnable implements Runnable {

        @Override

        public void run() {

            //省略代码……

            JSONObject result = doFeatureExtract(event, feature);

            future.set(result);

        }

    }

    private List<SettableFuture<JSONObject>> fork(final JSONObject event) {

        List<SettableFuture<JSONObject>> futures = new ArrayList<>();

        final String[] features = {"feature1", "feature2", "feature3"};

        for (String feature : features) {

            SettableFuture<JSONObject> future = SettableFuture.create();

            executorService.execute(new ExtractorRunnable(event, feature, future));

            futures.add(future);

        }

        return futures;

    }

    @Override

    protected List<EventFutureWrapper> process(List<JSONObject> inputs) throws Exception {

       //省略代码……

       JSONObject event = inputs.get(0);

       List<SettableFuture<JSONObject>> featureFutures = fork(event);

       ListenableFuture<List<JSONObject>> resultFuture = Futures.allAsList(featureFutures);

       EventFutureWrapper result = new EventFutureWrapper(event, resultFuture);

       outputsList.clear();

       outputsList.add(result);

       return outputsList;

    }

}

在上述代码FeatureForker的process方法中，使用fork方法将事件需



要提取的特征分解为多个任务（用ExtractorRunnable类表示），并提交
给专门进行特征提取的执行器（ExecutorService）执行。执行的结果用
一个List<SettableFuture<JSONObject>>对象来表示，然后通过
Futures.allAsList将这些SettableFuture对象封装为一个包含了所有特征计
算结果的ListenableFuture<List<JSONObject>>对象。至此完成了特征的
分解和并行计算，并且得到了一个用于将来获取所有特征计算结果的
ListenableFuture对象。

Fork完成了，接下来当然就是Join。FeatureJoiner节点的功能是将所
有并行计算的特征计算结果合并起来。

public class FeatureJoiner extends SimplePipeService<EventFutureWrapper, JSONObject> {

    //省略代码……

    @Override

    protected List<JSONObject> process(List<EventFutureWrapper> inputs) throws Exception {

        //省略代码……

        EventFutureWrapper eventFutureWrapper = inputs.get(0);

        Future<List<JSONObject>> future = eventFutureWrapper.getFuture();

        JSONObject event = eventFutureWrapper.getEvent();

        List<JSONObject> features = future.get(extractTimeout, TimeUnit.MILLISECONDS);

        JSONObject featureJson = new JSONObject();

        for (JSONObject feature : features) {

                featureJson.putAll(feature);

            }

        event.put("features", featureJson);

        outputsList.clear();

        outputsList.add(event);

        return outputsList;

    }

}

由于在FeatureForker中已经将所有特征计算的结果用
ListenableFuture<List<JSON-Object>>封装起来，故而在FeatureJoiner的
process方法中，用future.get（）即可获取所有特征计算结果。另外，为
了保证能够在一定的时间内结束对这条消息的处理，还指定了超时时间
（用extractTimeout表示）。当收集了所有的特征后，将其添加到消息
JSON对象的features字段。至此，完成了特征的合并操作。

最后，Sender节点负责将提取了所有特征的消息再次发送到
Kafka，供下游的规则模型系统进行风险评分。

public class Sender extends SimplePipeService<JSONObject, JSONObject> {

    //省略代码……

    @Override

    protected boolean offer(List<Pipe<JSONObject>> outputQueues, List<JSONObject> outputs) throws Exception {



        JSONObject event = outputs.get(0);

        kafkaSender.send(topic, event.toString().getBytes(Charset.forName("UTF-8")));

        return true;

    }

}

至此，特征提取DAG的各个节点均已实现。接下来我们会将这些节
点整合起来，形成完整的特征提取模块DAG。



3.1.4　实现特征提取DAG拓扑

虽然已经实现了所有的节点，但是只有用“管道”把这些节点连通起
来，才能实现完整的DAG。具体实现如下。

List<ServiceInterface> services = new ArrayList<>();

int decoderInputQueueCapacity = 1024;

Queue<byte[]> decoderInputQueue = new BackPressureQueue<>(decoderInputQueueCapacity);

Receiver receiver1 = new Receiver("receiver-1", decoderInputQueue);

services.add(receiver1);

Receiver receiver2 = new Receiver("receiver-2", decoderInputQueue);

services.add(receiver2);

int featureForkerInputQueueCapacity = 1024;

Queue<JSONObject> featureForkerInputQueue = new BackPressureQueue<>(featureForker-

InputQueueCapacity);

Decoder decoder = new Decoder("decoder-1",

Lists.newArrayList(receiver1, receiver2), decoderInputQueue, featureForkerInputQueue);

services.add(decoder);

int featureJoinerInputQueueCapacity = 1024;

Queue<EventFutureWrapper> featureJoinerInputQueue = new BackPressureQueue<>(featureJoinerInputQueueCapacity);

FeatureForker featureForker = new FeatureForker("featureforker-1",

    Lists.newArrayList(decoder), featureForkerInputQueue, featureJoinerInputQueue);

services.add(featureForker);

int senderInputQueueCapacity = 1024;

Queue<JSONObject> senderInputQueue = new BackPressureQueue<>(senderInputQueueCapacity);

FeatureJoiner featureJoiner = new FeatureJoiner("featurejoiner-1",

    Lists.newArrayList(featureForker), featureJoinerInputQueue, senderInputQueue);

services.add(featureJoiner);

Sender sender = new Sender("sender-1",

    Lists.newArrayList(featureJoiner), senderInputQueue);

services.add(sender);

在上面的代码实现中，我们先创建了两个Receiver从Kafka拉取数
据，然后将数据发送给Decoder进行解码。解码后的数据用JSON对象表
示。FeatureForker则将需要计算的特征分发给多个特征计算节点进行计
算，多个特征计算的结果由FeatureJoiner合并起来，然后添加到JSON对
象中，最后通过Sender发送出去。

至此，一个完整的特征提取DAG就实现了。



3.2　CompletableFuture方法与原理

在3.1节中，我们用最基础的线程（Thread）和阻塞队列
（ArrayBlockingQueue）实现了一个简单的流计算框架。“麻雀虽小，五
脏俱全”，虽然它很简陋，但我们从中能够了解一个流计算框架的基本
骨架，即用于传输流数据的队列及用于处理流数据的线程。这个框架足
够我们做一些业务逻辑不太复杂的功能模块，但是它存在以下问题。

·能够实现的DAG拓扑结构有限。例如，在实现Fork/Join功能时，
我们借助了SettableFuture/ListenableFuture的功能。这对DAG拓扑的实现
并不纯粹。

·给每个节点的计算资源只能静态配置，不能根据实际运行状况动
态分配计算资源。

为了解决这些问题，在接下来的章节中，我们将采用
CompletableFuture类来对这个流计算框架进行改造。但在开始改造之
前，需要先彻底理解CompletableFuture的工作原理。

Jav.8新增了许多非常有趣的功能，如Labmda表达式、流式
API（Stream API））等。这些语法糖或API让Java这门“古老”的编程语
言开始具备“现代”的气息。但是，在所有这些新功能中最让笔者觉得耳
目一新，并认为其将Java平台提高到一个新境界的功能是异步执行框架
CompletableFuture。

在Java 8之前，我们都知道用于异步执行的ExecutorService类和代表
异步执行结果的Future类。Future类的get方法用于在任务完成时获取任
务的结果。但是，Future类的get方法有一个缺点，即它是阻塞的。具体
而言，虽然我们将任务提交给ExecutorService异步执行了，但还是需要
使用get方法来同步等待任务结果。这在事实上导致原本异步执行的方
案重新退化成了同步执行方案，失去了原本异步方案的意义。

为了避免这种问题，不同的第三方Java库或框架提供了不同的解决
方案，如Guava库中的SettableFuture/ListenableFuture、Netty中的Future
和ChannelFuture等。这些解决方案均通过注册监听或回调的方式，形成
回调链，从而实现了真正意义上的异步执行方案。



在借鉴了诸多第三方异步编程方案后，Java 8带来了自己的异步编
程方案——CompletableFuture类。CompletableFuture类也采用回调的方
式实现异步执行，但除了提供基本的回调执行机制外，
CompletableFuture类还提供了大量有关异步回调链构造的API，这些API
使Java异步编程变得无比灵活和方便，极大程度地解放了Java异步编程
的生产力。下面我们就来看看部分常用的CompletableFuture类方法。



3.2.1　常用的CompletableFuture类方法

在第2章讲解开发数据采集服务器相关内容时，我们已经用到了部
分CompletableFuture类方法。下面我们介绍部分常用的
CompletableFuture类方法。

（1）将产品放到流水线起点上

public static <U> CompletableFuture<U> supplyAsync(

    Supplier<U> supplier, Executor executor)

CompletableFuture.supplyAsync是开启CompletableFuture异步调用链
的方法之一。这个方法会将supplier封装为一个任务提交给executor执
行，并返回一个记录这个任务执行状态和执行结果的CompletableFuture
对象。之后可以在CompletableFuture对象上挂接各种回调动作。所以说
它是流水线的起点，将产品原料放在了流水线上。

（2）产品在流水线上的加工

public <U> CompletableFuture<U> thenApplyAsync(

    Function<? super T,? extends U> fn, Executor executor)

thenApplyAsync用于在CompletableFuture对象上挂接一个转化函
数。当Completable-Future对象完成时，以其结果作为输入参数调用转化
函数。转化函数内部执行各种逻辑后，返回另一种类型的数据作为输
出。该方法返回一个新的CompletableFuture对象，用于记录转化函数的
执行状态和执行结果等信息。thenApplyAsync的fn参数用于将一种类型
数据转化为另外一种类型数据，就像流水线上生产工人对半成产品进行
加工、处理的过程。

（3）产品在流水线上完成加工后装入仓库

public CompletableFuture<Void> thenAcceptAsync(

    Consumer<? super T> action, Executor executor)



thenAcceptAsync用于在CompletableFuture对象上挂接一个接收函
数。当Completable-Future对象完成时，以其结果作为输入参数调用接收
函数。与thenApplyAsync类似，接收函数在其内部可以执行各种逻辑，
但不同的是，接收函数不会返回任何类型数据，或者说返回类型是
void。因此，thenAcceptAsync通常用于接收并消化任务链的最终输出结
果。这就像产品在流水线上完成所有加工后，从流水线上拿下来装进仓
库的过程。

（4）在流水线上插入一条新流水线

public <U> CompletableFuture<U> thenComposeAsync(

    Function<? super T, ? extends CompletionStage<U>> fn, Executor executor)

thenComposeAsync理解起来会复杂些，但它是一个非常有用的方
法。thenCompose-Async在API形式上与thenApplyAsync类似，但是它的
转化函数返回的不是一般类型的对象，而是一个CompletionStage对象，
或者更具体点，它在实际使用中通常是一个CompletableFuture对象。这
意味着，我们可以在原来的CompletableFuture调用链上插入另一个调用
链，从而形成一个新的调用链。这正是compose（组成、构成）的含义
所在。这个过程就像是在流水线的某个环节插入了另一条流水线。不过
需要注意的是，“插入”这个词带有“已有”和“原来”的意思，但是实际在
程序设计和开发时，这个过程并非一定是对旧物的改造，而是说如果某
个步骤内部有另外的异步执行过程，则可以直接将这条独立的异步调用
链加入当前调用链中来，从而成为整体调用链的一部分。

（5）谁先完成谁执行

public <U> CompletableFuture<U> applyToEither(

    CompletionStage<? extends T> other, Function<? super T, U> fn)

使用applyToEither可以实现两个CompletableFuture谁先完成就由谁
执行回调函数的功能。例如，可以用该方法实现定时超期的功能。具体
而言，用一个CompletableFuture表示目标任务，用另一个
CompletableFuture表示定时任务，这样如果目标任务在定时任务完成前
尚未完成，就由定时任务做善后处理。这里只是列举了一个使用场景，
读者可根据自己的需要任意发挥applyToEither的用法。



（6）一起完成后再执行

public static CompletableFuture<Void> allOf(CompletableFuture<?>... cfs)

CompletableFuture.allOf的功能是将多个CompletableFuture合并成一
个Completable-Future。这又是一个非常有用而且有趣的方法，因为我们
可以用它实现类似于Map/Reduce或Fork/Join的功能。在多核和并行计算
大行其道的今天，诸如Map/Reduce或Fork/Join这类先分散再汇聚的执行
流结构是非常普遍的，CompletableFuture.allOf为我们编写这类模式的执
行逻辑提供了非常方便的方法。在3.2.2节中，我们会介绍这个方法的实
际案例。

（7）异常处理

public CompletableFuture<T> exceptionally(

    Function<Throwable, ? extends T> fn)

在Java的世界里，异常无处不在。在CompletableFuture中发生异常
了会怎样？实际上，如果没有CompletableFuture提供的exceptionally等异
常处理方法，而是由我们自己在回调函数里做异常处理的话，会非常受
限和不方便。稍有不注意，我们就会写出不合理甚至错误的代码。例
如，你认为捕获了的异常，实际上根本不是在那个地方或那个线程上抛
出的。出现这种情况的原因在于，在异步的世界里，即使是同一份代
码，实际上在运行起来后，其调用链生成、回调的执行时刻、回调所在
线程和回调的上下文环境都是灵活多变的。相比以前同步或半异步半同
步的编程方式，使用CompletableFuture开发的程序的运行状况会更加复
杂、多变。CompletableFuture的exceptionally方法为我们提供了相对较好
的异常处理方案。使用exceptionally方法，可以对指定CompletableFuture
抛出的异常进行处理。例如，捕获异常并返回一个特定的值，或者继续
抛出异常。



3.2.2　CompletableFuture的工作原理

前面对CompletableFuture的几个常用API做了讲解，但是光知道这
些API还是不能真正体会CompletableFuture的奥义和乐趣所在。下面我
们通过一个实验程序来具体分析CompletableFuture的工作原理。考虑下
面的实验程序片段：

CompletableFuture<String> cf1 = CompletableFuture.supplyAsync(Tests::source, executor1);

CompletableFuture<String> cf2 = cf1.thenApplyAsync(Tests::echo, executor2);

CompletableFuture<String> cf3_1 = cf2.thenApplyAsync(Tests::echo1, executor3);

CompletableFuture<String> cf3_2 = cf2.thenApplyAsync(Tests::echo2, executor3);

CompletableFuture<String> cf3_3 = cf2.thenApplyAsync(Tests::echo3, executor3);

CompletableFuture<Void> cf3 = CompletableFuture.allOf(cf3_1, cf3_2, cf3_3);

CompletableFuture<Void> cf4 = cf3.thenAcceptAsync(x -> print("world"), executor4);

调试跟踪并分析以上实验程序，CompletableFuture的执行过程如图
3-3所示。

图3-3描述了实验程序整体的执行过程。

1）通过CompletableFuture.supplyAsync创建一个任务Tests：：
source，并交由executor1异步执行。用cf1来记录该任务在执行过程中的
状态和结果等信息。

2）通过cf1.thenApplyAsync，指定当cf1（Tests：：source）完成
时，需要回调的任务Tests：：echo。cf1使用stack来管理这个后续要回
调的任务。与cf1类似，用cf2来记录任务Tests：：echo的执行状态和执
行结果等信息。

3）通过连续3次调用cf2.thenApplyAsync，指定当cf2（Tests：：
echo）完成时，需要回调后续3个任务：Tests：：echo1、Tests：：
echo2和Tests：：echo3。与cf1一样，cf2也是用stack来管理其后续要执
行的这3个任务。

4）通过CompletableFuture.allOf，创建一个合并了cf3_1、cf3_2、
cf3_3的cf3，cf3只有在其合并的所有cf完成时才能完成。在cf3内部，用
一个二叉树（tree）来记录其和cf3_1、cf3_2、cf3_3的依赖关系。这点



后续会详细描述。

5）通过cf3.thenAcceptAsync，指定当cf3完成时，需要回调的任务
（print）。用cf4来记录print任务的状态和结果等信息。

总结：

1）CompletableFuture用stack来管理其在完成（complete）时后续需
要回调的任务（Completion）。

2）在AsyncRun、Completion中，通过依赖（dep）指针，指向后续
需要处理的Completable-Future，这样在任务完成后，就可以通过dep指
针找到后续处理的CompletableFuture，从而继续执行。

3）通过1）和2）形成一个调用链，所有任务按照调用链执行。



图3-3　CompletableFuture的执行过程

图3-4描述了CompletableFuture链是如何组织和执行的。总体来说，
每个Completable-Future可以存在3种类型的指针：src、snd和dep。其
中，dep指向这个CompletableFuture在完成（completed）时，后续继续
调用的CompletableFuture。src和snd则指向其链接的另外两个
CompletableFuture，用于决定是否在CompletableFuture完成时触发dep。
CompletableFuture内部用这3个指针巧妙地管理CompletableFuture之间各
种复杂的依赖和调用关系。对于每个CompletableFuture节点，当其被触



发执行时，如果其src和snd（如果存在snd）都是completed状态（src或
snd指向自己时也算completed状态），就触发其dep，否则就不触发其
dep。但不管这个CompletableFuture是否触发了其dep，在
tryFire（ASYNC），这个CompletableFuture本身已经是completed状态
了。如果它没有触发dep，就会由该CompletableFuture的src或snd在被触
发时按照同样的方式做处理。

图3-4　CompletableFuture的工作原理



3.3　采用CompletableFuture实现单节点流处理

在理解了CompletableFuture的工作原理后，我们就可以开始对特征
提取模块进行改造了。事实上，在CompletableFuture框架的支持下，新
的特征提取模块实现起来非常简单。



3.3.1　基于CompletableFuture实现流计算应用

代码如下：

byte[] event = receiver.receive();

CompletableFuture

        .supplyAsync(() -> decoder.decode(event), decoderExecutor)

        .thenComposeAsync(extractor::extract, extractExecutor)

        .thenAcceptAsync(sender::send, senderExecutor)

        .exceptionally(e -> {

            logger.error("unexpected exception", e);

            return null;

        });

在上面的代码中，我们先从receiver中读取消息，然后通过
supplyAsync方法将这条消息放到“流水线”上。流水线的第一道工序是解
码（decode），负责这道工序的工作小组是decoderExecutor。消息在解
码完成后再进行特征提取（extract），负责特征提取的工作小组是
extractExecutor。由于特征提取这道工序内部又有自己的“小流水
线”（即实现特征并行计算时使用的Fork/Join结构），故采用
thenComposeAsync将这个小流水线嵌入整体的流水线中。流水线的最后
一道工序是发送（send）到消息中间件Kafka中，因为不需要后续处
理，所以使用thenAcceptAsync来“吞掉”这条消息。

下面是extractor：：extract这条内部流水线的实现。

private JSONObject doFeatureExtract(JSONObject event, String feature) {

    // TODO: 实现具体的特征提取
    JSONObject result = new JSONObject();

    result.put(feature, feature);

    return result;

}

private List<CompletableFuture<JSONObject>> fork(final JSONObject event) {

    List<CompletableFuture<JSONObject>> futures = new ArrayList<>();

    final String[] features = {"feature1", "feature2", "feature3"};

    for (String feature : features) {

        CompletableFuture<JSONObject> future = CompletableFuture

                .supplyAsync(() -> doFeatureExtract(event, feature), executorService);

        futures.add(future);

    }

    return futures;

}

public CompletableFuture<JSONObject> extract(JSONObject event) {



    Preconditions.checkNotNull(event, "event is null");

    List<CompletableFuture<JSONObject>> featuresFutures = fork(event);

    return CompletableFuture

            .allOf(featuresFutures.toArray(new CompletableFuture[0]))

            .thenApply(v -> {

                featuresFutures.forEach(f -> event.putAll(f.join()));

                return event;

            });

}

与在3.1.3节中实现特征并行计算的方法非常相似，使用fork方法将
事件需要提取的特征分解为多个任务后，提交给专门负责特征提取的执
行器（ExecutorService）执行。但这次，我们不依赖于第三方的
SettableFuture和ListenableFuture，而是直接使用Completable-Future框架
内部的allOf方法实现Fork/Join的计算模式。

至此，使用CompletableFuture框架实现的流数据特征提取模块就完
成了。可以看出，CompletableFuture框架本身是一个非常好用的流计算
框架。

相比之前我们自己造的流计算轮子，使用CompletableFuture的流计
算实现具有以下优点：

·在构建DAG拓扑时，仅需选择合适的CompletableFuture方法。相
比在前面我们自己实现的流计算框架中，构建DAG的过程就像是在逐
点逐线地“龟速”画画，这种方法要简洁和方便得多。

·在实现DAG节点时，仅需将相关逻辑实现为回调函数。而我们
自己实现的流计算框架在实现回调时，或多或少还需要处理框架内部的
逻辑，对回调实现者并不直观。

·能够静态或动态地控制DAG节点并发度和资源使用量，要实现
这点只需要设置相应的执行器即可，参数选择也更加灵活。

·更方便地实现流的优雅关闭（graceful shutdown）。

我们已经用CompletableFuture框架非常方便地实现了一个流计算的
过程，但是很多时候，这个世界上并没有“简单”的事情，使用
CompletableFuture框架也需要注意很多问题。



3.3.2　反向压力

有关反向压力的问题，我们在第2章已经讲解过，但是这里还要再
次强调下，因为这是流计算系统和异步系统的重中之重。在实际生产环
境，不考虑反向压力的流计算或异步系统毫无用处。考虑我们前面的演
示代码片段，如果特征提取较慢，而数据接收和解码很快，则会出现什
么情况？毫无疑问，如果没有反向压力，数据就会不断地在JVM内积累
起来，直到最终JVM抛出OOM灾难性错误，崩溃退出。这种上下游之
间速度不一致的情况随处可见，所以不处理好反向压力的问题，系统时
刻面临着OOM的危险。

那怎样为CompletableFuture框架加入反向压力能力呢？其实很简
单，只需在使用CompletableFuture的各种异步（以Async结尾）API时，
使用的执行器（由ExecutorService类表示）具备反向压力功能即可。也
就是说，执行器的execute（）方法能够在资源不足时阻塞执行，直到资
源可用为止。

在第2章中，我们实现的BackPressureExecutor类就是实现了反向压
力的执行器，具体实现方法可以参见第2章，这里不再详述。在本节使
用CompletableFuture框架实现流计算应用的过程中，使用的执行器就是
BackPressureExecutor类。

private final ExecutorService decoderExecutor = new BackPressureExecutor(

    "decoderExecutor", 1, 2, 1024, 1024, 1);

private final ExecutorService extractExecutor = new BackPressureExecutor(

    "extractExecutor", 1, 4, 1024, 1024, 1);

private final ExecutorService senderExecutor = new BackPressureExecutor(

    "senderExecutor", 1, 2, 1024, 1024, 1);

private final ExecutorService extractService = new BackPressureExecutor(

    "extractService", 1, 16, 1024, 1024, 1);

如此，我们就实现了流计算的反向压力功能。



3.3.3　死锁

从某种意义上来说，流（或异步）这种方式是最好的并发方式，因
为采用这种方式编写程序，会自然地避免使用“锁”。当使用流时，被处
理的对象依次从上游流到下游。当对象在某个步骤被处理时，它被这个
步骤的线程池中的某个线程唯一持有，因此不存在对象竞争的问题。

但是，这是不是意味着不会出现死锁问题呢？不是的。图3-5就描
绘了一种在流计算应用中死锁的场景。考虑某个流计算应用依次有A和
B这两个步骤，并且具备反向压力能力。如果A的输出已经将B的输入队
列占满，而B的某些输出又需要重新流向B的输入队列，那么由于反向
压力的存在，B会一直等待其输入队列有空间可用，而B的输入队列又
因为B在等待，永远也不会有空间被释放。这样，就形成了一个死锁，
程序会一直因为等待而卡死。

图3-5　流计算死锁之输出变输入

当然，真实的场景下不大会出现这种B的输出重新作为B的输入的
问题，但是会有另外一种类似的情况，就是给多个不同的步骤分配同一
个executor，这样同样会出现死锁问题。图3-6就描绘了在多个步骤使用
同一个执行器时死锁的情景。



图3-6　流计算死锁之多个步骤使用同一执行器

不过话说回来，只要我们避免输出重新流回输入及不同步骤使用相
同执行器的问题，就可以开开心心地使用“流”这种方式构建应用，而不
用考虑.锁”的问题了。这一方面简化了我们的程序设计，即无须考虑竞
态（race condition），另一方面也给程序带来了性能的提升。



3.3.4　再论流与异步的关系

在第2章的结尾处，我们简单地提及流与异步的相似性。“异
步”和“流”本质上是相通的，即“异步”是“流”的本质，而“流”是“异步”的
一种表现形式。在本节，我们完全使用CompletableFuture这个原本为异
步编程而生的框架实现一个流计算应用。

在3.1节中，我们自行实现的流计算框架的主要工作机制是由服务
线程从其输入队列中读取数据进行处理，然后输出到下游服务线程的输
入队列。而在本节中，我们使用CompletableFuture异步框架，选择阻塞
队列做执行器的任务队列。这两种实现的工作原理在本质上不是完全一
致吗？正如图3-7所描绘的流计算运作模式，它们都是一组线程从其输
入队列中取出消息进行处理，然后输出给下游的输入队列，供下游的线
程继续读取并处理。

图3-7　流计算的执行模式

当然，CompletableFuture异步框架也可以选择其他类型的执行器。
例如，使用栈管理线程，每次执行器的execute（）方法被调用时，就从
栈中取出一个线程来执行任务。当使用这种不带任务队列的执行器时，
CompletableFuture异步框架就和我们的流计算模式相差较远了。这也是
笔者为什么说“流”是“异步”的一种表现形式的原因。

不过，从应用开发的层面上来看，“异步”和“流”有着非常重要的区
别，甚至有时候这些区别会直接影响程序设计的思路和方案选择。这是
因为，当我们谈论“异步”的时候，更多的着重点在异步执行之后的回调
逻辑。当业务逻辑较多时，不可避免地会使回调嵌套层次很深，所形成



的异步调用链也会变得很长，这使得程序设计和实现都会变得复杂。而
如果我们从“流”的角度看问题，我们的着重点会更多地放在业务执行流
程本身，即使业务流程再多，也无非是在“流水线”上多加几个步骤而
已。“异步”和“流”是两种不同的问题思考方式。大多数情况下，面对复
杂的业务流程设计时，使用“流”这种思路会使得设计和实现都更加清晰
和明确。

总而言之，“异步”会让事情变得复杂，而“流”会让事情变得简单。
当再次碰到程序设计问题时，读者不妨试着按照“流”这种方式来考量一
番，说不定就会有意外惊喜。



3.4　流计算应用的性能调优

优化是软件开发过程中非常重要的事情。一方面，它可以帮助我们
改善系统设计、提升软件性能；另一方面，它有助于我们更加深刻地理
解系统和技术本身。所以，在构建好特征提取功能的实时流计算应用
后，我们还需要严格测试并分析这个实时流计算应用的真实运行状态和
性能表现，并据此对程序和系统做出优化。事实上，对于任何系统，如
果能认真思考并做好性能优化这件事情，我们最终都一定会受益匪浅。

回到对流计算应用性能调优的讨论上来。如果程序或系统是按
照“流”这种方式设计和开发的，那么性能调优的过程实际上是非常有规
律可循的。尤其是在实现了反向压力的情况下，对流计算应用的性能调
优可以说是一件轻松愉悦的事情。



3.4.1　优化机制

从前面的章节中我们知道，一个流计算应用的执行过程是由DAG决
定的。DAG描述了流计算应用中的各个执行步骤，以及数据的流动方
向。因此，根据DAG的拓扑结构，我们已经对整个流计算应用的执行过
程有了整体认识。接下来针对流计算应用性能的优化，就是根据这个
DAG按图索骥的过程了。

图3-8　根据DAG追踪流计算应用的瓶颈

图3-8描述了一个流计算应用的优化过程。在实现了反向压力的流
计算系统中，整个流计算应用的TPS会受限于DAG中最慢的那个节点，
并且整条流计算作业上各个节点的TPS会最终趋近于一个相同值，也就
是最慢节点的TPS。例如，假设图3-8中的D节点处理时延为50ms，它是
整个系统中最慢的节点，最终整个流计算应用的处理能力就不会超过
2.TPS。因此，这个时候只考量TPS是不能知道流计算作业是慢在哪个节
点上的。我们需要换一个角度，即考量每个节点处理事件的时延。如果
某个节点的处理时延明显高于其他节点的时延，那就很可能是这个节点
导致了系统整体的性能低下。因此，我们优化的重点首先放到这个最慢
节点上。当通过各种手段，如改进算法、增加资源分配、减少线程竞争
等优化措施，把这个最慢节点的时延降下来，TPS提升上去后，再次测
量系统的整体性能。如果系统性能达到了预期的性能要求，就可以停止



优化；如果系统性能还没有达到预期的性能要求，则重复上面的过程，
再次找到DAG中最慢的节点，优化、改进和测试系统性能，直到系统性
能最终达到预期为止。



3.4.2　优化工具

“工欲善其事，必先利其器”。要做好性能优化，首先要准备好一些
工具，并且需要对这些工具有一定的了解。性能优化的工具可以分为两
类，即监控工具和压测工具。

1.监控工具

无监控，不优化。监控是优化的基础，如果对系统的运行状况没有
一个整体的了解，则优化是无从做起的。监控是我们了解系统运行状况
的基础。

（1）Metrics

在开始性能调优前，务必确定在程序的关键逻辑处已经安装了性能
监控点。这是非常重要的，否则监控就成了无本之木、无源之水。
Metrics是一个用于测量Java程序的运行状况的工具库。它提供了
Gauge、Counter、Meter、Histogram和Timer这5种测量手段。其中：

·Gauge（仪表盘）记录变量的当前值，如记录队列中当前元素的
个数。

·Counter（计数器）可以通过inc方法和dec方法来增加或减少其计
数值。

·Meter（累加计数器）提供了特定时间段内的平均速率，可用于
计算TPS一类的指标。

·Histogram（直方图）用于统计数据的分布直方图，并提供了最
大、最小和各种分位数等信息，可用于统计时延一类的指标。

·Timer（计时器）是对meter和histogram的组合封装，提供更加方
便的TPS和时延指标测量方法。

通过Metrics提供的这些测量手段，我们可以在需要关注性能的程序



片段处添加性能监控点。之后，这些性能监控点的监控报告可以输出给
各种性能监控工具，如Zabbix、JConsole等。

（2）Zabbix

或许我们可以用top、dstat、tcpdump等工具来即时查看系统CPU、
内存、磁盘和网络的使用状态。但是在性能调优的时候，单纯地使用这
些工具并不能非常好地查看系统在一段时间范围内的运行状态。为了能
够更加完整、全面地分析一个程序的运行状况，需要借助于诸如Zabbix
这类工具构建系统运行状态的时序图，如图3-9所示。通过各种资源使
用状况的时序图，我们能够方便、快速、直观地定位到程序承压时间、
受限资源类型、JVM做垃圾回收的周期、内存是否泄漏等一系列的性能
相关问题。

（3）JConsole

JConsole是JDK自带的Java性能分析工具，可以直接在命令行窗口
下以jconsole命令打开。通过JConsole，可以对JVM实例（一个独立运行
的JVM进程）中的内存使用情况、线程状态、类和MBeans等各种资源
信息进行监控，如图3-10所示。只要JVM实例打开了jmxremote端口，就
可以通过JConsole在运行时连接到Java应用程序。JConsole运行时占用资
源较少，使用起来非常方便。但是需要注意的是，JConsole是一个GUI
程序，只有在带图形界面库的操作系统上才能运行。我们可以通过本地
机器上的JConsole远程连接到服务器上的JVM实例。



图3-9　使用Zabbix监控CPU使用状态



图3-10　使用JConsole监控JVM进程

（4）JVisualVM

与JConsole类似，JVisualVM也是在JDK自带的Java性能分析工具，
可以在命令行窗口下以jvisualvm命令打开。相比JConsole，JVisualVM
的功能更加强大些，并且可以通过安装插件添加更多的JVM性能监控工
具。



需要特别说明的是，JVisualVM有两个非常惊艳的功能，即抽样器
和线程状态可视化展示。抽样器可以对CPU和内存进行抽样，抽样的结
果保存为快照。通过快照可以一目了然地看到系统中最耗时的函数调用
是哪些、函数调用栈各级时延、实例数最多的类是哪些等信息。这些信
息对定位程序在哪个地方最耗时、最耗内存是非常有用的。图3-11展示
了JVisualVM抽样器的使用界面。



图3-11　JVisualVM抽样器的使用界面

线程状态可视化展示功能是指JVisualVM能够以彩色条的方式动态
展示JVM实例在运行过程中所有线程状态的变化过程，如图3-12所示。
通过对线程状态持续时间和变更过程的分析，可以了解系统中哪些线程
最忙碌，哪些线程最空闲，哪些计算逻辑分配的计算资源过少了，哪些
计算逻辑分配的计算资源过多了，哪些线程处于竞态，哪些线程又在相
互等待……

总之，通过线程状态彩色条，再配合抽样器，能够非常全面而又生
动地理解JVM实例的运行状态。而这些都十分有利于我们分析程序的性
能，并让性能优化有据可循。不过功能强大带来的问题是JVisualVM的
运行会要求更多的系统资源。所以，如果你要监控的JVM实例中的线程
和数据较多，就需要给JVisualVM分配更多的内存，否则JVisualVM运
行到一半就会因内存不足而崩溃。



图3-12　JVisualVM的线程状态可视化展示功能

2.压测工具

性能改进时的监控行为一定要在系统压力“打满”的情况下进行，否
则监控工具展现出来的系统状况不具有系统优化的提示作用。即使想简
单改进无压力状况下系统的处理时延，实际上也要考虑系统在流量高峰



时的真实运行情况。传统针对微服务的压测工具有Apache Bench、
Apache JMeter、LoadRunner等，但与针对微服务的压力测试有所区别，
流计算应用的压力测试主要依赖于消息中间件，如Kafka。在流计算应
用实现的过程中，有时也会调用其他独立的微服务，但通常而言，不管
是流计算应用还是其所调用的独立微服务，它们都是在同一个局域网内
的，不会存在类似于数据采集服务器面对终端用户的数万、数十万并发
连接问题，所以我们对压测工具的要求相对简单，只需要它们能够将我
们所测对象的输入压满即可。下面我们分别针对微服务应用和流计算应
用两种场景各自介绍一种压测工具。至于其他压测工具就不再展开介绍
了，感兴趣的读者可以自行查阅相关资料。

（1）Apache JMeter

Apache JMeter是一款基于Java开发的压力和性能测试工具，也可用
于其他领域的测试。在对微服务做压力测试时，可以通过JMeter启动多
个线程对微服务发起HTTP请求。JMeter提供了多种负载统计报表和可
视化工具，可以让我们方便地看到压力测试的运行状况和结果报告。图
3-13展示了某个微服务应用在请求压力被“打满”时的TPS时间序列图。
从图3-13中可以发现，该微服务应用的TPS最高为3600，但TPS随时间
变化的上下抖动现象还是非常明显的。换言之，在高压测试情况下，该
微服务应用的吞吐能力不太稳定，这表明该微服务应用应该在某些地方
存在问题。那具体是什么地方的问题呢？这个时候我们就可以使用相应
的监控工具进行更深入的分析了。



图3-13　使用JMeter进行压力测试发现服务的吞吐能力不稳定

（2）Apache Kafka

与微服务应用不同，流计算应用的数据输入源从诸如Apache Kafka
这样的消息队列而来。以Kafka作为数据源为例，为了方便压力测试，
可以预先在Kafka中灌入一批用于压力测试的数据。之后，如图3-14所
示，我们可以通过修改Kafka分区（partition）的偏移量（offset），方便



地重放压测数据，而不必每次都重新灌入新数据。这种消息重放的功
能，使得Kafka非常适合用于流计算应用的性能压力测试。

图3-14　Kafka重置偏移量可以重新消费数据



3.4.3　线程状态

虽然前面介绍了各种强有力的性能测试工具，但最终能否优化好我
们所开发的各种应用程序，还是依赖于我们对程序运行时的透彻理解。
除了对业务流程本身的理解之外，最重要、最通用、最基础的内容是对
线程状态的理解了。可以说，只有理解了线程状态，我们才能真正快、
准、狠地定位各种程序性能的问题点。所以，本节将重点讲解线程状态
问题。我们将分析两个层面的线程，一是JVM线程，二是操作系统线
程。

1.JVM线程

JVM线程的状态分为新建、运行、阻塞、等待、限时等待和终止，
如图3-15所示。

·新建（new）：当通过new Thread（）创建一个新的线程对象
时，线程就处于新建状态，这个时候线程还没有开始运行。

·运行（runnable）：线程正在被JVM执行，但它也可能在等待操
作系统的某些资源，如CPU。

·阻塞（blocked）：线程因为等待监视器锁而阻塞，获取监视器锁
是为了进入同步块或在调用wait方法后重新进入同步块。

·等待（waiting）：线程在调用Object.wait、Thread.join或
LockSupport.park方法后，进入此状态。处于等待状态的线程在等待另一
个线程执行特定的动作。

·限时等待（timed waiting）：线程在调用Thread.sleep、
Object.wait（timeout）、Thread.join（timeout）、LockSupport.parkNanos
或LockSupport.parkUntil方法后，进入此状态。处于限时等待状态的线程
在等待另外一个线程执行特定的动作，但是带有超期时间。

·终止（terminated）：线程完成执行后的状态。



图3-15　JVM线程的状态

在使用JVisualVM监控工具监测JVM实例时，会看到线程状态分成
运行、休眠、等待、驻留和监视5种状态，如图3-16所示。这5种状态是
对JVM线程状态的另一种划分。

·运行：对应运行状态。

·休眠：对应限时等待状态，通过Thread.sleep（timeout）进入此状
态。

·等待：对应等待状态和限时等待状态，通过Object.wait（）或
Object.wait（timeout）进入此状态。

·驻留：对应等待状态和限时等待状态，通过LockSupport.park（）
或LockSupport.parkNanos（timeout）、LockSupport.parkUntil（timeout）
进入此状态。



·监视：对应阻塞状态，在等待进入synchronized代码块时进入此状
态。

图3-16　JVisualVM中线程的5种状态

2.操作系统线程

由于Linux操作系统的线程本质上也是进程，它是一种轻量级进



程，Linux内核以进程为调度单位，故Linux线程的状态和进程的状态一
样。图3-17展示了Linux进程各种状态之间的转化关系。

·TASK_RUNNING（R）：CPU正在执行的进程，或CPU可以执
行但尚未调度执行的进程。如果细分，则前者是正在运行状态，后者是
可运行状态。

·TASK_INTERRUPTIBLE（S）：进程因为等待某些事件的发生
而处于可中断的睡眠状态。所谓可中断，是指进程在收到信号（也称为
软中断）时，会被提前临时唤醒去执行信号处理逻辑。在完成信号处理
后，进程继续进入睡眠状态。只有等到它真正关心的事件发生（另外的
进程通过wake_up函数触发）时，进程才会被真正唤醒，变成
TASK_RUNNING状态。



图3-17　Linux进程状态

·TASK_UNINTERRUPTIBLE（D）：此进程状态类似于
TASK_INTERRUPTIBLE，但是它不会处理信号。也就是说，进程即使
在睡眠期间收到了信号，也不会醒来。只有等到它真正关心的事件发生



（另外的进程通过wake_up函数触发）时，进程才会醒来，变成
TASK_RUNNING状态。TASK_UNINTERRUPTIBLE和
TASK_INTERRUPTIBLE的功能本质上是相同的，只是为了不同场景使
用的灵活性而提供的两种不同睡眠策略。

·TASK_STOPPED（T）：当接收到SIGSTOP或SIGTSTP等信号
时，进程就会在处理这些信号后进入TASK_STOPPED状态。处于
TASK_STOPPED状态的进程没有运行，并且不会被调度运行。当接收
到SIGCONT信号时，进程就会在信号处理完成后，重新变为
TASK_RUNNING状态，也就是恢复运行。TASK_STOPPED状态比较
常用的一个场景是通过Ctrl-Z暂停进程，然后通过bg命令让进程在后台
继续运行。

·TASK_TRACED（T）：TASK_TRACED状态与TASK_STOPPED
状态类似，只用于调试的场景。当进程正在被其他进程调试追踪时，进
程就进入这种状态。

·EXIT_ZOMBIE（Z）：进程已终止，但是还没有被其父进程回
收进程信息，这个时候进程就处于僵尸状态。

·EXIT_DEAD（X）：进程在经过僵尸状态后，被父进程调用
wait/waitpid回收掉进程信息，就处于EXIT_DEAD状态了，至此进程彻
底结束。

3.JVM线程和操作系统线程的关系

当JVM的线程进行I/O操作，如调用FileOutputStream.writeBytes或
FileChannel.transferTo等方法时，JVM线程处于运行状态，但是操作系
统的状态不只有TASK_RUNNING，它还会在部分时间段处于
TASK_UNINTERRUPTIBLE状态。JVM线程与操作系统线程一一对
应，其调度是借助于操作系统的任务调度器完成的。JVM线程在触发
I/O操作时，JVM自身并不知道这个线程在操作系统层面执行的具体细
节，它只知道这个线程正在被执行。所以，对于它而言，该线程处于运
行状态。但是在操作系统层面，操作系统（内核）发现这个线程进行了
I/O相关调用。通常而言，I/O操作会触发磁盘或网络等外设的数据传输



行为，这个过程需要时间，因此操作系统会把这个线程先调度出去，也
就是让出CPU来执行其他任务，等到数据传输完成时，再继续调度该线
程执行。在线程等待数据传输完成期间，该线程通常处于
TASK_UNINTERRUPTIBLE状态。这就是为什么进行I/O操作的JVM线
程处于运行状态，但是在操作系统线程层面会出现TASK_RUNNING和
TASK_UNINTERRUPTIBLE两种状态的原因。JVM线程的I/O操作越密
集，对应操作系统线程处于TASK_UNINTERRUPTIBLE状态的时间就
越多。所以，某个JVM线程长时间处于运行状态，并不代表它一直在被
CPU执行，还有可能处于I/O状态。这个时候，需要借助于top、dstat和
zabbix等工具来分析JVM实例（JVM进程）处于用户态和内核态的时间
占比、磁盘和网络I/O的吞吐量等信息。虽然处于运行状态的线程并不
代表它在执行，还有可能是正阻塞在等待I/O操作完成的过程中，但我
们在性能调优时，还是应该让线程处于运行状态。这是因为，处于运行
状态的线程，要么表示CPU在执行，要么意味着它已经触发了I/O操
作，只是I/O能力不足或者外部资源响应太慢，才导致了它的等待。而
如果线程处于等待、限时等待或阻塞状态，则说明程序可能存在以下问
题。

·工作量不饱和，如从输入队列拉取消息过慢，当然也可能是输入
本身很少，但是在性能测试和优化时应该让系统处于压力饱和状态。

·内耗严重，如锁使用不合理、synchronized保护范围过大，导致竞
态时间过长、并发性能低下。

·资源分配不足，如分配给某个队列的消费者线程过少，导致队列
的生产者长时间处于等待状态。

·处理能力不足，如某个队列的消费者处理过慢，导致队列的生产
者长时间处于等待状态。

整体而言，由于JVM线程是对操作系统线程的封装，其调度也由操
作系统支撑，所以它们的状态大体上是对应和关联的。例如，处于等待
状态的JVM线程处于操作系统线程的TASK_INTERRUPTIBLE状态，处
于等待状态的线程可以由其他JVM线程通过notify/notifyAll唤醒，也可
以因为InterruptedException被唤醒。同样地，处于
TASK_INTERRUPTIBLE状态的线程，既可以由其他线程唤醒，也可以
由信号（软中断）来唤醒。但由于JVM是在用户态对线程进行管理和描



述的，所以底层的细节会丢失。这就导致JVM线程在一个状态期间，可
能会出现多种操作系统线程状态。例如前面提到的，处于运行状态的
JVM线程可以处于操作系统线程的TASK_RUNNING状态和
TASK_INTERRUPTIBLE状态。



3.4.4　优化方向

在确定性能瓶颈处之后，即可采取措施来改进程序性能了。通常性
能优化可以从资源、算法、并发与竞态这3个方面来考虑。

1.资源

程序运行时资源主要包括CPU、内存、磁盘I/O和网络I/O4个方面。

·CPU：调整线程数和线程调度的优先级，可以调整分配给计算任
务的CPU资源。

·内存：通过设置启动参数，可以配置JVM内存使用策略和垃圾回
收策略。例如，用-Xms和-Xmx配置JVM的堆，用-Xss配置线程的栈；还
可以通过其他参数配置JVM垃圾回收（GC）的策略。另外，在程序开
发过程中，采取及时释放无用对象、设置缓存TTL、避免内存泄漏等措
施，也可以优化内存使用。

·磁盘I/O：通过异步和批次操作，可以提高磁盘读写性能。使用
缓存，可以减少不必要的磁盘I/O操作。在必要时，可以采用性能更
好、支持随机读写的磁盘，如SSD。

·网络I/O：通过异步和批次操作，可以提高网络I/O性能。如果
通过监控确定带宽已用满，则需要增加带宽。

2.算法

算法改进是一个与特定计算任务强相关的事情。例如，采用
Hyperloglog近似算法来改进关联图谱中一度关联度的计算。由于这部分
与具体的计算任务强相关，因此在这里不展开叙述。在本书的第4章
中，我们会讨论流计算使用场景中一些常见的计算目标和计算模式，届
时我们将讨论部分特定计算目标和计算模式的优化问题。

3.并发与竞态



如果在程序中为了保证并发安全，使用了诸如锁（lock）一类的同
步方案，那么就需要检查程序性能是不是因为多线程竞争下降了。3.3.3
节提到，在流计算过程中，通过队列隔离计算逻辑，并且尽量使用不可
变变量（immutable variables）来减少竞态发生。所以，如果存在竞态影
响性能的问题，则其很有可能是由程序编写不当造成的。特别是在使用
第三方库的时候，一定要对所使用第三方库的内部工作原理有最基本的
认识，如它是否线程安全、是否支持高并发等。如果实在不能确定，则
采用稳妥的方式处理更好，如采用线程局部量的方式。

另外，需要强调的是，支持高并发与线程安全是两个不同的概念。
支持高并发意味着线程一定安全，但是线程安全并不一定是支持高并发
的。例如，JDK中的Hashtable是线程安全的，但它是通过在所有Map接
口方法上加synchronized这种粗鲁的同步方式实现的，因此在高并发场
景下Hashtable的性能会非常糟糕。而ConcurrentHashMap采用了更加精
细设计的分段加锁方式来实现线程安全和高并发访问，在并发访问时不
同段互不影响，因此在高并发场景下，ConcurrentHashMap性能依旧十
分出色。



3.5　本章小结

本章通过构建一个单节点的实时流计算框架，分析了流计算中较重
要的两个基本组件，即用于传递事件的队列和用于执行计算逻辑的线
程。虽然在本书后续的章节中，我们会看到更加复杂的分布式流计算框
架，但这改变不了流计算应用的这种基本组成结构。

流计算是异步的系统，所以我们需要严格控制异步系统中各子系统
执行步调不一致的问题。为此，我们反复强调了反向压力功能对流计算
系统的重要性。只有在内部支持了反向压力功能的流计算应用，才能长
期稳定、可靠地运行下去。相比“异步”而言，“流”这种计算模式更加自
然地描述了真实世界中事情发生的过程，也更加符合我们在分析业务执
行流程时的思维方式。所以，“流”降低了构建异步和高并发系统的难
度。

针对流计算应用的优化是非常有意义和价值的事情，这会让我们对
自己构建的系统（不管是在业务逻辑上，还是技术细节上）有更加深刻
的认识，所以我们必须重视程序优化。

本章构建了特征提取模块的流计算应用框架，但是并没有涉及具体
的特征计算。特征计算属于流数据处理的内容，在接下来的章节中，我
们将讨论有关流数据处理的方方面面。



第4章　数据处理

在第3章中，我们实现了一个用于流数据上特征提取的单节点流计
算应用。但是在这个流计算应用中，我们事实上只是完成了流数据上特
征提取的整体执行框架，对于具体的特征提取，我们只是通过一
个“桩”函数（即doFeatureExtract函数）把具体实现略过了。在本章
中，我们将讨论具体的特征提取问题。说到“特征”，这其实是一个非
常宽泛的概念，因为“特征”的来源可谓是多种多样，它们的计算方法
也不尽相同。例如在金融风控系统中经常用到的借贷金额、还款时间等
特征，它们可以由上报事件的原始字段直接或间接转化而来。又如用户
登入频率、登入的不同地点数、登入的不同设备数等特征，需要从过往
的事件历史中通过在时间维度或空间维度的分组和聚合运算而来。更复
杂一些的特征，如跨多个事件的事件序列模式匹配，甚至需要用到
CEP（复杂事件处理）等技术。所以，针对流数据的特征提取实际上涵
盖了流数据处理的方方面面，本章就来详细讨论流数据处理的相关内
容。



4.1　流计算到底在计算什么

到目前为止，通过第2章，我们已经有了流数据源，通过第3章，我
们已经实现了一个用于构建单节点流计算应用的框架。接下来，我们就
要用它们做一些真正有意义的事情了。那么问题来了，我们千辛万苦构
建的流计算系统到底能够计算什么呢？总的来说，我们使用流计算主要
是为了计算以下几类问题。

1.流数据操作

流数据操作可以说是流计算系统与生俱来的能力，它本身是针对数
据流的转化或转移处理，所以实现和使用起来都相对更加直观。流数据
操作的内容主要包括3类：对数据进行清洗、规整和结构化，对不同来
源的数据进行关联及合并，以及在不同系统之间搬运数据。这3类操作
通过一些常用的流式API就可以实现，4.2节会详细讨论这些流式API。

2.单点特征计算

一个事件包含的用户是否在黑名单中？发生事件的设备是否是模拟
器？温度传感器传来的温度事件是否已经超出正常温度范围？发送消息
设备的IP是否是代理？一次交易的金额是否属于大额交易？手机是否有
SIM卡？诸如此类的问题，要么可以通过黑白名单，要么能够通过特定
的规则计算而得到答案，实现起来相对简单，我们将这类特征称为单点
特征。

3.时间维度聚合特征计算

相同设备1小时内的注册事件次数、相同银行卡号的7天交易事件次
数、过去30天内同一IP段的交易金额、过去1分钟高温事件次数、过去5
分钟日志告警事件的次数……诸如此类特征在风控、预警、监控等各种
场景中都有非常广泛的应用。通过分析不难发现，这类特征都有一个共
同特点，即它们均需要在时间维度对数据进行聚合运算。因此，我们称
这类特征为时间维度聚合特征。

4.关联图谱特征计算

除了时间维度的聚合分析外，我们还经常进行空间维度的聚合分



析，即“关联图谱”分析。例如，在一些风控场景中，我们需要计算用户
账户使用IP的个数、同一手机号码发生在不同城市的个数、同一设备关
联用户的数目、同一用户关联设备的数目、同一推荐人推荐的用户数等
特征。以设备关联用户数为例，如果某个设备上注册的用户很多，那么
它的风险就比较高，毕竟正常情况下我们只会用自己的手机注册自己的
账号，而不会帮其他几十、上百人注册账号。

5.事件序列分析

数据流中的数据不只单纯在时间上有着先来后到的关系，数据和数
据之间也有着联系。例如，用户在手机上安装新App，可能是先单击了
某个广告链接，然后下载并安装App，最后成功注册账号。从“单
击”到“下载”，再到“安装”和“注册”，这就完成了一次将广告转化为用户
的过程。再如，在网络欺诈识别场景中，如果用户在新建账号后立马发
生大量交易行为，那么这种“新建账号”到“10分钟内5次交易”的行为就
是一种非常可疑的行为了。诸如此类从数据流表示的事件流中检测并筛
选出符合特定模式或行为的事件序列的过程，称为CEP。流计算经常用
来解决CEP问题。

6.模型学习和预测

随着流计算越来越流行和普及，越来越多的原本主要针对离线批量
数据的统计和机器学习模型也被用于流数据。例如，在风控系统中，我
们计算特征后，还需要把这些特征输入评分模型进行风险评分。根据不
同的使用场景，使用的评分模型可能是基于规则的模型，也可能是基于
机器学习的模型。传统的机器学习模型主要通过离线训练而来，但现在
越来越多的模型会直接基于流数据在线训练和更新。再如，在异常检测
应用中，我们会在线统计并估计变量的分布参数，然后根据训练出的分
布模型判断变量之后的取值是否异常。这种同时在线更新和预测的做法
在流计算应用中也越来越常见。

这里总结了6类流计算问题。总体而言，我们在以后的流计算应用
开发过程中，所面对的计算问题都会八九不离十地归于这6类计算问题
中的一种或多种。所以，在本章接下来的内容中，除了“单点特征”外，
我们将逐一分析各类问题的计算方法。至于“单点特征”，由于其实现相
对简单（或者说难点不在于流计算这部分），且主要与具体业务场景相
关，所以我们就不具体讨论了。



4.2　流数据操作

当流数据进入系统后，通常会对数据做一些整理，如提取感兴趣的
字段、统一数据格式、过滤不合条件事件、合并不同来源数据流等。虽
然不同系统处理数据的具体方法不尽相同，但经过多年的实践和积累，
业界针对流数据的操作目标和手段有了一些共同的认识，并已逐步形成
一套通用的有关流数据操作的API集合。在本节中，我们将讨论一些基
础的流数据操作方法，几乎所有的流计算平台都会提供这些方法的实
现，而其他功能更丰富的流式API也构建在这些方法的基础上。



4.2.1　过滤

过滤（filter）基本上可以说是最简单的流计算操作了，它用于在数
据流上筛选出符合指定条件的元素，并将筛选出的元素作为新的流输
出。流的过滤是一个容易理解且容易实现的操作。例如，我们现在需要
监控仓库的环境温度，在火灾发生前提前预警以避免火灾，那么就可以
采用过滤功能，从来自于传感器的记录环境温度的事件流中过滤出温度
高于100℃的事件。我们使用Flink实现如下：

DataStream<JSONObject> highTemperatureStream = temperatureStream.filter(x -> x.getDouble("temperature") > 100);

上面的Lambda表达式“x->x.getDouble（"temperature"）>100”即过滤
火灾高温事件的条件。

图4-1展示了过滤操作的作用，它将一个具有多种形状的数据流，
转化为只含圆形的数据流。当然在实际开发过程中，我们可以将“形
状”替换为任何东西。

图4-1　过滤操作



4.2.2　映射

映射（map）用于将数据流中的每个元素转化为新元素，并将新元
素输出为数据流。同样以仓库环境温度监控为例，但这次我们不是将高
温事件过滤出来，而是采用数据工程师在做特征工程时常用的一种操
作：二值化。我们在原始环境温度事件中，添加一个新的布尔
（boolean）类型字段，用于表示该事件是否是高温事件。同样，我们使
用Flink实现如下：

DataStream<JSONObject> enhancedTemperatureStream = temperatureStream.map(x -> {

    x.put("isHighTemperature", x.getDouble("temperature") > 100);

    return x;

});

在上面示意代码的Lambda表达式中，通过原始事件的temperature字
段判断是否为高温事件后附加到事件上，最后返回附加了高温信息的事
件。

图4-2展示了映射操作的作用，它将一个由圆形组成的数据流，转
化为由五角星形状组成的数据流。同样在实际开发过程中，我们可以
将“形状”具象为任何东西。对数据流中的数据做转化或信息增强，正是
映射操作的重要作用。



图4-2　映射操作



4.2.3　展开映射

展开映射（flatMap）用于将数据流中的每个元素转化为N个新元
素，其中N∈[0 + ∞)。相比映射而言，展开映射是一个更加灵活的方
法，因为映射只能一对一地对数据流元素进行转化，而展开映射能1对
N地对数据流元素进行转化。下面举一个展开映射在社交活动分析中使
用的例子。现在有一组代表用户信息的数据流，其中每个元素记录了用
户（用user字段表示）及其好友列表（用friends数组字段表示）信息，
现在我们要分析各个用户与其各个好友之间的亲密程度，以判断他们之
间是否是“塑料兄弟”或“塑料姐妹”。我们要先将用户及其好友列表一一
展开，展开后的每个元素代表了用户及其某一个好友之间的关系。下面
是采用Flink实现的例子。

DataStream<String> relationStream = socialWebStream.flatMap(new FlatMapFunction<JSONObject, String>() {

    @Override

    public void flatMap(JSONObject value, Collector<String> out) throws Exception {

        List<String> collect = value.getJSONArray("friends").stream()

                .map(y -> String.format("%s->%s", value.getString("user"), y))

                .collect(Collectors.toList());

        collect.forEach(out::collect);

    }

});

在上面代码的展开映射方法中，我们使用Java 8的流式API，将用户
的好友列表friends展开，与用户形成一对对的好友关系记录（用“%s-
>%s”格式表示），最终由out：：collect收集起来，写入输出数据流中。

图4-3展示了展开映射操作的作用，它将一个由包含小圆形在内的
正方形组成的数据流，展开转化为由小圆形组成的数据流。在实际开发
过程中，我们还经常使用展开映射实现Map/Reduce或Fork/Join计算模式
中的Map或Fork操作。更有甚者，由于展开映射的输出元素个数能够为
0，我们有时候连Reduce或Join操作也可以使用展开映射操作实现。



图4-3　展开映射操作



4.2.4　聚合

聚合（reduce）用于将数据流中的元素按照指定方法进行聚合，并
将聚合结果作为新的流输出。由于流数据具有时间序列的特征，所以聚
合操作不能像诸如Hadoop等批处理计算框架那样作用在整个数据集上。
流数据的聚合操作必然指定了窗口（或者说这样做才有更加实际的意
义），这些窗口可以基于时间、事件或会话（session）等。

同样以社交活动分析为例，这次我们需要每秒钟统计一次10秒内用
户活跃事件数。使用Flink实现如下。

DataStream<Tuple2<String, Integer>> countStream = socialWebStream

    .map(x -> Tuple2.of("count", 1))

    .returns(Types.TUPLE(Types.STRING, Types.INT))

    .timeWindowAll(Time.seconds(10), Time.seconds(1))

    .reduce((count1, count2) -> Tuple2.of("count", count1.f1 + count2.f1));

在上面的代码片段中，socialWebStream是用户活跃事件流，我们使
用timeWindowAll指定每隔1秒，对10秒窗口内的数据进行一次计算。
reduce方法的输入是一个用于求和的Lambda表达式。在实际执行时，这
个求和Lambda表达式会依次将每条数据与前一次计算的结果相加，最
终完成对窗口内全部流数据的求和计算。如果将求和操作换成其他“二
合一”的计算，则可以实现相应功能的聚合运算。由于使用了窗口，所
以聚合后流的输出不再像映射运算那样逐元素地输出，而是每隔一段时
间才会输出窗口内的聚合运算结果。如前面的示例代码中，就是每隔1
秒输出10秒窗口内的聚合计算结果。

图4-4展示了聚合操作的作用，它将一个由带有数值的圆形组成数
据流，以3个元素为窗口，进行求和聚合运算，并输出为新的数据流。
在实际开发过程中，我们可选择不同的窗口实现、不同的窗口长度、不
同的聚合内容、不同的聚合方法，从而在流数据上实现各种各样的聚合
操作。



图4-4　聚合操作



4.2.5　关联

关联（join）用于将两个数据流中满足特定条件的元素对组合起
来，按指定规则形成新元素，并将新元素输出为数据流。在关系型数据
库中，关联操作是非常常用的查询手段，这是由关系型数据库的设计理
念（即数据库的3种设计范式）决定的。而在流数据领域，由于数据来
源的多样性和在时序上的差异性，数据流之间的关联也成为一种非常自
然的需求。以常见场景为例，假设我们收集的事件流同时被输入两个功
能不同的子系统以做处理，它们各自处理的结果同样以数据流的方式输
出。现在需要将这两个子系统的输出流按照相同事件id合并起来，以汇
总两个子系统对同一事件的处理结果。在这个合并过程中，两个数据流
之间的元素是“一对一”的对应关系。这种情况实现起来相对简单。

相比关系型数据库表间的关联操作，流数据的关联在语义和实现上
都更加复杂些。由于流的无限性，只有在类似于前面“一对一”等非常受
限的使用场景下，不限时间窗口的关联设计和实现才有意义，也相对简
单。在大多数使用场景下，我们需要引入“窗口”来对关联的流数据进行
时间同步，即只对两个流中处于相同时间窗口内的数据进行关联操作。

即使引入了窗口，流数据的关联依旧复杂。当窗口时间很长，窗口
内的数据量很大（需要将部分数据存入磁盘），而关联的条件又比较宽
泛（如关联条件不是等于而是大于）时，那么流之间的关联计算将非常
慢（不是相对于关系型数据库慢，而是相对于实时计算的要求慢），基
本上我们也别指望能够非常快速地获得两个流关联的结果了。反过来
讲，如果关联的周期很短，数据量不大，而我们能够使用的内存又足够
将这些数据都放入内存，那么关联操作就能够相对快速地实现。

同样以社交网络分析为例子，这次我们需要将两个不同来源的事件
流，按照用户id将它们关联起来，汇总为一条包含用户完整信息的数据
流。以下就是在Flink中实现这个功能的示例代码。

DataStream<JSONObject> joinStream = socialWebStream.join(socialWebStream2)

    .where(x1 -> x1.getString("user"))

    .equalTo(x2 -> x2.getString("user"))

    .window(TumblingEventTimeWindows.of(Time.seconds(10), Time.seconds(1)))

    .apply((x1, x2) -> {

        JSONObject res = new JSONObject();

        res.putAll(x1);



        res.putAll(x2);

        return res;

    }); 

在上面的代码片段中，socialWebStream和socialWebStream2分别是
两个来源的用户事件流，我们使用where和equalTo指定关联的条件，即
按照user字段的值相等关联起来。然后使用window指定每隔1秒，对10
秒窗口内的数据进行关联计算。最后利用apply方法，指定了合并计算
的方法。

流的关联是一个我们经常想用但又容易让人头疼的操作。因为稍不
注意，关联操作的性能就会惨不忍睹。关联操作需要保存大量的状态，
尤其是窗口越长，需要保存的数据越多。因此，当使用流数据的关联功
能时，应尽可能让窗口较短。

图4-5展示了采用内联接（inne.join）的关联操作，它将两个各带id
和部分字段的数据流分成相同的时间窗口后，按照id相等进行内联接关
联，最后输出两个流内联接后的数据流。



图4-5　关联操作



4.2.6　分组

如果说各种流计算应用或流计算框架最终能够实现分布式计算，实
现高并发和高吞吐，那么最大的功臣莫过于“分组”（key By）操作的实
现了。分组操作是实现并行流计算的最主要手段，它将流划分为不相交
的分区流，分组键相同的消息被划分到相同的分区流中，各个分区流在
逻辑上相互独立，具有各自独立的运行时上下文。这就带来两个非常大
的好处。

1）流分组后，能够被分配到不同的计算节点上执行，从而实现了
CPU、内存、磁盘等资源的分布式使用和扩展。

2）分区流具有独立的运行时上下文，就像线程局部量一样，对于
涉及运行时状态的流计算任务来说，这极大地简化了安全处理并发问题
的难度。

以电商场景为例，假设我们要在“双十一抢购”那天，实时统计各个
商品的销量以展现在监控大屏上。使用Flink实现如下。

DataStream<Tuple2<String, Integer>> keyedStream = transactionStream

    .map(x -> Tuple2.of(x.getString("product"), x.getInteger("number")))

    .returns(Types.TUPLE(Types.STRING, Types.INT))

    .keyBy(0)

    .window(TumblingEventTimeWindows.of(Time.seconds(10)))

    .sum(1);

在上面的代码中，transactionStream代表交易数据流，在取出了分
别代表商品和销量的product字段和number字段后，我们使用keyBy方法
根据商品对数据流进行分组，然后每10秒统计一次10秒内的各商品销售
总量。



图4-6　分组操作

图4-6展示了数据流的分组操作。通过分组操作，将原本包含多种
形状的数据流划分为多个包含单一形状的数据流。当然，这里的“多
个”是指逻辑上的多个，它们在物理上可以是多个流，也可以是一个
流，这就与具体的并行度设置有关了。



4.2.7　遍历

遍历（foreach）是对数据流的每个元素执行指定方法的过程。遍历
与映射非常相似又非常不同。说它们相似是因为遍历和映射都是将一个
表达式作用在数据流上，只不过遍历使用的是“方法”（没有返回值的函
数），而映射使用的是“函数”。说它们不同是因为遍历和映射语义大不
相同，从API语义上来讲，映射的作用是对数据流进行转换，但遍历并
非对数据流进行转换，而是“消费”数据流。也就是说，数据流在经过遍
历后也就终结了。所以，我们通常使用遍历操作对数据流进行各种I/O
操作，如写入文件、存入数据库、输出到显示器等。

下面的Flink示例代码及图4-7均展示了将数据流输出到显示屏的功
能。

transactionStream.addSink(new PrintSinkFunction<>()).name("Print to Std. Out")

图4-7　遍历操作



4.3　时间维度聚合特征计算

按时间维度对数据进行聚合是非常常见的计算类型，这很容易理
解。例如，你是一个公司的老板，你想知道公司这个月的运营情况，你
肯定要问这个月的销售额和成本各是多少，而不会去问每一笔买卖。再
如，你是某个仓库的安全管理员，每天需要检查仓库的环境是否安全，
你最关注的肯定是仓库当日的最高温度、最低温度和平均温度是多少。
又或者你是某个网站的运营人员，想知道网站最近的流量怎样，你肯定
要问最近一段时间的网站访问量（PV）和独立访客量（UV）。实际开
发工作也是如此，大部分数据系统的主要工作其实就是对数据做各种维
度的聚合运算，如计数（count）、求和（sum）、均值（avg）、方差
（variance）、最小（min）、最大（max）等。由于流数据可以看作一
种特殊的时间序列，在时间维度上对数据做各种聚合运算也是很常见的
操作。

以风控场景为例，我们经常需要计算一些时间维度聚合特征，如过
去一周内在同一个设备上交易的次数、过去一天同一用户的交易总金
额、过去一周同一用户在同一I.C段的申请贷款次数等。如果用SQL描述
上面的统计量，分别如下：

# 过去一周内在同一个设备上交易的次数
SELECT COUNT(*) FROM stream

WHERE event_type = "transaction" 

AND timestamp >= 1530547200000 and timestamp < 1531152000000 

GROUP BY device_id;

# 过去一天同一用户的总交易金额
SELECT SUM(amount) FROM stream

WHERE event_type = "transaction"

AND timestamp >= 1531065600000 and timestamp < 1531152000000

GROUP BY user_id;

# 过去一周同一用户在同一IP C段申请贷款次数
SELECT COUNT(*) FROM stream 

WHERE event_type = "loan_application"

AND timestamp >= 1530547200000 and timestamp < 1531152000000

GROUP BY ip_seg24;

上面的SQL语句让我们很容易想到关系型数据库。关系型数据库在
执行这类SQL时，如果没有构建索引，那么执行引擎就会遍历整个表，
过滤出符合条件的记录，然后按GROU.BY指定的字段对数据分组并进



行聚合运算。

那当我们面对的是流数据时，应该怎样实现这类聚合运算呢？一种
简单的策略是采用与前文所述关系型数据库实现聚合运算时相同的方
法。当数据到来时，先把它保存到缓冲区，然后遍历窗口内的所有数
据，过滤出符合指定条件的事件并进行计数或求和等聚合运算，最后输
出聚合结果。

但是大多数情况下将这种简单的方式运用到实时流计算中时，都会
遇到性能问题。因为如果将每条消息都保存在缓冲区中，当窗口较长、
数据量较大时，会占用很多内存。而且每次的计算需要遍历所有的数
据，这无疑会消耗过多的计算资源，同时增加了计算所耗的时间。

因此，我们需要尽可能地降低计算复杂度，并且只保留必要的聚合
信息，而不需要保存所有原始数据。非常幸运的是，对于各种聚合类型
的运算，我们都能够找到一个（或者一组）指标，用于记录聚合后的结
果。例如，对于count计算这个指标是“记录数”，对于sum计算这个指标
是“总和”，对于avg计算这组指标是“总和”和“记录数”，对于min计算这
个指标是“最小值”，对于max计算这个指标是“最大值”等。

我们以count计算来详细说明优化后的做法。首先，在每个时间窗
口内，给变量的每一种可能的取值分配一个用于保存记录数的寄存器。
然后当数据到达时，根据变量的取值及其所在的窗口，选中对应的记录
数寄存器，然后将该记录数寄存器的值加一。这样，当窗口结束时，每
个记录数寄存器的取值就是该时间窗口内变量在某个分组下的计数值
了。同样，对于其他类型的时间维度聚合特征的计算，都可以按照这种
思路来实现。表4-1列举了几种聚合计算在采用寄存器方法实现时所需
要的寄存器个数及各个寄存器的含义。

表4-1　各种聚合计算使用的寄存器含义



虽然采用寄存器的方案极大地减少了内存的使用量，也降低了计算
的复杂度，但是这种方案依旧存在问题。由于采用寄存器来记录聚合计
算的中间值，也就涉及“状态”的存储问题。或许乍看之下我们会觉得，
寄存器无非存储一个数字而已，又能够占用多少空间？但稍微仔细分析
下就会发现问题。是的，我们为变量的每个可能的值都分配了一个或一
组寄存器，虽然寄存器的个数不多，如在表4-1中使用寄存器最多的方
差也就用了3个寄存器。当我们进行聚合分析的变量具有一个较低的势
[1]时，那么一切尚且良好。但是，实际的情况是，我们用于分组聚合时
的分组变量往往具有比原本预想的高得多的势。例如，统计用户每天的
登入次数，那中国有10多亿人口呢！（当然并非所有人都会上网。）再
如，需要统计每个IP访问网站的次数，那全球有40多亿IP呢！再加上，
有时候我们需要聚合的是一些复合变量，如统计过去一周同一用户在同
一IP C段申请贷款次数，这种情况如果严格按照理论值计算（也就是笛
卡儿积），那将是天文数字了。所以，至少我们不能将这些状态都存放
在本地内存里。通常，我们需要将这些寄存器状态保存到外部存储器
中，如Redis、Ignite或本地磁盘。并且，我们还需要为这些状态设置过
期时间（TTL），将过期的状态清理掉，一方面为新的状态腾出空间，
另一方面避免了占据空间的无限增长。在第5章中，我们将具体讨论有
关状态存储的问题，所以在这里先不展开了。

[1] 势（cardinality）是集合论中用来描述一个集合所含元素数量的概
念。如集合S={A,B,C} 有3个元素，那么它的势就是3。集合包含的元素
数量越多，其势越大。



4.4　关联图谱特征计算

讨论完流数据在时间维度的聚合分析，我们再来看看流数据在空间
维度的聚合分析，也就是关联图谱。关联图谱是一种使用“图”来表示实
体之间关联关系的数据组织结构。在社交网络进行分析中，关联图谱有
着广泛的应用。通过对社交网络进行分析，可以发现虚拟社区、评估个
体影响力、探索信息传播规律等。图4-8展示了一个关联图谱的例子，
将这个关联图谱可视化后，我们能够一目了然地发现该图谱中有3个“团
伙”，每个“团伙”各有1到2个“大哥”，并且3个“团伙”之间还通过“小
弟”相互联系。

图4-8　关联图谱

同样以金融风控为例，关联图谱在其中扮演着重要角色并起着巨大
的作用。例如，在游戏代充值场景中，通过对手机和用户构成的网络分
析，发现某个手机上注册的不同用户数过多，说明这个手机非常可疑。
再如，在反欺诈场景中，通过对IP和设备的网络分析，发现某个IP C段
上出现的设备数过多，说明这个IP C段的网络可能是团伙欺诈网络。



在本节中，我们主要讨论关联图谱中一度关联和二度关联的特征计
算问题。虽然本节主要讲解流数据在空间维度的聚合分析，但是由于流
数据本身属于时间序列，并且具有无穷无尽的特点，我们还是需要将时
间窗口考虑在内。具体来说，我们分析的问题是诸如“过去一周内在同
一个设备上注册的不同用户数”“过去24小时同一IP C段220.181.111出现
的不同设备数”这类有时间窗口限定的问题，而不是“同一个设备上注册
的不同用户数”和“同一IP C段220.181.111出现的不同设备数”这种不设时
间范围的问题。



4.4.1　一度关联

一度关联是指关联图谱中的一个节点有多少个与之直接相邻的节
点。实时流上的一度关联通常是为了统计一段时间内，某种属性上另一
种属性不同取值的个数。例如，“过去一周内在同一个设备上注册的不
同用户数”“过去24小时同一IP C段220.181.111出现的不同设备数”“过去1
小时用户账户使用的不同IP数”“过去3个月同一手机号码关联的不同设
备数”等。

同样，如果用SQL来描述这类问题，就应该是类似于以下这些例
子：

# 过去一周内在同一个设备上注册的不同用户数
SELECT COUNT(DISTINCT user_id) FROM stream

WHERE event_type = "create_account" 

AND timestamp >= 1530547200000 and timestamp < 1531152000000 

GROUP BY device_id;

# 过去1小时用户账户使用的不同IP数
SELECT COUNT(DISTINCT ip) FROM stream

WHERE event_type = "transaction"

AND timestamp >= 1531065600000 and timestamp < 1531069200000

GROUP BY user_id;

# 过去3个月同一手机号码关联的不同设备数
SELECT COUNT(DISTINCT device_id) FROM stream 

WHERE event_type = "create_account"

AND timestamp >= 1530547200000 and timestamp < 1538496000000

GROUP BY phone_number;

从上面的示例中可以看到，一度关联的计算其实就是COUNT
DISTINCT（去重计数）计算。所以，我们立刻就想到了在流数据中实
现一度关联的方法。

首先，我们在每个时间窗口内，用一个集合（set）来记录变量所有
不同的取值。当新事件到达时，将事件所带相关变量的值添加到集合，
利用集合自身的特性实现去重功能，然后返回集合的势（也就是集合的
大小），即我们要计算的一度关联特征值。是不是非常简单啊？当读者
看到此处时，就知道按照笔者的惯例，这其中必定存在猫腻了。是的，
这里也存在问题，而且问题还不小。



针对一度关联的计算，我们的目的是得到一度相邻节点的数量。在
前面的解决方案中，为了实现这个目标，我们非常朴实地将每一个不同
取值都放在集合中保存下来。在数据量较小的时候，这种做法简单明
了，不会存在什么问题。但如果变量的势很大，不同取值非常多，那么
保存这些值将会占用大量的存储空间。不仅如此，当数据量大到一定程
度时，程序的实时计算性能急剧下降。占用大量的存储空间和衰减严重
的性能表现，都会让前面的解决方案在实际生产环境中变得不可行。

那该怎么办呢？在这关键时刻，一位盖世英雄踩着七彩祥云来拯救
我们了，它就是神奇的HyperLogLog算法！话说笔者当初为了解决一度
关联特征计算的问题可谓费尽心机，后来在一次上网查阅时搜得
HyperLogLog算法，顿觉惊为天人，继而拍案而起，这种算法真的是太
神奇了！

HyperLogLog算法是一种以准确度换取时间复杂度和空间复杂度的
近似算法，与之类似的还有Bloo.Filter、Count-Mi.Sketch等算法。我们
接下来重点介绍的HyperLogLog算法就是为了解决大数据量情况下计算
集合中去重元素个数的问题。HyperLogLog能够帮助我们节省大量存储
空间和计算时间。以Redis中的HyperLogLog算法实现为例，只需要用
12KB的内存，就能够在0.81%的标准误差范围内，记录将近264个不同
值的个数。而如果我们将这些不同值原原本本地记录下来，那就是平均
记录长度×264B了。另外，HyperLogLog算法的插入和查询的时间复杂度
都是O（1），所以在时间性能方面，HyperLogLog算法完全符合实时计
算的要求。

在Redis中，HyperLogLog算法提供了3个命令：PFADD、
PFCOUNT和PFMERGE。其中，PFADD用于将元素添加到HyperLogLog
寄存器，PFCOUNT用于返回添加到HyperLogLog寄存器中不同元素的
个数（根据HyperLogLog算法计算出来的估计值），PFMERGE则用于
合并多个HyperLogLog寄存器。

在有了HyperLogLog算法的加持后，我们就能够对一度关联的计算
做出优化了。首先，我们在每个时间窗口内，为变量创建一个新的
HyperLogLog寄存器。当新事件到达时，将事件所带相关变量的值通过
PFADD命令添加到HyperLogLog寄存器中，然后使用PFCOUNT命令就
可以返回变量不同取值的数量（估计值），这就是一度关联值。而如果
我们还需要对多个窗口内的不同值个数进行汇总，那么就使用



PFMERGE命令先将多个窗口内的HyperLogLog寄存器合并起来，生成
一个新的合并后的HyperLogLog寄存器，之后对这个寄存器使用
PFCOUNT命令就可以返回合并多个窗口后变量的不同取值个数了。

当然，虽然HyperLogLog算法为我们解决了去重计数的问题，但是
还存在与4.3节进行时间维度聚合计算时一样的问题，即如果计算一度
关联的分组变量（如本小节前文所述3个SQL示例中的device_id、
user_id和phone_number）本身就有非常高的势，那么就需要非常非常多
的HyperLogLog寄存器。如果按照每个HyperLogLog寄存器12KB计算，
其实这也是一笔不小的存储空间开销了。所以，同样的道理，我们需要
将这些寄存器放到诸如Redis、Ignite或本地磁盘这样的外部存储器中，
并且为这些寄存器设置过期时间。另外，如果你能够接受更大的估计误
差，则还可以进一步减小HyperLogLog寄存器的长度。

表4-2列举了使用不同长度HyperLogLog寄存器情况下1000万个寄存
器占用的空间及对应的估计误差。

表4-2　不同长度HyperLogLog寄存器占用的空间与估计误差

注：估计误差ERR与寄存器长度L（以B为单位）之间的关系为
ERR= 1.04/sqrt（L*8/6），其中，8为1B对应的位数，6为HyperLogLog
算法中每个桶使用的位数。



4.4.2　二度关联

二度关联是对一度关联的扩展，它是由节点的一度关联节点再做一
次一度关联后的节点数，如“过去一个月内在同一个设备上注册的用户
登录过的设备数”“过去一个周内来自于同一个IP的设备使用过的IP数”。
图4-9描述了一个节点的二度关联节点，其中所有标记为1的节点都是标
记为0的节点的一度关联节点，而所有标记为2的节点都是标记为0的节
点的二度关联节点。

从图4-9中，我们能够直观地理解到，要计算一个节点的二度关联
节点数，需要执行两个步骤。第一步是获取该节点的所有一度关联节点
所组成的集合。第二步是遍历这个集合，获取其中每个节点的一度关联
节点所组成的集合，然后将所有这些集合求并集。最后得到的这个并集
就是原节点的二度关联节点集合了。由于二度关联这种天生的“两步
走”过程，我们在实现二度关联的计算时，也将这两个步骤分开。第一
步是求一个集合，第二步则与4.4.1节中一度关联的计算类似。

图4-9　二度关联



讨论到这里的时候，聪明的读者们也一定发现了二度关联计算的问
题。我们在4.4.1节中就谈到过，为了避免过多占用存储空间及性能随时
间的衰减，我们采用了不需要记录原始值的HyperLogLog算法。可是当
涉及二度关联计算的时候，我们不可避免地需要记录位于原节点和二度
关联节点之间的一度关联节点。毫无疑问，如果一度关联节点很多，则
这个方案就不可行了。

实际上，我们这次是真的遇到挑战了。在实时流计算领域，目前尚
且没有一种在大数据量情况下方便、直接且行之有效的二度关联计算方
案。虽然有很多图数据库（如JanusGraph和Dgraph）在分布式实时图计
算方面已经有了非常大的突破，能够帮助我们在一定程度上解决二度关
联实时计算的问题，但相比实时流计算对响应时延及吞吐力更严苛的要
求，还是略显不足。

所以我们完全没辙了吗？这也未必。如果我们愿意接受一个稍有滞
后的二度关联计算结果，则我们还是能够采取一定的手段，做到二度关
联的实时查询的。那究竟是什么方法呢？咱们就不卖关子了，它就是大
名鼎鼎的Lambda架构！在第9章中，我们还会讨论Lambda架构，但在此
我们先就二度关联这个具体的问题来先看看Lambda架构是如何发挥作
用的。

Lambda架构的核心思想是对于计算量过大或者计算过于复杂的问
题，将其分为离线计算部分和实时计算部分，其中离线计算是在主数据
集上的全量计算，而实时计算则是对增量数据的计算。当这两者各自计
算出结果后，再将结果合并起来，从而得到最终的查询结果。通过这种
离线计算和实时计算的方式，Lambda架构能够实时地在全量数据集上
进行分析和查询。

对于二度关联计算，我们也将其分为离线计算部分和实时计算部
分。下面就以“过去一个月内在同一个设备上注册的用户登录过的设备
数”这个计算目标为例，详细讲解具体实现方法。

首先，将流数据按照不同的事件类型，存入不同的Hive表中。
在“过去一个月内在同一个设备上注册的用户登录过的设备数”这个特征
计算中，我们将注册（create_account）事件存放到create_account_table
表中，将登录（login）事件存放到login_table表中。这两个表的定义分
别如下：



CREATE TABLE create_account_table(device_id string, user_id string) PARTITioNED BY (day string, hour string);

CREATE TABLE login_table(user_id string, device_id string) PARTITIONED BY (day string, hour string);

接下来，我们先计算离线部分的不同设备数。假设每次大约需要
120分钟才能执行完一个月的数据，再留下一部分空档时间，于是我们
设定每3小时执行一次离线计算。例如，在2019/09/3.09：03：00时刻，
开始执行如下离线计算部分的Hiv.SQL。

-- 每3小时执行一次
CREATE TABLE temp_table_before_20190930_09 AS

SELECT DISTINCT

    create_account_table.device_id AS c_device_id,

    create_account_table.user_id AS user_id,

    login_table.device_id AS l_device_id

FROM

    create_account_table INNER JOIN login_table ON create_account_table.user_id = login_table.user_id

WHERE

    (

        create_account_table.day < "20190930" AND create_account_table.day >= "20190901"

        AND

        login_table.day < "20190930" AND login_table.day >= "20190901"

    )

    OR

    (

        create_account_table.day = "20190930" AND create_account_table.hour < "09"

        AND

        login_table.day = "20190930" AND login_table.hour < "09"

    );

在上面的Hiv.SQL中，我们将create_account_table表和login_table表
通过共同的用户user_id关联起来，并通过DISTINCT关键字得到去重后
的用户注册和登录设备信息，这样就得到了离线部分的计算结果。

接下来就是实时计算部分了。在实现实时计算部分前，我们需要先
确定实时计算部分需要计算的内容，以及之后怎样将实时计算部分的结
果合并到离线计算部分上来。图4-10展示了二度关联特征的增量计算方
法，其中每个有向连线都代表了一部分数据之间的内联接（inne.join）
操作。具体来说，A→B代表离线计算部分，剩下的ΔA→ΔB、
ΔA→ΔB、ΔA→ΔB代表增量计算的部分。



图4-10　二度关联特征的增量计算方法

前面我们已经假定计算一个月的数据需要120分钟，每隔3小时计算
一次。所以，实时计算部分最多需要计算最近6小时内的增量数据，再
考虑每天不同时刻的流量是有高峰和低谷之别的，所以我们保守估计在
实时计算部分，ΔA→B、A→ΔB分别需要4分钟，而ΔA→ΔB需要1分
钟。算到这里，就有些尴尬了，实时计算部分居然需要9分钟，这还算
实时计算吗？所以，我们在这里实现的实时计算部分是打了“大折
扣”的，但不管怎样，将原本全量计算的时间从2个小时缩减为9分钟左
右，也算是不小的进步了。

接下来就是实时计算部分的实现了，具体如下：

-- 计算ΔA→ΔB部分
CREATE TABLE temp_table_after_20190930_09_p1 AS

SELECT DISTINCT

    create_account_table.device_id AS c_device_id,

    create_account_table.user_id AS user_id,

    login_table.device_id AS l_device_id

FROM

    create_account_table INNER JOIN login_table ON create_account_table.user_id = login_table.user_id

WHERE

    (

        create_account_table.day = "20190930" AND create_account_table.hour >= "09"

        AND



        login_table.day = "20190930" AND login_table.hour >= "09"

    );

-- 计算A→ΔB部分
CREATE TABLE temp_table_after_20190930_09_p2 AS

SELECT DISTINCT

    create_account_table.device_id AS c_device_id,

    create_account_table.user_id AS user_id,

    login_table.device_id AS l_device_id

FROM

    create_account_table INNER JOIN login_table ON create_account_table.user_id = login_table.user_id

WHERE

    (

        create_account_table.day < "20190930" AND create_account_table.day >= "20190901"

        AND

        login_table.day = "20190930" AND login_table.hour >= "09"

    );

-- 计算ΔA→B部分
CREATE TABLE temp_table_after_20190930_09_p3 AS

SELECT DISTINCT

    create_account_table.device_id AS c_device_id,

    create_account_table.user_id AS user_id,

    login_table.device_id AS l_device_id

FROM

    create_account_table INNER JOIN login_table ON create_account_table.user_id = login_table.user_id

WHERE

    (

        create_account_table.day = "20190930" AND create_account_table.hour >= "09"

        AND

        login_table.day < "20190930" AND login_table.day >= "20190901"

    );

在上面的SQL中，我们分别计算了ΔA→ΔB、ΔA→B、A→ΔB的增
量数据。根据前面的分析，这部分执行需要9分钟左右，所以我们设定
每15分钟执行一次以上SQL。

最后将离线部分和实时部分两者的结果合并起来：

SELECT c_device_id, COUNT(DISTINCT l_device_id)

FROM

    temp_table_before_20190930_09

    UNION temp_table_after_20190930_09_p1

    UNION temp_table_after_20190930_09_p2

    UNION temp_table_after_20190930_09_p3

GROUP BY c_device_id;

至此，我们就完成了“过去一个月内在同一个设备上注册的用户登
录过的设备数”的统计。接下来可以将计算结果导入Redis缓存起来，以
供流计算应用实时查询。



总的来说，在这种解决方案下，我们所查得的“过去一个月内在同
一个设备上注册的用户登录过的设备数”是最多迟滞30分钟（由15分钟
乘以2倍所得）的数据，但查询本身是实时快速响应的，毕竟只需要通
过GET命令访问一次Redis即可。所以，不管怎样，这是一个可以真实
落地且行之有效的解决方案。

最后，真心希望诸如JanusGraph和Dgraph等各种开源分布式图数据
库[1]变得更加强大和丰富起来。毕竟，关联图谱分析本应该属于图数据
库分内之事啊！感兴趣的读者不妨尝试下基于这些分布式图数据库的关
联图谱分析方案，说不定就有意外惊喜呢！

[1] 注意，图数据库厂商TigerGraph 专门针对目前几种主流图数据库做过
性能对比测试，感兴趣的读者可以自行查阅， 链接地址为
https://www.tigergraph.com.cn/wp-content/uploads/2019/02/TigerGraph-
Benchmark-Report-20190217.pdf。读者们可重点关注其中“两度路径查询
时间”一表。



4.5　事件序列分析

CEP通过分析事件流中事件之间的关系（如时间关系、空间关系、
聚合关系、依赖关系等）产生一个具有更高层次含义的复合事件。那我
们为什么要挖掘事件流中事件之间的关系呢？这是因为，有些时候单独
发生的一个事件，可能并没有十分明显或有用的业务含义，但是当这个
事件是发生在特定的上下文背景中，并且与其他事件产生关联时，这些
发生在一起的多个事件就具有更加复杂的业务含义了。根据CEP所发生
的复合事件，我们可以结合其业务含义做出一些有用的推断和决策，这
就是CEP的价值所在。

下面列举几个CEP经常被用到的场景。

·银行卡异常检测。如果一张银行卡在30分钟内，连续3次转账给
不同银行卡，或者15分钟内在2个不同城市取款，则意味着该银行卡行
为异常，有可能被盗或被骗，需要给持卡人发送告警短信并采取相应措
施。

·工厂环境监控。某纸筒生产车间为了保证安全生产，在车间安装
了温度传感器，当温度传感器上报的环境温度记录出现1次高温事件
时，需要发送轻微告警，而当30秒内连续两次出现高温事件时，则需要
发出严重告警了。

·推荐系统。如果用户在10分钟之类单击了3次同类商品，那么他
很有可能对该类商品感兴趣，之后可以更加主动地给他推荐同类商品。

·离职员工数据泄露检测。如果员工最近经常访问招聘网站，电子
邮件的附件很大，还用USB复制数据，那么该员工准备离职的可能性就
比较大，公司需要提前采取措施。

除了以上列举的几个例子外，CEP使用的场景还有很多。CEP是一
个令笔者觉得非常有趣的技术，因为只要我们设置好了感兴趣的事件发
生模式，之后就会从数据流中不断冒出符合我们所设置模式的事件序
列。这些事件序列有着明确的业务含义，告诉我们现在系统发生什么，
我们要做什么。CEP的这种工作模式真有点儿“春种一粒粟，秋收万颗



子”的大丰收即视感，这正是笔者觉得它有趣的原因。

接下来，我们就来看看CEP的编程模式和方法。



4.5.1　CEP编程模式

CEP的实现方式有多种，比较常见的有自动机、匹配树、Petri网、
有向图等。这里我们不具体讨论CEP的实现方式，因为这超出了本书范
围，我们把重点放在CEP技术的使用上。提供CEP功能的产品比较丰
富，如WSO2 CEP（Siddhi）、Drools、Pulsar、Esper、Flink CEP等，这
些产品各有特色且名声都不小，感兴趣的读者可以自行查阅相关资料。
这里我们以Flink CEP为例来说明如何使用CEP。

在Flink CEP的实现中，事件间的各种各样的关系被抽象为模式
（pattern）。在定义好模式后，将这个模式设置到数据流上，之后当数
据流过时，如果匹配到定义的模式，就会触发一个复合事件。这个复合
事件包含所有参与这次模式匹配的事件。为了方便用户定义事件间的关
系，也就是模式，Flink CEP提供了丰富的API。Flink CEP常用API如表
4-3所示。

表4-3　Flink CEP常用API





注意，表4-3只列举了Flink CEP的部分API，实际上Flink CEP还有
很多其他API，在这里我们就不一一列举出来了，建议感兴趣的读者自
行参考Flink官方文档。



4.5.2　Flink CEP实例

下面我们以仓库环境温度监控为例来演示Flink CEP在实际场景中的
运用。假设现在我们收到公司老板的需求，需要监控仓库的环境温度，
以及时发现和避免火灾。我们使用的温度传感器每秒上报一次事件到基
于Flink的实时流计算系统。我们设定告警规则如下，当15秒内两次监控
温度超过阈值时发出预警，当30秒内产生两次预警事件且第二次预警温
度比第一次预警温度高时就发出严重告警。

接下来就是具体的Flin.CEP实现了。首先，定义“15秒内两次监控温
度超过阈值”的模式：

DataStream<JSONObject> temperatureStream = env

    .addSource(new PeriodicSourceFunction())

    .assignTimestampsAndWatermarks(new EventTimestampPeriodicWatermarks())

    .setParallelism(1);

Pattern<JSONObject, JSONObject> alarmPattern = Pattern.<JSONObject>begin

("alarm")

    .where(new SimpleCondition<JSONObject>() {

        @Override

        public boolean filter(JSONObject value) throws Exception {

            return value.getDouble("temperature") > 100.0d;

        }

    })

    .times(2)

    .within(Time.seconds(15));

在上面的代码中，我们用begin定义一个模式alarm，再用where指定
了我们关注的是温度高于100℃的事件；然后用times配合within，指定
高温事件在15秒内发生两次才发出预警。

然后，我们将预警模式安装到温度事件流上：

DataStream<JSONObject> alarmStream = CEP.pattern(temperatureStream, alarmPattern)

    .select(new PatternSelectFunction<JSONObject, JSONObject>() {

        @Override

        public JSONObject select(Map<String, List<JSONObject>> pattern) throws Exception {

            return pattern.get("alarm").stream()

                    .max(Comparator.comparingDouble(o -> o.getLongValue

("temperature")))

                    .orElseThrow(() -> new IllegalStateException("should contains 2 events, but none"));

        }

    }).setParallelism(1);



在上面的代码中，我们将预警模式alarmPattern安装到温度事件流
temperatureStream上。当温度事件流上有匹配到预警模式的事件时，就
会发出一个预警事件，这是用select函数完成的。select函数指定了发出
的预警事件是两个高温事件中温度更高的那个事件。

接下来，定义严重告警模式：

Pattern<JSONObject, JSONObject> criticalPattern = Pattern.<JSONObject>begin("critical")

    .times(2)

    .within(Time.seconds(30));

与预警模式的定义类似，在上面的代码中，我们定义了严重告警模
式，即“在30秒内发生两次”。

再将告警模式安装在告警事件流上：

DataStream<JSONObject> criticalStream = CEP.pattern(alarmStream, criticalPattern)

    .flatSelect(new PatternFlatSelectFunction<JSONObject, JSONObject>() {

        @Override

        public void flatSelect(Map<String, List<JSONObject>> pattern,

                           Collector<JSONObject> out) throws Exception {

            List<JSONObject> critical = pattern.get("critical");

            JSONObject first = critical.get(0);

            JSONObject second = critical.get(1);

            if (first.getLongValue("temperature") <

                    second.getLongValue("temperature")) {

                JSONObject jsonObject = new JSONObject();

                jsonObject.putAll(second);

                out.collect(jsonObject);

            }

        }

    }).setParallelism(1);

这一次，我们的告警模式不再是安装在温度事件流上，而是安装在
步骤2中的预警事件流上。当预警事件流中有匹配告警模式的事件（在
30秒内发生两次预警）时，就触发告警。不过这里还有一个要求没有达
到，即第二次预警温度比第一次预警温度高，这是通过flatSelect来实现
的，在flatSelect中，我们设定只有第二次预警温度比第一次预警温度高
时，才将告警事件输出至out.collect。

至此，一个关于仓库环境温度监控的CEP应用就实现了。



4.6　模型学习和预测

在数据流上进行模型学习并根据模型做出判断或预测，是将统计学
习和机器学习的理论和方法推广应用在流数据的结果。流数据不断输入
模型学习算法，实时更新模型参数，在线训练所得模型能够更加及时和
真切地表达当前状况。

数据研究人员在为数据建模时，有两种非常不同的思路，一种是统
计学习模型，另一种是机器学习模型。统计学习模型以统计分析为基
础，偏向于挖掘数据内部产生的机制，更加注重模型和数据的可解释
性；而机器学习模型以各种机器学习方法为基础，偏向于用历史数据来
预测未来数据，更加注重模型的预测效果。我们分别从统计学习角度和
机器学习角度来讨论实时流数据模型学习和预测的问题。



4.6.1　统计学习模型

在使用统计学习模型来建模时，最主要的问题在于确定随机变量的
概率分布函数或概率密度函数。常见的离散型随机变量分布模型有0-1
分布、二项分布、多项式分布和泊松分布等。常见的连续型随机变量分
布模型有均匀分布、正态分布和指数分布等。在传统针对离线批数据做
统计分析时，所建模型的重要目标是解释既有的数据。建模得到的分布
参数是不变的，如高斯分布的期望和方差、泊松分布的期望等。但是在
针对流数据进行统计建模时，虽然确定分布参数固然重要，但分布的参
数可能随着时间流逝而发生变化。一个很常见的例子就是，一家商店晚
上的客流量一般会比早上多，而周末的客流量也会比工作日的客流量
多。如果我们用柏松分布来对每小时的客流量建模，很明显这个柏松分
布的期望是随着时间在变化的。所以，当在实时流上构建统计学习模型
时，模型通常会包含两层，一层是随机变量在一段时间窗口内的概率分
布函数，另一层是概率分布函数的参数是随时间变化的变量。例如，考
虑了期望随时间变化的柏松分布就需要重新定义为

其中，λ(t)是当前时刻对λ值的估计。

具体怎样计算这个估计值呢？估计λ(t)本身比较简单，因为对于柏
松分布，其期望就是λ(t)的无偏估计。稍微需要考虑的是应该怎样更新
这个估计值，可以有两种更新方式。

·逐事件更新，即每来一个新数据就重新估计一次。

·定周期更新，即每隔一段时间重新估计一次，如每小时重新估计
一次。

以上两种方式都是不错的选择，可以根据具体业务场景需要及是否
能够满足实时计算的性能要求做出合适选择。



4.6.2　P-value检验

在传统的统计检测中，P-value检验是非常重要的手段。以小明和小
花抛硬币为例，小花押“字”朝上，小明押“花”朝上。小明从口袋拿出一
个硬币抛了1次，结果是“花”朝上。小花不服，要求再来一局……在反
反复复抛了10次后，总共有9次“花”向上，只有1次“字”向上。对于这个
结果，小花更加不服气了，觉得小明的硬币一定是一个“假”硬币。那怎
样科学地判断小明的硬币是否是“假”硬币呢？这里就可以用到P-value检
验方法。首先，我们假定硬币是“真”的，也就是“字”朝上和“花”朝上的
概率都是0.5，那么抛10次硬币只有不超过1次“字”向上的概率是

这么一算，只有百分之一的概率，小花当然可以理直气壮地怀疑小
明对硬币做了手脚。在上面的这个例子中，0.0107就是P-value。由于P-
value很小，故而可以推翻前面的“真”硬币假设。

当把统计学习模型应用在在线系统的异常检测时，P-value又有了一
层新的含义。考虑统计PV（Page View，页面浏览量）的场景。根据过
往经验和离线历史数据的统计，我们认为某个页面每秒钟的访问次数应
该符合期望为6的泊松分布。可是实时流计算系统的统计结果显示当前1
秒这个页面的访问量竟然达到了16次。这是正常流量波动还是系统受到
了攻击？根据柏松分布的概率密度函数，计算得到P(X≥16) = 0.0005。
这个概率很小，意味着这秒的页面访问量和我们的预期并不相符。但此
时我们并不是像之前P-value检验中那样拒绝假设，而是反过来断定1秒
16次的访问量是异常行为，这预示着我们的系统可能正受到攻击。



4.6.3　机器学习模型

相比统计学习模型，使用机器学习的方法构建模型有一个极大的好
处，即我们不需要对数据内在的产生机理有任何的先验知识，基本上只
需要准备好模型使用的特征，确定要最优化的目标函数（也就是具体的
机器学习模型），就可以让机器自动发现数据中潜在的产生模式，并对
未知的数据做出预测。常见的机器学习模型有线性回归、逻辑回归、朴
素贝叶斯、神经网络、决策树和随机森林等。下面我们以线性回归为
例，初步介绍机器学习模型在流数据上是如何进行学习和预测的。

流数据是时间序列的一种表现形式。时间序列分析的重要目标之一
是用历史序列来预测未来，如环境温度、股价和网站流量等。现在我们
尝试用线性回归模型来预测下一个交易日的上证指数。以2003年全年的
上证指数收盘价构成时间序列，我们的目标是用最近10个交易日收盘价
预测下一个交易日的收盘价。所以，线性回归模型的输入就是最近10个
交易日的收盘价，而输出则是下一个交易日的收盘价。

int numberOfVariables = 10;

UpdatingMultipleLinearRegression rm = new MillerUpdatingRegression(numberOfVariables, true);

Queue<Double> xPrices = new LinkedList<>();

double[] predictPrices = new double[prices.length];

for (int i = 0; i < prices.length; i++) {

    double price = prices[i];

    // 用于训练和预测的数据量不足，所以跳过继续执行
    if (i < numberOfVariables) {

        xPrices.add(price);

        predictPrices[i] = 0;

        continue;

    }

    if (i <= numberOfVariables * 2 + 1) {

        // 用于预测的数据量不足，所以跳过继续执行
        predictPrices[i] = 0;

    } else {

        // 根据模型进行预测
        double params[] = rm.regress().getParameterEstimates();

        List<Double> xpList = new LinkedList<>();

        xpList.add(1d);

        xpList.addAll(xPrices);

        double[] x_p = ArrayUtils.toPrimitive(xpList.toArray(new Double[0]));

        double y_p = new ArrayRealVector(x_p).dotProduct(new ArrayRealVector

(params));

        predictPrices[i] = y_p;

    }



    // 更新模型
    double[] x = ArrayUtils.toPrimitive(xPrices.toArray(new Double[0]));

    double y = price;

    rm.addObservation(x, y);

    xPrices.add(price);

    xPrices.remove();

}

在上面的代码中，我们使用能够增量更新训练的线性回归模型实现
MillerUpdating-Regression。按照时间顺序，依次将每天的收盘价price和
前10个交易日的收盘价xPrices分别作为线性回归模型的因变量y和自变
量x，构成一组观察记录，然后通过addObservation方法更新到模型。另
外，使用regress函数获得当前训练所得线性回归模型的参数，再结合过
去10个交易日的收盘价xPrices即可求得下一日收盘价的预测值y_p。图
4-11是某段时期上证指数预测值与真实值的对比。

从图4-11中可以看出，预测收盘价曲线能够比较好地跟随真实收盘
价曲线变化的趋势，但是并不能非常好地预测真实收盘价曲线的突变。
整体而言，预测收盘价曲线总是比真实收盘价曲线“慢半拍”。这意味
着，我们并不能指望用这个线性回归模型从上证指数的变化中获利。

当然，这里用线性回归模型预测上证指数只是一个演示性质的例
子。如果我们把上证指数换成其他参数，如网站流量、环境温度等，就
可以将同样的方法推广应用到其他更适合线性回归模型的场景。



图4-11　某段时期上证指数预测值与真实值的对比



4.7　本章小结

本章从流数据操作、时间维度聚合特征计算、关联图谱特征计算、
事件序列分析、模型学习和预测这5个方面讨论了实时流计算系统中数
据处理的问题。总体来说，我们在以后的流计算应用开发过程中，遇到
的计算任务大部分会被归于以上5类计算类型。在具体实现各类计算的
过程中，我们遇到了各种矛盾，如在关联操作时长周期窗口和受限内存
之间的矛盾，在时间维度聚合特征计算时高势数据和有限存储空间之间
的矛盾，在关联图谱特征计算时复杂的图计算算法和实时计算之间的矛
盾等。最终，我们都通过采取各种优化、权衡或妥协的措施化解了这些
矛盾。但由于本书作者的知识范围和能力有限，加上时代和科技也在不
停进步，本章介绍的许多解决问题的方法或许并非最优的。读者在以后
的开发过程中，不妨以本章的内容作为基础或参考，不断探索出更好的
解决实时流计算中数据处理问题的方法。



第5章　实时流计算的状态管理

在第4章中，我们讨论了实时流计算中数据处理的问题。其中，在
实现流数据的关联操作时，流计算系统需要先将窗口内的数据临时保存
起来，然后在窗口结束时，再对窗口内的数据做关联计算。在实现时间
维度聚合特征计算和关联图谱特征计算时，我们更是需要创建大量的存
储空间用于记录聚合的结果。而CEP的实现，本身就与我们常说的有限
状态机（Finite-State Machine，FSM）是密切相关的。不管是为了关联计
算而临时保存的数据，还是为了保存聚合计算的数据，抑或是CEP中的
有限状态机，这些数据都是在流计算应用开始运行之后才创建和积累起
来的。如果没有做持久化操作，那么这些数据在流计算应用重启后会被
完全清空。正因为如此，我们将这些数据称为流计算应用的“状态”。

从关联操作、时间维度聚合特征计算、关联图谱特征计算和CEP的
实现中，我们可以体会到“状态”对流计算应用的重要性。其实从各种
开源流计算框架的发展历史来看，我们会发现大家对实时流计算中
的“状态”问题也是一点点逐步才弄清楚的。在本章，我们就来专门讨
论一下实时流计算中的状态问题。



5.1　流的状态

关联操作中临时保存的窗口数据、实现时间维度聚合特征、关联图
谱特征、CEP中有限状态机、统计或机器学习模型的参数估计，实时流
计算系统需要的几个主要计算目标无不与“状态”有关。需要注意的是，
这些状态是有区别的。

我们将流在执行过程中涉及的状态分为两类：流数据状态和流信息
状态。这两个概念是由笔者在本书中第一次提出的，所以读者们若在其
他地方看到类似概念定义的话，一定纯属巧合。

·流数据状态。在流数据处理的过程中，可能需要处理事件窗口、
时间乱序、多流关联等问题，在解决这些问题的过程中，通常会涉及对
部分流数据的临时缓存，并在处理完后将其清理。我们将临时保存的部
分流数据称为流数据状态。

·流信息状态。在对流数据的分析过程中，我们会得到一些感兴趣
的信息，如时间维度的聚合数据、关联图谱中的一度关联节点数、CEP
中的有限状态机等，这些信息可能会在后续的流数据分析过程中被继续
使用，从而需要将这些信息保存下来。另外，在后续的流数据处理过程
中，这些信息还会被不断地访问和更新。我们将这些分析所得并保存下
来的数据称为流信息状态。

为什么区分这两种状态非常重要？思考这么一个问题，如果我们要
计算“用户过去7天交易的总金额”，该如何做？一种显而易见的方法是
直接使用各种流计算框架都提供的窗口函数来实现。例如，在Flink中如
下：

userTransactions

.keyBy(0)

// 滑动窗口，每秒计算一次7天窗口内的交易金额
.timeWindow(Time.days(7), Time.seconds(1))

.sum(1);



图5-1　流数据状态和流信息状态

上面的Flink示例代码使用timeWindow窗口，每秒计算一次7天窗口
内的总交易金额。其他流计算平台如Spark Streaming、Storm等也有类似
的方法。

聪明的读者一定发现，这似乎有些怪怪的，到底哪里不妥呢？笔者
认为至少有以下几点非常不妥。

·每秒才能输出计算结果，而如果我们需要每来一个事件就要计算
一次该事件所代表的用户在“过去7天交易的总金额”，则这种做法显
然是不可行的。

·窗口为7天，滑动步长为1秒，这两个时间相差的数量级太大了。
这意味着需要在“7天除以1秒”这么多个窗口中重复计算！当然，这里
设置1秒是因为我们想尽可能地“实时”。如果觉得1秒太“过分”了，
则我们也可以将滑动步长设置为30秒、60秒等，但这并不能改变重复计
算的本质，且滑动步长越长，离“实时计算”越远。

·窗口为7天，我们需要在实时流计算系统中缓存7天的流数据。我
们想要得到的其实只是一个聚合值而已，所以保存7天完整的流数据似
乎有些“杀鸡用牛刀”。当然，Flink对诸如sum、max、min之类的窗口
聚合计算做了优化，可以不用保存窗口内的全部数据，只需要保留聚合



结果即可。但是如果用户需要做一些定制化操作（如自定义Evictor，就
会保存窗口内的全量数据了。另外，对于诸如关联这样的操作，肯定要
保存窗口内的全部数据。

·如果我们要在一个事件上计算几十个类似于“用户过去7天交易
的总金额”这样的特征，则按照timeWindow的实现方法，每个特征可能
会有不同的时间窗口和滑动步长，该怎样同步这几十个特征计算的结果
呢？

所以在很多情况下，直接使用由流计算框架提供的窗口函数来实现
诸如“时间维度聚合特征”的计算问题，我们都会遇到问题。究其根本原
因，是因为我们混淆了“对流的管理”和“对数据信息的管理”这两者。因
为“窗口”实际上是对“流数据”的分块管理，我们用“窗口”来将“无穷无
尽”的流数据分割成一个个的“数据块”，然后在“数据块”上做各种计
算。这属于对流数据的“分而治之”处理。我们不能将这种针对“流数
据”本身的分治管理模式与我们对数据的业务信息分析窗口耦合起来。

因此，我们需要将“对流的管理”和“对数据信息的管理”这两者分离
开。其中，“对流的管理”需要解决诸如窗口、乱序、多流关联等问题，
其中也会涉及对数据的临时缓存，它缓存的是流数据本身，因此我们称
之为流数据状态；而“对数据信息的管理”则是为了在分析和挖掘数据内
含信息时，帮助我们记录和保存业务分析结果，因而称之为流信息状
态。



5.1.1　流数据状态

在流数据状态管理中，比较重要的操作是事件窗口、时间乱序和流
的关联操作。流数据状态最理想的情况是只保存在内存中，只有在做持
久化（checkpoint）时，才写入磁盘。这样做的原因在于，流数据从接
收、处理到删除，具有实时、快速和临时的特点，如果每次接收到一个
新事件，都要将其持久化到磁盘，势必会引起性能的急剧下降。

但将所有数据全部放在内存终究太过理想。大多数场景下，我们需
要分析的窗口内的数据量都超过了内存容量，所以此时流数据状态也可
以存放在文件或其他外部存储系统中。这种情况下，每次窗口计算都需
要访问内存外的数据，会对性能造成一定的影响。这样的好处是避免了
内存对数据量的限制。

下面我们分析需要使用流数据状态的3种重要原因。

事件窗口是产生流数据状态的主要原因。在第3章实现的流计算框
架和应用中，事件的处理方式是来一个就处理一个，并没有“窗口”的概
念。但在实际很多场景中，我们并不需要每来一个事件就处理一个，而
是按照一定的间隔和窗口来处理事件。例如，“每30秒计算一次过去5分
钟的交易总额”“每满100个事件计算平均交易金额”“统计用户在一次活
跃期间点击过的商品数量”等。对于这些以“窗口”为单元来处理事件的
方式，我们需要用一个缓冲区（buffer）临时地存储过去一段时间接收
到的事件，等触发窗口计算的条件满足时，再触发处理窗口内的事件。
当处理完成后，还需要将过期和以后不再使用的数据清除掉。另外，在
实际生产环境中，可能会出现故障恢复、重启等情况，这些“缓冲区”的
数据在必要时需要被写入磁盘，并在重新计算或重启时恢复。

解决时间乱序问题是使用流数据状态的另一个重要原因。由于网络
传输和并发处理的原因，在流计算系统接收到事件时，非常有可能出现
事件已经在时间上乱序的情况。例如，时间戳为1532329665005的事件
比时间戳为1532329665001的事件先到达流计算系统。怎样处理这种事
件在时间上乱序的问题呢？通常的做法是将收到的事件先保存起来，等
过一段时间后乱序的事件到达时，再将其和保存的事件按时间排序，这
样就恢复了事件的时间顺序。当然，这个过程存在一个问题，即“等过
一段时间”到底是怎样等及等多久？针对这个问题有一个非常优秀的解



决方案，即水印（watermark）。

使用水印解决时间乱序问题的原理如下：在流计算数据中，按照一
定的规律（如以特定周期）插入“水印”，水印是一个时间戳，当处理单
元接收到“水印”时，表示应该处理所有时间戳在该水印之前的事件。我
们通常将水印设置为事件的时间戳减去一段时间的值，这样就给先到的
时间戳较大的事件一个等待晚到的时间戳较小的事件的机会，而且确保
不会没完没了地等待下去。在这个过程中，等待时间的大小就是那个减
去的时间段了。当然，这种方案也不能百分百地解决时间乱序问题，实
在太晚到达的事件当然只能是“过期不候”了。因为解决时间乱序问题需
要等待晚到的事件，所以不可避免地会对当前事件的处理带来一定时
延。

流的关联操作也涉及流数据状态的管理。在关系型数据库中，关联
操作是一种非常普遍的行为。现在这个概念也越来越多地被延伸到流计
算上来。常见的关联操作有join和union。特别是在实现join操作时，需
要先将参与join操作的各个流的相应窗口内的数据缓存在流计算系统
内，然后以这些窗口内的数据为基础，做类似于关系型数据库中表与表
之间的join计算，得到join计算的结果，之后再将这些结果以流的方式输
出。很显然，流的关联操作也需要临时保存部分流数据，故而其也是一
种“流数据状态”的运用。

当然，除了以上3种“流数据状态”的主要用途外，其他地方也会涉
及流数据状态的管理，如排序（sorting）、分组（group by）等。不管
怎样，这些操作都有一个共同的特点，即它们需要缓存的是部分原始的
流数据。换言之，这些操作要保存的状态是部分“流数据”本身。这也正
是将这类状态取名为“流数据状态”的原因。



5.1.2　流信息状态

流信息状态是为了记录流数据的处理和分析过程中获得的我们感兴
趣的信息，这些信息会在后续的流处理过程中被继续使用和更新。
以“实时计算每个交易事件在发生时过去7天交易的总金额”为例，我们
可以将每小时的交易金额记录为一条状态，这样，当一个交易事件到来
时，我们计算“过去7天的交易总金额”，就是将过去7天每小时的总交易
金额读取出来，然后对这些金额记录求总和即可。在上面这个例子中，
将每小时的交易金额记录为一条状态，即我们所说的“流信息状态”。

流信息状态的管理通常依赖于数据库完成。这是因为对于从流分析
出来的信息，我们可能需要保存较长时间，而且数据量会很大，将这些
信息状态放在内存中，势必会占用过多的内存，这是不必要的。对于保
存的流信息状态，我们并不是在每次计算中都会用到，因此会存在冷数
据和过期淘汰的问题。所以，将流信息状态，交给专门的数据库管理是
非常明智的。毕竟到目前为止，各种数据库的选择十分丰富，而且许多
数据库对热数据缓存和TTL机制都有非常好的支持。

相比流数据状态主要由流计算框架原生提供，流信息状态则与业务
本身关系更近，并且在实际开发过程中也是主要的处理对象，需要我们
做更多的工作。因此，在接下来的两节中，我们将详细讨论几种非常典
型的流信息状态管理方案。



5.2　采用Redis实现流信息状态管理

Redis是一个开源的内存数据库，支持非常丰富的数据结构，如字
符串（string）、哈希表（hash）、列表（list）、集合（set）、有序集
合（sorte.set）、位图（bitmap）、HyperLogLog算法、地理空间索引
（geospatial index）等。丰富的数据结构支持、官方支持的Redis Cluster
集群方案、原生的LRU淘汰策略，这些因素共同决定了Redis非常适用
于实时流计算应用中的状态存储。下面我们就来看看Redis具体如何用
于实时流计算中的流信息状态管理。



5.2.1　时间维度聚合特征计算

4.3节描述了时间维度聚合特征计算的原理，下面以“过去一周内在
同一个设备上交易次数”这个计数查询为例，进行具体的讲解。

这种计数查询非常适合用Redis字符串指令中的INCR指令实现。
INCR指令对存储在指定键的数值执行原子加1操作，然后返回加1后的
结果。

这里我们将7天的时间窗口划分为7个小窗口，每个小窗口代表1
天。为每个小窗口分配一个key，用来记录这个窗口的事件数。key的格
式如下：

$event_type.$device_id.$window_unit.$window_index

其中，“$event_type”表示事件类型，“$device_id”表示设备
ID，“$window_unit”表示时间窗口单元，“$window_index”表示时间窗口
索引。

例如，对于“device_id”为“d000001”的设备，如果在时间戳为
1532496076032的时刻更新窗口，则计算如下：

$event_type = transaction

$device_id = d000001

$window_unit = 86400000  # 时间窗口单元为1天，即86 400 000毫秒
$window_index = 1532496076032 / $window_unit = 17737 # 用时间戳除以时间窗口单元，得到时间窗口索引

$key = $event_type.$device_id.$window_unit.$window_index

redis.incr($key)

上面的伪代码描述了使用Redis的INCR指令更新某个窗口的计数
值。我们的设计是将更新操作和查询操作分开进行的。因此，这里只需
更新一个小窗口的计数值，而不需要更新整个窗口中所有小窗口的计数
值。

当查询7天窗口内的总计数值时，我们对7个子时间窗口内的计数做



查询并汇总。计算如下：

$event_type = transaction

$device_id = d000001

$window_unit = 86400000  # 时间窗口单元为1天，即86 400 000毫秒
$window_index = 1532496076032 / $window_unit = 17737

# 用时间戳除以时间窗口单元，得到当前时间窗口索引

sum = 0

for $i in range(0, 7):

    $window_index = $window_index - $i

    $key = $event_type.$device_id.$window_unit.$window_index

    sum += redis.get($key)

return sum

上面的伪代码使用Redis的GET指令查询了过去7个子时间窗口，也
就是过去7天每天的计数值，然后将这些计数值汇总，就得到了“过去一
周内在同一个设备上交易次数”这个特征值。



5.2.2　一度关联特征计算

在4.4.1节中，我们描述了关联图谱中一度关联特征计算的原理，并
且为了优化存储空间和计算性能，我们使用HyperLogLog算法对原有算
法做了改进。下面我们以“过去30天在同一设备上登录过的不同用户
数”这个一度关联特征为例，具体讲解一度关联特征的HyperLogLog算法
的实现。

类似5.2.1节中的计数计算，我们将30天的时间窗口划分为30个小窗
口，每个小窗口代表1天。为每个小窗口分配一个key，用来记录这个窗
口内同一设备上的不同用户数。同样，key的格式如下：

$event_type.$device_id.$window_unit.$window_index

其中，“$event_type”表示事件类型，“$device_id”表示设备
ID，“$window_unit”表示时间窗口单元，“$window_index”表示时间窗口
索引。

例如，对于“device_id”为“d000001”、“userid”为“u000001”的用户，
交易时间为“1532496076032”，则更新窗口内设备上不同用户的算法如
下：

$event_type = login

$device_id = d000001

$window_unit = 86400000  # 时间窗口单元为1天，即86 400 000毫秒
# 用时间戳除以时间窗口单元，得到时间窗口索引
$window_index = 1532496076032 / $window_unit = 17737 

$key = $event_type.$device_id.$window_unit.$window_index

$userid = u000001

redis.pfadd($key, $userid)

上面的伪代码描述了使用Redis的PFADD指令，将新到的用
户“u000001”添加到以“login.d000001.86400000.17737”为key的
HyperLogLog寄存器中。通过这个寄存器的取值，我们可以估算出时间
窗口内同一设备上的不同用户数。



由于更新计算是对子时间窗口上的Hyperloglog寄存器进行更新，因
此在查询时需要对各个子时间窗口上的Hyperloglog寄存器做汇总。计算
如下：

$event_type = login

$device_id = d000001

$window_unit = 86400000  # 时间窗口单元为1天，即86400000毫秒
$window_index = 1532496076032 / $window_unit = 17737 # 用时间戳除以时间窗口单元，得到时间窗口索引

$keys = [] # 创建一个用于记录不同用户的列表
for $i in range(0, 30):

    $window_index = $window_index - $i

    $key = $event_type.$device_id.$window_unit.$window_index

    $keys += $key   # 将返回的用户添加到集合里面

$count_key = random_uuid() # 生成一个uuid用于临时存储Hyperloglog寄存器合并结果
redis.pfmerge($count_key, $keys)

$count = redis.pfcount($count_key)

redis.del($count_key)  # 删除临时寄存器

return $count

上面的伪代码使用Redis的PFMERGE指令，将过去30个子窗口的设
备不同用户数Hyperloglog寄存器值合并起来，结果保存在临时寄存器
$count_key内，然后用PFCOUNT指令根据临时寄存器的值，估计出整
个窗口上不同值的个数，也就是“过去30天在同一设备上登录过的不同
用户数”了。完成估计后，需要删除临时寄存器，以防止内存泄漏。



5.3　采用Apache Ignite实现流信息状态管理

在5.2节中，我们使用Redis来做流信息状态管理。在本节中，我们
使用另外一种不同的方案来实现流信息状态管理，这就是Apache
Ignite。这里“多此一举”地用使用两种方案来实现相同的功能，绝非为
了“凑字数”，读者会在5.4节中理解这么做的原因。在本节中，我们将重
点放在Apache Ignite的讨论上。

Apache Ignite是一个基于内存的数据网格解决方案。在数据网格的
格点上，Apache Ignite提供了符合JCache标准的数据访问接口。Apache
Ignite支持丰富的数据结构，虽然相比Redis少了一些，但是Apach.Ignite
提供了兼容ANSI-99标准的SQL查询功能，这就使得Apach.Ignite的使用
非常灵活。除了这些功能外，Apache Ignite还提供了很多其他功能，如
分布式文件系统、机器学习等。在本书中，我们只会将Apache Ignite作
为数据网格使用，并使用它的SQL查询功能。下面我们就来看看Apache
Ignite是如何被用于实时流计算中的流信息状态管理的。



5.3.1　时间维度聚合分析

我们用Apache Ignite实现“过去一周内在同一个设备上交易次数”这
个计数查询。由于Apache Ignite同时支持JCache和SQL查询接口，我们
可以充分发挥这两种查询接口各自的特点来实现计数功能。

在使用Apache Ignite前，首先需要设计用于信息状态存储的“表”，
这个“表”其实是数据存储的格式。针对计数功能的“表”设计如下：

class CountTable implements Serializable {

    @QuerySqlField(index = true)

    private String name;

    @QuerySqlField(index = true)

    private long timestamp;

    @QuerySqlField

    private double amount;

    public CountTable(String name, long timestamp, double amount) {

        this.name = name;

        this.timestamp = timestamp;

        this.amount = amount;

    }

    // 必须重写equals方法，否则在经过序列化和反序列化后，Ignite会视为不同记录，实际上它们是同一条记录
    @Override

    public boolean equals(Object o) {

        if (this == o) return true;

        if (o == null || getClass() != o.getClass()) return false;

        CountTable that = (CountTable) o;

        if (timestamp != that.timestamp) return false;

        if (Double.compare(that.amount, amount) != 0) return false;

        return name != null ? name.equals(that.name) : that.name == null;

    }

    // 因为重写了equals方法，所以hashCode()方法也跟着一起重写
    @Override

    public int hashCode() {

        int result;

        long temp;

        result = name != null ? name.hashCode() : 0;

        result = 31 * result + (int) (timestamp ^ (timestamp >>> 32));

        temp = Double.doubleToLongBits(amount);

        result = 31 * result + (int) (temp ^ (temp >>> 32));

        return result;

    }

}



在上面的表定义中，各个字段的含义如下。

·name：字符串型，用于记录状态的关键字。

·timestamp：长整型，用于记录事件处理时的时间戳。

·amount：双精度浮点型，用于记录状态发生的次数。

另外，我们还重写了表CountTable类的equals方法和hashCode方
法，这是因为Apache Ignite在执行replace这类方法时，会对对象进行比
较，而由于Apache Ignite本身是一个分布式系统，在查询过程中会涉及
对象序列化和反序列化的过程。这个时候如果不重写equals方法，则原
本字段完全一样的记录会被视为不同记录，使得程序运行错误。

与Redis的实现思路完全一致，我们也将7天的时间窗口划分为7个
小窗口，每个小窗口代表1天。为每个小窗口分配一个用来记录这个窗
口事件数的关键字，也就是CountTable表定义中的name字段。name的格
式如下.

$event_type.$device_id.$window_unit.$window_index

其中，“$event_type”表示事件类型，“$device_id”表示设备
ID，“$window_unit”表示时间窗口单元，“$window_index”表示时间窗口
索引。

例如，对于“device_id”为“d000001”的设备，如果在时间戳为
1532496076032的时刻更新窗口，则计算如下：

$event_type = "transaction"

$device_id = "d000001"

$window_unit = 86400000  # 时间窗口单元为1天，即86 400 000毫秒
$window_index = 1532496076032 / $window_unit = 17737 # 用时间戳除以时间窗口单元，得到时间窗口索引

$atTime ＝ ($window_index + 1) * $window_unit

$name = "$event_type.$device_id.$window_unit.$window_index"

$cache = ignite.getOrCreateCache()

$id = md5($name);

$newRecord = new CountTable($name, $atTime, 1);

do {

    $oldRecord = $cache.get($id);



    if ($oldRecord != null) {

        $newRecord.amount = $oldRecord.amount + 1;

    } else {

        $oldRecord = $newRecord;

        $cache.putIfAbsent(id, oldRecord);

    }

    $succeed = $cache.replace($id, $oldRecord, $newRecord);

} while (!succeed);

$cache.incr($key)

上面的伪代码描述了使用Apache Ignite的JCache接口更新某个窗口
的计数值的方法，它要实现的功能与Redis并无不同。由于Apache Ignite
并没提供类似于Redis中INCR指令那样的原子操作，因此需要自行实现
并发安全的累加操作。这里笔者并没有采用锁的方案，而是采用了
CAS（Compare And Swap）方案。CAS是一种无锁机制，在高并发场景
下通常比传统的锁具备更好的性能。上面代码的d..while循环部分就是
CAS的实现，其中“$cache.replace”是一个原子操作，从而保证了CAS的
并发安全性。

在更新完子窗口的计数值后，即可查询完整窗口内的总计数值了，
只需要对子时间窗口内的计数值做查询并汇总即可。具体实现如下：

$event_type = "transaction"

$device_id = "d000001"

$window_unit = 86400000  # 时间窗口单元为1天，即86 400 000毫秒
$window_index = 1532496076032 / $window_unit = 17737 # 用时间戳除以时间窗口单元，得到时间窗口索引

$atTime ＝ ($window_index + 1) * $window_unit

$startTime = $atTime - $window_unit * 7;    # 窗口为7天
$name = "$event_type.$device_id.$window_unit.$window_index"

$cache = ignite.getOrCreateCache()

$sumQuery = "SELECT sum(amount) FROM CountTable " + 

                "WHERE name = $name and timestamp > $startTime and timestamp <= $atTime";

sum = $cache.query($sumQuery)

return sum

上面的伪代码充分利用Apache Ignite支持SQL所带来的便利性，非
常方便地计算出过去7天交易的总次数。至此，我们使用Apache Ignite实
现了“过去一周内在同一个设备上交易次数”这个特征的计算。



5.3.2　一度关联特征计算

下面我们用Apache Ignite重新实现“过去30天在同一设备上登录过的
不同用户数”这个一度关联特征的计算。这次我们不使用HyperLogLog估
计算法，而是采用精确计算的方法。这意味着我们需要记录每个不同的
取值，所以这里的实现只限于在统计变量的势比较小，也就是说“同一
个设备上登录过的不同用户数”比较少的情况。

同样，首先需要设计用于存储关联信息状态的“表”结构。具体如
下：

class CountDistinctTable implements Serializable {

    @QuerySqlField(index = true)

    private String name;

    @QuerySqlField(index = true)

    private long timestamp;

    @QuerySqlField

    private String value;

    public CountDistinctTable(String name, long timestamp, String value) {

        this.name = name;

        this.timestamp = timestamp;

        this.value = value;

    }

}

在这个用来存储关联信息状态的表中，各个字段的含义如下。

·name：字符串型，状态的关键字。

·timestamp：长整型，处理事件时的时间戳。

·value：字符串型，状态的取值。

同样，我们将30天的时间窗口划分为30个小窗口，每个小窗口代表
1天。与Redis实现方案不同的是，由于Apache Ignite本身提供了灵活的
SQL功能，我们没有在单独的每个子窗口内记录各时间段的不同用户，
而仅仅更新用户在设备上的登录时间。具体如下：

$event_type = "login"



$device_id = "d000001"

$userid = "u000001"

$window_unit = 86400000  # 时间窗口单元为1天，即86 400 000毫秒
$window_index = 1532496076032 / $window_unit = 17737 # 用时间戳除以时间窗口单元，得到时间窗口索引

$name = $device_id

$value = $userid

# 本次登录时间
$atTime ＝ ($window_index + 1) * $window_unit

$cache = ignite.getOrCreateCache()

$id = md5($name, $value);

$record = $cache.get($id);

if ($record == null) {

    # 如果是新用户登录，就为其创建一个登录记录
    $record = new CountDistinctTable($name, $atTime, $value);

} else {

    # 如果是用户再次登录，就将其登录记录里的时间修改为本次登录时间
    $record.timestamp = $atTime

}

$cache.put($id, $record);

上面的伪代码描述了更新用户在设备上登录时间的过程。如果是新
用户登录，就为其创建一个登录记录。如果是用户再次登录，就将其登
录记录里的时间修改为本次登录时间。由于实时更新用户在设备上的登
录时间，因而不同设备上的不同用户在状态表里只存在一条记录。

$event_type = "login"

$device_id = "d000001"

$userid = "u000001"

$window_unit = 86400000  # 时间窗口单元为1天，即86 400 000毫秒
$window_index = 1532496076032 / $window_unit = 17737 # 用时间戳除以时间窗口单元，得到时间窗口索引

$name = $device_id

$value = $userid

$atTime ＝ ($window_index + 1) * $window_unit

$startTime = $atTime - $window_unit * 30;    # 窗口为30天

$cache = ignite.getOrCreateCache()

$countQuery = "SELECT count(value) FROM CountDistinctTable " +

                "WHERE name = $name and timestamp > $atTime and timestamp <= $atTime";

count = $cache.query($countQuery)

return count

在上面的伪代码中，由于窗口内只保留用户的最后一次登录信息，
所以只需要使用count函数计算窗口内的记录总数即可，可以说是非常



简洁地实现了“过去30天在同一设备上登录过的不同用户数”的计算。



5.4　扩展为集群

随着业务的增长，数据量越来越大，单一机器逐渐不能满足日益增
长的数据量。与此同时，数据量变大后，程序的性能也开始变得越来越
差，以至于最后不可接受。所以，我们必须未雨绸缪，让流计算系统能
够伴随业务不断成长，这就要求系统具备水平扩展的能力。在实时流计
算系统中，不管是使用诸如Kafka消息中间件的分区功能，还是依赖于
诸如Flink KeyedStream这样的流计算框架本身的分区流能力，最终都能
比较轻松、方便地实现计算能力的水平扩展。但是，对于计算中的状态
数据来说，实现计算能力的水平扩展不是一件非常容易的事情。这是因
为，状态数据很多时候是需要共享和同步的，如对于分别在两个计算节
点上计算的事件，它们可能需要同时访问相同的数据。即使我们先不考
虑并发安全的问题，这也意味着相同的数据会被两个不同的节点访问。
也就是说，至少有一个节点的跨网络远程访问是不可避免的。而在前面
关于时间维度聚合特征计算和关联图谱特征计算的具体实现中，我们不
难发现，它们都是严重依赖于大量状态访问的，甚至有时候一次窗口计
数的查询会访问几个甚至几十个子窗口的寄存器。如果不能避免或优化
这些访问，那么程序的性能势必会严重受累于跨网络的远程状态访问。
所以，我们有必要专门讨论将状态的存储和管理，从单节点扩展为分布
集群时的一系列问题。本节将讨论3种不同的状态集群方案，它们分别
代表了一种典型的分布式计算架构设计思路，可谓是各有千秋。



5.4.1　基于Redis的状态集群

图5-2展示了使用Redis集群实现状态分布式存储和管理的原理。当
采用Redis集群实现分布式状态存储和管理时，流计算集群和Redis集群
节点是分离开的。流计算集群中的每个节点都可以任意访问Redis集群
中的任何一个节点。这样的架构有一个非常明显的好处，即计算和数据
是分离开的。我们在任何时候，可以任意地新增流计算节点，而不会影
响Redis集群。反过来，我们也可以任意地新增Redis节点，而不会影响
流计算集群。

图5-2　使用Redis集群实现状态分布式存储和管理的原理

这样的体系结构也有缺点。以“过去一天同一用户的总交易金额”这
个时间维度聚合特征的计算为例。如果我们采用与5.2.1节相同的算法，
就需要先将“1天”分成了24个“1小时”的子窗口，这样在查询计算时将有



24次的Redis GET操作。假设这24个子窗口的状态数据是分散在6台
Redis上的。如果不做任何优化设计，那么这一个特征计算就需要24次
I/O操作，而且涉及与6台不同服务器的远程通信，这势必会对性能造成
极大的影响。针对以上问题，我们该怎么办呢？我们可以根据“局部性
原理”和“批次请求处理”的思想来优化解决方案。



5.4.2　局部性原理

局部性原理（见图5-3）是指计算单元在访问存储单元时，所访问
的存储单元应该趋向于聚集在一个局部的连续区域内。利用局部性原理
可以更加充分地提高计算资源的使用效率，从而提高程序的性能。

图5-3　局部性原理：使用hash标签将属于同一用户的记录分配到相同的
Redis节点

前面讲到在“过去一天同一用户的总交易金额”这个特征计算中，我
们可能需要访问6台Redis节点上的数据。这是因为默认情况下，Redis集
群将数据按照key做hash计算后分散到各个槽（slot）中，而槽又分布在
各个Redis节点上。如果我们能够让“同一用户”的状态数据保存在相同的
槽里，就可以让这批数据存在于相同的Redis节点上。Redis的官方集群



方案Redis Cluster提供了贴心的标签（tag）功能，允许只使用key中的部
分字段来计算hash值。具体而言，如果hash_tag指定为“{}”，那么当key
含有“{}”的时候，就不使用整个key来计算hash值，而只对“{}”包括的部
分字段计算hash值。例如，在使用标签功能后，每个小窗口内记录这个
窗口交易总金额的key如下所示：

$event_type.{$userid}.$window_unit.$window_index

经过标签化的key，相同用户的状态数据会落在相同的Redis节点。
这样，我们只需要访问一个Redis节点即可。

现在数据位于同一个节点上了，那这有什么好处呢？好处多着呢。
首先，我们可以放心大胆地使用Redis的各种多键指令了，如MGET、
MSET、SUNION和SUNIONSTORE等。这些指令在操作过程中可以一
次访问多个键，从而提高指令执行效率。而如果这些key不在同一个
Redis节点上，则这些指令是不能使用的。其次，我们可以充分发挥
Redis的pipeline功能。通过Redis的pipeline功能，可以一次性发送多条指
令，这些指令间可以没有任何依赖关系。当执行完后，这些指令的结果
一次性返回。通过这种批次传递和执行指令的方式，Redis减少了平均
每条指令执行时不必要的网络开销，提升了执行效率。同样地，如果这
些数据不在同一个Redis节点上，我们就不能使用pipeline功能。所以，
将相关数据放在相同的节点上，给我们留下更多的优化空间。经过上述
的优化设计后，原本需要24次I/O操作的特征计算，最优情况下只需要
一次I/O操作。这就是局部性原理的魅力所在！

当然，使用局部性原理也可能出现数据在集群节点上分布不均匀的
问题。所以，在选择分区标签时，应该尽量分得更细、更均匀些，这样
可以减小数据倾斜的问题。



5.4.3　批次请求处理

批次请求处理是指将多个请求收集起来后，一次性成批处理的过
程。批次请求处理可以降低均摊在每条消息处理时非有效用于消息处理
的资源和时间。Redis的pipeline功能就是一种批次请求处理的技术，但
是我们不能仅限于Redis的Pipeline功能。实际上，任何与I/O相关的操作
都可以借鉴这种批次处理的思想，如RPC（远程过程调用）、REST请
求、数据库查询等。

在实际开发过程中，对请求做批次化处理本身并不是非常复杂的过
程，比较麻烦的是应该怎样将分布在程序各个地方的请求收集起来。针
对这个问题，我们可以使用队列和CompletableFuture的异步方案，图5-4
描述了这个方案的具体实现方法。



图5-4　批次请求实现原理

当请求发起时，将请求提交给队列后获取一个CompletableFuture对
象。而另外一个线程等着从这个队列中取出请求。当该线程取出的请求
达到一定数量或者等待超过一定时间时，将取出的这批请求封装成批次
请求，发送给请求处理服务器。当批次请求返回后，将批次结果拆解
开，再依次使用CompletableFuture的complete函数将结果交给各个请求
发起者。这样就实现了请求的批次化处理。

批次化处理的好处在于提高了请求处理的吞吐量，降低了每条请求
平均响应时延，但是因为使用了队列和异步的方案，也有可能会提高特
定某条请求的响应时延。因此，在实际开发中，读者需要综合考虑自己
的场景选择最合适的方案。



5.4.4　基于Apache Ignite的状态集群

图5-5描述了Apache Ignite集群用于状态存储和管理的架构。从该架
构图可以看出，当采用Apache Ignite来实现状态管理时，计算节点和数
据节点是耦合在一起的，它们在相同的JVM内运行。每个Apache Ignite
节点会保存全部集群数据中的一部分，流计算节点通过其嵌入的Apache
Ignite节点来访问状态数据。而Apache Ignite数据格点自身的设计和实现
机制，允许计算尽量只需要访问本地节点上的数据以完成计算任务，减
少数据在网络间的流动。这种设计方案充分利用了Apache Ignite提供的
数据格点能力，是一种典型的网格计算架构。

图5-5　Apache Ignite集群用于状态存储和管理的架构

采用Apache Ignite数据格点的方案，可以让我们不必过多考虑数据
分区问题。Apache Ignite会自行处理数据局部性及计算和数据亲和性的
问题。Apach.Ignite提供的各种计算和查询接口屏蔽了分布式数据和分布
式计算的复杂性，为我们开发分布式系统带来极大的便利性。网格计算
中的所有节点都是平等的，当需要水平扩展集群时，只需要将新的节点
添加到网格中即可。

不过将计算节点和数据节点耦合在同一个JVM后，增加了单一节点
的复杂性，同时使计算资源的分配、管理和监控等变得更加复杂。这点
需要读者在做方案选型时根据具体场景和需求自行定夺。



5.4.5　基于分布式文件系统的状态管理集群

除了上面两种状态管理的集群外，还有一种基于分布式文件系统的
状态管理集群，这是一种非常典型的分布式状态管理方案。Flink的状态
管理采用的就是这种方案。

图5-6描述了基于分布式文件系统的状态管理集群。在这种分布式
状态管理方案中，流计算节点针对状态的操作完全在本地完成，不涉及
任何远程操作。但如果只是这样，那当需要扩展或收缩集群的节点数
时，怎么保证能够读取到原来的状态信息呢？因此在每个节点上，有专
门的线程定期或在必要的时候（如任务关闭前），对状态进行
checkpoint。所谓checkpoint，是指将本地状态后端的数据做快照
（snapshot）之后，保存到分布式文件系统的过程。当集群在节点数变
化后再重启时，各个节点首先从分布式文件系统中读取其所负责数据分
片所在的快照，再将快照恢复到状态后端，这样各个节点就获得重启前
的状态数据了，之后的计算又可以完全在本地完成。



图5-6　基于分布式文件系统的状态管理集群

这种方案的优势在于，流计算节点对状态的操作在本地完成，不需
要任何远程操作。这样本地状态后端的选择可以非常丰富，给性能优化
留下极大空间。例如，Flink目前已经支持内存、文件系统和RockDB 3
种状态后端。不过这种方案也有一个缺点，即不能在运行时动态扩展或
缩小集群。当集群节点数变更时，需要重启集群。对应在Flink中，当需
要改变算子的并行度（operator parallelism）时，必须重启作业。



5.5　本章小结

本章讨论了实时流计算应用中状态管理的问题。我们将实时流计算
应用中的状态分为了流数据状态和流信息状态。可以说，这两种状态分
别从两个不同的维度对流进行管理。流数据状态从时间角度对流进行管
理，而流信息状态则从空间角度对流进行管理。流信息状态弥补了流数
据状态只是对事件在时间序列上做管理的不足，将流的状态扩展到了任
意空间。

将流数据状态和流信息状态这两个概念区分开，会指引我们将流计
算应用本身的执行过程和流数据的信息管理机制解耦，这使得实时流计
算系统的整体结构更加清晰。如果我们将前者理解为CPU的执行流水
线，那么后者就相当于内存。实时流计算系统的这种架构非常像一个分
布式的JVM。



第6章　开源流计算框架

从第2章到第5章，我们先是从接收实时流数据开始，然后构建起一
个单节点的流计算应用，之后用其实现实时流计算中主要的几种类型的
数据处理计算，最后将其扩展为分布式系统。我们实现的这个实时流计
算系统具有最基本的通用流计算框架雏形，它包含了流计算系统中的几
个核心要素。

·流的本质：事件异步处理，并形成流水线。

·流的描述：DAG拓扑结构。

·流量控制：反向压力。

·流的状态：流数据状态和流信息状态。

但是，如果以一个成熟通用的流计算平台标准来看，我们开发的这
个流计算框架还有很长的路要走，这是因为这个框架存在以下问题。

1）它不是一个平台，只是一个编程框架。虽然其可以部署为集
群，但它没有通常平台所要求的作业调度、资源管理等功能。

2）流的描述不够抽象。这包含两层意思：一是只使用了比较底层
的异步编程API，没提供更加上层的流计算编程API，如map、filter、
reduce等；二是DAG的执行是在单一节点上完成的，不像很多流计算平
台DAG的节点可以分配到不同计算节点上执行。

3）作为流计算框架，只支持来一个事件就处理一个事件，不支持
事件顺序校正，也不支持事件流按批次（各种窗口）处理。

4）不支持如至多一次（at most once）、至少一次（at least once）
及恰好一次（exactly once）等消息传达性保证机制。

5）缺乏消息处理失败时的应对策略。



6）其他任何可能的问题。

或许我们可以逐步地在现有框架上实现这些功能，但是这将是一个
漫长并具有很多不确定性的过程。因此，除了“闭门造车”外，我们还
需要研究已有的各种流计算解决方案。如无特别必要，而又能满足产品
需求，还是应该尽量选择已有开源且相对成熟的流计算方案。

当然，我们也不能一味贬低自己开发的流计算框架。一方面，在一
些相对简单且硬件资源相对受限的场景下，如边缘计算领域，开发贴合
实际使用场景的流计算应用可能是为数不多的选择。另一方面，“麻雀
虽小、五脏俱全”，通过一步步实现这个原生态的流计算框架或应用，
我们更能深刻地理解流计算系统要解决的问题、其中的难点及解决办
法。事实上，笔者就用自己开发的流计算框架实现了一个针对流数据的
特征计算引擎，并最终用于生产环境。在生产实践中发现，当明确了使
用场景和功能边界后，我们的流数据特征计算引擎贴合业务，使用起来
灵活方便、高效简洁，运维工作也十分简单轻松。或许这也正是“重复
造轮子”的意义所在吧。

但不管怎样，我们还是不能止步于“闭门造车”。在本章中，我们
将分析几种开源流计算框架，毕竟知己知彼方能百战不殆。通过对这些
开源流计算框架的学习，我们能够更加全面地理解流计算系统，把握流
计算的发展状况和前进方向。我们将从以下5个方面来考察各种流计算
平台。

·系统架构：理解一个流计算平台的设计架构，是使用这个流计算
平台的基础。

·流的描述：包括用于描述流计算应用运行步骤的DAG和相关的
API。

·流的处理：流的处理过程、相关的API及是否支持反向压力等。

·流的状态：包括我们强调的流数据状态和流信息状态。

·消息处理可靠性：如何保证消息传达的可靠性。



下面，让我们来一览开源流计算框架吧！



6.1　Apache Storm

Apache Storm（简称Storm）是一款由Twitter开源的大规模分布式流
计算平台。Storm出现得较早，是分布式流计算平台的先行者。不过随
着各种流计算平台的出现，Storm也在不断尝试着改进和改变。Storm可
以说是最早被大家广泛接受的大规模分布式流计算框架，所以我们先从
对Storm的讨论开始。



6.1.1　系统架构

图6-1展示了Storm系统架构。Storm集群由两种节点组成：Master节
点和Worker节点。Master节点运行Nimbus进程，用于代码分发、任务分
配和状态监控。Worker节点运行Supervisor进程和Worker进程，其中
Supervisor进程负责管理Worker进程的整个生命周期，而Worker进程创
建Executor线程，用于执行具体任务（Task）。在Nimbus和Supervisor之
间，还需要通过Zookeeper来共享流计算作业状态，协调作业的调度和
执行。



图6-1　Storm系统架构



6.1.2　流的描述

在Storm中，通过Topology、Tuple、Stream、Spout和Bolt等概念来
描述一个流计算作业。

·Topology：也就是第3章中用来描述流计算作业的DAG，它完整
地描述了流计算应用的执行过程。当Topology部署在Storm集群上并开始
运行后，除非明确停止，否则它会一直运行下去。这和MapReduce作业
在完成后就退出的行为是不同的。Topology由Spout、Bolt和连接它们的
Stream构成，其中Topology的节点对应着Spout或Bolt，而边则对应着
Stream。

·Tuple：用于描述Storm中的消息，一个Tuple可以视为一条消息。

·Stream：这是Storm中的一个核心抽象概念，用于描述消息流。
Stream由Tuple构成，一个Stream可以视为一组无边界的Tuple序列。

·Spout：用于表示消息流的输入源。Spout从外部数据源读取数
据，然后将其发送到消息流中。

·Bolt：Storm进行消息处理的地方。Bolt负责消息的过滤、运算、
聚类、关联、数据库访问等各种逻辑。开发者在Bolt中实现各种流处理
逻辑。



6.1.3　流的执行

流的执行是指在流计算应用中，输入的数据流经过处理最后输出到
外部系统的过程。通常情况下，一个流计算应用会包含多个执行步骤，
并且这些步骤的执行步调极有可能不一致。因此，需要使用反向压力功
能来实现不同执行步骤间的流控。

早期版本的Storm使用TopologyBuilder来构建流计算应用，但是以
新一代流计算框架的角度来看，基于TopologyBuilder的API在实际使用
时并不直观和方便。所以，与时俱进的Storm从2.0.0版本开始，提供了
更加现代的流计算应用接口——Strea.API。虽然目前Strea.API仍然处于
实验阶段，但如果新开发一个Storm流计算应用，还是建议直接使用
Strea.API，因为这种风格的流计算编程接口才是流计算应用开发的未
来。在接下来的讨论中，我们直接基于Strea.API，从流的输入、流的处
理、流的输出和反向压力4个方面来讨论Storm中流的执行过程。

1.流的输入

Storm从Spout输入数据流，并用StreamBuilder从Spout构建一个流。
下面是一个典型的用StreamBuilder从Spout构建Stream的例子。

public class DemoWordSpout extends BaseRichSpout {

    // 忽略了其他字段和方法
    public void nextTuple() {

        Utils.sleep(100L);

        String[] words = new String[]{"apple", "orange", "banana", "mango", "pear"};

        Random rand = new Random();

        String word = words[rand.nextInt(words.length)];

        this._collector.emit(new Values(new Object[]{word}));

    }

}

StreamBuilder builder = new StreamBuilder();

Stream<String> words = builder.newStream(new DemoWordSpout(), new ValueMapper<String>(0));

Spout的核心方法是nextTuple，从名字上就可以看出这个方法的作
用是逐条从消息源读取消息，并将消息表示为Tuple。不同数据源的
nextTuple方法的实现方式不相同。另外，Spout还有两个与消息传递可
靠性和故障处理相关的方法，即ack和fail。当消息发送成功时，可以通
过调用ack方法从发送消息列表中删除已成功发送的消息。当消息发送



失败时，可以通过fail方式尝试重新发送或在最终失败时做出合适处
理。

2.流的处理

Storm的Stream API 与更新一代的流计算框架（如Spark Streaming、
Flink等）更加相似。总体而言，它提供了3类API。第一类API是常用的
流式处理操作，如filter、map、reduce、aggregate等。第二类API是流数
据状态相关的操作，比如window、join、cogroup等。第三类API是流信
息状态相关的操作，目前有updateStateByKey和stateQuery。下面是一个
对Stream进行处理的例子。

wordCounts = words

    .mapToPair(w -> Pair.of(w, 1))

    .countByKey();

在上面的例子中，先用mapToPair将单词流words转化为计数元组
流，然后通过countByKey将计数元组流转化为单词计数流wordCounts。

3.流的输出

Storm的Strea.API提供了将流输出到控制台、文件系统或数据库等
外部系统的方法。目前Strea.API提供的输出操作包括print、peek、
forEach和to。其中，peek是对流的完全原样中继，并可以在中继时提供
一段操作逻辑，因而peek方法可以用于方便地检测流在任意阶段的状
况。forEach方法是最通用的输出方式，可以执行任意逻辑。to方法允许
将一个Bolt作为输出方法，可以方便地继承早期版本中已经存在的各种
输出Bolt实现。下面的例子演示了将单词计数流输出到控制台。

wordCounts.forEach(new WordCountExample.Print2FileConsumer());

public static class Print2FileConsumer<T> implements Consumer<T> {

    // 忽略了其他字段和方法
    public void appendToFile(Object line) {

        Files.write(Paths.get("/logs/console.log"),

            String.valueOf(line + "\n").getBytes(),

            StandardOpenOption.APPEND, StandardOpenOption.CREATE);

    }

    @Override

    public void accept(T input) {

        appendToFile(input);

    }

}



4.反向压力

Storm支持反向压力。早期版本的Storm通过开启acker机制和
max.spout.pending参数实现反向压力。当下游Bolt处理较慢，Spout发送
出但没有被确认的消息数超过max.spout.pending参数设定值时，Spout就
暂停发送消息。这种方式实现了反向压力，但有一个不算轻微的缺陷。
一方面，静态配置max.spout.pending参数很难使得系统在运行时有最佳
的反向压力性能表现。另一方面，这种反向压力实现方式本质上只是在
消息源头对消息发送速度做限制，而不是对流处理过程中各个阶段做反
向压力，它会导致系统的处理速度发生比较严重的抖动，降低系统的运
行效率。

在较新版本的Storm中，除了监控Spout发送出但没有被确认的消息
数外，还需监控每级Bolt接收队列的消息数量。当消息数超过阈值时，
通过Zookeeper通知Spout暂停发送消息。这种方式实现了流处理过程中
各个阶段反向压力的动态监控，能够更好地在运行时调整对Spout的限
速，降低了系统处理速度的抖动，也提高了系统的运行效率。



6.1.4　流的状态

前面我们将流的状态分成两种：流数据状态和流信息状态。

在流数据状态方面，早期版本的Storm提供了Trident、窗口
（window）和自定义批处理3种有状态处理方案。Trident将流数据切分
成一个个的元组块（tuple batch），并将其分发到集群中处理。Trident
针对元组块的处理，提供了过滤、聚合、关联、分组、自定义函数等功
能。其中，聚合、关联、分组等功能在实现过程中涉及状态保存的问
题。另外，Trident在元组块处理过程中可能失败，失败后需要重新处
理，这个过程涉及状态保存和事务一致性问题。因此，Trident有针对性
地提供了一套Trident状态接口（Trident State API）来处理状态和事务一
致性问题。Trident支持3种级别的Spout和State：Transactional、Opaque
Transactional和No-Transactional。其中，Transactional提供了强一致性保
证机制，Opaque Transactional提供了弱一致性保证机制，No-
Transactional未提供一致性保证机制。Storm支持Bolt按窗口处理数据，
目前实现的窗口类型包括滑动窗口（sliding window）和滚动窗口
（tumbling window）。

Storm支持自定义批处理方式。Storm系统内置了定时消息机制，即
每隔一段时间向Bolt发送tick元组，Bolt在接收到tick元组后，可以根据
需求自行决定什么时候处理数据、处理哪些数据等，在此基础上就可实
现各种自定义的批处理方式。例如，可以通过tick实现窗口功能（当然
Storm本身已经支持），或实现类似于Flink中watermark的功能（Storm
本身也已经支持）等。

从2.0.0版本引入的Stream API提供了window、join、cogroup等流数
据状态相关的API，这些API更加通用，使用起来也更方便，因此再次
建议读者直接使用这类API来开发Storm流计算应用。

在流信息状态方面，早期版本Storm中的Trident状态接口包含对流
信息状态的支持，并且还支持了3种级别的事务一致性。例如，使用
Trident状态接口可以实现单词计数功能。但是Trident状态与Trident支持
的处理功能耦合太紧，这使得Trident状态接口的使用并不通用。例如，
在非Trident的Topology中就不能使用Trident状态接口了。所以，当使用
Storm做实时流计算时，经常需要用户自行实现对流信息状态的管理。



例如，使用Redis来记录事件发生的次数。不过，最新版本Storm的
Strea.API已经逐渐开始引入更通用的流信息状态接口，目前提供的
updateStateByKey和stateQuery就是这种尝试。



6.1.5　消息传达可靠性保证

Storm提供了不同级别的消息可靠性保证机制，包括尽力而为（best
effort）、至少一次（at least once）和通过Trident实现的精确一次
（exactly once）。在Storm中，一条消息被完全处理，是指代表这条消
息的元组及由这个元组生成的子元组、孙子元组、各代重孙元组都被成
功处理。反之，只要这些元组中有任何一个元组在指定时间内处理失
败，那就认为这条消息是处理失败的。不过，要使用Storm的这种消息
完全处理机制，需要在程序开发时，配合Storm系统做两件额外的事
情。首先，当在处理元组过程中生成了子元组时，需要通过ack告知
Storm系统。其次，当完成对一个元组的处理时，也需要通过ack或fail告
知Storm系统。在具体业务逻辑开发过程中，用户根据业务需要选择合
理的消息保证级别实现即可。很多场景下并非一定要保证严格的数据一
致性，毕竟越严格的消息保证级别通常实现起来也会越复杂，性能损耗
也会更大。



6.2　Spark Streaming

如今在大数据的世界里，Spark可谓是众所周知，风光无限了。在
批处理领域取得巨大成功后，Spark开始向流计算领域进军，于是诞生
了Spark Streaming。Spark Streaming是建立在Spark框架上的实时流计算
框架，提供了可扩展、高吞吐和错误容忍的实时数据流处理功能。



6.2.1　系统架构

图6-2描述了Spark Streaming的工作原理。Spark Streaming构建在
Spark平台上，充分利用了Spark的核心处理引擎。Spark Streaming将接
收的实时数据流分成一个个的RDD，然后由Spark引擎对RDD做各种处
理，其中每个RDD实际是一个小的块数据。所以，Spark Streaming本质
上是将流数据分成一段段块数据后，对其进行连续不断的批处理。

图6-2　Spark Streaming将流数据切分为块数据后进行处理



6.2.2　流的描述

对于流计算过程的描述，Sparking Streamingg包含以下核心概念。

·RDD：Spark引擎的核心概念，代表一个数据集合，是Spark进行
数据处理的计算单元。

·DStream：Spark Streaming对流的抽象，代表连续数据流。在系统
内部，DStream由一系列的RDD构成，每个RDD代表一段间隔内的数
据。

·Transformation：代表Spark Streaming对DStream的处理逻辑。目
前，DStream提供了很多与Transformation相关的API，包括map、
flatMap、filter、reduce、union、join、transform和updateStateByKey等。通
过这些API，可以对DStream做各种转换，从而将一个数据流变为另一个
数据流。

·Outpu.Operations：Spark Streaming将DStream输出到控制台、数据
库或文件系统等外部系统中的操作。目前，DStream支持的output
Operations包括print、saveAsTextFiles、saveAsObjectFiles、
saveAsHadoopFiles和foreachRDD。由于这些操作会触发外部系统访问，
所以DStream各种转化的执行实际上由这些操作触发。



6.2.3　流的执行

与Storm类似，我们从流的输入、流的处理、流的输出和反向压力4
个方面来讨论Spark Streaming中流的执行过程。

1.流的输入

Spark Streaming提供了3种创建输入数据流的方式。

·基础数据源。通过StreamingContext的相关API，直接构建输入数
据流。这类API通常从Socket、文件或内存中构建输入数据流，如
socketTextStream、textFileStream、queueStream等。

·高级数据源。通过外部工具类从Kafka、Flume、Kinesis等消息中
间件或消息源构建输入数据流。

·自定义数据源。当用户实现了org.apache.spark.streaming.receiver抽
象类时，就可以实现一个自定义数据源了。

Spark Streaming用DStream来表示数据流，所以输入数据流也表示
为DStream。下面的示例演示了从TCP连接中构建文本数据输入流的过
程。

SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("WordCount

Example");

JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(1));

JavaReceiverInputDStream<String> lines = jssc.socketTextStream("localhost", 9999);

2.流的处理

Spark Streaming对流的处理是通过DStream的各种转化操作API完成
的。DStream的转换操作大体上也包含3类操作。第一类是常用的流式处
理操作，如map、filter、reduce、count、transform等。第二类是流数据
状态相关的操作，如union、join、cogroup、window等。第三类是流信
息状态相关的操作，目前有updateStateByKey和mapWithState。



下面是一个对DStream进行转化操作的例子。

// 将每一行分割成单词，然后统计单词出现次数
JavaDStream<String> words = lines.flatMap(x -> Arrays.asList(x.split(" ")).iterator());

JavaPairDStream<String, Integer> pairs = words.mapToPair(s -> new Tuple2<>(s, 1));

JavaPairDStream<String, Integer> wordCounts = pairs.reduceByKey((i1, i2) -> i1 + i2);;

在上面的例子中，先从Socket中读出文本流lines，对每行文本分词
后，用flatMap转化为单词流words；然后用mapToPair将单词流words转
化为计数元组流pairs；最后，以单词为分组进行数量统计，通过
reduceByKey转化为单词计数流wordCounts。

3.流的输出

Spark Streaming允许DStream输出到外部系统，这是通过DStream的
各种输出操作完成的。DStream的输出操作可以将数据输出到控制台、
文件系统或数据库等。目前DStream的输出操作有print、
saveAsTextFiles、saveAsHadoopFiles和foreachRDD等。其中，
foreachRDD是一个通用的DStream输出接口，用户可以通过foreachRDD
自定义各种Spar.Streaming输出方式。下面的例子演示了将单词计数流输
出到控制台。

wordCounts.print();

4.反向压力

早期版本的Spark不支持反向压力，但从Spar.1.5版本开始，Spark
Streaming引入了反向压力功能。默认情况下，Spark Streaming的反向压
力功能是关闭的。当要使用反向压力功能时，需要将
spark.streaming.backpressure.enabled设置为True。

整体而言，Spark的反向压力功能借鉴了工业控制中PID控制器的思
路，其工作原理如下。首先，当Spark处理完每批数据时，统计每批数
据的处理结束时间、处理时延、等待时延、处理消息数等信息。然后，
Spark根据统计信息估计处理速度，并将这个估计值通知给数据生产
者。最后，数据生产者根据估计的处理速度，动态调整生产速度，最终
使得生产速度与处理速度相匹配。



6.2.4　流的状态

在Spark Streaming中，流的状态管理是在部分DStream提供的转化
操作中实现的。

在流数据状态方面，由于DStream本身将数据流分成RDD做批处
理，所以Spark Streaming天然就需要对数据进行缓存和状态管理。换言
之，组成DStream的一个个RDD就是一种流数据状态。在DStream上，
提供了一些窗口相关的转化API，实现对流数据的窗口管理。在窗口之
上还提供了count和reduce两类聚合功能。另外，DStream还提供了
union、join和cogroup 3种在多个流之间做关联操作的API。

在流信息状态方面，DStream的updateStateByKey操作和
mapWithState操作提供了流信息状态管理的方法。updateStateByKey和
mapWithState都可以基于key来记录历史信息，并在新的数据到来时对这
些信息进行更新。不同的是，updateStateByKey会返回记录的所有历史
信息，而mapWithState只会返回处理当前一批数据时更新的信息。就好
像，前者返回了一个完整的直方图，而后者只是返回直方图中发生变化
的柱条。由此可见，mapWithState比updateStateByKey的性能优越很
多。从功能上讲，如果不是用于报表生成的场景，大多数实时流计算应
用使用mapWithState会更合适。



6.2.5　消息传达可靠性保证

Spark Streaming对消息可靠性的保证是由数据接收、数据处理和数
据输出共同决定的。从1.2版本开始，Spark引入WAL（Write Ahead
Logs）机制，可以将接收的数据先保存到错误容忍的存储空间。当开启
WAL机制后，再配合可靠的数据接收器（如Kafka），Spark Streaming
能够实现“至少一次”的消息接收功能。从1.3版本开始，Spark又引入了
Kafka Direct API，进而可以实现“精确一次”的消息接收功能。由于
Spark Streaming对数据的处理是基于RDD完成的，而RDD提供了“精确
一次”的消息处理功能，所以在数据处理部分，Spark Streaming天然具
有“精确一次”的消息可靠性保证机制。

但是，Spark Streaming的数据输出部分目前只具有“至少一次”的可
靠性保证机制。也就是说，经过处理的数据可能会被多次输出到外部系
统。在一些场景下，这么做不会有什么问题。例如，输出数据被保存到
文件系统，重复发送的结果只是覆盖之前写过一遍的数据。但是在另一
些场景下，如需要根据输出增量更新数据库，那就需要做一些额外的去
重处理了。一种可行的方法是，在各个RDD中新增一个唯一标识符来表
示这批数据，然后在写入数据库时，使用这个唯一标识符来检查数据之
前是否写入过。当然，这时写入数据库的动作需要使用事务来保证一致
性。



6.3　Apache Samza

Apache Samza（简称Samza）最初是由LinkedIn开源的一款分布式
流计算框架，之后贡献给Apache并最终孵化成一个顶级项目。在众多的
流计算框架中，Apache Samza算得上是一个非常独特的分布式流计算框
架，因此我们有必要对其进行一番研究。



6.3.1　系统架构

相比其他流计算框架的复杂实现，Samza的设计和实现可以说是简
单到了极致。Samza与本书第3章讨论的单节点实时流计算框架有相似的
设计观念，认为流计算就是从Kafka等消息中间件中取出消息，然后对
消息进行处理，最后将处理结果重新发回消息中间件的过程。Samza将
流数据的管理委托给Kafka等消息中间件，再将资源管理、任务调度和
分布式执行等功能借助于诸如YARN这样的分布式资源管理系统完成，
其自身的主要逻辑则是专注于对流计算过程的抽象及对用户编程接口的
实现。因此，Samza实现的流计算框架非常简洁，其早期版本的代码甚
至不超过一万行。

以运行在YARN上的Samza为例，它就是一个典型的YARN应用。
Samza的系统架构如图6-3所示。Samza的YARN客户端向YARN提交
Samza作业，并从YARN集群中申请资源（主要是CPU和内存）用于执
行Samza应用中的作业。Samza作业在运行时，表现为多个副本的任
务。Samza任务正是流计算应用的处理逻辑所在，它们从Kafka中读取消
息，然后进行处理，并最终将处理结果重新发回Kafka。



图6-3　Samza的系统架构



6.3.2　流的描述

Samza对流（Stream）的描述涉及作业（job）、分区（partition）、
任务（task）、数据流图（dataflo.graph）、容器（container）和流应用
程序（StreamApplication）等概念。

·流。流是Samza处理的对象，由具有相同格式和业务含义的消息
组成。每个流可以有任意多的消费者，从流中读取消息并不会删除这个
消息。我们可以选择性地将消息与一个关键字关联，用于流的分区。
Samza使用插件系统实现不同的流。例如，在Kafka中，流对应一个主题
中的消息；在数据库中，流对应一个表的更新操作；在Hadoop中，流对
应目录下文件的追写换行操作。在本节后面的讨论中，我们主要基于
Kafka流对Samza进行讨论。

·作业。一个Samza作业代表一段对输入流进行转化并将结果写入
输出流的程序。考虑到运行时的并行和水平扩展问题，Samza又对流和
作业进行了切分，将流切分为一个或多个分区，并相应地将作业切分为
一个或多个任务。

·分区。Samza的流和分区很明显继承自Kafka的概念。当然Sazma
也对这两个概念进行了抽象和泛化。Samza的流被切分为一个或多个分
区，每个分区都是一个有序的消息序列。

·任务。Samza作业又被切分为一个或多个任务。任务是作业并行
化执行的单元，就像分区是流的并行化单元一样。每个任务负责处理流
的一个分区。因此，任务的数量和分区的数量是完全相同的。通过
YARN等资源调度器，任务被分布到YARN集群的多个节点上运行，并
且所有的任务彼此之间都是完全独立运行的。如果某个任务在运行时发
生故障退出了，则它会被YARN在其他地方重启，并继续处理与之前相
同的那个分区。

·数据流图。将多个作业组合起来可以创建一个数据流图。数据流
图描述了Samza流计算应用构成的整个系统的拓扑结构，它的边代表数



据流向，而节点代表执行流转化操作的作业。与Storm中Topology不同的
是，数据流图包含的各个作业并不要求一定在同一个Samza应用程序
中，数据流图可以由多个不同的Samza应用程序共同构成，并且不同的
Samza应用程序不会相互影响。在后面我们还会介绍流应用程序，需要
注意流应用程序和数据流图的不同之处。图6-5就展示了一个同样的数
据流图使用不同流应用程序组合来实现的例子。

图6-4　 一个描述join操作的Samza作业



图6-5　同样的数据流图可以使用多种方法实现

·容器。前面所讲的分区和任务都是逻辑上的并行单元，它们不是
对计算资源的真实划分。那什么才是对计算资源的真实划分呢？容器。
容器是物理上的并行单元，每一个容器都代表着一定配额的计算资源。
每个容器可以运行一个或多个任务。任务的数量由输入流的分区数确
定，而容器的数量则可以由用户在运行时任意指定。



·流应用程序。流应用程序是Samza上层API用于描述Samza流计算
应用的概念。一个流应用程序对应着一个Samza应用程序，它相当于
Storm中Topology的角色。如果我们将整个流计算系统各个子系统的实现
都放在一个流应用程序中，那么这个流应用程序实际上就是数据流图的
实现。如果我们将整个流计算系统各个子系统的实现放在多个流应用程
序中，那么所有这些流应用程序共同构成完整的数据流图。

以上介绍了Samza的核心概念。这里还是需要强调下，Samza中关
于作业和任务的定义与Hadoop MapReduce框架中关于作业和任务的定
义完全不同。在MapReduce中，一个MaprReduce程序就是一个作业，而
一个作业可以有一个或多个任务。这些任务由作业解析而来，它们又分
为Map任务和Reduce任务，分别执行着不同的任务。但是在Samza中，
任务相当于作业的多个运行时副本，所有任务均执行着完全相同的程序
逻辑，它们仅仅是输入/输出的流分区不同而已。所以，从这种意义上
来讲，Samza的作业和任务之间的关系就相当于程序和进程之间的关
系。一个程序可以起多个进程，所有这些进程都执行着相同的程序代
码。



6.3.3　流的执行

与Storm的发展非常相似，Samza用于构建流计算应用的编程接口也
经历了从底层API到上层API演进的过程，这其实也代表了流计算领域
和Samza框架自身的发展历史。如果读者想更加清楚地理解框架背后的
工作原理，可以详细研究底层API。上层API更加“现代”，而且更加有助
于我们理解流计算这种编程模式，所以我们在本节直接使用Samza的上
层API来讲解Samza流的执行过程。我们同样从流的输入、流的处理、
流的输出和反向压力4个方面来讨论Samza中流的执行过程。

1.流的输入

Samza使用各种描述符来定义Samza应用的各个组成部分。以Kafka
为例，Samza提供了KafkaSystemDescriptor用于描述管理数据流的Kafka
集群。对每一个Kafka输入流，我们创建一个KafkaInputDescriptor用于
描述该输入流的信息，然后通过Samza流应用描述符
StreamApplicationDescriptor的getInputStream方法创建消息流
MessageStream。

// Create a KafkaSystemDescriptor providing properties of the cluster

 KafkaSystemDescriptor kafkaSystemDescriptor = new KafkaSystemDescriptor(KAFKA_SYSTEM_NAME)

        .withConsumerZkConnect(KAFKA_CONSUMER_ZK_CONNECT)

        .withProducerBootstrapServers(KAFKA_PRODUCER_BOOTSTRAP_SERVERS)

        .withDefaultStreamConfigs(KAFKA_DEFAULT_STREAM_CONFIGS);

 // For each input or output stream, create a KafkaInput/Output descriptor

 KafkaInputDescriptor<KV<String, String>> inputDescriptor =

        kafkaSystemDescriptor.getInputDescriptor(INPUT_STREAM_ID,

            KVSerde.of(new StringSerde(), new StringSerde()));

// Obtain a handle to a MessageStream that you can chain operations on

    MessageStream<KV<String, String>> lines = streamApplicationDescriptor.getInputStream(inputDescriptor);

在上面的代码中，我们创建了一个从Kafka读取消息的输入流
lines。Samza用键值对表示消息，其中，键代表消息的主键，通常带有
业务含义，如用户ID、事件类型、产品编号等，而值代表消息的具体内
容。在很多场景下，带有业务含义的键非常有用，如实现类似于Flink中
KeyedStream的功能。

2.流的处理



Samza对流的处理是通过建立在MessageStream上的各种算子
（Operator）完成的。MessageStream上定义的算子主要包括两类，即流
数据处理类算子和流数据管理类算子。流数据处理类算子包括map、
flatMap、asyncFlatMap、filter等。流数据管理类算子包括partitionBy、
merge、broadcast、join和window等。

下面是对MessageStream进行处理的示例。

lines

    .map(kv -> kv.value)

    .flatMap(s -> Arrays.asList(s.split("\\W+")))

    .window(Windows.keyedSessionWindow(

        w -> w, Duration.ofSeconds(5), () -> 0, (m, prevCount) -> prevCount + 1,

        new StringSerde(), new IntegerSerde()), "count")

    .map(windowPane ->

        KV.of(windowPane.getKey().getKey(),

            windowPane.getKey().getKey() + ": " + windowPane.getMessage().toString()))

    .sendTo(counts);

在上面的例子中，先将Kafka读出的键值对消息流lines转化为由其
值组成的消息流，再用flatMap将每行的文本字符串转化为单词流；然后
用Windows.keyedSessionWindow定义了一个以5秒钟为窗口进行聚合的
窗口操作，这样原来的单词流会转化为以<word，count>为键值对的数
据流；之后，再用map将数据流转化为其输出的格式，并最终发送到
Kafka，至此就完成了单词计数的功能。

3.流的输出

与输入流对应，Samza提供了KafkaOutputDescriptor用于描述将消息
发送到Kafka的输出流。通过Samza流应用描述符
StreamApplicationDescriptor的getOutputStream方法，就可以创建输出消
息流OutputStream。

KafkaOutputDescriptor<KV<String, String>> outputDescriptor =

    kafkaSystemDescriptor.getOutputDescriptor(OUTPUT_STREAM_ID,

        KVSerde.of(new StringSerde(), new StringSerde()));

OutputStream<KV<String, String>> counts = streamApplicationDescriptor.

getOutputStream(outputDescriptor);

上面代码定义了将消息发送到Kafka的输出流counts。



最后，将输入、处理和输出各部分的代码片段整合起来，我们就能
得到实现单词计数功能的Samza流计算应用。

4.反向压力

Samza不支持反向压力，但是它用其他方法避免OOM，这就是
Kafka的消息缓冲功能。由于Samza是直接借用Kafka来保存处理过程中
的流数据的，所以即便没有反向压力功能，Samza也不会存在内存不足
的问题。但我们要明白，就算躲得过初一，也躲不过十五，磁盘容量再
大，时间长了，磁盘也会被不断积压的消息占满。所以，在使用Samza
时，我们还是需要对Kafka的消息消费情况和积压情况进行监控。当发
现消息积压时，我们应立即采取措施来处理消息积压的问题。例如，可
以给下游任务分配更多的计算资源。

需要注意的是，Samza目前不支持在应用程序已经运行后修改流的
分区数。在讨论完Samza的状态管理后，我们就能清楚地明白这是由
Samza目前的流状态恢复机制限制造成的。在后面我们会看到更多的原
因，Samza在未来非常有可能会转而采用类似于Flink那样的分布式快照
方式管理状态。但到目前为止，我们还是只能通过分配更多计算资源的
方式来提升Samza作业的处理性能，但同时又不能改变分区数量。一种
比较好的方式是一开始就给流设置更多的分区数，如设置24个分区，这
样会起24个任务，然后在程序运行的初期设置较少的容器数。当业务流
量增大，或发现某个作业处理能力偏低时，就给该作业分配更多的容器
资源。

另外，除了显式的多级流水线外，Samza还可能存在隐式的多级流
水线。图6-6说明了这种问题。当使用reparition算子时，Samza会在内部
创建一个中间流用于暂存再分区后的数据。这个中间流也使用Kafka进
行传输，所以如果reparition后的操作比较慢，则还是有可能出现消息不
断积压的问题。因此，在进行Kafka的监控时，务必监控这些中间流的
消息积压情况。



图6-6　Samza的隐式多级流水线



6.3.4　流的状态

Samza支持无状态的处理和有状态的处理。无状态的处理是指在处
理过程中不涉及任何状态处理相关的操作，如map、filter等操作。有状
态的处理则是指在消息处理过程中需要保存一些与消息有关的状态，如
计算网站每5分钟的UV（Unique Visitor）等。Samza提供了错误容忍
的、可扩展的状态存储机制。

在流数据状态方面，由于Samza使用Kafka来管理其处理各个环节的
数据流，所以Samza的大部分流数据状态直接保存在Kafka中。Kafka帮
助Samza完成了消息的可靠性存储、流的分区、消息顺序的保证等功
能。

除了保存在Kafka中的消息外，在Samza的任务节点进行诸如
window、join等操作会依赖于在缓冲区中暂存一段时间窗口内的消息，
我们将这类API归于流数据状态管理。在Samza的MessageStream类中，
与流数据状态管理相关的API包括window、join、partitionBy。其中
partitionBy又比较特殊，它不像window、join那样主要使用内存或诸如
RocksDB的本地数据库来存储状态，而是将消息流按照主键重新分区后
输出到以Kafka为载体的中间流。另外，Samza还包括将两个流合并的
merge操作（类似于SQL中的UNION ALL操作），这种对流的合并操作
实现起来相对简单，并不涉及状态操作。

在流信息状态方面，在Samza中，流信息状态可以通过对任务状态
（task state）的管理完成。虽然Samza并不阻止我们在Samz.任务中使用
远程数据库来进行状态管理，但它还是极力推荐我们使用本地数据库的
方式存储状态。这样做是出于对性能优化、资源隔离、故障恢复和失败
重处理等多方面因素的考虑。

Samza提供了KeyValueStore接口用于状态的存储。在KeyValueStore
接口背后，Samza实现了基于RocksDB的本地状态存储系统。当Samza
进行状态操作时，所有的操作均直接访问本地RocksDB数据库，所以性
能比跨网络远程访问的数据库高出很多，有时甚至能达到2到3个数量级
的区别。另外，为了保障任务节点在其他节点重启时访问的是相同的状
态数据，还会将每次写入RocksDB的操作复制一份到Kafka作为变更日
志。这样，当任务在其他节点上重启时，能够从Kafka中读取并重放变



更日志，恢复任务转移物理节点前RocksDB中的数据。



6.3.5　消息传达可靠性保证

Samza目前只提供了at-least-once级别的消息传达可靠性保证机制，
但是有计划支持exactly-once级别的消息传达可靠性保证机制。所以，到
目前为止，如果我们需要实现消息的不重复处理，就应该尽量让状态的
更新是幂等操作。在缺乏像Storm中消息处理追踪机制或像Spark和Flink
中用到的分布式快照机制的情况下，Samza要达到诸如计数、求和不能
重复的要求还是比较困难的。而像计数、求和这样的聚合计算在流计算
系统中还是比较常见的需求。所以，目前Samza还不是非常适合这种对
计算准确度要求非常严格的场景。笔者认为，Samza在以后实现exactly-
once级别消息传达可靠性保证机制时，也会采取类似于Flink的方案，即
实现状态的checkpoint机制，在此基础之上实现分布式快照管理，最终
实现exactly-once级别的消息传达可靠性保证机制。



6.4　Apache Flink

随着流计算领域的不断发展，关于流计算的理论和模型逐渐清晰和
完善。Flink是这些流计算领域最新理论和模型的优秀实践。相比Spark
在批处理领域的流行，Apache Flink（简称Flink）可以说是目前流计算
领域最耀眼的新贵了。Flink是一个分布式流处理和批处理平台，相比
Spark偏向于批处理，Flink的核心是流计算引擎。



6.4.1　系统架构

Flink的系统架构如图6-7所示。Flink是一个主从（master/worker）
架构的分布式系统。主节点负责调度流计算作业，管理和监控任务执
行。当主节点从客户端接收到与作业相关的Jar包和资源后，便对其进行
分析和优化，生成执行计划，即需要执行的任务，然后将相关的任务分
配给各个从节点，由从节点负责任务的具体执行。Flink可以部署在诸如
YARN、Mesos和Kubernetes等分布式资源管理器上，其整体架构与
Storm、Spark Streaming等分布式流计算框架类似。与这些流计算框架不
同的是，Flink明确地把状态管理（尤其是流信息状态管理）纳入其系统
架构中了。

图6-7　Flink的系统架构

在Flink节点执行任务的过程中，可以将状态保存到本地，然后通过
checkpoint机制，再配合诸如HDFS、S3和NFS这样的分布式文件系统，



Flink在不降低性能的同时实现了状态的分布式管理。



6.4.2　流的描述

在Flink中，DataStream用来描述数据流。DataStream在Flink中扮演
的角色犹如Spark中的RDD。值得一提的是，Flink也支持批处理DataSet
的概念，DataSet内部同样由DataStream构成。在Flink中，这种将批处理
视为流处理特殊情况的做法与Spar.Streaming中将流处理视为连续批处理
的做法截然相反。

Flink的数据输入（Source）、处理（Transformation）和输出
（Sink）均与DataStream有关。

·Source：用于描述Flink流数据的输入源，输入的流数据表示为
DataStream。Flink的Source可以是消息中间件、数据库、文件系统或其
他各种数据源。

·Transformation：将一个或多个DataStream转化为一个新的
DataStream，是Flink实施流处理逻辑的地方。目前，Flink提供Map、
FlatMap、Filter、KeyBy、Reduce、Fold、Aggregations、Window、
Union、Join、Split、Select和Iterate等类型的Trans-formation。

·Sink：Flink将DataStream输出到外部系统的地方，如写入控制
台、数据库、文件系统或消息中间件等。



6.4.3　流的执行

我们从流的输入、流的处理、流的输出和反向压力4个方面来讨论
Flink中流的执行过程。

1.流的输入

Flink使用StreamExecutionEnvironment.addSource设置流的数据源
Source。为了使用方便，Flink在StreamExecutionEnvironment.addSource
的基础上提供了一些内置的数据源实现。

StreamExecutionEnvironment提供的输入方式主要包含以下4类。

·基于文件的输入：从文件中读入数据作为流数据源，如
readTextFile和readFile等。

·基于套结字的输入：从TCP套接字中读入数据作为流数据源，如
socketTextStream等。

·基于集合的输入：用集合作为流数据源，如fromCollection、
fromElements、fromParallelCollection和generateSequence等。

·自定义输入：StreamExecutionEnvironment.addSource是通用的流数
据源生成方法，用户可以在其基础上开发自己的流数据源。一些第三方
数据源，如flink-connector-kafka中的FlinkKafkaConsumer08就是针对Kafka
消息中间件开发的流数据源。

Flink将从数据源读出的数据流表示为DataStream。下面的示例演示
了从TCP连接中构建文本数据输入流的过程。

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

DataStream<String> text = env.socketTextStream("localhost", 9999, "\n");

2.流的处理



Flink对流的处理是通过DataStream的各种转化操作完成的。相比
Spark中DStream的转化操作混淆了流数据状态管理和流信息状态管理，
Flink的设计思路更加清晰，明确地将流信息状态管理从流数据状态管理
中分离出去。

DataStream的转换操作只包含两类操作，一类是常规的流式处理操
作，如map、filter、reduce、count、transform等。另一类是流数据状态
相关的操作，如union、join、cogroup、window等。这两类操作都是针
对流本身的处理和管理。从设计模式中单一职责原则的角度来看，Flink
关于流的设计显然更胜一筹。

下面是一个对DataStream进行转化操作的例子。

DataStream<WordWithCount> windowCounts = text

    .flatMap(new FlatMapFunction<String, WordWithCount>() {

        @Override

        public void flatMap(String value, Collector<WordWithCount> out) {

            for (String word : value.split("\\s")) {

                out.collect(new WordWithCount(word, 1L));

            }

        }

    })

    .keyBy("word")

    .timeWindow(Time.seconds(5), Time.seconds(1))

    .reduce(new ReduceFunction<WordWithCount>() {

        @Override

        public WordWithCount reduce(WordWithCount a, WordWithCount b) {

            return new WordWithCount(a.word, a.count + b.count);

        }

    });

在上面的例子中，先将从socket中读出文本流lines，对每行文本分
词后，用flatMap转化为单词计数元组流pairs；然后用keyBy对计数元组
流pairs从分组第一个元素（即word）开始进行分组，形成分组的计数元
组流keyedPairs；最后用timeWindow以5秒为时间窗口对分组后的流进行
划分，并在窗口上进行sum聚合计算，最终得到wordCounts，即每5秒各
个单词出现的次数。

3.流的输出

Flink使用DataStream.addSink设置数据流的输出方法。另外，Flink
在DataStream.addSource的基础上提供了一些内置的数据流输出实现。
DataStream提供的输出API主要包含以下4类。



·输出到文件系统：将流数据输出到文件系统，如writeAsText、
writeAsCsv和write-UsingOutputFormat。

·输出到控制台：将数据流输出到控制台，如print和printToErr。

·输出到套接字：将数据流输出到TCP套接字，如writeToSocket。

·自定义输出：DataStream.addSink是最通用的流数据输出方法，用
户可以在其基础上开发自己的流数据输出方法。例如，flink-connector-
kafka中的FlinkKafkaProducer011就是针对Kafka消息中间件开发的流输出
方法。

下面的示例演示了将DataStream表示的流数据输出到控制台的过
程。

windowCounts.print().setParallelism(1);

4.反向压力

Flink对反向压力的支持非常好，不仅实现了反向压力功能，而且直
接内置了反向压力的监控功能。Flink采用有限容量的分布式阻塞队列来
进行数据传递，当下游任务从消费队列读取消息的速度过慢时，上游任
务往队列中写入消息的速度就非常自然地减慢了。这种反向压力的实现
思路和使用JDK自带的BlockingQueue实现反向压力的方法基本一致。

值得一提的是，与Storm和Spar.Streaming需要明确打开启动开关才
能使用反向压力功能不一样的是，Flink的反向压力功能是其数据传送方
案自带的，不需特别再去实现，使用时也无须特别打开启动开关。



6.4.4　流的状态

Flink是第一个明确地将流信息状态管理从流数据状态管理剥离出来
的流计算框架。大多数流计算框架要么没有流信息状态管理，要么实现
的流信息状态管理非常有限，要么流信息状态管理混淆在了流数据状态
管理中，使用起来并不方便和明晰。

在流数据状态方面，Flink有关流数据状态的管理都集中在
DataStream的转化操作上。这是非常合理的，因为流数据状态管理本身
属于流转化和管理的一部分。例如，流按窗口分块处理、多流的合并、
事件乱序处理等功能的实现虽然也涉及数据缓存和有状态操作，但这些
功能原本就应该由流计算引擎来处理。

在DataStream中，与窗口管理相关的API包括Window和
WindowAll。其中，Window针对的是KeyedStream，而WindowAll针对
的是非KeyedStream。在窗口之内，则提供了一系列窗口聚合计算的方
法，如Reduce、Fold、Sum、Min、Max和Apply等。DataStream提供了
一系列有关流与流之间计算的操作，如Union、Join、CoGroup和
Connect等。

另外，DataStream还提供了非常有特色的KeyedStream。
KeyedStream是指将流按照指定的键值，在逻辑上分成多个独立的流。
在计算时，这些逻辑流的状态彼此独立、互不影响，但是在物理上这些
独立的流可能合并在同一条物理的数据流中。因此，在KeyedStream具
体实现时，Flink会在处理每个消息前将当前运行时上下文切换到键值所
指定流的上下文，就像线程栈的切换那样，这样优雅地避免了不同逻辑
流在运算时的相互干扰。

在流信息状态方面，Flink对流信息状态管理的支持，是其相比当前
其他流计算框架更显优势的地方。Flink在DataStream之外提供了独立的
状态管理接口。可以说，实现流信息状态管理，并将其从流本身的管理
中分离出来，是Flink在洞悉流计算本质后的明智之举。因为，如果
DataStream是对数据在时间维度的管理，那么状态接口其实是在空间维
度对数据的管理。Flink之前的流数据框架对这两个概念的区分可以说并
不是非常明确，这也导致它们关于状态的设计不是非常完善，甚至根本
没有。



在Flink中，状态接口有两种类型：Keyed State和Operator State。它
们既可以用于流信息状态管理，也可以用于流数据状态管理。

1.Keyed State

Keyed State与KeyedStream相关。KeyedStream是对流按照key值做出
的逻辑划分。每个逻辑流都有自己的上下文，就像每个线程都有自己的
线程栈一样。当我们需要在逻辑流中记录一些状态信息时，就可以使用
Keyed State。例如要实现“统计不同IP上出现的不同设备数”的功能，就
可以将流按照IP分成KeyedStream，这样来自不同IP的设备事件会分发
到不同IP独有的逻辑流中。然后在逻辑流处理过程中，使用KeyedState
来记录不同设备数。如此一来，就非常方便地实现了“统计不同IP上出
现的不同设备数”的功能。

2.Operator State

Operator State与算子有关。其实与Keyed State的设计思路非常一
致，Keyed State是按键值划分状态空间的，而Operator State是按照算子
的并行度划分状态空间的。每个Operator State绑定到算子的一个并行实
例上，因而这些并行实例在执行时可以维护各自的状态。这有点儿像线
程局部量，每个线程都维护自己的一个状态对象，在运行时互不影响。
例如，当Kafka Consumer在消费同一个主题的不同分区时，可以用
Operator State来维护各自消费分区的偏移量。

Flink 1.6版本引入了状态生存时间值（state time-to-live），这为实
际开发中淘汰过期的状态提供了极大的便利。不过美中不足的是，Flink
虽然针对状态存储提供了TTL机制，但是TTL本身实际是一种非常底层
的功能。如果Flink能够针对状态管理提供诸如窗口管理这样的功能，那
么Flink的流信息状态管理会更加完善和方便。



6.4.5　消息传达可靠性

Flink基于snapshot和checkpoint的故障恢复机制，在内部提供了
exactly-once的语义。当然，得到这个保证的前提是，在Flink应用中保
存状态时必须使用Flink内部的状态机制，如Keyed State和Operator
State。因为这些Flink内部状态的保存和恢复方案都包含在Flink的故障
恢复机制内，由系统保证了状态的一致性。如果使用不包含在Flink故障
恢复机制内的方案存储状态，如用另外独立的Redis记录PV/UV统计状
态，那么就不能获得exactly-once级别的可靠性保证，而只能实现at-
least-once级别的可靠性保证。

要想在Flink中实现从数据流输入到输出之间端到端的exactly-once
数据传送，还必须得到Flink connectors配合才行。不同的connectors提供
了不同级别的可靠性保证机制。例如，在Source端，Apache Kafka提供
了exactly once保证机制，Twitter Streaming API提供了at most once保证
机制。在Sink端，HDFS rolling sink提供了exactl.once保证机制，
Kafk.producer则只提供了exactly once的保证机制。



6.5　本章小结

除了前面章节介绍的开源流计算框架外，还有很多其他流计算框架
或平台，如Akka Streaming、Apache Beam等。这些流计算框架各具特
色，例如，Akka Streaming支持丰富灵动的流计算编程API，可谓惊艳卓
卓；而Apache Beam则是流计算模式的集大成者，大有准备一统流计算
江湖的势头。

既然有这么多的流计算框架，那我们该如何面对琳琅满目的流计算
框架呢？可以从两个角度来看待这个问题。

从横向功能特征的角度来看，其实所有流计算框架的核心概念都是
相同的，只要我们掌握了流计算的核心概念，把握流计算框架中各种问
题的关键所在，那么面对这些流计算框架，就不会感到眼花缭乱，乱了
阵脚。

从纵向发展历史的角度来看，以Flink为代表的新一代流计算框架在
理论和实践上都已日趋完善和成熟。当掌握了流计算中的核心概念后，
不妨一开始就站在Flink这个巨人的肩膀上，开始在流计算领域的探索和
实践。而作为有希望统一流计算领域的Apache Beam，实际上它是构建
在各种具体流计算框架上的更高一层的统一编程模式，它对流计算中的
各种概念和问题做出了总结，是我们追踪流计算领域最新进展的一个好
的切入点。

另外，目前大多数的流计算框架已经或正计划着支持SQL查询。这
是一个非常好的特性，给流计算也添加上了大家都熟悉的操作界面。但
是由于本书主要聚焦的是“流”这种计算模式最本质的东西，所以就略去
了对SQL这层“皮肤”的讨论。不管怎样，如果SQL非常适合读者的使用
场景的话，那么不妨去了解和使用它们。毕竟SQL也会成为未来流计算
编程的一种普遍模式。



第7章　当做不到实时

前面的章节都是在讨论实时计算的问题，可在真实的世界中，很多
事情不能如人愿，大多数问题并不能直接通过实时计算得到结果。一个
典型的例子就反欺诈场景，这种场景经常需要用到类似于社交关系网络
的二度关联图谱计算。在数据量较大的情况下，当前大多数硬件的计算
能力和图数据库方案都不足以在高并发且实时的水平下完成二度关联图
谱的计算。但是我们又迫切需要获得这些计算结果所带来的价值。在这
种情况下，该如何做出合理的方案设计呢？本章就来讨论这个问题。



7.1　做不到实时的原因

虽然本书的主题是实时流计算，但是不得不承认的是，我们真实面
对的绝大部分问题在当前普遍的硬件计算能力下，即使采用分布式、大
数据等技术，也不能直接实时计算出想要的结果。那是不是说面对这些
问题，就该彻底放弃实时计算的念头呢？不是的。虽然不能直接计算问
题的答案，但是我们还是可以通过增量计算的方式来间接获得问题的实
时答案。即使有时候这些答案稍有迟滞性和近似性，但是只要它们能够
带来尽可能最新的信息价值，那它们也是有用的。

整体而言，做不到实时计算的原因可以分成3个方面：算法复杂度
高、计算资源受限和数据量过大。

1.算法复杂度高

有些时候，我们要解决的问题本身就具有复杂性。例如，在风控分
析时，需要统计社交网络中二度联系人之间的关联关系；在异常检测
时，需要随着时间的增长不断训练或更新统计模型或机器学习模型的参
数等。这类问题算法的复杂度通常会大于O（N）。当N较大时，计算的
时延在实时分析中变得不可接受，也就失去了实时的意义。

2.计算资源受限

通常实时计算的资源包括CPU、内存和I/O。当计算资源中的一种
或多种已经用完时，则计算任务会出现排队等待的情况，这会增加处理
的时延。因此，针对线上系统的监控是一件非常重要的事情。很多时
候，监控系统的存在不仅会避免线上事故的发生，而且会对性能优化做
出改进提示。

3.数据量过大

大多数情况下，计算不能实时完成，数据量过大是主要原因。一方
面当数据量过大时，即使是时间复杂度为O（logN）级别的算法，也可
能因为数据分布在多个节点上，需要跨主机远程访问，带来过多I/O操
作，导致计算时延增大。另一方面，数据量过大不仅会给存储管理带来
复杂性，而且会对计算造成影响，如频繁GC造成JVM频繁卡顿。



针对上面3种不能做到实时计算的原因，或许我们能够通过具体问
题具体分析的方式来逐一解决。但是，有没有一种普遍适用的方法来处
理这类问题呢？答案是有的，这就是我们要讲的Lambda架构。

在具体讲解Lambda架构之前，我们首先要记住一条“铁纪”，即如果
我们承诺要做一个实时流计算系统，那就一定要把这个流计算系统的所
有环节做成实时响应的，一定不能让其中的任何一个环节是非实时的。
这是因为，一旦流计算系统的某个环节是非实时的，根据“木桶原理”，
这个流计算系统的处理速度就会受限于这个非实时环节，那么整个流计
算系统也会变成非实时的，系统其他部分做出的实时计算努力也就失去
了意义。记住这条“铁律”，还可以对我们优化整条流计算系统的性能带
来帮助。只要发现某个环节处理慢了，就可以快速定位到这个环节，然
后对这个环节做针对性的性能优化，如改进算法和分配更多计算资源。
通过不断地迭代这个过程，可以持续改进整条流计算过程的性能。



7.2　Lambda架构

从现在起，我们需要重新审视下自己是怎样开发程序，以及是怎样
理解所开发的程序的。或许在实际的开发工作中，我们会出现以下一些
日常情况：当我们开发Web后端时，认为无非就是增删查改，于是拿起
Spring Boot就做了；当我们开发流计算应用时，认为无非就是消息过来
就处理，于是拿起Storm就干了；当我们开发批处理任务时，认为无非
就是将数据读出来后进行计算，然后输出结果就好了。是的，针对每一
种任务，我们都知道怎么去完成这个任务，然后针对具体任务解决具体
问题。

然后有一天，产品经理跑过来跟你说，功能需要增加；运维人员跑
过来跟你说数据库要调整；刚来的新人需要你来指导，你需要跟他讲解
系统的整体结构。这个时候你会发现，原来设计的系统已经根本理不清
或者动不了了：到处是耦合的增删查改逻辑，到处是相互依赖的输入/
输出，到处是乱七八糟的数据格式。想在原来的业务流程中插入一个业
务模块，一定要对系统“大动干戈”；想要调整数据库，一定要修改程序
代码；想要指导新人，一定要告诉他数据在哪里修改。

突然，你觉得好烦。似乎一切都开始变得失控，每动一处都是“伤
筋动骨”。造成这些问题的祸根其实从一开始就埋下了。因为在设计系
统的时候，你就没有一个整体的指导性原则。当我们开发流计算系统
时，亦是如此。流计算系统的本质是对数据的实时处理和分析，所以我
们首先应该理解数据系统的本质是什么。



7.2.1　数据系统和Lambda架构思想

数据系统用于根据过去所获取和累积的知识，回答当前提出的问
题。这里面有两层信息。其一是积累知识。当有新的消息流入系统时，
我们需要将它记录下来，这些消息会成为我们知识的一部分。其二是回
答问题，我们在回答当前的问题时，依据历史积累的知识来回答这个问
题。

数据系统一方面需要积累知识，另一方面可以回答问题。必须强调
的是，积累知识和回答问题是两个独立的过程。积累知识可以是在任何
时间、从任何地方收录数据，收录之后内部还有可能需要进一步归纳和
整理。回答问题则是在任何时候，根据知识库所知道的一切来回答任何
人提出的问题。

记住“积累知识”和“回答问题”这两个过程是独立的非常重要。因为
这告诉我们，在设计有关数据系统的方案时，千万不要将“查询”和“更
新”这两个过程耦合起来，否则知识积累的过程和回答问题的过程紧密
关联，会让我们的系统在将来可能的需求变更或功能增强时变动起来非
常困难。

Lambda架构就是这样一个先积累知识后回答问题的数据系统。
Lambda架构将数据系统抽象为一个作用在数据全集上的函数。用公式
表示就是：

query = function(all data)

这个公式还只能算是一个粗略概括，不能体现Lambda架构的核心
观点，因为基本上所有的数据系统都可以用这个公式大体表示。
Lambda架构与众不同的地方是，它专门为解决大数据量场景下实时查
询的问题而生，它将数据系统更精细地刻画为

query = function(all data) = function(batch data) ＋ function(streaming data)

从上面的公式可以看出，当数据量太大而不能实时全量计算时，



Lambda架构将数据处理过程分成两部分。一部分是基于批处理的预计
算，另一部分是基于流处理的实时增量计算。将这两部分计算结合起
来，最终得到计算结果。

这里需要说明一下Lambda架构之所以取名为Lambda的原因，这有
助于我们理解Lambda的思想。Lambda架构将数据系统视为在不可变数
据集上的纯函数计算，这与函数式编程的核心思想是不谋而合的。我们
经常听说的Lambda表达式正是函数式编程的具体表现形式，如在Java、
Python等编程语言就有Lambda表达式的存在。对函数式编程和Lambda
表达式感兴趣的读者可自行查阅相关资料。



7.2.2　Lambda架构

Lambda架构最初由Storm流计算框架的作者Nathan Marz为构建大数
据场景下低延时计算和查询的通用架构模式而提出。如图7-1所示，
Lambda架构总体上分为3层：批处理层（batch layer）、快速处理层
（speed layer）和服务层（serving layer）。其中，批处理层和快速处理
层分别处理历史全量数据和新输入系统的增量数据，而服务层用于将批
处理层和快速处理层的结果合并起来，以提供最终用户或应用程序的查
询服务。

图7-1　Lambda架构

在Lambda架构中，各层的具体功能如下。



1.批处理层

批处理层用于存储主数据集和预计算各种批处理视图。当数据进入
批处理层时，数据被存储下来，并作为数据系统的主要数据集。由于全
量的数据很大，计算比较耗时，所以批处理层的主要作用是对预定的查
询进行预计算，并将计算结果保存下来。如果做得更精细些，批处理层
可以基于计算结果生成各种视图，并构建相应的索引，以供后续快速检
索和查询。

2.快速处理层

在最标准的Lambda架构中，快速处理层的作用是实时计算在批处
理层两次调度执行期间新到的增量数据，并将计算结果保存下来。在这
种标准架构下，理论上快速处理层的输出结果与批处理层的输出结果在
业务意义上应该是完全相同的。换言之，如果我们分别用两张数据库的
表来存储批处理层和快速处理层的计算结果，那么这两张数据库表的表
结构应该是相同的。只是因为分析的时间段不同，这两张表的数据记录
不一样而已。但Lambda架构并非“定式”，在很多场景下，我们可以根据
自己的需求对快速处理层做出改动。例如，既然前一次的批处理层计算
结果已经存储在数据库中了，那为什么快速处理层就不可以直接使用这
次的批处理层计算结果呢？事实上我们经常这样做，例如，用批处理层
学习统计模型或机器学习模型，将模型结果保存到数据库，然后快速处
理层从数据库中定期更新模型，并根据模型做出实时预测。

3.服务层

服务层用于将批处理层和快速处理层各自计算所得结果合并起来，
从而能够实时提供用户或应用程序在全量数据集上的查询结果。服务层
对外提供的查询接口是只读的，这对实现高性能、无状态、高可靠的查
询服务非常有用。所以，服务层在技术实现上结构相对简单，但它与具
体的业务查询会结合得更加紧密。

Lambda架构是一种架构设计思想，针对每一层的技术组件选型并
没有严格限定，所以我们可以根据实际情况选择相应的技术方案。批处
理层的数据存储方案可以选择HDFS、S3等大数据存储方案。批处理层
的任务执行框架则可以选择MapReduce、Hive、Spark等大数据计算框
架。批处理层的计算结果（如数据库表或者视图）由于需要被服务层或
快速处理层高速访问，所以可以存放在诸如MySQL、HBase等能够快速



响应查询请求的数据库中。快速处理层是各种实时流计算框架的用武之
地，如Flink、Spark Streaming和Storm等。快速处理层对性能的要求更
加严苛，其计算结果可以写入像Redis这样具有超高性能表现的内存数
据库中。当接收到查询请求时，服务层可以分别从存储批处理层和快速
处理层计算结果的数据库中取出相应的计算结果并做出合并，作为最终
的查询输出。



7.2.3　Lambda架构在实时流计算中的运用

本章最初的出发点是讨论当我们在实时流计算系统中不能够直接实
现某些实时计算目标时应该如何处理，我们提出的解决方案是Lambda
架构。那么具体应该怎样将Lambda架构引入我们的实时流计算系统中
呢？

在以实时流计算为主体计算流程的体系中，并非要由服务层来提供
最后全量数据的查询输出，而是由分散在流计算框架各个节点处的计算
逻辑单元直接使用批处理层的计算结果，如图7-2所示。

以风控系统中的特征提取和风险评分为例。特征提取系统需要并发
提取数十个特征，在这些特征中，有些特征的计算耗时很短，可以立刻
实时计算出结果，如计数、求和等；而另外一些特征的计算非常耗时，
不能够实时得到结果，如二度关系图的计算。所以，按照Lambda架构
将计算的实时部分和离线部分分离的思想，我们把不能够实时计算的特
征分离成实时计算和离线计算两部分，其中，实时计算是在离线计算结
果的基础上进行的增量计算。与特征提取系统一样，风险评分系统也会
有类似的问题，模型参数需要根据在线数据每天进行一次更新，这时也
需要将模型和评分过程分离为离线计算和实时计算两部分。其中，离线
计算用于训练更新模型参数，实时计算用于进行在线风险评分。



图7-2　在实时流计算中运用Lambda架构



7.3　Kappa架构与架构实例

Lambda架构为开发大数据量下的实时应用提供了一种切实有效的
通用模式。通过将数据和处理分为批处理层、快速计算层和服务层3个
相对独立的层次，Lambda架构降低了大数据在持续更新过程中问题的
复杂性，并能够实时获得在全部数据集合上的查询结果。不过Lambda
架构也存在一些问题，其中最主要的就是，对于同一个查询目标，需要
分别为批处理层和快速计算层开发不同的算法实现。也就是说，对于同
一套大体相同的逻辑，需要开发两种完全不同的代码，这给开发、测试
和运维都带来一定的复杂性和额外工作量。



7.3.1　Kappa架构

为了解决Lambda架构中因为批处理层和快速计算层“异质”带来的复
杂性问题，LinkedIn的Jay Kreps在Lambda架构的基础上提出了Kappa架
构。Kappa架构的核心思路是将批处理层用快速处理层的流计算技术替
换。这样一来，批处理层和快速处理层均使用相同的流处理逻辑，在开
发、测试和运维上都有一个更统一的框架，从而降低了开发、测试和运
维的成本。

最初的Kappa架构建立在Kafka的基础上，这大概就是这种架构名字
的首字母为K的原因。Kappa这个名字给部分刚接触这种架构模式的开
发人员（如笔者）带来一个很微妙的疑惑。对于像笔者这样从传统批处
理转向流处理（特别是在大数据领域）的开发人员来说，其或多或少都
会对Kafka能不能存储HDFS量级的离线数据持一定的怀疑态度，不确定
这种做法是否合理。这种怀疑有一定道理，毕竟我们可以在Kafka存储1
周、1个月，甚至1个季度的数据，但是如果时间线真的很长，如三年五
载，再加上数据量真的超级大，如T级甚至P级，这种数据就这样“裸”着
放在Kafka中，是不是真的合适？现在笔者敢说，这样做是合理的。这
种直接管理和存储流式数据的功能正是Kafka最初的设计目标之一。即
便没有Kafka，这种直接管理和存储流式“大”数据的“数据库系统”也是
非常有用的，所以一定会有人开发这样的“流式数据库系统”。如果你对
Kafka不满意，但又实在想要一个这样的流式数据库，那么，话说自己
造一个轮子也是有趣的事呢！

如果我们从数据处理的角度来看Kappa架构的离线处理部分，还会
有更加清晰的认识。对于主流流计算框架，如Flink和Spark Streaming
等，“流数据”和“块数据”的区别已经开始逐渐模糊。在Flink中，块数据
处理相关API的底层就是用流数据来实现的，而且在未来的Flink开发计
划中还将进一步地去掉块数据处理相关API，最终统一为流处理API。
在Spark Streaming中，众所周知的概念就是“流”是由一系列的“块”组成
的，流数据的处理最终转化为块数据的处理。不管是“流”就是“块”，还
是“块”就是“流”，这都说明以“流”这种统一的方式来处理数据已经是各
主流大数据处理框架的共识。换言之，“流”已然是大势所趋。所以，即
便没有像Kafka这样的消息中间件，我们也可以先将流数据以块的方式
存储在HDFS上，然后以“流”的方式对其进行读取和处理，这样同样达



到了将批处理层替换为流计算的目的，统一了Lambda架构中的批处理
和快速处理层的开发界面，减少了开发、测试和运维的复杂程度。

所以，在诸如Kafka和Pulsar等新一代流式大数据存储方案，以及
Flink和Spark Streaming等新一代流计算框架的双重加持下，用Kappa架
构取代Lambda架构成了自然而然的选择。Kappa架构如图7-3所示。

图7-3　Kappa架构

从图7-3可以看出，Kappa架构本质上依旧是Lambda架构的一种，
只是原本用作离线的批处理层被流计算取代了。在使用Kappa架构时，
不管是用Kafka等“流数据库”存储数据，还是用HDFS等分布式文件系统
存储数据（没错，未尝不可，记住Flink能够用流的方式处理HDFS上的
块数据），对于离线部分的数据，保存所需分析时间窗口的数据，过期
数据可以（或者说必须）通过设置过期策略进行淘汰。例如，如果要分



析的数据是过去3天的数据，就设置超期时间为3天，只保留3天的数
据。然后设置定时任务，定期对时间窗口内的全量数据进行处理，处理
的结果保存到数据库中。当新的离线计算结果出来后，旧的离线计算结
果就可以删除了。由于快速处理层同样采用流计算方式，所以批处理层
和快速处理层可以用完全相同的流计算框架和大体相同的流计算代码来
实现，无非两者设定的时间窗口、滑动周期有所不同而已。例如，离线
计算部分的时间窗口为3天，计算耗时20分钟，我们设置这个离线任务
每30分钟调度一次。同时，设置实时计算部分的窗口为30分钟，计算耗
时很短，如10秒，设置每15秒执行一次。将两者每次计算的结果都存入
数据库，然后就可以为服务层实时提供（最多有15秒时延）最近3天的
全量数据的查询结果了。相比没有快速计算层时每次查询都至少有20分
钟的时延，采用Lambda架构能够将查询时延降低到15秒，而采用Kappa
架构后不仅时延减少到了15秒，而且只需要开发一套代码就可以同时实
现离线部分和实时部分的处理逻辑。



7.3.2　Kappa架构实例

正所谓“光说不练假把式”，下面我们就来使用Flink实现Kappa架
构。假设现在需要统计“过去3天每种商品的销售量”，我们在Kappa架构
中将这个计算任务分为离线处理层和快速处理层两层。离线处理层的实
现如下：

DataStream counts = stream

    // 将字符串的数据解析为JSON对象
    .map(new MapFunction<String, Event>() {

        @Override

        public Event map(String s) throws Exception {

            return JSONObject.parseObject(s, Event.class);

        }

    })

    // 提取出每个事件中的商品，转化为商品计数事件
    .map(new MapFunction<Event, CountedEvent>() {

        @Override

        public CountedEvent map(Event event) throws Exception {

            return new CountedEvent(event.product, 1, event.timestamp);

        }

    })

    .assignTimestampsAndWatermarks(new EventTimestampPeriodicWatermarks())

    .keyBy("product")

    // 对于批处理层，使用滑动窗口SlidingEventTimeWindows

.timeWindow(Time.days(3), Time.minutes(30))

// 最后是批处理窗口内的聚合计算
    .reduce((e1, e2) -> {

        CountedEvent countedEvent = new CountedEvent();

        countedEvent.product = e1.product;

        countedEvent.timestamp = e1.timestamp;

        countedEvent.count = e1.count + e2.count;

        countedEvent.minTimestamp = Math.min(e1.minTimestamp, e2.minTimestamp);

        countedEvent.maxTimestamp = Math.min(e1.maxTimestamp, e2.maxTimestamp);

        return countedEvent;

    });;

在上面的批处理层实现中，我们采用了长度为3天、步长为30分钟
的滑动时间窗口。也就是说，每30分钟会计算一次3天内各个商品的销
售量。

快速处理层的实现如下：

DataStream counts = stream

    // 将字符串的数据解析为JSON对象
    .map(new MapFunction<String, Event>() {

        @Override



        public Event map(String s) throws Exception {

            return JSONObject.parseObject(s, Event.class);

        }

    })

    // 提取出每个事件中的商品，转化为商品计数事件
    .map(new MapFunction<Event, CountedEvent>() {

        @Override

        public CountedEvent map(Event event) throws Exception {

            return new CountedEvent(event.product, 1, event.timestamp);

        }

    })

    .assignTimestampsAndWatermarks(new EventTimestampPeriodicWatermarks())

    .keyBy(x -> x.product)

    // 对于批处理层，使用翻转窗口TumblingEventTimeWindows

    .window(TumblingEventTimeWindows.of(Time.seconds(15)))

    // 最后是批处理窗口内的聚合计算
    .reduce((e1, e2) -> {

        CountedEvent countedEvent = new CountedEvent();

        countedEvent.product = e1.product;

        countedEvent.timestamp = e1.timestamp;

        countedEvent.count = e1.count + e2.count;

        countedEvent.minTimestamp = Math.min(e1.minTimestamp, e2.minTimestamp);

        countedEvent.maxTimestamp = Math.min(e1.maxTimestamp, e2.maxTimestamp);

        return countedEvent;

    });;

在上面的快速处理层实现中，我们采用了长度为15秒的翻转时间窗
口。也就是说，每15秒会计算一次15秒内各个商品的销售量。相信聪明
的读者们看到这时已经发现Kappa架构的优势所在了——在上面批处理
层和快速处理层的实现中，除了两个窗口的类型不一样以外，其他代码
是完全一样的！是不是非常惊艳呢？要知道这给开发和运维减少了太多
太多的工作量啊！

在批处理层和快速处理层各自计算出结果后，需要将计算结果存入
数据库，具体如下：

public class JdbcWriter extends RichSinkFunction<CountedEvent> {

    // 将每个窗口内的计算结果保存到数据库中
    private String inset_sql = "INSERT INTO table_counts(id,start,end,product,v_count,layer) VALUES(?,?,?,?,?,?) " +

            "ON DUPLICATE KEY UPDATE start=?,end=?,product=?,v_count=?,layer=?;";

    private long slideMS = 0;

    private long slideNumberInWindow = 0;

    private String layer = null;

    public JdbcWriter(long slideMS, long slideNumberInWindow, String layer) {

        this.slideMS = slideMS;

        this.slideNumberInWindow = slideNumberInWindow;

        this.layer = layer;

    }

    @Override

    public void invoke(CountedEvent value, Context context) throws Exception {



        // 通过对滑动或翻滚的步长取整，以对齐时间窗口，从而方便后续合并离线部分和实时部分的计算结果
        long start = value.minTimestamp / slideMS;

        long end = value.maxTimestamp / slideMS + slideNumberInWindow;

        String product = value.product;

        int v_count = value.count;

        String layer = this.layer;

        String id = DigestUtils.md5Hex(Joiner.on("&").

        join(Lists.newArrayList(start, end, product, layer)));

        preparedStatement.setString(1, id);

        preparedStatement.setLong(2, start);

        preparedStatement.setLong(3, end);

        preparedStatement.setString(4, product);

        preparedStatement.setInt(5, v_count);

        preparedStatement.setString(6, layer);

        preparedStatement.setLong(7, start);

        preparedStatement.setLong(8, end);

        preparedStatement.setString(9, product);

        preparedStatement.setInt(10, v_count);

        preparedStatement.setString(11, layer);

        preparedStatement.executeUpdate();

    }

}

在上面的实现中，我们将批处理层和快速处理层的结果都存入了数
据库。最后服务层就只需要通过一条简单的SQL语句就能将两者的计算
结果合并起来了，具体如下：

SELECT product, sum(v_count) as s_count from

(

    SELECT * FROM table_counts WHERE start=? AND end=? AND layer='batch'

    UNION

    SELECT * FROM table_counts WHERE start>=? AND end<=? AND layer='fast'

) as union_table GROUP BY product;

在上面的代码中，我们使用UNION操作将批处理层和快速处理层
的结果合并起来，然后在这个合并的表上，通过分组聚合计算即可非常
方便并且精确地计算出“过去3天每种商品的销售量”了。



7.4　本章小结

本章主要讨论了当我们实在不能通过单一的流计算框架来实现计算
目标时，采用Lambda架构来间接实现我们的实时计算目标。Lambda架
构是一种构建数据系统的思想，将数据分析的过程定义为在不可变数据
集合上的纯函数计算。数据系统的构建过程分成了两步，第一步是收集
一批数据形成不可变数据集，第二步是在不可变数据集上进行数据处理
和分析。这种数据系统的构建思路，不仅可以应用于离线处理部分，而
且可以应用于实时处理部分。离线处理部分和实时处理部分分别衍生出
了Lambda架构的批处理层和快速处理层。

由Lambda架构演进而来的Kappa架构，通过流来统一编程界面，确
实极大地简化了数据系统的构建过程。虽然在架构体系和实际代码开发
过程中，Kappa相比Lambda具有更好的一致性，但是这并不意味着
Kappa比Lambda架构更好，它们有各自的意义和价值。Lambda架构代表
的是一种更通用的架构思想，指导我们在碰到不能直接用实时计算方式
解决大数据问题时，不妨尝试采用这种离线和实时相结合的折中方案。
Kappa架构的最大价值则是启发我们尽量用流式计算框架来统一离线计
算和实时计算。

在实际的项目开发过程中，并不是所有的任务都适合用流计算的方
式来完成。到目前为止，不管是在丰富度、成熟度，还是在可用的第三
方工具库数量方面，采用批处理方式实现的算法比采用流处理方式实现
的算法，都要优越很多。另外，是选择将离线计算和实时计算统一起
来，还是将研发工程师和数据工程师各自的生产力和创造力发挥出来，
也是值得商榷的事情。所以，我们需要根据具体的业务场景、已有技术
积累、团队研发能力等多方面因素设计出最终能够实际落地的架构方
案。



第8章　数据传输

前面章节讨论的都是数据流处理相关的问题，本章开始讨论流计算
系统中的数据传输系统。就像楚汉相争天下时，不管刘邦在前线多么气
势磅礴、浩浩荡荡，都需要萧何在后方给他及时运送粮草、补充兵马，
这样才能够保证刘邦的大军在前线专注于英勇杀敌，并最终取得楚汉相
争的胜利。数据传输系统就是流计算系统中的“萧何”，虽然它不
是“打仗”的核心，但是没有它保证“粮草”快速和通顺地运转，流计
算系统就不能稳定、可靠、高效地运行，进而不能发挥出实时流计算系
统潜在的价值。数据传输系统承担了整个实时流计算系统的数据传输任
务，是遍布实时流计算系统各处的“血管系统”。

数据传输是一个在多系统间进行通信的过程。传统典型的系统间通
信方式是远程方法调用，也就是我们常说的RPC，如在Hadoop中广泛使
用的AVRO RPC和Protobuf RPC，以及在微服务架构中更加广泛使用的
REST。在实时流计算系统中，由于“流数据”的特点，我们通常使用
一种与“流”更加契合的通信方式，即基于消息中间件的数据传输方
式，如RabbitMQ、Apache Kafka和Apache Pulsar等。

除了消息中间件以外，大多数开源流计算框架在其系统内部实现了
自己的数据传输方法。大体上，我们可以将这些在分布式计算节点间进
行数据传输的方案理解为一种功能更加专一的跨进程间消息队列。它们
的基本功能是在两个进程之间进行数据传输，更复杂的功能则包括数据
持久化和反向压力等。我们可以将这些跨进程间的消息队列理解为简化
版或定制版的消息中间件。

本章将重点讨论实时流计算系统中多个子系统或业务模块间通过消
息中间件进行数据传输的问题。



8.1　消息中间件

在计算机领域，但凡在两个不同应用或系统间传递的数据，都可以
称为消息。例如，在TCP/IP协议的4层模型中，数据链路层在两个MAC
地址间传递的数据可以称为消息，网络层在两个IP地址间传递的数据可
以称为消息，传输层在两个套接字间传递的数据可以称为消息，应用层
在两个进程间传递的数据也可以称为消息。

在实时流计算应用开发过程中，我们主要关心的是具有业务含义的
数据。这些数据在流计算应用的各个业务逻辑处理单元间传递，我们亦
称其为消息。这些消息可以表现为字符串、JSON对象或AVRO对象
等。当在两个业务逻辑处理单元间传递消息时，需要先将这些消息对象
序列化为字节数组，然后经网络传递，最后由消息消费方接收并反序列
化，恢复为最初的消息模样。

或许我们会觉得直接在诸如TCP/UDP等网络协议的基础上，开发两
个系统之间的消息传递系统是一件简单、轻松的事情。但当我们真正开
始着手实现这个系统时，就会发现问题并没有其表面所展现的那么简
单。考虑消息需要高性能、高可靠、顺序地传递，系统重启或故障恢复
时需要进行消息持久化和多副本存储，消息数据量暴增时需要具备横向
扩展处理能力，多种不同平台之间传递数据流时需要实现不用语言的客
户端等。可以说，当你千辛万苦完成了所有这些特性的开发时，那么必
须恭喜你，你一定已经成为软件开发的大神级人物！但同时，你也一定
已经忘记了最初构建业务系统的目的是什么。



8.1.1　为什么使用消息中间件

当我们专注于实时流计算应用的业务逻辑开发时，急需一个开箱即
用并且成熟可靠的数据传输系统。这时候就是消息中间件发挥作用的时
刻了。消息中间件替我们解决了流计算系统中数据传输的绝大多数问
题。我们只需要使用消息中间件提供给我们的各种API与其对接，就可
以轻而易举地实现消息在两个系统之间的传输，而其他关于高性能、高
可靠、跨平台等一系列的问题，完全交由消息中间件自行实现和处理。

在此，我们需要“表彰”下消息中间件在帮助我们构建流计算系统过
程中的几大功绩。

1.将上下游业务逻辑处理单元解耦

高内聚、低耦合已经是软件领域老生常谈的设计原则了。在第2章
讲解数据接收模块时，我们通过队列将数据接收服务内部的几个处理步
骤分离开。如果将这个过程放大到更大的系统，将每个处理步骤放大为
一个业务模块，那就可以用消息中间件来替换原本在处理步骤间使用的
队列。回想我们平时在开发软件系统时，如果有多个开发人员开发业务
流程的不同业务模块，那么是不是通过消息中间件将彼此间的开发过程
隔离开更好。只要上下游的开发人员间约定好消息的格式，就可以开始
各自的开发工作，并且彼此之间的任务边界、责任边界一目了然。当软
件上线发生问题时，也只需要查看各个模块的输入/输出是否正常即
可，可以非常方便、容易地定位线上问题发生的地方。

2.缓冲消息和平滑流量高峰

第3章谈到，流计算系统是一种天然的异步处理系统。在流计算系
统中，上下游之间的业务逻辑的复杂程度不尽相同，从而上下游间的处
理速度也会不同。反向压力是解决这种上下游处理速度不一致问题的手
段之一。有些时候，线上业务会在某些时间段出现流量高峰。例如，每
天早、中、晚3个时间段的广告点击量通常是最高的。又如，商家在做
推广活动时，流量突然暴涨也是司空见惯的事情。这个时候，通过消息
中间件将短时间内的高峰流量缓存在消息队列中，同时各个业务模块依
旧在尽其所能地处理消息队列中积压的消息。如此一来，既保证了系统
平稳运行，又最大程度发挥了系统的处理能力。



3.使系统的处理能力能够横向扩展

大部分消息中间件支持M（M≥1）个消息生产者和N（N≥1）个消
息消费者的模式。这样，消息的生产者和消费者的数量实际上是完全独
立的。消费者来不及处理生产者输入消息中间件的消息时，可以部署更
多的消息消费者来处理消息。所以，消息中间件使得流计算系统的横向
扩展能力得到显著增强。

4.消息高可靠传递

就像任何软件都有Bug一样，线上服务可能会因为各种各样的原因
而失败，可能是软件本身的Bug导致服务进程退出、可能是服务日志没
有及时清理而磁盘写满、可能是系统内存不足导致服务进程被操作系统
杀掉、可能是云服务厂商的光纤被施工队挖断导致服务器宕机等。为了
保证实时流计算系统中的数据不会因为服务的失败而丢失，最基本的要
求是能够对数据进行持久化。而为了提供更可靠的数据恢复保证，通常
还会对数据进行多副本保存。当消息中间件和服务重启时，服务失败前
尚未处理的消息不会丢失掉。越来越多的消息中间件提供了消息的可靠
传递机制，如最少一次传递，甚至是精确一次传递，让我们能够更加专
注于业务逻辑的开发，而不是将宝贵的精力和时间耗费在底层的消息传
递可靠性保证上。

5.消息的分区和保序

或许有些读者会觉得分区和保序怎么能够搅合在一起？实时上，这
是一种de facto的最佳实践经验。如果消息中间件没有提供消息的分区功
能，那么要实现保序就只能由客户端使用单一线程来读取消息，然后按
照特定的key来将消息分发到多个工作线程的任务队列中去。如若不
然，就不能保证消息是严格按照其输入的顺序来被处理的。这是因为多
线程的执行通常是相互抢占的，先拿到消息的线程可能会在较后的时间
执行，这样就破坏了消息处理的时序。而如果将所有消息都交由同一个
线程来处理，这或多或少会掣肘并发度的提高。而如果消息在一开始输
入消息中间件时就按照特定的key进行分区并保证分区内的顺序，那么
只需要给每个分区分配一个线程来消费和处理消息，就能够在保证消息
在业务逻辑上有序的同时，大幅提高系统的并发处理能力。这种用分区
消息局部有序性来取代全体消息整体有序性的做法，在很多业务场景下
都能够满足对消息顺序的要求，同时不会影响处理性能的水平扩展，是
一种很好的实践经验。



以上就是我们总结的消息中间件的几点“功绩”了。必须提到的是，
以消息中间件为核心的SOA系统架构模式曾经深深影响过一代系统开发
人员。直到现在，SOA系统架构模式还在许多企业级架构中发挥着重要
作用。虽然SOA系统架构模式不是本章重点，但仍然建议读者自行查阅
相关资料了解其历史。毕竟“以史为鉴，可以知兴替”，通过对系统架构
模式演进过程的研究，我们会更加深刻地理解现代软件系统架构。



8.1.2　消息中间件的工作模式

消息中间件最简单的工作模式是点对点模式，即我们经常听到的点
对点（Point-to-Point，P2P）模式。图8-1展示了消息中间件点对点模式
的工作原理。用Java中的BlockingQueue来描述点对点模式是非常合适
的，消息生产者将消息发送到消息中间件的某个队列中，同时消息消费
者从这个队列的另一端接收消息。生产者和消费者之间是相互独立的。
点对点模式的消息中间件支持多个消费者，但是一条消息只能由一个消
费者消费。

发布/订阅模式是消息中间件的另一种工作模式。发布/订阅模式的
功能更强，使用场景更多，是大多数消息中间件的主要工作模式。图8-
2展示了消息中间件发布/订阅模式的工作原理。在发布/订阅模式中，我
们先定义好一个具有特定意义的主题（topic），消息生产者将所有属于
这个主题的消息发送到消息中间件中代表这个主题的消息队列上，然后
任何订阅了这个主题、对该主题感兴趣的消息消费者都可以接收这些消
息。发布/订阅模式使得消息生产者和消息消费者之间的通信不再是一
种点到点的传输，而是由消息中间件作为代理人统一管理消息的接收、
组织、存储和转发，这样减少了系统中所有生产者和消费者之间的连接
数量，从而降低整个系统的复杂度。和点对点方式不同，发布到主题的
消息会被所有订阅者消费。

图8-1　消息中间件点对点模式的工作原理



图8-2　消息中间件发布/订阅模式的工作原理

发布/订阅模式存在一个负载均衡问题。当发布者消息量很大时，
单个订阅者的处理能力逐渐变得不足，于是我们将多个订阅者节点组成
一个订阅组以共同处理某个主题的消息，这样在订阅组内部的订阅者节
点之间就实现了负载均衡，使得消费者的处理能力能够水平扩展。图8-
3展示了消息中间件中一种带负载均衡功能的发布/订阅模式。



图8-3　带负载均衡功能的发布/ 订阅模式



8.1.3　消息模式

消息中间件包揽了消息传递过程中的大部分事情，当我们开始业务
模块的开发时，只需要定义好业务模块和业务模块之间的通信协议（也
就是消息模式）即可。所谓消息模式，也可以说是消息的定义，再说白
点儿，就是定义消息有哪些字段、字段的类型、字段的排列顺序、字段
是否必需等。或许我们觉得这不就是定义消息吗，列出文档不就可以
了。但是在实际产品开发过程中，消息模式随产品版本的迭代和更新，
有时候会成为一个非常恼人的问题，就像睡觉时耳边嗡嗡做势的蚊子。
所以，这里我们要讨论下几种消息模式的处理方式。

1.无模式（弱模式）

无模式（弱模式）也是一种模式。很多Java开发者尤其喜欢用类来
表达一个实体，这是非常好的习惯。但是像Python这样动态语言的开发
者则并不是十分热衷于预先规定一个对象必须有哪些字段，他们只需要
大致知道一个对象有哪些字段，然后在程序需要某个字段的地方有那个
字段即可。当数据在实时流系统中被逐步处理和进行信息增强时，一些
临时字段、可选字段、推导字段会逐渐附加到消息上。这个时候，使用
无格式的消息模式未必不是一种好的选择。以JSON为代表的一类数据
格式是无模式消息的典型，也就是说不需要schema文件就可以将其从字
节数组反序列化为JSON对象。笔者将这种使用JSON表示数据，直接操
作JSON字段，实现数据处理逻辑的设计和开发方式，称为“无schema编
程”。当在处理流式数据过程中，需要增加一些消息字段时，这是一种
方便、灵活的解决方案。需要注意的是，无schema编程对程序开发者要
求较高，需要非常注意在程序的各个地方检查相关处理逻辑必要字段的
完整性和合法性。另外，要遵守“数据不变性原则”，即可以增加消息的
字段，但是不要修改和覆盖消息的原有字段。换言之，我们对消息的处
理仅仅是增强信息，而不是修改信息。

2.强模式

定义严格的数据模式，是大家喜闻乐见的事情，不仅仅是开发，也
包括产品、测试、运维和售前。以Avro、Thrif、Protocol buffers为代表
的数据组织方案是强消息模式的代表。强模式的好处是字段在反序列化
为对象的时候，自动对字段的完整性进行检查，再配合类的定义，使用



起来更加方便、高效和安全。当采用强模式表达消息时，应该尽可能地
选择既支持前向兼容也支持后向兼容的方案。前向兼容是指当schema新
加字段后，如果以旧schema保存的二进制数据用新schema反序列化，那
么新加字段应该设置为默认值，而不是抛出异常。所谓后向兼容是指当
schema新加字段时，如果以新schema保存的二进制数据用旧schema反序
列化，那么新加字段应该被忽略，而不是抛出异常。这样做的原因在
于，实际生产中线上系统非常可能混合新旧两种schema对应的二进制数
据。例如，在新版本客户端SDK发布后，市面上仍旧会有很多旧版本客
户端SDK的用户。虽然Avro、Thrif、Protocol buffers等序列化框架都支
持前、后向兼容，但是产品迭代更新schema时，还是应该尽量保证消息
字段的一脉相承，并且应该仔细阅读各种序列化框架前、后向兼容的限
制条件，不要随意删除字段、修改字段名称和调整字段顺序，否则稍不
注意就会出现反序列化结果和预期不一致的问题。

3.版本控制

任何时候，给接口或协议添加版本控制都是明智之举，消息模式亦
是如此。在消息模式的首位添加一个版本控制字段总归是好的，这样当
数据模式被改得面目全非时，依旧能够通过不同版本执行不同逻辑分支
的方式留下处理所有新旧格式消息的余地。另外，版本控制有助于数据
处理失败时的问题追溯和分析。



8.1.4　使用消息中间件的注意事项

第1章已经讨论了在消息中间件选型时的一些基本考量因素，如吞
吐量、延迟、高可用、持久化和水平扩展。这里，我们补充几个在实际
开发中需要考虑的问题。

1.消息传达的可靠性

大多数流计算平台会对消息传达的可靠性做出一定程度的保证，如
尽力而为、至少一次或精确一次等。关于这点，我们在前面对比各种开
源实时流计算平台时已有所讨论，这里不再赘述。作为流计算系统中数
据的传输中枢，消息中间件自身对消息传递可靠性的保证亦是如此。很
多开发者认为“精确一次”理所当然是最好的消息可靠性保证机制，有了
它就不用考虑任何消息传递失败的问题。但笔者认为，不管是消息中间
件还是流计算平台，大多数情况下都不要过度依赖消息中间件能够提供
给你“精确一次”的保证。一方面，保证“精确一次”会非常显著地降低系
统性能；另一方面，不同系统所承诺的“精确一次”语义或多或少有所区
别，使用起来还有一定限制。

基本上，所有“精确一次”级别的可靠性保证机制都是通过框架内部
的一套封闭且完备的逻辑来实现的。所以，开发者想要使用“精确一
次”级别的可靠性服务，就必然限定在框架提供的SPI或服务下完成，如
Storm的ACK机制和Trident、Flink的checkpoint机制和Keyed State及
Operator State等。相比实现一个独立且完整的模块，一边开发业务逻辑
一边还得照顾框架本身的工作机制实在是一件琐碎的事情。另外，当我
们需要与不受框架约束的外部存储（如文件、数据库等）交互时，就脱
离了流计算框架的保护，到头来开发者还是需要自己去保证消息的“精
确一次”。如果我们不明真相，以为框架提供了“精确一次”就万事大
吉，忽略了与外部存储交互时对失败的处理，那么开发出来的程序就很
不安全了。

总的来说，消息中间件至少应该能够提供“至少一次”级别的传达可
靠性保证。至于“精确一次”级别的可靠性，其实现起来更加复杂，使用
起来也有更多约束条件，性能也需要考量。“精确一次”和“至少一次”之
间的差异就像lock和try lock之间的区别。相比前者，选择后者时更显乐
观，但使用时需要更加谨慎，如此才能在保证结果正确的同时获得更好



的性能表现。

2.消息重放

昨日重现，或者朝花夕拾，都是美好的事情。消息重放是流计算系
统中时不时会遇到的问题。重放的原因可能是某段时间消息处理程序崩
溃，需要补跑数据，也可能是模型更新，需要重新训练模型参数。实现
消息重放最“直接”的方式是将消息从其保存的地方重新拉出来，再次发
往消息中间件，但这种方法可能并非最优。将消息从块存储设备读出
来，还原消息格式和顺序，再重新发往消息中间件，整个过程都涉及比
较多的定制开发工作。特别是当需要重放的主题比较多时，定制开发工
作会变得十分烦琐。好在现在越来越多的消息中间件开始支持数据存储
功能。也就是说，它们不再是简单的消息发布/订阅系统，还是流数据
存储系统，可以将一定时间范围内的数据流保存下来。当需要重放消息
时，只需将“播放点”设置到重放开始的地方，即可完美复现之前的数据
流。



8.2　Apache Kafka

终于到了专门讲解Apache Kafka的章节了，笔者竟然还有一点点儿
小激动，这是因为Kafka确实是笔者喜欢的软件之一（其他还包括Git、
Linux、Java、Python、Redis、Hadoop、Flink、Ignite等）。Kafka是由
LinkedIn开源的一个用于管理和处理流式数据的发布/订阅消息系统。它
具备超高性能、分布式、错误容忍等优良特性，非常适合用于实时传输
流式大数据。可以说，Kafka是我们构建流计算系统的必备利器。

相比其他消息中间件，Kafka最初的设计目标不仅仅是一个普通的
消息中间件，它更被设计为一种全新的数据管理方式。Kafka可以直接
以流的方式来存储、查询和管理数据。想想在Kafka横空出世之前，当
需要存储流式业务数据时，需要用诸如Flume这样的日志收集工具先将
消息从消息中间件中拉取出来，然后将消息写入数据库或文件系统。而
现在，业务数据可以直接以数据流的方式原封不动地保存在Kafka中，
如无必要，无须再将其转储到其他数据存储系统。Kafka这种新颖的流
数据管理方式极大地简化了管理流数据的复杂度，并且具有许多优良的
功能。例如，Kafka的实现天然就是分布式架构，支持消息持久化和多
副本存储，并且可以灵活地横向扩展等。



8.2.1　Kafka架构

Kafka由ZooKeeper集群和若干broker（代理）节点组成。典型的
Kafka应用还包括若干消息生产者和消息消费者。

ZooKeeper是一个分布式系统协调器。协调器这个名字可能不太好
理解，但是可以借助进程内的锁来理解。例如，在JVM内部，我们可以
使用可重入锁（ReentrantLock）来协调多个线程对相同资源的安全访
问。而在分布式环境下，进程内的锁不再可用，于是需要使用类似于
ZooKeeper这样的分布式系统协调器来同步多个节点上进程对相同资源
的安全访问。Kafka正是使用ZooKeeper来协调集群中的各种角色实例及
存储集群中的各种元数据信息的。

broker代表组成Kafka集群的每台Kafka服务器。由于Kafka是发布/
订阅模式的消息中间件，因此生产者在发送消息前，必须创建消息的主
题（topic）。Kafka的主题由一个或多个分区（partition）组成，这些分
区分布在各个broker服务器上。由于高可用设计的原因，每个分区还可
以设置为一个或多个副本（replica），并且同一个broker服务器上最多
部署该分区的一个副本。正因为如此，当Kafka中的某个broker服务器发
生故障或停机时，只要一个主题设置的分区副本数量比宕机的broker服
务器数量多，理论上该主题（topic）的消息就不会丢失。

图8-4展示了Kafka的工作原理。当消息生产者往某个主题发送消息
时，消息被发送到该主题的某个分区，并最终写入该分区的每一个副
本。Kafka一个设计非常巧妙的地方是，broker并不会“认真”记录一条特
定的消息是否被消费了，而是用偏移量来“笼统”记录分区中消息的生产
情况和消费情况，这为消息的重放或跳跃带来极大方便。任何时候只需
要修改消费者记录的偏移量，就可以让消费者重新消费已经消费过的消
息，或者跳过一些积压太多从而放弃处理的消息。



图8-4　Kafka的工作原理

对于存储在broker上的消息，都会设置一个超期策略，可以是按时
间超期或按数量超期，超期的消息会被淘汰。这是一个非常好的功能，
可以避免磁盘无休止地写下去，最终将磁盘写满。事实上，笔者认为，
不仅仅是流数据，任何类型的线上数据都不会是永远有效的。这有两点
含义：一方面提醒我们在设计数据存储系统（如写日志、存数据库等）
时，务必设置一个超期淘汰机制；另一方面，提醒我们在为业务设计实
体关系模型时，应该认真考虑数据在业务意义下的真实有效时间。可以
说，缺乏数据实效考虑的系统，确定、一定以及肯定会运行得不长久！



8.2.2　Kafka生产者

通过Kafka提供的生产者相关API，可以将消息发送给Kafka。整体
而言，Kafka生产者API使用起来还是比较简单的。首先创建一个
KafkaProducer对象，然后根据需要发送消息的主题、内容及一个可选的
分区键值，创建一个ProducerRecord对象，之后就可以通过
KafkaProducer对象的send方法，以同步或异步的方式将消息发送出去
了。下面是按照这个过程发送消息的示例代码。

首先，创建KafkaProducer对象：

Properties props = new Properties();

props.put("bootstrap.servers", "localhost:9092");

props.put("acks", "all");

props.put("batch.size", 16384);

props.put("linger.ms", 1);

props.put("buffer.memory", 33554432);

props.put("compression.type", "gzip");

props.put("retries", 1);

props.put("max.in.flight.requests.per.connection", 2);

props.put("key.serializer", "org.apache.kafka.common.serialization.

StringSerializer");

props.put("value.serializer", "org.apache.kafka.common.serialization.

StringSerializer");

Producer<String, String> producer = new KafkaProducer<String, String>(props);

KafkaProducer创建好后就可以用于发送消息了：

String productId = String.format("product_%d", RandomUtils.nextInt(0, productNumber));

String event = JSONObject.toJSONString(new Event(productId, System.currentTimeMillis()));

Future<RecordMetadata> future = producer.send(new ProducerRecord<>(topic, productId, event),

    new Callback() {

        @Override

        public void onCompletion(RecordMetadata metadata, Exception exception) {

            if (exception == null) {

                logger.info(String.format("succeed to send event[%s]", event));

            } else {

                logger.error(String.format("failed to send event[%s]", event));

            }

        }

    });

    // future.get() // 同步发送方式



在上面的代码中，我们首先创建了一个代表将被发送消息的
ProducerRecord对象。然后，将其用KafkaProducer的send方法发送出
去。KafkaProducer的send方法是一个异步方法，它将消息添加到消息发
送缓冲区后就立刻返回。这种异步设计允许KafkaProducer在系统内部批
次发送消息，从而提高消息发送的效率。如果需要在客户端确认消息发
送是否成功，则可以采用future的get方法，等到get方法返回或抛出异
常，就可以知道消息是发送成功还是发送失败了。

虽然Kafka性能卓越，提供的API也简单、易用，但是使用时还是要
根据具体的使用场景来调整KafkaProducer的配置参数，否则Kafka的性
能优势就容易发挥不出来，甚至不符合业务对数据的要求。例如，在金
融交易系统中，消息丢失或消息重复是不允许的，可以接受的延迟最大
为500毫秒，而且系统对吞吐量要求较高，希望每秒钟可以处理一百万
个消息。而在分析广告点击的场景中，允许丢失少量的消息或出现少量
的消息重复，延迟可以大一些，只要不影响用户体验即可。不同的使用
场景对生产者API的使用和配置会有直接的影响。如果生产者API使用
不当，则程序性能还会极大地受到影响，导致性能不尽如人意。

在配置KafkaProducer时，我们需要考虑以下4个方面。

1.消息的可靠性

ACK是消息在被认为“已提交”之前，生产者需要leader确认的请求
应答数，目前ACK有3个取值。当acks设置为0时，KafkaProducer发送请
求后不需要等待broker的确认信号就立马返回，此时KafkaProducer发送
消息的速度最快、吞吐率最高，但是由于根本不管Kafka服务器是否正
确接收了消息，所以它不能保证消息全都发送成功。当acks设置为-1
时，KafkaProducer发送请求后必须等待所有副本的确认信号才能返回，
此时KafkaProducer发送消息的可靠性最高，但速度最慢、吞吐率最低。
当acks设置为1时，KafkaProducer发送请求后必须等待leader副本的确认
信号才能返回。很显然，这是一种在消息的可靠性和发送速度之间的平
衡方案。

2.同步或异步

笔者曾一度认为ACK是控制消息同步还是异步发送的参数，后来在
一次生产性能事故中，才发现自己对这个参数的理解有误。在那次事故
中，本来KafkaProducer的acks设置为1，笔者认为这种配置下



KafkaProducer的发送方式为异步的，后来添加producer.type为async的设
置后，程序发送消息的性能大幅提升。经过认真思考后，笔者才明白，
异步发送的目的是收集消息后批次发送，从而提升消息的发送效率，但
这并不代表发送线程完全不理会消息是否发送成功。在KafkaProducer的
发送线程中，当消息发送失败时，依旧需要重试并尽可能让消息发送成
功。如果最终消息真的发送失败，那么在KafkaProducer.send（）函数返
回的Future对象中，要么抛出异常，要么由回调函数进行失败处理。总
之，它不会对消息是否可靠发送到Kafka不管不顾，这绝不是“异步”的
副作用，只是说acks的设置会影响发送线程对消息是否发送成功的判断
而已。例如，当acks为0时，发送线程发送消息时总是会显示成功。而
当acks为-1时，只要有一个副本没有写入成功，那么发送线程发送消息
就会失败，这个时候，发送线程要么会重发消息，要么会进行失败处
理。总体来说，异步发送方式会极大地提高消息发送的性能，会提高消
息发送的时延，但是不会影响消息发送的可靠性。

3.批次发送

将消息收集到一起后，由固定的几个发送线程专门按批次发送消
息，一方面可以减少过多I/O线程的切换及出入操作系统内核态的次
数，另一方面会减小均摊在每条消息上的非有效数据开销，从而整体提
高消息发送的吞吐能力。KafkaProducer的batch.size参数可以控制批次发
送的消息数量，而lingger.ms参数则可以控制收集消息的时间。当收集
消息达到一定数量或者时间达到设定值时，这批消息就会被一次性发送
给Kafka。整体而言，batch.size越大，吞吐能力越强，但是发送时延会
增加，可能会导致消费者在一段时间内没有消息可以处理，而
lingger.ms则控制了消息发送的最大时延。所以，需要根据实际使用场
景和生产流量情况做好batch.size和lingger.ms之间的平衡。

4.压缩

KafkaProducer能够对发送的消息进行压缩，然后由消费者接收并对
其进行解压。压缩的过程会带来一定的CPU开销，但是压缩有两个好
处，一是减少消息发送时的网络流量，二是减少消息占用的磁盘空间。
对于规模比较大的消息，可以对消息进行压缩。不过Kafka支持压缩并
不表示Kafka适用于传输大文件，大文件的传输通过诸如HDFS这样的分
布式文件系统来实现比较好，毕竟Kafka本质上还是一个消息中间件而
已。



8.2.3　Kafka消费者

在开始演示Kafka消费者从Kafka读取消息前，我们需要首先理解
Kafka消费者相关的几个概念，以帮助我们理解Kafka是如何实现发布/订
阅模式的。

1.消费者和消费者组

在前面的章节中，我们已经知道，消息中间件点对点模式和发布/
订阅模式最大的区别是后者在消费消息时，同一消息能够被多个消费者
消费。而为了提高消费者处理消息的能力，还可以允许多个消费者共同
处理同一主题的消息。为了同时实现这两个目标，Kafka创造性地引
入“消费者组”这一概念。同一主题的消息能够被多个消费者组消费，各
个消费者组相互独立，互不影响。但在同一个消费组里的消费者，则齐
心协力共同处理同一主题下的消息，当一个消息被一个消费者认领后，
同一个消费者组里的其他消费者就不再认领该消息，这样就保证了能够
横向扩展并行处理的消费者数量。

2.消费者和分区

Kafka主题中的数据在具体存储时，又分成了若干个分区。在同一
个消费者组内，任何一个分区在同一时刻都只允许有一个消费者负责读
取该分区中的消息。所以，如果一个主题有3个分区，而消费组内有6个
消费者，则只有3个消费者能够读取消息。当这3个消费者其中之一退出
时，就会从另外3个消费者中选择一个接替退出的那个消费者继续读取
分区的消息。图8-5说明了消费者和分区之间的各种关系。



图8-5　消费者和分区之间的各种关系

下面我们来演示Kafka消费者从Kafka中读取消息的过程。首先创建
KafkaConsumer对象。

Properties props = new Properties();

    props.put("bootstrap.servers", "localhost:9092");

    props.put("group.id", " KafkaConsumerExample");

    props.put("auto.offset.reset", "latest");

    props.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");

    props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

    KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);

然后让KafkaConsumer订阅某些主题。

consumer.subscribe(Arrays.asList(topic));



最后，KafkaConsumer从主题中消费消息。

while (true) {

    ConsumerRecords<String, String> records = consumer.poll(100);

    for (ConsumerRecord<String, String> record : records) {

        logger.info(String.format("receive key[%s], event[%s]", record.key(), record.value()));

    }

}

与KafkaProducer类似，KafkaConsumer也只有在合理配置之后才能
发挥出其最佳的性能。主要的考虑因素有以下3点。

·消费者组内消费者的数量。影响KafkaConsumer性能最重要的因
素是消费者组内消费者的数量。由于一个分区只能被同一消费者组内的
一个消费者读取，而一个消费者可以读多个分区的数据，所以配置超过
分区数的消费者数量并不会提升主题中消息处理的速度。

·fetch.min.bytes 和fetch.max.wait.ms，这两个属性的作用与
KafkaProducer的batch.size和lingger.ms的作用类似。它们分别决定了消费
者一次读取消息的条数及最多等待Kafka broker将数据收集全的时间。当
消息不足fetch.min.bytes 定义的字节数，而时间达到fetch.max.wait.ms
时，broker 会将已经收集到的消息一次性返回给消费者。很明显，这种
设计也是为了减少I/O 次数，提高每次消息有效载荷，从而提高消费者
读取消息的性能。

·checkpoint时间间隔。消费者侧有保证消息可靠性读取的机制。
这就是replica.high.watermark.checkpoint.interval.ms参数的功能。当从分区
读取出消息后，可以将本次读取消息的偏移量提交到ZooKeeper保存下
来。当后续因为处理失败等原因，需要重新处理消息时，直接跳回标记
点重新读取消息即可。如果每次都设置一个checkpoint，那么我们将永
远不会丢失消息，但是这样做会明显地影响消费者性能。如果我们隔一
段时间或对一定数量的消息数设置checkpoint，就可以在性能和可靠性
之间获得一个合适的平衡点。



8.2.4　将Kafka用于数据总线

前面讲了很多Kafka技术细节的内容，那在我们实际构建实时流计
算系统时应该怎样定位Kafka呢？笔者认为可以将Kafka定位为数据总
线。之所以这样定位，主要考虑到Kafka的超高吞吐率、高可水平扩展
性及能够直接高可靠地存储流式数据这三大特点。另外，Kafka的主题
按分区存储及消费者组概念的引入，使编写高并发和高性能的系统非常
便捷；而使用偏移量来任意重放消息或跳过积压消息的功能，对运维和
开发人员实在是太贴心了。可以说，Kafka不愧是专门为大数据时代设
计的数据总线。

在前面章节提到的风控系统中，我们就是使用Kafka在各个子系统
中进行流数据的传递的。但更一般的情况是，Kafka作为整个数据系统
的数据总线，为所有需要对接数据系统的子系统提供同一的数据接口。
图8-6描述了Kafka作为数据总线的场景，Kafka将日志、监控、交易、
互联网、物联网等各种来源的数据整合起来，然后将这些数据交由各种
离线、在线、实时的数据处理工具进行处理和分析，最后将原始数据或
处理结果存储到各种数据存储系统。



图8-6　Kafka作为数据总线的场景



8.3　RabbitMQ

RabbitMQ是一款流行的开源消息队列系统。相比后起之秀Kafka，
RabbitMQ在设计和实现上更显传统和精致。RabbitMQ构建在高并发、
高可靠语言平台Erlang上，具有出色的性能及卓越的可靠性，这两个主
要原因让RabbitMQ获得了广泛的应用。Rabbit最初应用于金融系统这种
对性能和可靠性都非常严苛的场景，从这一事实我们就能略微感受到
RabbitMQ的性能和可靠性是多么强大。



8.3.1　RabbitMQ架构

RabbitMQ严格遵守了AMQP标准，其实现的架构也是非常清晰的。
按照AMQP标准定义，RabbitMQ实现了一系列的组件，其中对理解
RabbitMQ整体架构非常重要的组件包括以下几种。

·Broker：RabbitMQ的服务节点，多个Broker能够组建为集群。

·Vhost：虚拟主机，是对Broker的逻辑划分，可以实现诸如资源隔
离和用户权限隔离的功能.

·Exchange：消息交换器，用于将消息按照设定的规则路由到一个
或多个队列.

·Queue：消息队列，用于暂存由Exchange投递的消息.

·Binding：绑定，相当于Exchange的路由表，将Exchange和Queue
按照设定的路由规则绑定起来.

·Routin.Key：路由主键，Exchange在执行路由规则时使用的主
键，是一个消息头.

·BindingKey：指定哪些RoutingKey会被路由到相应Exchange绑定的
Queue中。

·Producer：消息生产者，指发送消息到Broker的客户端程序.

·Consumer：消息消费者，指从Broker读取消息的客户端程序。

·Connection：与RabbitMQ服务器的连接。

·Channel：消息通道，构建于Connection上的通道，是与Exchange
或Queue的连接，一个Connection上可以构建多个Channel。

图8-7展示了RabbitMQ的工作原理。当消息生产者往Broker发送消



息时，先与Exchange之间建立Channel。当消息经由Channel被发送到
Exchange后，再由Exchange根据Binding的规则和消息头包含的
Routin.Key，将消息转发到相应的Queue。当消费者读取消息时，先建
立起与Queue之间的Channel，然后消费者就可以通过Channel从Queue中
读取消息了。



图8-7　RabbitMQ的工作原理



8.3.2　RabbitMQ的使用

我们分别从生产者和消费者两个角度来讲解RabbitMQ的使用方
法。首先来看RabbitMQ生产者端的程序：

public class RabbitMQProducerExample {

    private static final Logger logger = LoggerFactory.getLogger(RabbitMQProducerExample.class);

    public static void main(String[] args) throws Exception {

        ConnectionFactory factory = new ConnectionFactory();

        factory.setHost("localhost");

        factory.setPort(5672);

        factory.setUsername("admin");

        factory.setPassword("admin");

        factory.setVirtualHost("/"); //从'http://127.0.0.1:15672/#/vhosts'查看vhost名字
        Connection connection = factory.newConnection();

        Channel channel = connection.createChannel();

        String exchangeName = "exchange001";

        channel.exchangeDeclare(exchangeName, BuiltinExchangeType.DIRECT,true, false, false, new HashMap<>());

        String queueName = "queue001";

        channel.queueDeclare(queueName, true, false, false, null);

        String routingKey = "routingkey001";

        channel.queueBind(queueName, exchangeName, routingKey);

        int samples = 1000000;

        int productNumber = 5;

        for (int i = 0; i < samples; i++) {

            String productId = String.format("product_%d", RandomUtils.nextInt

(0, productNumber));

            String event = JSONObject.toJSONString(new Event(productId, System.currentTimeMillis()));

            channel.basicPublish(exchangeName, routingKey, null, event.getBytes

(Charsets.UTF_8));

            logger.info(String.format("send event[%s]", event));

            Tools.sleep(1000);

        }

    }

}

然后来看RabbitMQ消费者端的程序：

public class RabbitMQConsumerExample {

    private static final Logger logger = LoggerFactory.getLogger(RabbitMQProducerExample.class);

    public static void main(String[] args) throws Exception {

        ConnectionFactory factory = new ConnectionFactory();

        factory.setHost("localhost");

        factory.setPort(5672);

        factory.setUsername("admin");



        factory.setPassword("admin");

        factory.setVirtualHost("/"); //从'http://127.0.0.1:15672/#/vhosts'查看vhost名字
        Connection connection = factory.newConnection();

        Channel channel = connection.createChannel();

        String exchangeName = "exchange001";

        channel.exchangeDeclare(exchangeName, BuiltinExchangeType.DIRECT,true, false, false, new HashMap<>());

        String queueName = "queue001";

        channel.queueDeclare(queueName, true, false, false, null);

        String routingKey = "routingkey001";

        channel.queueBind(queueName, exchangeName, routingKey);

        Consumer consumer = new DefaultConsumer(channel) {

            @Override

            public void handleDelivery(String consumerTag, Envelope envelope, 

              AMQP.BasicProperties properties, byte[] body) throws IOException {

                String event = new String(body, Charsets.UTF_8);

                logger.info(String.format("receive exchange[%s], routingKey[%s], event[%s]",

                        envelope.getExchange(), envelope.getRoutingKey(), event));

            }

        };

        channel.basicConsume(queueName, true, consumer);

    }

}

从消费者和生产者的代码可以看到，这两者都通过
exchangeDeclare、queueDeclare和queueBind创建并绑定了交换器和队
列。初看起来，这是一个很奇怪的做法，因为怎么同时在消费者和生产
者两端创建同样的资源呢？其实这是有原因的，考虑到消费者和生产者
是相互独立的程序，它们谁先上线连接到RabbitMQ是不可预先知道
的。为了减少消费者和生产者之间的耦合，我们也不应该对谁先连接到
RabbitMQ做出任何要求和假设，所以将创建资源的程序在消费者和生
产者的代码中都做一次是有必要的，这种做法也是RabbitMQ官方推荐
的做法。当然，在实际开发中具体怎么做还是看业务场景的，如果有专
门的模块管理消息路由器和队列，那么在消费者和生产者两端都不需要
创建这些资源了。



8.3.3　将RabbitMQ用于配置总线

在8.2节中，我们将Kafka在实时流计算系统中的作用定位为数据总
线。既然已经有Kafka这么出色的数据总线了，那么RabbitMQ在实时流
计算系统中又承担什么角色呢？

首先不能否认的是，虽然和Kafka比较起来，RabbitMQ的性能少了
一个数量级，但RabbitMQ本身也是一个性能不错的消息中间件，所以
在一些性能要求相对不是非常高的场景下，使用RabbitMQ做数据总线
也并无不妥，毕竟RabbitMQ最初的应用场景就是金融系统领域。

在大数据领域，已经有诸如Kafka这样的高性能数据总线后，用
RabbitMQ充当数据总线会略显性能不足。但是RabbitMQ遵循定义良好
的AMQP实现，具有高度的严谨性，数据丢失概率更低，路由灵活，支
持事务，也有更好的实时性。这些特性让RabbitMQ非常适用于配置系
统，充当配置系统中配置总线的角色。

下面我们就以RabbitMQ在Spring Cloud Config中的应用为例来看看
它是如何充当Spring Cloud微服务系统的配置总线的。

在图8-8中，当向Config Server发送/bus/refresh请求时，Config
Server就通过RabbitMQ总线，将刷新配置的命令发布到每一个微服务实
例上去。当各个微服务实例收到这条消息后，就会从Config Server重新
获取配置，并刷新本地配置。如此就完成了微服务系统动态更新配置的
过程。



图8-8　Spring Cloud微服务系统的配置总线



8.4　Apache Camel

在构建复杂的业务系统时，消息中间件一般是较底层的基础件，离
具体业务逻辑有较大距离。举个例子，在风控系统中，我们需要按照客
户的设定对进入系统的事件执行不同的风控策略，而不同的风控策略有
不同的规则集合，不同的规则又需要使用不同的特征，不同的特征又需
要不同的特征子系统来进行计算。在这种场景下，事件进入系统后所走
的路由完全由用户在UI上动态设置，我们在构建和部署系统时是不能预
先知道的。另外，在系统不断的演进过程中，新的场景、策略、规则和
特征还会不断添加进来。如果对底层消息路由的管理没有一个统一的规
划和设计，全靠人工来创建和管理底层的消息中间件，如创建消息主题
和队列等，那么我们的系统会变得越来越复杂，越来越难管理，直到最
终系统的运维和升级都会变得举步维艰。

为了能够更好地管理和维护底层的消息中间件，让其能够平滑地跟
随业务系统演进和升级，我们需要在消息中间件上添加一个消息服务
层。消息服务层将底层消息中间件封装起来，隐藏消息中间件的具体操
作细节，对上层提供统一风格的协议转换、消息路由和服务端点等功
能，从而使数据传输系统成为独立完整的服务。我们将这种具有一致管
理界面的消息管理平台定义为消息服务层中间件。

当定义好软件需求后，放眼开源软件界，我们发现Apache Camel正
是这样一个对底层消息中间件进行有效管理的消息服务层中间件。



8.4.1　使用Apache Camel集成系统

Apache Camel是一个为了灵活地进行企业集成而开发的企业集成模
式开源框架。说得通俗些，企业集成就是将企业中各种“乱七八糟”的子
系统，通过集成平台整合起来，让它们形成一个有机的整体，发挥出更
大的数据价值。注意，这里一定要强调“乱七八糟”才能将Apache Camel
的强大之处体现出来。这是因为，在一个复杂的企业系统中，其业务系
统可能非常丰富，它们提供的访问界面也是多种多样的，如EJB、
JSM、RMI、FTP、HTTP、HDFS等。面对这么多复杂的接口，作为程
序员的你估计会疯掉。但先别急着疯，如果你此时有Apache Camel在
手，你就会发现将这些系统整合起来真的是一件易如反掌的事。

像一般消息中间件那样，Apache Camel提供了不同系统之间消息传
递的模式，即点对点模式和发布/订阅模式。但Apache Camel又绝对不是
一个简单的消息中间件，它还提供了大量的组件，这些组件实现了不同
协议的网关功能，如EJB、JSM、RMI、FTP、HTTP和HDFS等。基本
上，不管是传统的还是最近才出现的新式数据接口协议，Apache Camel
都对其支持。对于少数非常特别或暂时没有的数据接口协议，我们也可
以通过自行开发相关网关程序来实现。除此以外，Apache Camel的核心
是一个路由引擎，可以支持丰富灵活的路由规则，甚至是动态路由。这
些功能特性都让Apache Camel成为企业集成模式的优秀实践，让其在企
业集成场景下大显身手。

下面我们通过一个例子来领略一下用Apach.Camel集成系统是一件
多么简单且令人身心愉悦的事情。

from("quartz://timer001?trigger.repeatInterval=1000&trigger.repeatCount=-1")

.to("http://localhost:8080/hello")

.convertBodyTo(String.class)

.process(new Processor() {

    @Override

    public void process(Exchange exchange) throws Exception {

        // 为消息设置一个用于分区的key

        String key = UUID.randomUUID().toString();

        System.out.println("key: " + key);

        exchange.getIn().setHeader(KafkaConstants.KEY, key);

    }

})

.to("kafka:localhost:9092?topic=kafka-example&requestRequiredAcks=-1");



上面的代码使
用“from（"quartz：//timer001trigger.repeatInterval=1000&trigger.repeatCount=-1"）”配
置了一个定时任务，每隔1秒发送一个HTT.请求到微服务，然后将请求
返回的结果发送到消息中间件Kafka。

虽然Apache camel的系统集成功能非常强大，但是我们还是要聚焦
于本书的主题——实时流计算系统。下面我们将重点讲述Camel在流计
算系统中的数据路由功能。通过Camel的消息路由功能，我们可以对流
数据的路由进行方便、灵活的管理。



8.4.2　使用Apache camel管理流数据路由

Apache camel支持灵活的路由方式，当我们使用Camel管理数据流
的路由时，经常会用到Camel的条件路由功能和动态路由功能。下面的
示例代码演示了如何将不同类型的事件发送到不同子系统对应的Kafka
主题中去。

from("kafka:localhost:9092?topic=input_events2&groupId=CamelStaticRouteExample&

autoOffsetReset=latest&serializerClass=kafka.serializer.StringEncoder")

.process(new Processor() {

    @Override

    public void process(Exchange exchange) throws Exception {

        System.out.println(String.format("get event[%s]", exchange.getIn().getBody(String.class)));

        exchange.getIn().setHeader(KafkaConstants.KEY, UUID.randomUUID().toString());

        exchange.getIn().setHeader("event_type", JSONObject.parseObject(exchange.

getIn().getBody(String.class)).getString

("event_type"));

        exchange.getIn().removeHeader(KafkaConstants.TOPIC);

        // 必须删除KafkaConstants.TOPIC,否则Camel会根据这个值无限循环发送
    }

})

.choice()

.when(header("event_type").isEqualTo("click"))

.to("kafka:localhost:9092?topic=click&requestRequiredAcks=-1")

.when(header("event_type").isEqualTo("activate"))

.to("kafka:localhost:9092?topic=activate&requestRequiredAcks=-1")

.otherwise()

.to("kafka:localhost:9092?topic=other&requestRequiredAcks=-1");

相比静态路由，Camel的动态路由稍微复杂一些，除了需要配置
DSL外，还需要编写对应的Java代码来实现动态路由的逻辑。另外，在
初次使用Camel的动态路由时，十有八九会掉进一个消息无限循环发送
的“坑”里。所以，这里必须指出，Camel的官方文档特意强调，
dynamicRouter必须返回null来表示动态路由过程的结束，否则Camel将
一直按照dynamicRouter返回的URI将消息循环投递下去。通过下面的动
态路由代码实现，我们也能更清楚地理解这点。

from("kafka:localhost:9092?topic=input_events2&groupId=CamelSwitchRouteExample&autoOffsetReset=latest&serializerClass=kafka.serializer.StringEncoder")

.process(new Processor() {

    @Override

    public void process(Exchange exchange) throws Exception {

        System.out.println(String.format("get event[%s]", exchange.getIn().getBody(String.class)));

        exchange.getIn().setHeader(KafkaConstants.KEY, UUID.randomUUID().toString());

        exchange.getIn().setHeader("event_type", JSONObject.parseObject

(exchange.getIn().getBody(String.class)).getString("event_type"));



        // 必须删除KafkaConstants.TOPIC,否则Camel会根据这个值无限循环发送
        exchange.getIn().removeHeader(KafkaConstants.TOPIC);    }

})

.dynamicRouter(method(DynamicRouter.class, "slip"));

public class DynamicRouter {

    private static final Logger logger = LoggerFactory.getLogger(DynamicRouter.class);

    public String slip(Exchange exchange) {

        Integer currentEndpointIndex = exchange.getProperty("currentEndpointInd-ex", Integer.class);

        if (currentEndpointIndex == null) {

            currentEndpointIndex = 0;

        }

        exchange.setProperty("currentEndpointIndex", currentEndpointIndex + 1);

        String eventType = exchange.getIn().getHeader("event_type", String.class);

        if (StringUtils.isEmpty(eventType)) {

            return null;

        }

        List<String> endpoints = getEndpoints(eventType);

        if (CollectionUtils.isEmpty(endpoints)) {

            return null;

        }

        if (currentEndpointIndex >= endpoints.size()) {

            return null;

        }

        String endpoint = endpoints.get(currentEndpointIndex);

        String topic = parseTopicFromEndpoint(endpoint);

        exchange.getIn().setHeader(KafkaConstants.TOPIC, topic);

        logger.info("send event[%s] to endpoint[%s]", exchange.getProperty

("eventId"), endpoint);

        return endpoint;

    }

    private List<String> getEndpoints(String eventType) {

        Map<String, List<String>> eventEndpoints = new HashMap<>();

        eventEndpoints.put("click", Arrays.asList(

                "kafka:localhost:9092?topic=subsystem1&requestRequiredAcks=-1",

                "kafka:localhost:9092?topic=subsystem2&requestRequiredAcks=-1"));

        eventEndpoints.put("activate", Arrays.asList(

                "kafka:localhost:9092?topic=subsystem1&requestRequiredAcks=-1",

                "kafka:localhost:9092?topic=subsystem2&requestRequiredAcks=-1",

                "kafka:localhost:9092?topic=subsystem3&requestRequiredAc-ks=-1"));

        eventEndpoints.put("other", Arrays.asList(

                "kafka:localhost:9092?topic=subsystem2&requestRequiredAcks=-1",

                "kafka:localhost:9092?topic=subsystem3&requestRequiredAc-ks=-1"));

        return eventEndpoints.get(eventType);

    }

    private String parseTopicFromEndpoint(String endpoint) {

        String[] params = endpoint.split("\\?")[1].split("&");

        for (String param : params) {

            String[] splits = param.split("=");

            if ("topic".equals(splits[0])) {

                return splits[1];

            }

        }



        return null;

    }

}

在上面的代码中，我们定义了一个动态路由类DynamicRouter，其
中的slip方法完成了具体动态路由的算法。在slip方法中，使用
currentEndpointIndex记录当前路由端点的索引，当任何时候需要结束动
态路由过程时，均通过返回null值来终结路由的继续执行。



8.5　本章小结

在本章中，我们针对流计算系统中的数据传输，讲述了3种不同功
能和角色的消息传递中间件。其中，Apache Kafka由于其优秀的吞吐能
力和流数据存储能力，非常适于承担大数据时代的数据总线角色；
RabbitMQ由于遵从AMQP标准实现，数据可靠性更高，实时性更好，并
且支持丰富的不同语言客户端，在实时流计算系统中非常适合用做配置
总线；Apach.Camel则由于其灵活的路由功能，以及对底层消息中间件
和各种数据协议端口的一致性封装，是不错的消息服务层中间件，可以
有效管理底层消息中间件。

本章虽然讲解了3个具体的消息中间件，但它们的功能角色是不一
样的。笔者更在意的是让读者了解并领悟3种不同角色消息中间件在流
计算系统中各自的作用及承担的职责。至于具体的消息中间件，除了本
章讲解的3种消息中间件外，其实还有很多种，如ZeroMQ、
ActiveMQ、Apache RocketMQ及Apach.PulsarApache Kafka查阅相关资
料。



第9章　数据存储

在前面8章中，我们已经讲述了实时流计算最主要的部分，这些内
容决定了实时流计算系统的与众不同。不管实时流计算系统有多少特殊
之处，它的核心处理对象归根到底是数据。从数据采集、数据处理到数
据输出、数据呈现的各个阶段都会涉及数据存储的问题。数据存储的目
的可以是保存各种实体关系，如用户账号和交易记录；也可以是保存计
算结果，以供后续报表查询和展现；还可以是辅助计算，如特征计算时
状态的存储和加快请求响应的缓存；再就是对原始数据的保存和备份，
以供后续分析。一个完整的实时流计算系统基本上包含了上面所有类型
及用途的数据存储方案。因此，我们有必要专门讨论一下实时流计算系
统中各种数据存储的问题。



9.1　存储的设计原则

说到数据存储，大多数程序开发者最先想到的是SQL（结构化查询
语言）和关系型数据库。没错，不管是在理论方面还是实际生产应用方
面，支持SQL的关系型数据库早已取得巨大的成功，让人印象深刻。直
到有一天，NoSQL横空出世，其光芒一下子盖过昔日王者SQL，一时风
光无限，甚至笔者还曾经真实碰到过下面的一场对话：

A君：咱们为什么要用这个数据库啊，它有什么优势吗？
B君：因为它是NoSQL啊！

随着大数据库的兴起，各种以分布式系统架构设计的分布式数据库
或数据仓库，不管是SQL的，还是NoSQL的，都如雨后春笋般被开发出
来。数据库的种类和选择变得更加丰富多彩。

我想大家都应该想过这个问题，为什么有这么多各种各样的数据库
啊？不说SQL与NoSQL之分，也不说分布式与非分布式之分，即使同样
是SQL数据，还有MySQL和PostgreSQL、Oracle和SQL Server等。它们
不都是存储数据的地方吗？为什么没有一种数据存储方案能够解决所有
场景的问题呢？很可惜的是，至少在现阶段，我们确实没有这样的数据
库。如果某天，CPU的性能比现在提升几亿倍，内存容量比现在提升几
亿倍，磁盘和I/O性能也比现在提升几亿倍，并且它们的价格比现在还
便宜几十倍，那这个时候就要恭喜你了，你将获得一个支持所有场景的
万能数据库。想想是不是有点儿小激动？不过从白日梦中醒来，我们就
知道存在各种数据库的根本原因了，即现有数据库的计算能力还不足以
满足所有场景下各种类型查询任务的要求。因此，需要针对专门的特定
场景，做出专门的设计、优化。这么做的结果是，每种数据库都有它擅
长的特定场景，没有一种数据库能够胜任所有场景。我们已经知道没有
在所有场景下都能使用的数据库“银弹”了。因此，选择哪种数据库，由
具体的场景来决定。在实时流计算系统中，我们会遇到以下5种涉及数
据存储的场景。

1.实时流计算

在实时流计算中，经常需要记录各种状态，如第5章提到的流信息
状态，这些状态通常是各种聚类数据和历史信息数据。在实时流计算的



过程中，这些状态种类多样，并且需要频繁地更新和读取，对数据的灵
活性和访问性能有着较高的要求。对于实时流计算中的状态存储，通常
选择NoSQL数据库，这有两方面的原因。一方面，NoSQL数据库的数
据模型更加灵活，可以简化程序逻辑。例如，Redis支持丰富的数据结
构，让我们在计算和维护各种状态时非常便捷。另一方面，NoSQL数据
库的性能通常比传统关系型数据库的性能更好。例如，Redis单节点能
支持每秒10万次的读写性能，非常适合记录实时流计算中的各种状态。

2.离线分析

经过实时流计算后，数据本身和计算结果通常会被保存下来，一方
面可以做数据备份，另一方面可以做各种报表统计或离线分析。针对这
种目的的数据存储，通常使用诸如HDFS的大数据文件系统。特别是如
今，Apache Hadoop已经非常成熟，构建在其上的查询和分析工具也多
种多样，如Hive、HBase和Spark等。这些分析工具统一在Apache
Hadoop的生态体系内，给以后更多的方案探索和选择留有很大余地。

3.点查询

除了数据备份、离线报表或离线分析这类数据存储外，还有一类偏
重于提供实时查询计算结果的存储。这种查询更多是一种点查询，即根
据一个或多个键来查询相应的值。针对这种目的的查询，通常选择
NoSQL数据库并结合缓存的存储方案。当然，如果要查询的结果是结构
化数据，则也可以使用关系型数据库。不过对于这种目的的查询而言，
通常需要较高的请求处理能力和较低的时延，因此应该尽量避免复杂查
询，如join操作。由于文档数据库采用JSON格式组织和存储数据，可以
灵活地设计数据结构且避免不必要的关联计算，因此文档数据库非常适
用于点查询。

4.Ad-Hoc查询

除了点查询外，还有一类用于交互式查询的存储方案。例如，通常
实时流计算的计算结果会通过UI来呈现，如果UI要提供交互式的查询体
验，那么这会涉及Ad-Hoc查询。对于这类查询的存储方案选择，在设
计时一定要考虑到前端UI的需求变化，而不能选择一个“僵硬”的数据存
储方案；否则当UI需求发生变化，需要调整各种查询条件时，这对后端
存储的变更可能是一个巨大且痛苦的挑战。针对这种情况，推荐使用搜
索引擎一类的存储方案，如ElasticSearch。



5.关系型数据库

最传统的关系型数据库技术及其结构化查询语言几乎在任何的数据
系统中都不会缺席。所以，关系型数据库在实时流计算系统中也有一席
之地。特别是在数据量不大，变更不太频繁时，关系型数据库相比
NoSQL数据库具有非常明显的优势。一方面，成熟的关系型数据库技术
十分适用于那些对数据的完整性和一致性要求非常严格的场景。另一方
面，标准的结构化查询语言是大多数开发、数据和运维人员熟悉的查询
工具，使用起来更加方便。在实时流计算系统中，典型的关系型数据库
使用场景包括存储各种元数据和业务实体数据。

以上比较概略地描述了各种数据存储方案的特点及它们各自适用的
场景。在这5种存储场景中，关于“实时流计算”部分的数据存储，我们
在第5章讲述有关“状态”存储的内容时已经非常详细地讨论过了，因此
本章不再赘述。本章接下来将重点讨论其他4种使用场景的存储方案。



9.2　点查询

点查询是指通过给定主键值或索引值来查询数据库中某条记录的过
程。点查询每次最多返回一条记录。点查询的过程如图9-1所示。说得
更直白些，点查询类似于Java中Map类的get操作，给定一个主键或者复
合主键查出至多唯一的结果。

图9-1　点查询的过程

在实时流计算的场景中，点查询主要用于计算结果的查询。当实时
流计算系统在完成每个事件的分析后，需要将结果保存下来，以供后续
查询和使用。这种查询是针对给定主体获取其各种属性的过程，因此只
用到代表主体的主键或索引。例如，通过事件ID来查询某个事件的异常
指数，通过用户ID来查询用户的信用得分，通过设备ID来查询设备的风
险指数等。其中，异常指数、信用得分、风险指数都是实时流计算的输
出结果。在业务系统做决策时，需要以这些结果作为参考依据。

针对点查询的数据库是比较丰富的。传统的关系型数据库如
MySQL、MongoDB等，都很适合存储此类数据。



9.2.1　数据灵活性

数据的灵活性在于当数据的结构或字段变更时，是否需要大幅度地
修改原有数据库表定义。在关系型数据库中，表定义和表之间的依赖关
系构成了结构化查询的基础。明确的表定义和表之间的依赖关系使得数
据有一个清晰完整的视图，但与之而来的问题是数据失去了灵活性。例
如，在实时流计算分析中，有些计算结果是动态字段。换言之，这些字
段在分析结果中可能有，也可能没有。例如，针对IP的异常度分析结果
放在ip.anomaly字段中，而针对用户自定义字段cst_f1的异常度分析结果
放在cst_f1.anomaly字段中。用关系型数据库来构建这种数据关系，会让
表定义和表之间的依赖关系变得十分复杂，不便于程序设计。另外，即
使我们设计出了这套复杂的表组织结构，当数据发生结构变化和字段变
更时，我们也不得不修改表定义。如果程序还使用了ORM框架，那么
对应的实体类也需要修改，这部分的变更也会变得冗杂和烦琐。

图9-2　文档数据

因此，实时流计算系统更加倾向于用NoSQL来存储计算结果，更加



具体地说是文档数据库。顾名思义，文档数据库是用于存储文档的数据
库。图9-2描述了文档数据的组织结构，它是一种类似于JSON格式的数
据，采用树状结构来表示一条记录。可以说，文档数据是最自然、最具
有生产力的数据结构，它可以让我们专注于业务逻辑本身，而不用浪费
太多精力于数据库设计和管理上。之所以能够做到这点，主要是因为文
档数据具备以下特性。

·文档数据天然与面相对象概念相对应，因此我们在开发过程中不
需要像访问关系型数据库那样经常用到复杂的ORM框架。ORM框架原
本是为解决关系型数据库中关系模型和Java面向对象模型之间区别太
大、相差甚远的问题而引入的，现在文档数据天然就是一个对象，所以
可以省略ORM层。

·查询更加直接、高效。关系型数据库非常强调数据库设计范式，
虽然这些理论很精巧，但在实际开发过程中，为了方便，数据通常有很
多冗余。原因很简单，我要描述一个事件，将这个事件的属性添加到文
档某个字段即可。而如果某个字段还有子属性，如地址又分省、城市、
街道，那就嵌套一层对象。这样，设计数据库的表结构会显得非常自
然，没有太多的理论压力。这样做还有一个好处，即在查询时不必使用
复杂的join查询，这一方面简化了查询的过程，另一方面提升了查询的
速度，因为数据是作为一个文档存放在一个地方的，不需要跨表读取。

·文档数据库的数据结构更加灵活。我们通常会将同一个主题（具
有大体相同的数据结构）的数据作为文档放入同一个集合中，但是文档
数据库不会强制要求这些文档的数据结构完全一致。这一方面可以让我
们更加灵活地使用各个字段，如用一个map（映射表）字段来存储用户
的特有属性，不同用户的属性可以各不相同；另一方面，当以后再给数
据结构增加新的字段时，不需要像关系型数据库那样修改表定义。曾记
否，每次修改线上表结构，是不是都觉得是一场大冒险？



9.2.2　MongoDB数据库

MongoDB是一种文档数据库。在MongoDB中，不需要为存储的数
据指定明确的格式定义（schema）。MongoDB中的一个文档对应着传
统关系型数据库中的一条记录，但是文档是JSON格式的。通常，我们
把具有相同数据结构的文档放在同一个MongoDB集合中。MongoDB集
合类似于关系数据库中的表，不过我们在使用集合时，无须提前创建
它。

对于初次接触MongoDB的人员来说，部署一个稳定、可靠的
MongoDB集群是不太容易的，主要原因在于MongoDB中的角色和概念
较多，部署方式也非常灵活。笔者在以往工作中碰到太多有关
MongoDB的问题了，有些是因为配置不当，有些是因为使用不当，回
想起来也是心有余悸，所以必须在这里对MongoDB集群稍作讨论。图9-
3所示的MongoDB集群是比较通用的高可用MongoDB集群方案。
Shar.Server是MongoDB数据库的主体，用于数据存储和查询执行，每个
Shard负责MongoDB数据库的一个分区，同一个Shard的多个副本之间高
可用。Mongos是路由节点，类似于Nginx的角色，用于接收客户端的请
求，并将请求路由到对应的Shard Server上去。Config Server类似于
Kafka集群中的ZooKeeper角色，用于存储集群的配置和状态信息。
Mongos Server由mongos命令启动，Shard Server和Config Serve均由
mongod命令启动。

在搭建和使用MongoDB集群时，我们需要注意以下几个问题。

·必须合理指定Shard Server的内存。这是构建稳定、可靠的
MongoDB集群必须要注意的事项，因为MongoDB非常容易消耗内存。
默认情况下，Shard Server内部缓存的空间为“50%×（内存总
量-1GB）”（由storage.wiredTiger.engineConfig.cacheSizeGB参数设定），
但当我们像在图9-3中那样在同一台物理节点部署多个Shard Server实例
时，就要明确指定各个实例的内存使用量，此时分配给每个Shard Server
的内部缓存空间应该相应改为“50%×（内存总量-1GB）÷Shard Server
数量”。另外，Shard Server真实使用的内存空间会比配置的内部缓存更
多一些，根据笔者经验，一般会超出30%～50%，所以在设置内部缓存



大小时要为超出部分预留一定配额。Mongos Server和Config Server占用
的内存很少，只需要几百兆内存即可。

·最好为集合指定一个用于分区的shard key。在MongoDB中，只有
分片集合才能被分布在多个节点上，集群才具备水平扩展能力。所以，
没有shard key的集合，数据只能集中在一个节点上，这会影响这个集合
的查询性能及高可用能力。

图9-3　MongoDB集群

·最好为数据设置过期淘汰时间。没有数据是永远有用的，所以必



须认真考虑数据的量级及数据的有效时长，否则上线后的MongoDB有一
天会成为你的噩梦，如半夜起来修复MongoDB集群。

·为查询设置合适的索引。有索引的查询和没有索引的查询是“兔
子”和“乌龟”的区别。根据查询条件合理设置索引是非常有必要的事
情。

·单个集合的数据量不能过大。当MongoDB单个集合的数据量太大
时，基本上可以考虑放弃在线调整集合的机会了。9.2.3节还将专门讨论
这个问题。

说了这么多MongoDB的坏话，大家也不要被吓住。如果规划和管
理好了，那么MongoDB作为文档数据库所具备的灵活性会让我们使用
起来方便很多。所以，只要场景合适，我们大可放心地使用MongoDB
数据库。



9.2.3　数据过期和按时间分表

对于一个用于在线实时查询的数据库而言，数据过期的问题非常重
要。甚至可以说，如果没有考虑数据过期的问题，那这个系统就不应该
上线。这是因为，在实时流计算系统中，新的分析结果会不断地写入数
据库，随着时间流逝，数据库的数据会越来越多。如果不考虑淘汰过期
数据，则一段时间后数据库溢出，查询效率降低，导致系统不可用。在
MongoDB中，这个问题尤其明显。MongoDB在实际使用中是比较消耗
内存和I/O资源的，当MongoDB中的数据量很大时，如果不小心做了包
含全表扫描（即使已经使用了索引）过程的查询，则MongoDB会出现
查询缓慢甚至一段时间内卡死的现象。

因此，我们需要严格地控制数据库中每个数据组的数据量，在
MongoDB中，就是要严格控制每个集合的数据量。这样做其实有3个非
常重要的意义。

第一，严格控制每个表的数据量，可以保证在这个表上的查询都是
可以即时返回的，不会出现一个全表查询堵死其他所有查询的情况。

第二，在实时查询系统中，数据的有效性本身就是有时间范围的。
例如，我们提取的“过去一天同一设备上登录的不同用户数”这种特征在
一天之后其实就没有意义了。

第三，某些对数据的查询本身就具有时间上的局部连续性。例如，
经过实时流计算系统分析后的事件被存放在MongoDB后，在接下来的
几秒内就会被决策系统查询访问，之后决策系统也不会再查询这个事
件。

所以，在实时系统中，针对点查询选择的数据库，我们一定要考虑
好数据过期淘汰的方案。对于支持TTL的数据库来说，可以方便地设置
每条记录的过期时间，这样写入数据和查询数据非常方便，与没有TTL
并无太大区别。对于不支持TTL的数据库来说，可以使用按时间分表的
方式来存储数据。例如，将每天的数据存储在一个MongoDB集合
（MongoDB Collection）中，然后执行定时任务定期地删除过期的表。

虽然使用数据库自带TTL支持的方案对于开发而言非常方便，但是



笔者还是认为使用按时间分表的方式来实现数据过期淘汰也是非常有必
要的，因为这样做有如下优点。

第一，每张表的数据量完全可控，维持在一个较小的范围内，可以
稳定地控制每次请求响应的速度。

第二，每张表代表一个时间段的数据，当出了问题需要复盘，或者
需要查找问题时，非常容易定位问题数据。

第三，当数据结构变更时，可以明确地限定变更时间。因为旧时间
段的数据和新时间段的数据是完全隔离开的，不会出现冲突的问题；可
以逐表地迁移数据，而不会出现一个遍历查询卡住其他所有线上查询的
情况。

当然，这样做也有几个缺点。

第一，如果不知道点查询对象的时间段，就需要依次查询所有表。
这一点可以通过在查询时带上一个时间戳参数的方案来避免。通过这个
时间戳，可以提示（hint）要查询的数据大概在哪个时间段，从而缩小
查找的范围。

第二，如果查询的目标在多个时间段内，就需要对多次查询结果再
做一次合并。这个问题不会出现在点查询这种情形下，因为点查询最多
只返回一个结果。但是在问题复盘或分析问题时，如果需要做这种跨表
查询，就需要分析人员自行写脚本来分析了。

其实，以上这些缺点提示我们在实时查询数据库时，可以添加一层
数据库服务层。如图9-4所示，在数据库服务层中封装好内部所有的分
表等操作，屏蔽复杂性，对外提供REST或RPC接口，从而简化业务层
应用程序的开发。



图9-4　数据库服务



9.3　Ad-Hoc查询

Ad-Hoc查询也称为即席查询，是用户为了某个查询目的，灵活选
择查询条件并提交数据库执行，最终生成相应查询结果的过程。例如，
一种常见的Ad-Hoc查询例子就是平时我们临时接到领导想要查看某项
业务指标的任务，然后使用客户端连接到数据库，即时编写SQL语句并
执行，然后将得到的查询结果上报给领导。

在实时流计算系统中，有时候需要将计算结果最终呈现给最终用户
查看。这里的最终用户可能是运营人员，也可能是做决策的领导，还可
能是客户。对于最终用户而言，直接写SQL并不方便，而且不现实，因
为他们并不知道数据的具体细节。因此，这个时候通常会有一个用户友
好的图形化界面来引导用户设置查询条件，用户通过单击相应按钮即可
以看到各种图形和报表。说到报表系统，其典型特点是分析的内容丰富
多样，可能是某个维度的排序，也可能是某几个组合维度的聚合，还可
能是关键字的匹配过滤。特别地，UI通常还需要提供给用户各种查询条
件的选择功能，如用户可以选择查询的时间范围、排序方式、过滤条件
等。总之，这是一个需求千变万化的场景。作为一个开发人员，可能现
在你的脑海中已经浮现出产品经理那轻松的一句：“这不就是加一个查
询条件的事么！”。

除了需求灵活多变、查询千变万化以外，报表系统的查询还有一个
特点，即它们是需要近实时返回结果的。也就是说，当触发查询后，必
须在数秒以内将结果呈现在UI上，否则用户会等得不耐烦，造成不好的
用户体验。同时，报表系统的查询频次不会太高，只有在用户需要查看
报表时才需要进行查询操作。所以，相比数据上报接口使用的频率而
言，报表查询的频次会低很多。

针对报表这种查询灵活、需要近实时响应结果的场景而言，比较好
的选择是使用搜索引擎一类的数据存储和查询方案，ElasticSearch就是
一个不错的选择。这是因为，搜索引擎通常采用倒排索引的方式来管理
查询数据。诸如MySQL这样的非倒排索引数据库，如果要针对指定的
查询条件加快查询效率，则必须预先建好索引。可是，在报表系统这种
场景下，一方面，查询需要灵活多变、随意组合；另一方面，随着产品
的演进，需求可能在不断调整和增加。这就需要我们在数据库中建立大
量的单键索引和多键索引。而在产品新版本上线时，还可能需要更新索



引和新增新索引。这一切都增加了开发和运维的复杂性。当数据量已经
很多时，在上面新增一个索引可能需要耗用数小时的时间，这会严重影
响线上数据库的可用性，甚至有可能直接导致线上数据库不可用。相比
而言，采用倒排索引的数据库自动为数据建立字典和倒排索引表，不需
要我们再为查哪些字段、建哪些索引的问题而耗费过多精力。



9.3.1　倒排索引

倒排索引（inverted index）是一种新颖的索引方法，常用于搜索引
擎，是文档检索中最常用的数据结构。下面我们以搜索同时包
含“我”“爱”“你”3个字文档为例来讲解倒排索引的原理。

文档1：我喜欢你
文档2：我爱你
文档3：我很爱你

为了实现倒排索引，首先需要对每个文档进行“分词”处理。所
谓“分词”，就是将文档切分成一个个单独的词。简单起见，我们将把每
个字作为一个词。经过分词处理后，结果如下：

文档1：我、喜、欢、你
文档2：我、爱、你
文档3：我、很、爱、你

在这些文档中，所有出现的词构成了一个字典：

{我, 喜, 欢, 你, 爱, 很}

以这个字典为基础，构建倒排索引，即统计字典中的每个字出现在
哪些文档中：

"我": {文档1， 文档2， 文档3}

"喜": {文档1}

"欢": {文档1}

"你": {文档1， 文档2， 文档3}

"爱": {文档2，文档3}

"很": {文档3}

所以，搜索包含“我”“爱”“你”这3个字的文档，结果是这3个字各自
所在文档集合的交集：

{文档1， 文档2， 文档3} ∩ {文档2，文档3}∩ {文档1， 文档2， 文档3} = {文档2， 文档3}



我们再直观地检查下，文档2和文档3正好包含“我”“爱”“你”这3个
字，而文档1则不包含这3个字，这正是我们要达到的目的。上面的过程
就是构建倒排索引的过程。

从上面的过程可以看出，倒排索引实际上为文档集合中的每一个分
词都构建了它包含在哪些文档中的索引。当我们需要按多个条件（也就
是多个分词）查询文档时，只需要将它们各自出现的文档集合求交集即
可。在具体工程实现中，可以通过位图（bitmap）来记录索引，这样极
大地节省了存储空间，并且通过布尔运算就能实现集合间的交集、并集
等操作，极大地提高了查询的效率。倒排索引的这种特点使得它非常适
用于搜索引擎领域。

在我们的报表系统中，倒排索引构建所有分词的索引且查询迅速的
特点也完全满足查询的灵活性和准实时性要求。



9.3.2　ElasticSearch

ElasticSearch是一个实现了倒排索引的全文搜索引擎，可以在TB级
别的数据量规模下做到准实时搜索。ElasticSearch支持丰富多彩的查询
类型，并且运行稳定、可靠，集群部署、扩展和维护都非常方便。

由于ElasticSearch具备以下4个特点，所以它非常适用于报表系统。

1）ElasticSearch支持丰富的过滤、分组、聚合、排序等查询，可以
充分、灵活地从一个或多个维度分析数据，这正是报表系统查询的核心
所在。

2）ElasticSearch执行OLAP（On-Line Analytical Processing，联机分
析处理）查询性能十分优异。在TB级别的数据规模下，ElasticSearch做
各种OLAP查询，能够做到准实时，也就是数秒级别，是不是很赞！

3）ElasticSearch集群搭建和扩展非常容易，并且稳定、可靠。可以
说，ElasticSearch是笔者使用的所有分布式系统中最方便、最可靠、最
省心的分布式系统。

4）数据存入ElasticSearch，不需要专门预先针对OLAP查询设计各
种聚合任务。这点在产品不断演进时非常重要，因为一开始的时候，可
能产品经理自己也不知道以后会展示哪些报表，而使用ElasticSearch这
类数据存储和查询都非常灵活的存储方案可以减少太多以后的麻烦。

图9-5展示了ElasticSearch集群的组成。该集群由3个物理节点组
成，并且我们在其中创建了一个包含5个分片（shard）且每个分片又包
含两份副本（replica）的索引（index）。在ElasticSearch中，“索引”相
当于关系型数据库中的“表”。当一个索引包含的文档非常多时，可以通
过分片的方式将其分布到多个节点上去。在ElasticSearch中，可以对各
个分片创建多份冗余副本，这一方面保障了数据安全，实现了集群的高
可用，另一方面副本也可以参与执行查询请求，从而提升集群整体的性
能表现。



图9-5　ElasticSearch集群的组成



9.3.3　分索引存储

虽然ElasticSearch有很多优点，但是在使用过程中，还是需要注意
一些问题。ElasticSearch有两种方式组织大量数据：一种是用一个大索
引，索引内部分成很多分片；另一种是用多个索引，每个索引内部用较
少的分片，图9-6就是按日期分成多个索引存储的示例。由于
ElasticSearch的查询有一个非常好的特性，即同一个查询是可以跨多个
索引的，所以这两种方案对于查询范围相同的查询请求而言是没有太大
区别的。

图9-6　Elasticsearch按日期分索引存储

对于不停往系统里追加新文档的场景来说，维护一个较小的索引是
更加高效的。因此，对于数据不停追加、数据量与日俱增的场景来说，
最好还是将大索引分成多个小索引。以笔者的经验来看，对于需要频繁



追加数据的应用场景而言，在单台4核8GB的云主机上，单个索引控制
在20～30GB比较合适。

ElasticSearch分索引的方式可以分为3种：按时间分片、按数据量分
片及同时按时间和数据量分片。

1.按时间分片

按时间分片是指根据时间周期，在每个新的时间周期使用一个新的
索引，如按天分片、按小时分片等。按时间分片的好处在于实现简单、
数据时间范围清晰明确、容易实现TTL。但是如果时间周期不好选择，
或者数据流量在每个周期的变化比较大，就会造成每个索引内数据量的
分布不均匀，索引数过多或者过少，从而给运维带来麻烦。

2.按数据量分片

按数据量分片是指根据索引内记录的条数来决定是否使用新的索
引。例如，如果平均每条记录是1KB，每个索引存放两千万条记录，那
么，当索引中记录的数量超过两千万条时，就创建一个新的索引来存放
新的数据。按数据量分片的好处在于每个索引数据量比较均匀。如果非
要说缺点的话，这种方式的缺点就是不能通过索引名直接确定里面数据
的时间范围。

3.同时按时间和数据量分片

同时按时间和数据量分片既可以保留每个索引内数据比较均匀的优
点，还可以通过索引名直接确定里面数据的时间范围。这种方式是一个
不错的选择，只是在代码实现时相对更复杂些。



9.4　离线分析

离线数据处理和分析是实时流系统中非常重要的一部分。在
Lambda架构中，我们就已经看到了批处理系统对实时系统的辅助作
用。而离线数据处理和分析虽然并不会直接影响实时流系统的执行，但
是离线系统对实时系统也有着很多的辅助作用。这些作用包括：

·数据存储和ETL处理；

·离线数据分析和模型训练；

·离线报表统计。

这些离线任务都有一个共同的模式，即数据需要存储下来，然后在
这些数据基础上做各种数据处理和分析。针对此类任务，以Hadoop为基
础的大数据生态为我们提供了非常好的解决方案。围绕Hadoop的一些列
软件和相关资源都非常丰富，因此本书不深入展开，感兴趣的读者可以
自行查阅相关内容。这里我们重点关注离线任务的3个方面：存储、处
理和分析、调度。



9.4.1　存储

实时流数据经过处理和分析后，需要进行数据落地，也就是将数据
存入持久化存储设备。为了将实时流处理和数据落地的逻辑分离开，最
好先将实时流数据发送到Kafka消息队列，然后从Kafka消息队列拉取数
据，最后将数据写入HDFS（Hadoop分布式文件系统）。从Kafka拉取消
息写入HDFS的方法有很多种，Flume就是一种常用的方案，如图9-7所
示。

图9-7　使用Flume将Kafka数据写入HDFS

下面是使用Flume将Kafka数据写入HDFS的配置样例。

events.sources = src1

events.channels = ch1

events.sinks = sk1



events.sources.src1.type = org.apache.flume.source.kafka.KafkaSource

events.sources.src1.channels = ch1

events.sources.src1.zookeeperConnect = zookeeper1:2181,zookeeper2:2181,zookeeper3:2181/kafka

events.sources.src1.topic = events

events.sources.src1.groupId = flume

events.sources.src1.kafka.consumer.timeout.ms = 100

events.sources.src1.interceptors = json_interceptor

events.sources.src1.interceptors.json_interceptor.type = com.alain898.flume.plugins.interceptors.JsonInterceptor$Builder

events.sources.src1.interceptors.json_interceptor.headers = timestamp

events.sources.src1.interceptors.json_interceptor.paths = $.timestamp

events.channels.ch1.type = file

events.channels.ch1.capacity = 10000

events.channels.ch1.transactionCapacity = 1000

events.channels.ch1.checkpointDir = ./checkpoint/events

events.channels.ch1.dataDirs = ./data/events

events.channels = ch1

events.sinks.sk1.type = hdfs

events.sinks.sk1.channel = ch1

events.sinks.sk1.hdfs.path = hdfs://nameservice1/flume/events/day=%Y%m%d/hour=%H

events.sinks.sk1.hdfs.filePrefix = events.

events.sinks.sk1.hdfs.fileSuffix = .json

events.sinks.sk1.hdfs.inUseSuffix = .tmp

events.sinks.sk1.hdfs.round = true

events.sinks.sk1.hdfs.roundValue = 10

events.sinks.sk1.hdfs.roundUnit = minute

events.sinks.sk1.hdfs.fileType = DataStream

events.sinks.sk1.hdfs.rollSize = 0

events.sinks.sk1.hdfs.rollCount = 0

events.sinks.sk1.hdfs.rollInterval = 300

events.sinks.sk1.hdfs.timeZone = UTC

在上面的配置中，我们需要注意以下几点。

1.小文件问题

Flume将数据写入HDFS时可以设置3种滚动条件，即按时间间隔滚
动（rollInterval）、按文件大小滚动（rollSize）和按事件数滚动
（rollCount）。这会造成一个问题，即如果两次滚动之间的事件数比较
少，那么就会在HDFS上产生很多小文件。这虽然在功能上没什么问
题，但是由于HDFS本身是针对大数据设计的文件系统，太多的小文件
一方面会浪费大量的块节点，另一方面会降低MapReduce、Hive和Spark
等程序的性能。所以，在设置滚动周期时，应该平衡文件大小和所能接
收的时延。例如，如果HDFS的块大小是128MB，那么文件大小最好为
128MB的整数倍再小一点儿。如果实在既要求数据入库的时延小，又没
太多数据从而造成产生很多小文件，那么使用额外的任务周期性地将小
文件合并成大文件也是很有必要的。



2.时间戳问题

Flume使用事件头部的timestamp字段作为分区时间依据。大多数情
况下，我们需要使用事件发生的时间而不是Flume接收到事件的时间作
为分区时间依据，所以我们需要自行定义一个时间戳拦截器将事件时间
写入事件头部。如在前面的代码中，我们使用JsonInterceptor将JSON格
式事件中的timestamp字段写入事件头部。

3.HDFS高可用问题

如果HDFS集群配置了高可用模式，那么Flume写入HDFS的路径就
不能够直接使用具体的某台namenode服务器地址，而必须使用
nameservice代替。否则当HDFS的namenode在active与standby两种状态之
间切换时，Flume就不能写入数据了。

在配置好Flume代理后，使用如下命令启动Flume代理即可。

nohup bin/flume-ng agent --name events --conf ./conf --conf-file conf/events.conf -Dflume.log.file=events.log &

使用Flume搬运少数主题的数据到HDFS还是非常方便的。但是当主
题较多时，需要启动非常多的Flume代理进程，分散地管理这些任务会
变得比较麻烦。除了使用这种比较“底层”的方式外，第8章讲到的消息
路由服务Apache Camel也会给我们非常大的启发。通过Apache Camel，
可以统一且方便地管理数据在不同端点之间的传递，这部分解决了数据
入库任务的管理问题。但是Apache Camel对这种任务管理的支持还不是
一步到位的，我们依旧需要自己开发诸如集群化、监控、管理和UI之类
的功能，所以我们“得寸进尺”，有没有更佳“一站式”的方案呢？这个当
然可以有。诸如Apache NiFi、Apache Gobblin之类的开源工具就提供了
功能更佳强大的大数据集成方案。

以Apache NiFi为例，它是一款大数据集成平台。Apache NiFi图形
化界面如图9-8所示。



图9-8　Apach.NiFi图形化界面

可以说，Apache NiFi是我们理想中Apache Camel的模样，即支持可
视化设计和分布式集群功能。图9-9展示了Apache NiFi集群的组成。可
以看到，Apache NiFi集群中的每个节点都是“平等”的，它们之间通过
Zookeeper协调工作及共享状态。



Apache NiFi的这种集群方案非常贴合大数据集成场景，这是因为它
具备以下优良特性。

图9-9　Apache NiFi集群的组成

·通过图形化界面创建、管理、监控各种ETL任务，使用起来更加
直观方便。

·集群化的运行环境一方面能够集中管理各种ETL的任务，不需要
像Flume或Camel那样管理零散运行实例，另一方面能够更加一致地对集
群处理能力进行水平扩展。

·这是一款简单且独立于其他如YARN或Mesos等资源管理框架的
集群方案，让其具有更少的依赖，部署、管理和维护起来非常方便。

总体来说，将数据从Kafka中读取出来并存储到HDFS并不是非常难
的事，难的是当类似的任务变多后的管理问题。如果需要写入HDFS的



Kafka主题比较少，则直接使用Flume或Camel非常方便。但是当主题非
常多，变得难以管理时，不妨选择使用Apach.NiFi和Apach.Gobblin这类
专门的大数据集成方案。



9.4.2　处理和分析

围绕Hadoop有关数据处理和分析的工具有很多种，这里我们只选择
两个典型的离线数据处理和分析工具进行讲解，即Hive和Spark。

1.Hive

Hive是一个数据仓库工具，它将结构化数据文件映射为数据库表，
并提供SQL查询功能。图9-10展示了Hive的工作原理。Hive内部将SQL
语句转换为MapReduce或Tez作业，然后提交Hadoop执行，因此可以将
Hive理解为MapReduce或Tez的一层SQL“皮肤”。使用Hive的好处在于其
对SQL的支持，只要有SQL基础，就可以快速开始离线数据的统计分
析。使用Hive时需要注意，在将数据与表绑定起来时，应该尽量使用外
部表。只有在需要创建和使用临时表时，才使用内部表。另外，临时表
在用完之后一定要删除，否则这些数据会留在Hive里成为垃圾数据，越
积越多，从而影响未来Hive的正常使用。

图9-10　Hive的工作原理

2.Spark



另一个更为数据分析人员所喜爱的大数据分析工具是Spark。Spark
中的RDD（Resilient Distributed Datasets，分布式弹性数据集）和
DataFrame这两个核心概念都是对数据的矩阵表示，因此对于大数据分
析人员而言，Spark天生就是为他们量身定做的数学分析工具。Spark以
RDD抽象为核心，提供了一系列的Transformation操作和Action操作
API。通过这些操作组合，可以实现复杂的计算模式和分析功能。另
外，Spark充分使用内存来进行操作计算，相比Hadoop最初的
MapReduce，在性能表现上有了数量级的提升。时至今日，Spark已经成
为了大数据分析的主流工具，我们在做离线数据分析，特别是一些复杂
的分析计算（如统计学习和机器学习相关的模型训练）时，Spark都是
不可多得的强有力工具。



9.4.3　调度

离线任务通常是周期性定时执行的，因此需要一个能够管理离线任
务执行的调度系统。比较简单的调度系统是Linux操作系统下常用的定
时执行工具cron。cron工具只是一个简单的调度工具，它只支持本地调
度，并且没有用户友好的管理界面。当调度任务很多时，cron任务难以
管理，任务执行状态也不方便追踪。因此，我们需要功能更加强大的调
度工具，如Azkaban。

Azkaban是由LinkedIn为调度Hadoop作业而开发的批处理工作流调
度器，它解决了调度作业之间的相互依赖问题，并提供一个简单易用的
Web用户界面来管理和追踪作业的调度和执行情况。图9-11展示了
Azkaban的工作原理。WebServer提供Web界面，用户可以通过它上传、
调度、监控和管理作业。ExecutorServer是作业执行的地方，当需要调
度执行的任务非常多时，可以部署多台ExecutorServer。另外，在
WebServer和ExecutorServer之外，Azkaban还需要用数据库来保存作
业、调度和状态等各种元数据。

图9-12展示了Azkaban的作业执行历史页面。其中，event_report和
add_partition这两个每小时执行一次的作业每次都是执行成功的，而另
外一个每天执行一次的作业report_daily则执行失败了。



图9-11　Azkaban的工作原理



图9-12　Azkaban的作业执行历史页面

在使用Azkaban时，需要严格控制被调度执行任务的内存。如果任
务占用内存过大，则一台16GB内存的ExecutorServer也不能同时启动几
个任务，容易造成系统内存不足，调度任务被操作系统随机杀死。

除了Azkaban外，还有一些其他工作流调度器，如Oozie、Airflow



等。这里就不再一一展开介绍了，读者可以自行查阅相关资料。



9.5　关系型数据库查询

在实时流计算系统中，传统关系型数据库最主要的作用是存储各种
元数据和业务实体数据。

说到元数据，笔者想起以前初入计算机领域时，遇到一个词“元数
据”（metadata）。当时不甚明白，查资料给出的解释是“关于数据的数
据”，顿时有了一种“道可道非常道”的云雾感。数据就是数据，怎么还
有“关于数据的数据呢”？后来遇见的事情多了，学到的知识也多了，于
是笔者明白了，原来除了类似于从传感器收集来的原始数据外，当我们
对数据进行格式化、压缩、归档、存储、传输、管理等各种处理时，还
需要用另外一部分数据对原始数据进行说明和描述，这部分数据就是所
谓的“元数据”了。元数据在我们的系统中可谓是无所不在。Hive里数据
库和表相关的信息是元数据，Azkaban里作业和调度相关的信息是元数
据，Cloudera Manager里集群部署和配置信息是元数据，GitLab里项目
和提交信息也是元数据。除了第三方系统使用的元数据以外，我们自己
开发的业务系统也存在各种各样的元数据，如配置信息、模型参数等。
保护元数据的完整性是非常重要的事情，极端情况下，当元数据被破坏
时，系统就不能正常工作了。

相比元数据，我们可能更加关心的是各种业务实体数据，如用户账
户、业务配置等。这些数据处置不当，如丢失了账户信息、混淆了不同
版本业务配置，造成的后果就可能是与客户的纠纷，甚至是直接的经济
损失了。所以，我们在为此类业务场景设计系统及实现软件时，一定要
时刻注意数据安全的问题。

元数据和业务实体数据对数据的安全性（包括完整性和一致性等）
有着非常高的要求，这时就是关系型数据库发挥作用的时候了。虽然传
统关系型数据库在对事务的支持上已经非常成熟，但这是建立在单节点
的基础上的。要想让数据真正安全、可靠，还必须针对传统关系型数据
库做高可用方案设计。

以MySQL为例，常见的MySQL高可用方案是为主数据库配置一个
从数据库，从数据库通过复制并重放主数据库的binlog文件，实现对主
数据库的同步。很明显，这种简单的主从复制方案存在问题，即主从数
据库之间的数据并非时刻保持一致，如果主从数据库之间的网络存在问



题，或者从数据库自己宕机了，那么从数据库和主数据库至少在一段时
间内的数据并不一致。鉴于此，MySQ.5.7版本引入了全新的真正意义上
的高可用关系型数据库方案，即Group Replication。Group Replication基
于分布式一致性算法Paxos实现（非常有名的分布式一致性算法，大多
数分布式强一致性数据系统使用该算法或其衍生算法实现），只要集群
中有半数以上节点存活着，集群就能够正常提供数据库服务，因此这是
一个真正意义上的高可用数据库集群方案。Group Replication支持两种
模式，即单主模式和多主模式。图9-13展示了MySQL Group Replication
集群的单主模式。在单主模式下，集群先从各个节点中选举出一个主节
点，之后只有主节点同时支持读写访问，而其他节点仅支持读访问。单
主模式是MySQL官方推荐的Group Replication复制模式。

图9-13　MySQL Group Replication集群的单主模式

传统数据库终究不是为大数据时代设计的，它们有自己的缺陷，因
此，现在越来越多的企业和开源软件组织开始实现真正属于大数据时代
的关系型数据库。这类数据库不仅支持分布式数据的强一致性，而且支



持分布式事务功能，除了支持SQL，还支持NoSQL。它们将传统数据库
的各种优良特性在大数据环境中实现，真可谓是功勋卓著了。与SQL和
NoSQL一样，这类数据库逐渐具有了自己的专属名字，即NewSQL。目
前比较有名的开源NewSQL数据库有TiDB和CockroachDB等。应该说，
NewSQL数据库在未来会发挥越来越大的作用，并成为大数据时代关系
型数据库的主流。感兴趣的读者可以自行多了解相关知识，本书在此就
不再展开叙述了。



9.6　本章小结

本章讨论了实时流计算系统涉及的各种数据存储问题。其实不仅仅
在实时流计算系统中，几乎在任何相对复杂的系统中，数据存储方案的
设计都是非常重要的事情。如果数据存储方案设计不当，当系统中的数
据积累到一定量后，必然会造成服务时延增大，最终导致服务不可用。
一般这个时候，由于系统已经具有了相当规模的数据和状态，任何修复
和改动操作都将变得费时费力，甚至只能暂停业务，离线解决问题。

本章虽然讨论了不同使用场景下的数据存储方案，但还是稍有遗
憾，有些场景没有讨论到，如时间序列数据库（如InfluxDB）和图数据
库（如JanusGraph和DGraph）。不管使用什么数据库，我们都需要注意
以下几点。

第一，根据计算类型选择最合适的存储方案。

第二，在实时流计算系统中，没有数据是永远有效的，必须设置超
期时间。

第三，在设计之初合理预估将来的数据量规模，规划好集群规模并
制订扩展计划。

第四，单表过大容易变成灾难，必要时对数据按时间分表存储。



第10章　服务治理和配置管理

如果系统比较简单，未来也不会再变动，那么服务治理和配置管理
的问题就不会太突出，但“不变”或多或少地意味着系统在开发完成的那
一刻就已经停止发展了，这是一件可悲的事情。当我们的业务在不断发
展时，客户和产品的需求越来越多，系统也会变得越来越复杂。如果没
有对服务治理和配置管理提前做整体规划，那么当系统日趋复杂时，系
统就会逐渐变得失控，甚至最后我们彻底失去对原有系统做出改动的能
力，不得不重新设计系统架构。所以，在设计系统和开发软件时，即便
不能预见产品最终成熟时的模样，作为研发人员，我们还是要稍微有所
远见并考虑得全面些。至少关于服务治理和配置管理的一些通用模式和
准则，我们是可以掌握和遵守的。服务治理和配置管理并非实时流计算
系统的核心问题，没有它们，我们也可以构建一个可用的系统。但作为
辅助系统，如果将服务治理和配置管理的问题处理好了，它们有助于系
统在随业务发展的过程中平稳演进，让我们少走很多弯路。本章就来讨
论一下实时流计算系统中服务治理和配置管理的问题。



10.1　服务治理

在流计算系统中，流代表业务执行的过程。在流计算应用执行具体
的计算逻辑时，可能会用到一些独立的服务。例如，使用IP分析服务将
IP转化为省份和城市、使用地理位置解析服务将GPS坐标转化为省份和
城市、使用第三方征信服务对个人信用风险做出评估等。这些独立的服
务虽然与业务系统相关，但它们又明显不应该属于业务系统的主体执行
流程。那我们应该如何在实时流计算应用中规划和组织业务的主体执行
流程及它所依赖的其他独立服务呢？本节就来讨论这个问题。



10.1.1　流服务和微服务

当一个服务模块的输入和输出都是流的时候，我们称其为流服务。
流服务的好处在于其可以直观地描述业务执行流程。流服务使用DAG来
描述执行流程，DAG的每个节点代表一个业务单元，每个业务单元负责
一定的业务逻辑。

在业务单元中，经常会用到一些具有特定功能的辅助性服务，如IP
分析、GPS解析、第三方征信服务等。将实现这些辅助性功能的代码直
接放入流计算应用的业务代码里，或许是一个好方法，特别是在我们非
常在乎性能的时候。毕竟将这些辅助性功能的逻辑集成到流应用里，会
减少相当多的I/O操作，确保了流应用的性能。但是这样做并不优雅。
考虑下，如果流计算任务需要用到很多辅助性功能（这种情况其实相当
常见），而且这些辅助性功能中的某些内部逻辑甚至相当复杂，那么将
这些功能的实现代码全都放到业务流程的实现中，势必会造成业务逻辑
和技术细节纵横交错、程序执行流程杂乱无章。

一种折中的方案是将辅助性功能抽取为独立的源码项目，将它们编
译为库后再链接进流计算应用。这样一方面能够保证流计算应用的性
能，另一方面避免了流计算应用的代码过于杂乱。这样做不失为一个比
较好的办法，并且在性能优先的情况下可能是最优选择。但这样做也存
在问题，即每次对辅助性功能服务做更改或升级时，流计算应用必须重
新构建、测试和发布。

从服务治理的角度而言，我们还是应该将辅助性功能剥离出去，让
它们成为单独的服务，对外提供REST或RPC的访问接口。图10-1描述了
这种将辅助性功能剥离为单独微服务，由流服务调用接口访问的架构。
这样，流计算应用负责整体的业务逻辑，而辅助性功能被封装在一个个
独立的微服务内并对外提供友好的使用界面，整个流计算系统架构清
晰，在将来需要调整时也更加灵活。



图10-1　流服务和微服务关系

在流服务中调用外部的微服务也存在一个问题，即性能问题。在第
5章讲解状态存储时，我们建议使用本地数据存储方案替代远程数据存
储方案，原因在于远程数据存储方案可能会极大地降低流服务的性能。
与此类似，在流服务中调用外部微服务时也涉及网络I/O，这同样会比
较显著地降低流服务的性能。所以，我们要针对微服务的调用过程做优
化。一方面，要小心谨慎地设计微服务，确保微服务能够快速地返回，
不管是成功还是失败，都必须在给定的时间内快速返回。另一方面，流
服务在调用微服务时，可以采取异步I/O的方式，这样能够保证流服务
在处理事件时不会让CPU阻塞在等待微服务请求返回，从而提升流服务
的吞吐能力。

另外，必须强调的是，在流计算中使用微服务最好采用只读方式，
或者至少应该是幂等的。因为，如果流服务访问微服务时造成了外部状
态的改变，就有可能破坏流计算应用整体的可靠性保证机制。关于出现
这个问题的原因，我们在第6章讨论各种开源流计算框架的消息传达可
靠性保证机制时已有所分析，这里不再赘述。



相比流服务，微服务是一种更加为大众所知的服务组织架构。从形
式上，微服务和流服务最大的区别在于，微服务是请求并响应的模式，
而流服务则是事件驱动的模式。微服务系统架构将复杂软件系统按业务
功能划分为一个个独立的服务模块，每个服务模块独立开发、独立部
署、独立提供服务，各独立服务模块之间天然是一种松耦合的状态。

微服务确实有助于我们分解复杂的系统，但与之而来的问题是，它
会让业务系统变得复杂。相比流服务有一个提纲挈领的DAG代表了完整
的业务流程，微服务系统如果没有额外的设计文档进行解释，那么我们
是很难一下就弄清楚业务系统的完整执行流程的。

相比微服务而言，流服务的服务治理方案是“与生俱来”的，原因有
以下几点。

第一，大部分流计算框架是构建在诸如YARN这样的分布式操作系
统上的，所以它们所运行的环境已经云化。这意味着基于这些流计算框
架构建的应用是可以自由横向伸缩的。

第二，大部分流计算框架或多或少地提供了管理界面，这让我们能
够非常方便地监测和追踪运行在系统中的应用的状况。

第三，大部分流计算框架具备一定的容错机制，并且可在服务失败
时自动完成服务恢复，不需要我们外部干预。

但是微服务就不一样了。微服务系统架构和服务治理还是有较大距
离的，甚至可以说，服务治理的概念最初正是为了更好地管理微服务系
统而提出的。针对微服务系统的服务治理方案多种多样，从Apache
Dubbo 和Spring Cloud，到Docker Swarm 和Kubernetes，再到如今的
Service Mesh等，各种微服务治理方案可谓方兴未艾，它们正在快速地
发展和演进过程中。虽然像诸如Kubernetes和Service Mesh等前沿、新颖
的微服务治理方案确实非常有趣，但限于本书的主题，我们不展开讨论
它们，强烈建议感兴趣的读者自行查阅相关资料。笔者只在这里斗胆做
一个预言，在诸如Kubernetes和Service Mesh等基于资源云化技术和服务
编排技术的服务治理平台更加成熟和普及时，未来微服务和流服务之间
的边界将越来越模糊，直接基于这些服务治理平台开发流计算框架也未
尝不是一件有趣的事。

接下来我们将通过Spring Cloud来讨论服务治理中的几个核心问



题。



10.1.2　微服务框架Spring Cloud

Spring Cloud是Java领域较著名、较流行的微服务开发框架。Spring
Cloud以Spring Boot为基础，围绕微服务提供了一系列服务治理功能，
如服务注册及服务发现、负载均衡、容错保护、配置管理、链路追踪和
服务网关等，如图10-2所示。Spring Cloud最大的作用不在于实现微服
务，而在于更好地管理和监控整个微服务系统。系统提供了哪些微服
务，哪个服务实例宕机了，服务是否中断，哪个服务性能不足，如何扩
展或收缩服务的处理能力，系统整体的吞吐和时延如何，系统资源的使
用效率怎样……方便快捷地给出所有这些问题的答案，让我们只需专注
于业务逻辑的开发，这才是Spring Cloud（或者说服务治理）的价值所
在。

1.服务注册及服务发现

当微服务系统因为业务功能的增加而逐渐变得复杂时，由于微服务
架构松耦合的特点，微服务实例的组织会变得零散杂乱。这时我们就需
要一个服务注册中心来统一管理这些微服务实例，否则我们将不得不手
动管理大量的服务代理和服务实例IP，这一方面提高了服务和服务之间
的耦合度，另一方面增加了运维的复杂性。服务注册用于服务提供者向
服务注册中心注册自己所提供的服务，包括服务端点（endpoint）和服
务内容等信息；而服务发现则是服务使用者从服务注册中心获取服务提
供者信息的过程。当服务使用者从注册中心获取到提供服务的服务实例
信息后，就可以向其发起服务请求了。



图10-2　Spring Cloud微服务系统

在Spring Cloud中，负责服务注册和服务发现的组件是Spring Cloud
Eureka，其中Eureka是“找到了，发现了”的意思。据说先贤阿基米德在



一次洗澡时灵光乍现，发现了浮力的原理，当时他高兴坏了，手舞足蹈
地叫喊着：“Eureka！”

2.负载均衡

负载均衡的作用有两个，一是为服务提供横向扩展或收缩服务实例
数量的能力，二是为服务提供高可用的能力。负载均衡的实现方案有两
种，一种是使用类似于Nginx这样的负载均衡器，另一种是直接在客户
端实现多个服务实例之间的负载均衡。图10-3展示了这两种不同的负载
均衡方案。

Spring Cloud采用的是第二种方案，即直接在客户端实现负载均
衡。Spring Cloud提供了一个名为Ribbon的HTTP负载均衡客户端工具。
Ribbon并非一个服务，而是一个工具类框架，因此只需集成在客户端使
用即可，不需要另启额外的负载均衡器。

图10-3　两种不同的负载均衡方案

3.容错保护

微服务架构中存在着非常多的服务单元。当某个单元出现故障时，



就有可能因为服务间的依赖关系，故障发生蔓延，最终导致整个系统不
可用。例如，在某个微服务体系中，服务A需要调用服务B，服务B又需
要调用服务C。现在服务C中某个实例出现故障，响应非常缓慢，当服
务B的请求被轮询分配到这个故障实例后，服务B的这个实例也受到影
响，服务也变得缓慢。更有甚者，服务B的所有实例的请求都有一定概
率被分配到这个有故障的C服务实例上，最终导致所有的服务B实例都
出现处理缓慢的情况。依次类推，最终服务A的所有实例也会变得响应
缓慢。最终，整个系统因为服务C的一个实例故障，而变得不可用。如
果一开始，当服务C的实例发生故障时，就将其剔除在服务提供者清单
中，就可以避免这种故障蔓延的问题。等到故障实例被修复后，再重新
将其添加到服务提供者清单中。

针对这类问题，在微服务架构体系中产生了“断路器”的概念。所谓
断路器，就是通过故障监控，当服务实例发生故障时，立刻向服务请求
方返回一个错误响应，而不是让服务请求方长时间等待回应，卡死在调
用的地方。

图10-4　熔断器原理

Spring Cloud Hystrix组件除了实现“断路器”的功能外，还提供了更
全面的服务降级、线程隔离、请求缓存、请求合并、服务监控等一系列
服务保护功能。应该说，Hystrix提供的这些概念，对于我们构建高可



用、高可靠系统是非常有启发性的，所以建议感兴趣的读者不妨自行研
究下Hystrix的实现细节，分析它实现各种功能的思路和技巧。

4.配置管理

配置是微服务系统非常重要的组成部分。特别是当系统中存在大量
的微服务实例时，配置会变得复杂。而不同模块、不同环境（开发、测
试和生产）、不同版本等因素的存在，更是极大地增加了配置管理的复
杂度。这个时候，一个统一的配置管理中心就变得十分重要。

使用Spring Cloud Config可以轻松地实现配置中心的功能。Spring
Cloud Config默认使用Git来存储配置信息，天然支持了配置信息的版本
控制。不过目前Spring Cloud Config对动态配置更新的支持不是非常友
好。一方面，Spring Cloud Config不支持配置变更后的自动通知配置刷
新，必须手动刷新；另一方面，配置刷新时的粒度太粗，只有refresh命
令可用于通知微服务刷新配置。这样，如果配置组织得不合理，如将系
统配置和业务配置都放在动态配置的作用域内，系统配置和业务配置就
容易存在全部更新的问题。或许这在最终服务功能上没什么不一样，但
很明显这是比较危险的操作。考虑下，你本来只想修改业务的某个配置
项，结果也刷新了另一个系统配置（如服务端口），无论服务端口是否
真的修改了，这种做法都是风险比较高的事情，因为它产生了我们预期
之外的副作用。所以，在使用Spring Cloud Config的动态刷新功能时，
必须严格规划好动态配置的内容，以及它们的作用域，也就是用
@RefreshScope注解严格限制动态配置刷新的内容和范围。当然话说回
来，Spring框架总是给我们留下了自由发挥的空间，如果结合Spring
Cloud Bus进行二次开发，对动态配置进行更加精细的控制也是能够实
现的。

5.链路追踪

当业务变得复杂时，微服务间的调用关系势必会变得复杂。这时
候，当一个客户请求过来时，如果一切正常，那么客户会即时得到响
应。这种情况下一切都好。但是，如果系统某个环节发生故障，客户请
求得不到正常响应，那我们该如何快速定位故障？这种情况下，对请求
处理过程的完整链路追踪就变得非常重要。

Spring Cloud Sleuth提供了全链路调用追踪功能。图10-5展示了链路
追踪的原理。Sleuth在进行链路追踪时使用了3个概念：trace、span和



annotation。其中，trace代表一次完整的请求处理链路，链路中的每一次
请求及响应被表示为一次span，而annotation用于标记每次span过程中具
体的事件，如CS（Client Sent）表示客户端发起请求，SR（Server
Received）表示服务端收到请求，SS（Server Sent）表示服务端返回请
求的响应，CR（Client Received）表示客户端收到请求的响应。

总体来说，使用链路追踪技术不仅有助于我们快速定位故障，而且
有助于我们分析各环节处理时延，对系统进行性能优化。所以，链路追
踪技术不愧是构建复杂业务系统必备之利器。另外，链路追踪技术除了
可以用于微服务外，在流服务领域如果系统不能保证消息可靠传输，那
么也可以借鉴这种技术手段来追踪消息的处理过程。

图10-5　链路追踪的原理



6.服务网关

大多数时候，当我们的业务系统最终提供给用户使用的时候，原本
内网的一些服务端口需要暴露到互联网上，此时我们需要使用服务网
关。服务网关最重要的功能是实现反向代理，以及对所有外网请求的认
证和授权。

反向代理的作用在于将不同服务的请求路由到提供相应服务的服务
器上去，这样可以将功能各不相同的独立服务汇聚为完整的业务界面，
在相同的域名下对外提供服务。通过反向代理，即使在业务复杂、功能
繁多、API丰富的情况下，我们也能轻松实现对外接口的统一。

认证和授权是服务网关的另一个重要作用。如果暴露在公网上的服
务没有认证和授权功能，你都不知道究竟是哪些人在访问你的服务，他
们是好人还是坏人，是真人还是机器人，是善意的还是恶意的……当我
们使用服务网关反向代理的功能将各个服务端口收纳到一起之后，就可
以对所有外部请求进行统一的认证和授权了，从而不必让相同的代码和
验证流程散布在系统各处。

当然，服务网关还有其他功能，如负载均衡、性能监控和流量控制
等。可以说，我们希望通过AOP（Aspect Oriented Programming，面向
切面编程）实现的那些功能，大多能够使用在服务网关上。

Spring Cloud提供了两个服务网关实现，即Zuul和Gateway。其中，
Gateway采用了Netty框架实现，在高并发情况下比Zuul性能会好上不
少，所以，对于新项目，不妨直接使用Gateway做服务网关。



10.2　面向配置编程

刚刚入行的程序员很容易忽视配置问题，甚至很多时候，直接将配
置写死在程序中。随着工作经历的增加，不管是因为编程规范的强制，
还是因为真的发现配置提取出来更加方便，大家还是学会了尽量将配置
从程序中提取出来的做法，而不会再像刚入道时将配置直接写死在程序
中。不管是将配置写死在代码中，还是将配置提取出来放入文件或
Git，对于很多人来说，配置都仅仅是程序的一个附属资源而已。

如果配置的内容仅仅是描述系统属性，那么以这种方式看待配置并
无大碍。例如，数据库的连接、使用的线程数、分配的内存等，这些配
置都是在设置程序运行时的系统属性，它们原本就属于程序的一部分，
所以将它们当成程序的附属资源是合理的。

但还有另外一类配置，它们与业务系统联系得非常紧密，具有明显
的业务含义和相应的组织结构，此时将这些配置视为附属资源就不合适
了。例如，在风控场景中，用户会配置风控系统要提取哪些特征、计算
哪些规则、使用哪种模型、如何哪种决策等，这些都是与风控场景的业
务逻辑密切相关的。



10.2.1　面向配置编程思想

在业务场景下，从某种意义上来讲，配置才是程序的核心所在。就
像在风控场景中，提取哪些特征、计算哪些规则、使用哪种模型、如何
哪种决策，这才是用户关心的事情。我们希望的是只需要在配置文件中
设置好这些参数，程序就能按照这些配置定义的逻辑执行：首先接收事
件，然后提取特征，再根据模型评分，最终做出风控决策。整个过程自
始至终，我们都并不关心程序本身怎样运行，而只关心配置是否被有效
执行。这是不是有点儿像是“配置”反客为主为“程序”了呢？就像曾经
Spring中的XML之于Java一样？



图10-6　 规则引擎Drools的DRL文件：是配置还是脚本？

如图10-6所示，我们不妨思考两个问题。

·脚本是配置吗？当然是，如果将脚本解释器视为一个普通程序，
那么脚本解释器读取脚本，按照脚本定义的过程和规则执行。从这个角
度上讲，脚本就是解释器的配置文件。

·配置是脚本吗？当然是，如果我们将程序视为一个解释器，那么
配置就是这个解释器的输入。从这个角度上讲，配置就是程序的脚本。



因此，在业务逻辑比较复杂的情况下，我们不妨以配置为核心来指
导程序的开发，这就是面向配置编程。当按照面向配置编程的思路来设
计程序时，我们就好像在开发一个脚本解释器。众所周知，相比普通专
用程序而言，解释器的灵活性更好，因为当解释器开发好后，开发业务
逻辑只需要编写脚本即可，而不再需要修改解释器本身。

与脚本解释器的结构非常类似，面向配置编程包含两个部分。

1）配置。当涉及业务逻辑时，配置才是描述系统执行逻辑的核心
所在。因此，针对具体业务场景设计合适的配置项目和配置组织结构，
是配置设计的核心所在。

2）引擎。引擎的开发应该围绕着配置来进行。当配置设计好后，
应按照配置表达的业务逻辑，开发对应的执行引擎。

面向配置编程有以下好处。

1）灵活和轻便。当面向配置编程的引擎在开发完成后，只要整体
逻辑不变，调整业务只需要编写或修改对应的配置文件就可以了，而不
需要再修改程序并重新构建测试和部署上线，极大地缩短了业务上线周
期。

2）简洁和透明。在使用面向配置编程时，编写配置文件相比程序
开发简单和透明很多，因为配置编写的过程直接是实现业务逻辑的过
程。

3）抽象和泛化。面向配置编程开发的引擎相当于一个脚本解释
器，它是对业务执行流程的终极抽象。配置的灵活性，使得只要是在这
个业务执行流程的框架下，我们可以任意地设置业务流程的各种指标或
参数，可以说是对业务执行流程的终极泛化。



10.2.2　更高级的配置：领域特定语言

面向配置编程的一种更高级形式是DSL（Domain Specified
Languag，领域特定语言）。

DSL是一种针对特定领域而设计和开发的专用计算机程序语言。相
比通用语言而言，DSL具有有限的表达能力，或者说，DSL不是图灵完
备的。

DSL特别适合用于实现业务逻辑。那DSL相比前面说到的一般配
置，又“高级”了哪些内容呢？其实，如果我们用JSON来表示配置，那
JSON就是一种DSL。通常的配置可以表达配置项清单及各配置项间的
层次和依赖关系，但是不能表达符号和计算逻辑，如变量、操作符和函
数等。DSL能够表达的内容更丰富些。既然DSL号称语言，那就或多或
少具有计算机语言的某些特性，如它能够支持变量、操作符和函数等。
相比通用编程语言，DSL又不是图灵完备的。换言之，你不能用DSL实
现C语言，但是能够用C语言实现DSL。

虽然相比普通配置，DSL的功能会更加强大，但是这是有代价的。
功能越强的DSL，开发的难度和复杂度也越高。在本书第11章中，我们
将以风控场景下常用的特征提取引擎为例，展示如何设计并实现一个针
对流数据特征提取的DSL。



10.3　动态配置

当将配置从代码中抽离出来的那刻起，它就是给人修改的。那从何
谈起配置的静态和动态之分呢？这里我们做一个简单的划分，如果配置
在程序启动后不再需要修改，那它就属于静态配置；而如果程序启动
后，配置还会因为某些原因发生变更并重新生效，那它属于动态配置。

静态配置在程序启动前确定，在程序启动后就不再变化了。例如，
程序使用的内存大小、数据库连接等配置在开发、测试、生产环境下各
不相同。这些配置由构建或部署工具管理，如SaltStack的Pillar文件。静
态配置由于其在程序启动后不变的特点，管理起来相对更简单，一般使
用运维工具配合版本控制器即可。例如，使用SaltStack配合Git就可以很
好地实现静态配置的管理。

动态配置则在程序运行过程中可以发生变更并重新生效，如调整日
志级别、更新评分模型、修改决策规则等。

1.动态配置的复杂性

动态配置因为涉及改变程序运行时的行为，因此相比静态配置会复
杂很多，主要体现在以下方面。

1）分布式系统环境。在分布式环境下，一个配置可能会被多个服
务、多个实例使用。配置的变更如何通知到具体相关服务和实例？不同
的服务和实例刷新配置的时间也可能并不一致。如果需要刷新的实例很
多，那么系统在配置变更后多久能够稳定下来？在配置不稳定的过程
中，业务流程的执行会受到什么影响？

2）安全性。动态配置因为改变了程序的运行时行为，有可能导致
程序运行发生错误。如果程序真发生运行错误了，该怎样处理？如果回
滚配置，也可能因为程序运行发生致命错误，导致回滚失败，又该怎样
处理？

3）版本控制。动态配置时常在变化。如果线上客户发现配置变化
后有问题需要回溯，那么该怎样跟踪配置的变更历史？

4）监控。动态配置在变更时可能引起各种各样的问题，安全性、



程序重新稳定等问题。这些问题或许发生的概率不大，但如果它们真的
发生了，实际上解决起来是比较棘手的。例如，动态配置下发成功，到
底是服务实例收到新配置就算成功，还是服务实例收到新配置后运行成
功才算成功？即使当时运行成功了，错误也可能是在运行一段时间后才
出现。针对这一系列问题，即使实现了分布式事务，也是无济于事的。
鉴于以上原因，对各个服务实例当前使用的配置进行监控和检查是非常
重要的事情。

当然，虽然有这么多考虑，但必须强调的是，动态配置系统的责任
边界限定在相关服务实例正确接收新配置并替换本地配置即可，而不能
将范围扩散太大，否则就真的会出现“到底什么时候才算配置更新成
功”这种没完没了的问题了。例如，如果我们用ConfigBean类的一个对
象来持有配置项，那么当用代表新配置的ConfigBean对象来替换代表旧
配置的ConfigBean对象时，就已经算配置刷新成功了。至于后续程序是
否能够正确运行，那是程序是否支持新配置的问题，与动态配置刷新的
机制并无关系。在澄清动态配置系统的责任边界后，我们就能更加清晰
地设计和实现动态配置过程了。

2.动态配置的实现方式

动态配置的实现方式有很多种，这里我们主要介绍3种：控制流方
式、共享存储方式及配置服务方式。

（1）控制流方式

在通信领域，除了用于数据传输的数据通道外，通常还会有一条用
于传输控制信令的控制通道。在流计算领域，我们可以借鉴这种思路。
在数据流之外，我们可以新增一条控制流。通过控制流与数据流的关联
（union或join）操作，就可以将控制信息作用到数据流上。而流本身又
是动态的，所以通过控制流的方式来实现动态配置是一种水到渠成的方
法。控制流与数据流的关系如图10-7所示。



图10-7　控制流与数据流关系

下面我们按照这个原理来演示在Flink中如何实现控制流对数据流的
控制。

public static void testFlinkControlStream() throws Exception {

        StreamExecutionEnvironment env =

                StreamExecutionEnvironment.getExecutionEnvironment().setParallelism(3);

        // 控制流
        List<Tuple1<String>> control = new ArrayList<>();

        control.add(new Tuple1<>("BLUE"));

        control.add(new Tuple1<>("YELLOW"));

        DataStream<Tuple1<String>> controlStream = env.fromCollection(control);

        // 数据流
        List<Tuple1<String>> data = new ArrayList<>();

        for (int i = 0; i < 1000; i++) {

            data.add(new Tuple1<>("BLUE"));

            data.add(new Tuple1<>("YELLOW"));

            data.add(new Tuple1<>("WHITE"));

            data.add(new Tuple1<>("RED"));

            data.add(new Tuple1<>("BLUE"));

            data.add(new Tuple1<>("YELLOW"));

            data.add(new Tuple1<>("RED"));

        }

        DataStream<Tuple1<String>> dataStream = env.fromCollection(data).keyBy(0);

        DataStream<String> result = controlStream

                .broadcast()

                .connect(dataStream)

                .flatMap(new ColorCoFlatMap());

        result.print();

        env.execute();

    }

    private static final class ColorCoFlatMap

            implements CoFlatMapFunction<Tuple1<String>, Tuple1<String>, String> {

        HashSet blacklist = new HashSet();

        @Override



        public void flatMap1(Tuple1<String> control_value, Collector<String> out) {

            blacklist.add(control_value);

        }

        @Override

        public void flatMap2(Tuple1<String> data_value, Collector<String> out) {

            if (blacklist.contains(data_value)) {

                out.collect("invalid color " + data_value);

            } else {

                out.collect("valid color " + data_value);

            }

        }

    }

在上面的代码中，testFlinkControlStream函数创建了两个流，即控
制流controlStream和数据流dataStream，然后将controlStream广播
（broadcast）后与dataStream连接（connect）起来。在ColorCoFlatMap
中，如果接收到的是控制事件，就将其保存到黑名单；如果接收到的是
颜色事件，就检查其是否在黑名单中。这样，控制流动态配置黑名单清
单，而数据流使用这个黑名单清单，所以我们通过控制流的方式对数据
流的行为进行动态配置。另外，在Flink中，为了方便实现动态配置，引
入可以直接使用的广播状态（broadcast state）。广播状态的使用方式与
广播类似，这里不再展开叙述了。

（2）共享存储方式

共享存储是一种实现动态配置的方法，即将配置存放在共享数据库
中，当配置发生变更时，先将配置写入共享数据库，然后通过配置使用
方轮询或者通知配置使用者配置变更的方式，配置使用者即可重新读取
更新后的配置。



图10-8　共享存储实现动态配置

图10-8展示了用MongoDB结合ZooKeeper来实现动态配置的方案。

在图10-8的解决方案中，当配置管理者需要修改配置时，首先将配
置写入MongoDB，然后变更Zookeeper的某个节点。当配置使用者监听
到Zookeeper的这个节点变更时，就知道配置已经发生变更，从而从
MongoDB重新读取新的配置。这样，就完成了动态配置的功能。

ZooKeeper本身具备存储数据的能力，如果配置很简单，直接使用
ZooKeeper存储即可。但是，在复杂的业务场景下，可能配置也非常复
杂，并具有丰富的层次组织结构。在这种情况下，尽量将配置本身从
ZooKeeper中剥离出来，并存储到专门的数据库（如MongoDB或MySQL
中），ZooKeeper只用于全局配置变更时的协调。毕竟，ZooKeeper的设
计目的是做分布式协调，而不是一个文件系统。

（3）配置服务方式



还有一种动态配置实现的方式是在微服务系统中经常使用的，这就
是使用专门的配置服务中心。在前面讨论服务治理的配置管理功能时，
我们已经介绍了Spring Cloud Config的配置服务中心的功能。当结合
Spring Cloud Bus后，就能够实现分布式动态配置刷新功能了。

图10-9就是Spring Cloud Config实现动态配置的过程。当用户更新
配置时，可以手动或自动（通过Git Hooks）向Config Server发
送/bus/refresh请求，Config Server接收到配置刷新请求后，再通过
RabbitMQ将配置刷新命令发布到每一个服务实例。当服务实例收到配
置刷新命令后，从Config Server重新加载配置，最终完成配置的动态更
新。



图10-9　Spring Cloud Config实现动态配置的过程



10.4　将前端配置与后端服务配置隔离开

动态配置的一种使用场景是由用户在前端UI上修改配置，然后让更
新后的配置在生效，从而按照用户的期望改变业务执行逻辑。针对这种
场景，我们很容易设计出图10-10所示的设计方案。

图10-10　前后端配置不分离

在图10-10所示的设计方案中，当UI前端修改配置后，向UI后端发
送配置变更请求，UI后端在收到配置变更请求后，就直接修改服务配
置，然后通知配置使用者刷新配置。这种设计方案简单明了，实现起来
也很简单，但是这种设计方案在许多场景下存在一些比较麻烦的问题。
考虑以下几种情况。



·用户在界面上需要修改A、B、C这3个配置项，3个配置项在3个
不同的页面上，只有当这3个配置同时修改好后才能使配置生效。

·用户在界面上修改了一个模型，但是他并不想让这个新模型立刻
生效，而是想保存下来过一段时间再使用。

·用户修改了配置，但是配置尚未生效，用户想将配置保存下来，
以免修改丢失后下次修改时又得重填。

真实的场景可能会比上面描述的3种情况更加复杂，用户操作UI更
改配置的方式可以说是千变万化，或许只有我们想不到，没有他们做不
到。

此时，这种将前端用户行为与后端服务配置变更两者耦合起来的设
计方案就非常不灵活了，它会让我们在面对许多真实场景下的问题时显
得束手束脚，非常尴尬。以修改A、B、C配置项的情况为例，只有在用
户将A、B、C配置项都变更完成后，所形成的配置才是用户所期待的完
整配置。如果在用户刚修改完A后，系统就将配置变更的命令发布给使
用配置的各个服务，那么存在一段时间，生效的配置是由新A和旧B、
旧C构成的配置。显然，这破坏了配置的完整性，在很多情况下，这是
非常危险的事情。

或许诸如此类的问题可以直接在前端解决掉，但这里只列举了少数
几个例子而已，我们最好还是设计一种更加通用的方案，彻底将前端用
户的配置行为和后端服务的配置隔离开。图10-11就是基于这种思路的
设计方案架构图。



图10-11　前后端配置分离

在图10-11所示的解决方案中，我们给UI后端单独配备了一个数据
库。所有与用户行为相关的中间配置信息都存储在这个配置里面。当用
户在UI上修改配置时，配置的变化只体现在这个数据库中。只有当用户
在UI上单击生效功能按钮时，再由UI后端取出应该生效的配置信息，然
后调用配置管理服务提供的接口。配置管理服务在收到配置变更请求
后，对配置进行解析，生成配置使用者方能够识别的格式，然后写入服
务配置数据库，并通知配置使用者更新配置。



通过这种将前段配置和后端服务配置隔离的设计方案，我们可以给
予前端UI设计充分的发挥空间，同时使整个系统配置状态完整、统一，
服务运行更加安全。



10.5　本章小结

本章主要讨论了服务治理和动态配置的问题。之所以要讨论这两个
流计算系统主体之外的问题，是因为我们为解决具体业务问题而构建的
系统是一个有机的整体，而绝非只有一个流计算应用。即使以实时流计
算应用为核心，如果其与周边系统集成得不好，这也会让我们后续的开
发、运维及产品迭代变得困难重重。

我们可以使用集成库和调用微服务这两种方式来使用其他独立的功
能模块，其中前者以性能优先，后者以服务治理优先。随着技术发展，
微服务和流服务这两种服务模式之间的界限也逐渐变得模糊，本质上它
们都采用了资源云化及服务编排的方式来构建系统，只是服务调用的方
式不同而已。因此，微服务和流服务之间的很多技术点是可以相互借鉴
的，如链路追踪对于构建流服务来说也是有非常有用的。

面向配置编程的思想则是为了让我们更好地分析、理解并拆解业务
系统，让我们开发的程序能更加灵活、健壮地支持业务变化。动态配置
是实现面向配置编程的重要基础，所以本章讨论了3种常用的动态配置
方案，读者可以根据自己的使用场景选择最合适的动态配置方案。



第11章　实时流计算应用案例

在前面10章中，我们讨论了实时流计算系统的方方面面。在本章
中，我们将其中部分知识点整合起来，以展示两个完整的实时流计算应
用案例。其中，第一个是以CompletableFuture框架实现的实时流数据特
征提取引擎；第二个是基于当前主流的流计算框架Flink，实现一个具备
特征提取和规则模型功能的风控引擎。



11.1　实时流数据特征提取引擎

特征提取是大多数在线决策系统必须经过的步骤。不管是在风控、
监控、预警等各种场景下，也不管我们使用的是最简单的规则系统，还
是复杂的统计模型或机器学习模型，它们的输入都一定是已经量化的各
种数据，我们把这种数据称为特征。由此可见，大多数场景需要提取各
种特征，因此我们准备设计一个通用的实时流数据特征提取引擎。为了
方便特征引擎的使用，我们还需要在这个引擎上面提供一层DSL语言，
这一方面能够让特征引擎更加通用、灵活，另一方面也会简化特征引擎
的使用。

我们在第3章中分别使用两种方式实现了实时流计算应用，其中一
种是完全从零开发，而另一种则是基于Jav.8异步编程框架
CompletableFuture实现的。由于CompletableFuture框架的灵活性和便利
性，所以在本节中，我们将使用它来实现实时流数据特征提取引擎。我
们还可以通过Kafka对流数据的分区功能，以及Apach.Ignite或Redis集群
对状态的分布式管理功能，将这个实时流数据特征提取引擎扩展为集
群。



11.1.1　流数据特征提取引擎DSL定义

我们在这里采取自顶向下的设计方式，首先定义特征提取引擎使用
的DSL。设计的DSL包含7个主要概念：输入流（source）、输出流
（sink）、字段（filed）、算子（operator）、函数（function）、宏函数
（macro）和操作模式（mode）。

1.输入流

输入流定义了事件的输入流。我们的实时流计算特征提取引擎以
Kafka等消息中间件作为事件的输入流。例如，下面定义了一个从Kafka
的event-input主题读取数据的输入流。

set-source --source '{"zookeeper": "127.0.0.1:2181", "topic": "event-input", "group": "test-group", "offset": "largest"}'

2.输出流

输出流定义了事件的输出流。与输入源对应，当特征提取引擎对事
件提取完特征后，将特征附加（append）到事件上，再将附加了特征的
事件输出到Kafka等消息中间中。例如，下面定义了一个将特征提取结
果输出到Kafka的event-output主题的输出流。

set-sink --sink '{"broker": "127.0.0.1:9092", "topic": "event-output"}'

3.字段

我们以JSON的方式表示一个事件。由于并非事件中的每一个字段
都会参与特征提取，并且原始事件中字段的名字并不一定与我们所预想
的一致，所以需要通过字段映射功能来设定特征引擎感兴趣的字段与原
始事件字段之间的对应关系。

下面代码定义了两个字段的映射关系，其中，c_timestamp对应原始
消息中的$.event.timestamp字段，user_id对应原始消息中的
$.event.user_id字段，另外两个与此类似。这里使用JsonPath的方式来表



达原始事件中字段的位置。

add-field --event-type transaction --field-name c_timestamp --field-path $.event.timestamp

add-field --event-type transaction --field-name user_id --field-path $.event.user_id

add-field --event-type transaction --field-name device_id --field-path $.event.device_id

add-field --event-type transaction --field-name amount --field-path $.event.amount

4.算子

我们的特征引擎所处理的是流数据，流数据是一种时间序列，因此
我们针对时间序列定义了算子概念。

OPERATOR(window, event_type, target[=value], on1[=value], on2[=value], ...)

说明：

·OPERATOR表示要统计的类型，如计数
（COUNT/COUNT_DISTINCT）、求和（SUM）、最大（MAX）、最
小（MIN）、均值（AVG）、方差（VARIANCE）、集合（SET）、列
表（LIST）等。

·window表示统计的窗口。例如，“1d”表示过去一
天，“5m”表示过去5分钟，“2h”表示过去2小时等。

·event_type表示事件类型。例如，“transaction”表示交易事
件，“loan_application”表示贷款申请等。可以根据具体业务场景设置
事件类型。

·target表示统计的目标变量，on1、on2等则是对target进行划分的
维度。例如，“过去一天同一用户的总交易金额”中，target为“交易金
额”，on为“用户”。而在“过去一周同一用户在同一I.C段的总交易
金额”中，target为“交易金额”，on为“用户”和“I.C段”。

另外，target和on后面可以通过等号指定一个值，用于指定变量为
特定值进行计算。target和on还可以递归地定义为算子或函数。



下面是几个算子的例子：

# 过去一周内在同一个设备上交易次数
COUNT(7d, transaction, device_id)

# 过去一周内在设备"d000001"上交易次数
COUNT(7d, transaction, device_id=d000001)

# 过去一天同一用户的总交易金额
SUM(1d, transaction, amount, userid)

# 过去一天用户"ud000001"的总交易金额
SUM(1d, transaction, amount, userid=ud000001)

# 过去一周内在同一个设备上注册的用户登录过的设备数
FLAT_COUNT_DISTINCT(7d, login, device_id, SET(7d, create_account, userid, device_id))

# 过去一周内在设备"d000001"上注册的用户登录过的设备数
FLAT_COUNT_DISTINCT(7d, login, device_id, SET(7d, create_account, userid, device_id=d000001))

5.函数

相比算子是对时间序列的操作，函数则用于对事件的字段进行转换
操作。其定义如下：

F_FUNCTION(on1[=value], on2[=value], ...)

说明：

·F_FUNCTION表示函数的名字，必须以“F_”作为前缀，如加
（F_ADD）、减（F_MINUS）、乘（F_MULTIPLY）、除
（F_DIVIDE）、求和（F_SUM）、指数（F_EXP）、对数（F_LOG）
等。

·on1、on2等用于指定作为函数输入的字段。on后面可以通过等号
指定一个值，表示指定输入参数为指定值。on也可以递归地定义为算子
或函数。

下面是几个函数的例子：

# 将事件中的amount1字段和amount2字段的值相加
F_ADD(amount1, amount)



# 将事件中的amount字段的值开方
F_POW(amount, n=0.5)

6.宏函数

与C语言中宏函数的作用类似，宏函数可以用一个更简单的式子替
换一段具有更复杂功能的代码片段。其定义如下：

M_MACRO(arg1, arg2, ...)

说明：

·M_MACRO表示函数的名字，必须以“M_”作为前缀。

·arg1、arg2等用于指定宏函数的参数，在使用宏展开时，这些参
数会被实际变量替换掉。

下面是几个宏函数的例子。

# 定义宏M_CORRELATION用于计算on的a和b变量之间相关系数
add-macro --name "M_CORRELATION(time, type, a, b, on)" --replace "F_DIVIDE(F_MINUS(AVG(time, type, F_MULTIPLY(a, b), on), F_MULTIPLY(AVG(time, type, a, on), AVG(time, type, b, on))), F_SQRT(F_MULTIPLY(VARIANCE(time, type, a, on),VARIANCE(time, type, b, on))))"

# 定义宏M_DEVICE_ON_USER_ONE_DAY用于计算一天内同一个user使用的不同device数
add-macro --name "M_DEVICE_ON_USER_ONE_DAY(device, user)" --replace "COUNT_DISTINCT(1d, transaction, device, user)"

定义好后，宏函数的用法与算子和函数相同。另外，算子、函数、
宏之间可以相互嵌套使用。

7.操作模式

我们特意将更新操作与查询操作分开，因此设定了3种计算模式：
update、get和upget。update模式和get模式分别对应更新模式和查询模
式。其中，update模式会更新状态，get模式不会更新状态。upget模式同
时包含了update模式和get模式，从而在一些更新并查询的场景下，减少
调用特征引擎的次数。

将前面的各个DSL概念汇集起来，可以得到一个完整的流数据特征
提取引擎所需要的配置，或者说是脚本。下面就是一个完整的流数据特



征提取引擎DSL脚本示例。

// 指定应用的名称
config-application app001

// 定义流数据特征提取引擎的输入流
set-source --source '{"zookeeper": "127.0.0.1:2181", "topic": "app001-input", "group": "test-group", "offset": "largest"}'

// 定义流数据特征提取引擎的输出流
set-sink --sink '{"broker": "127.0.0.1:9092", "topic": "app001-output"}'

// 定义流数据特征提取引擎需要使用的字段，以及这些字段对应在原始消息中的位置
add-field --event-type transaction --field-name c_timestamp --field-path $.event.timestamp

add-field --event-type transaction --field-name user_id --field-path $.event.user_id

add-field --event-type transaction --field-name device_id --field-path $.event.device_id

add-field --event-type transaction --field-name amount --field-path $.event.amount

// 定义一个宏函数
add-macro --name "M_DEVICE_ON_USER_ONE_DAY(device, user)" --replace "COUNT_DISTINCT(1d, transaction, device, user)"

// 定义流数据特征提取引擎需要计算的特征列表
add-feature --event-type transaction --feature "COUNT(1d, transaction, user_id)" --mode upget

add-feature --event-type transaction --feature "M_DEVICE_ON_USER_ONE_DAY(device_id, user_id)" --mode upget

add-feature --event-type transaction --feature "SUM(1h, transaction, amount, user_id)" --mode upget

// 激活前面的设置
activate

// 启动流数据特征提取引擎
start



11.1.2　实现原理

图11-1展示了实时流数据特征提取引擎的工作原理，就像大多数的
数据库系统由SQL解析层、执行计划执行层和存储引擎层构成一样，我
们的特征引擎也包含3层：DSL解析层、执行计划执行层和状态存储
层。接下来我们具体讨论各层的实现原理。

图11-1　实时流数据特征提取引擎的工作原理



1.DSL解析层

DSL解析层将DSL解析为执行计划。其中，每个特征被解析为一棵
单独的树，因此多个特征被解析为多棵单独的树。每棵树的节点代表一
个特征，树上节点之间的父子关系表示特征计算时的依赖关系。

执行计划最初由多棵独立的树构成，每个特征定义语句都会生成一
棵树。为了避免重复计算相同的特征，需要将所有这些树中的特征按照
对应节点在各自树中的深度分组。相同深度的特征被划分到相同的组。
如果同一个特征在不同的树中有不同的深度，就将该特征的深度设定为
最大的那个深度值。这样，我们最终得到一个按照深度分组，每组有若
干特征的执行计划。之后，我们就可以按照深度由大到小的顺序执行这
个执行计划了。

以图11-2展示的特征依赖关系为例，其中定义了4个特征：特征4、
特征5、特征6和特征7。它们分别如下：

特征4(特征2)

特征5(特征2, 特征3)

特征6(特征3)

特征7(特征1,特征4(特征2))

其中，括号代表了依赖关系。例如，"特征4(特征2)"表示特征4的计算依赖于先计算出特征2。

图11-2　特征依赖关系



这样会生成4个单独的特征依赖树：

特征4: depth=1, 特征2: depth=2

特征5: depth=1, 特征2: depth=2, 特征3: depth=2

特征6: depth=1, 特征3: depth=2

特征7: depth=1, 特征1: depth=2, 特征4: depth=2, 特征2: depth=3

接下来根据深度分组：

depth=1：特征5、特征6、特征7

depth=2：特征1、特征3、特征4

depth=3：特征2

其中，特征2由于被特征7依赖的深度为3，比被特征5依赖的深度（2）更大，故最终设定其深度为3。特征4由于被特征7依赖的深度为2，比其自身的深度（1）更大，故最终设定其深度为2。

至此，我们得到了最终的执行计划。接下来进入执行计划执行层按
照这个执行计划计算各个特征的过程。

2.执行计划执行层

执行计划是一个按深度分组的特征集合。执行计划的执行过程是按
照深度由大到小依次计算各个分组中的所有特征的。很明显，我们完全
可以将这个过程与流计算对应起来。换句话说，这个执行计划不就是一
个结构简单的DAG吗？

图11-3　执行计划对应的DAG

接下来就是实时流计算发挥作用的时刻了。只需要将每个深度特征
集的计算过程设置为流计算过程的一个步骤，就可以用
CompletableFuture框架构建基于实时流计算技术的执行计划执行层了。
在第3章中，我们已经详细讲解了用CompletableFuture实现实时流计算



的原理和方法，11.1.3节将讨论具体的实现细节。

3.状态存储层

执行计划执行层在按照执行计划计算特征时，会涉及特征计算的方
法及对状态的管理。这里用到第4章介绍的各种特征计算算法及第5章介
绍的实时流计算状态管理相关知识了，读者可以回顾下第4章和第5章的
内容。我们使用像Apache Ignite 或Redis Cluster这样的分布式内存数据
库进行状态管理，再配合Kafka对流数据的分区功能，即可实现特征提
取引擎集群。



11.1.3　具体实现

整个特征提取引擎的实现过程是比较复杂的，在本书中展示全部代
码不太可能，所以这里只对主要执行流程进行说明，并略去了许多支线
代码。完整的代码参见本书配套源代码。

首先对特征提取引擎DSL的解析，其中最主要的部分是对特征定义
语句的解析。特征定义语句是指由算子、函数和宏组成的用于描述一个
特征的语句。例如：

COUNT(7d, transaction, device_id)

FLAT_COUNT_DISTINCT(7d, login, device_id, SET(7d, create_account, userid, device_id))

我们从特征定义语句解析出分词，具体如下：

private static final String TOKEN_SPLIT_PATTERN = "(\\s+)|(\\s*,\\s*)";

public List<String> parseTokens(String dsl, boolean dslNormalized) {

    String normDSL = dsl; // 步骤a

    // 步骤b。步骤a和步骤b主要是对特征定义字符串dsl进行规整化，如去掉多余的空格
    String parserDSL = genDSL4Parser(normDSL);

    // 步骤c。进行分词
    Scanner s = new Scanner(parserDSL).useDelimiter(TOKEN_SPLIT_PATTERN);

    List<String> tokens = new LinkedList<>();

    while (s.hasNext()) {

        tokens.add(s.next());

    }

    tokens = tokens.stream().filter(StringUtils::isNotBlank).collect(Collectors.toList());

    return tokens;

}

经过parseTokens后，一个特征定义语句被解析为一组分词。接下来
将分词解析为执行树。

public String parseFromTokens(

            JSONObject globalSetting,

            List<String> tokens,

            Map<String, List<String>> functionTokens,

            Map<String, StreamFQL> featureDSLMap,

            Map<StreamFQL, Integer> functions) {

        List<Tuple2<StreamFQL, Integer>> functionList = new LinkedList<>();

        Stack<String> stack = new Stack<>();  // 步骤a。使用栈进行语法解析
        int depth = 0;

        for (String token : tokens) {



            // 步骤b。当遇到反括号时，说明某个特征（可以是嵌套特征）的定义结束
            if (")".equals(token)) {

                List<String> newFunctionTokens = new LinkedList<>();

                while (true) {

                    String lastToken = stack.pop(); // 步骤c。取出该特征的所有分词
                    if ("(".equals(lastToken)) {

                        break;

                    }

                    newFunctionTokens.add(lastToken);

                }

                newFunctionTokens.add(stack.pop());

                // 步骤d。得到某个特征的全部分词
newFunctionTokens = Lists.reverse(newFunctionTokens);

// 步骤e。通过分词解析出单个特征的语法结构对象StreamFQL

                StreamFQL newFunction = genFunctionDSL(globalSetting, newFunctionTokens);

                // 步骤f。记录解析出的单个特征的语法结构对象，以及它被最外层特征依赖的深度
                functionList.add(new Tuple2<>(newFunction, depth));

                newFunctionTokens.add(1, "(");

                newFunctionTokens.add(")");

                functionTokens.put(newFunction.getName(), newFunctionTokens);

                // 步骤g。输出解析出的单个特征语法结构对象
                featureDSLMap.put(newFunction.getName(), newFunction);

                stack.push(newFunction.getName());

                depth -= 1; // 步骤h。当遇到正括号时depth加1，当遇到反括号时depth减1

            } else {

                stack.push(token);

                if ("(".equals(token)) {

                    depth += 1; // 步骤i。当遇到正括号时depth加1，当遇到反括号时depth减1

                }

            }

        }

        String topFunctionName = stack.pop();

        // ……

        for (Tuple2<StreamFQL, Integer> tuple : functionList) {

            Integer fDepth = functions.get(tuple._1());

            //步骤j。如果一个特征被最外层特征多次使用，就将该特征的深度设置为最大的深度值
            if (fDepth == null || tuple._2() > fDepth) {

                functions.put(tuple._1(), tuple._2());

            }

        }

        return topFunctionName;

    }

private StreamFQL genFunctionDSL(JSONObject globalSetting, List<String> newFunctionTokens) {

    StreamFQL fql = new StreamFQL();

    fql.setOp(op);

    if (op.startsWith("M_")) { // 步骤a。解析宏函数
        // ......

    } else if (op.startsWith("F_")) { // 步骤b。解析函数
        // ......

    } 

// 步骤c。 解析算子。newFunctionTokens是除去括号后的分词列表。第0个分词是函数名
else if (newFunctionTokens.size() >= 4) {

    // 步骤d。根据算子定义，第1个分词time是时间窗口
        fql.setWindow(newFunctionTokens.get(1));

        // 步骤e。根据算子定义，第2个分词是事件类型
        fql.setEvent_type(newFunctionTokens.get(2));

        // 步骤f。根据算子定义，第3个分词是target字段
        fql.setTarget(parseField(newFunctionTokens.get(3)));



        List<Field> onList = new ArrayList<>();

        // 步骤g。根据算子定义，target之后接下来是一个或多个on字段
        for (int i = 4; i < newFunctionTokens.size(); i++) {

            Field newField = parseField(newFunctionTokens.get(i));

            onList.add(newField);

        }

        // 步骤h。允许设置一些全局默认的on字段
        List<Field> onDefaults = getOnDefault(globalSetting);

        for (Field onDefault : onDefaults) {

            onList.add(onDefault);

        }

        fql.setOn(onList);

    } else {

        // ......

    }

    // 步骤i。将分词连接起来进行Base64编码，再加上前缀和后缀，即形成这个特征的名称，供内部使用
    String name = String.format("___B___%s___F___",

            BaseEncoder.encodeBase64(Joiner.on("&").join(newFunctionTokens)));

    fql.setName(name);

    List<String> tokens = newFunctionTokens.stream().map(this::decode).collect(Collectors.toList());

    // 步骤j。将分词按字面连接起来，也就是这个特征的完整字面表达式，供阅读使用
    String textName = String.format("%s(%s)", tokens.get(0),

                      Joiner.on(",").join(tokens.subList(1, tokens.size())));

    fql.setText_name(textName);

    return fql;

}

然后，将多个执行树合并起来，形成最后的执行计划。

public Map<String, Set<StreamFQL>> parseExecutionTree(JSONObject globalSetting,

                                              List<String> dsls,

                                              boolean dslNormalized) {

    Map<Macro, Macro> macros = new HashMap<>();

    // …… 步骤a。解析宏函数。

    // parse dsl

    Map<StreamFQL, Tuple2<StreamFQL, Integer>> allFunctions = new HashMap<>();

    for (String elem : dsls) {

        PreParseInfo preParseInfo = preParse(macros, elem, dslNormalized);

        Map<StreamFQL, Integer> functions = new HashMap<>();

        Map<String, StreamFQL> featureDSLMap = new HashMap<>();

        String topFunction = parseFromTokens( // 步骤b。将特征定义语句解析为特征语法结构对象
                globalSetting, preParseInfo.tokens, null, featureDSLMap, functions);

        for (Map.Entry<StreamFQL, Integer> entry : functions.entrySet()) {

            Tuple2<StreamFQL, Integer> oldFeatureDSL = allFunctions.get(entry.getKey());

            if (oldFeatureDSL == null) {

                // 步骤c。将所有特征定义语句解析出来的特征语法结构对象合并起来
                allFunctions.put(entry.getKey(), new Tuple2<>(entry.getKey(), entry.getValue()));

            } else {

                // 步骤d。如果某个特征被多次依赖，就将其depth设置为最大的那个depth值
                if (entry.getValue() > oldFeatureDSL._2()) {

                    allFunctions.put(entry.getKey(), new Tuple2<>(entry.getKey(), entry.getValue()));

                }

            }



        }

    }

    // 步骤e。将所有特征语法结构对象按照depth分组，至此形成最后的执行计划
    Map<String, Set<StreamFQL>> result = new HashMap<>();

    for (Tuple2<StreamFQL, Integer> entry : allFunctions.values()) {

        result.putIfAbsent(String.valueOf(entry._2()), new HashSet<>());

        result.get(String.valueOf(entry._2())).add(entry._1());

    }

    return result; // 步骤f。result就是最后的执行计划
}

至此，我们得到了由DSL解析出来的执行计划。为了方便理解，下
面用具体的例子来说明DSL解析过程中各个阶段的输入和输出。

特征定义语句：COUNT(7d, transaction, device_id)

parseTokens输出分词数组：[COUNT, (, 7d, transaction, device_id, )]

parseFromTokens输出：{COUNT:1} // 键为特征，值为特征被依赖的深度

特征定义语句： FLAT_COUNT_DISTINCT(7d, login, device_id, SET(7d, create_account, userid, device_id))

parseTokens输出分词数组： [FLAT_COUNT_DISTINCT, (, 7d, login, device_id, SET, 

(, 7d, create_account, userid, device_id, ), )]

parseFromTokens输出：{FLAT_COUNT_DISTINCT:1, SET:2}  // 键为特征，值为特征被依赖的深度

parseExecutionTree输出执行计划：{2:[SET], 1:[COUNT, FLAT_COUNT_DISTINCT]} 

                              // 键为深度，值为属于该深度组的特征集合

接下来实现执行计划执行层。我们使用CompletableFuture框架构建
一个实时流计算过程来执行上面得到的执行树。

private CompletableFuture<JSONObject> executeAsync(Map<String, Set<StreamFQL>> dslTree,

                                            JSONObject event,

                                            Map<String, Object> helper,

                                            String mode,

                                            String depth,

                                            Map<StreamFQL, CompletableFuture<Map<String, Object>>> functionFuturesContainer) {

    Map<StreamFQL, CompletableFuture<Map<String, Object>>> currentDepthFunction

Futures = new HashMap<>();

    // 步骤a。将属于同一depth的特征提取任务都提交给专门负责该depth特征计算的执行器执行
    for (StreamFQL function : dslTree.get(depth)) {

        CompletableFuture<Map<String, Object>> future = CompletableFuture.supplyAsync(() -> {

                    try {

                        // 步骤b。在此调用具体的特征计算方法
                        return execute(function, event, helper, mode);

                    } catch (Exception e) {

                        return new HashMap<>();

                    }

                },

                // 步骤c。根据depth创建或获取负责该depth特征计算的执行器
                ServiceExecutorHolder.getExtracExecutorService(depth));

        currentDepthFunctionFutures.put(function, future);

        functionFuturesContainer.put(function, future);

    }



    // 步骤d。相当于fork/join模式中的join部分，将多个并行特征提取任务的结果合并起来
    CompletableFuture<Void> allFutures = CompletableFuture.allOf(

            currentDepthFunctionFutures.values().toArray(new CompletableFuture[0]));

    // 步骤e。FIXED_CONTENT字段用于存储特征提取的结果
    CompletableFuture<JSONObject> result = allFutures.thenApply(v -> {

        event.putIfAbsent(FIXED_CONTENT, new JSONObject());

        for (Map.Entry<StreamFQL, CompletableFuture<Map<String, Object>>> entry :

                currentDepthFunctionFutures.entrySet()) {

            StreamFQL function = entry.getKey();

            // 步骤f。获取特征提取的结果
            Map<String, Object> functionResult = entry.getValue().join();

            event.getJSONObject(FIXED_CONTENT).put(function.getName(), functionResult.get("value")); // 步骤g。将特征提取结果附加到消息上
        }

        return event;

    });

    if ("1".equals(depth)) {

        return result; // 步骤h。如果depth为1，说明这就是DAG中最后一步了
    } else {

        // 步骤i。如果depth不为1，说明这还不是DAG的最后一步，继续递归下去
// 继续构建DAG的后续步骤，直至最终depth为1为止
        return result.thenCompose(v -> {

            String newDepth = String.valueOf(Integer.parseInt(depth) - 1);

            return executeAsync(dslTree, event, helper, mode, newDepth, functionFuturesContainer);

        }); 

    }

}

如果结合执行计划执行层代码对图11-3中的DAG做更加精细的描
述，那么执行计划执行层实现的是图11-4所示的实时流计算过程。

在执行计划执行层流计算过程的每一个步骤中，我们都使用了带反
向压力功能的执行器，从而避免了不同深度的特征在计算速度不一致时
造成的OOM问题。

private static final Map<String, ExecutorService> EXECUTOR_SERVICE_MAP = new ConcurrentHashMap<>();

public static ExecutorService getExtracExecutorService(String depth) {

        if (EXECUTOR_SERVICE_MAP.get(depth) != null) {

            return EXECUTOR_SERVICE_MAP.get(depth);

        }

        synchronized (ServiceExecutorHolder.class) {

            if (EXECUTOR_SERVICE_MAP.get(depth) != null) {

                return EXECUTOR_SERVICE_MAP.get(depth);

            }

            EXECUTOR_SERVICE_MAP.put(depth, ExecutorHolder.createMultiQueue

ThreadPool(

                    String.format("extract_service_depth_%s", depth),

                    getInt("extract_service.executor_number"),

                    getInt("extract_service.coreSize"),

                    getInt("extract_service.maxSize"),

                    getInt("extract_service.executor_queue_capacity"),

                    getLong("extract_service.reject_sleep_mills")));



            return EXECUTOR_SERVICE_MAP.get(depth);

        }

    }

图11-4　特征提取执行层

最后，对于特征的具体计算，以及计算过程涉及的状态管理，我们
已经在第4章和第5章中分别讲解了其原理，并以伪代码的方式演示了部
分特征的实现方法，这里不再赘述。对于更详细的有关各种算子和函数
的实现细节，读者可以参考本书配套代码。



11.2　使用Flink实现风控引擎

在第2章中，我们介绍了一般的风控系统架构，在本章中，我们就
用Flink来实现风控系统的核心，即特征提取及风险评分这两个模块。

考虑这么一种场景。有一天，Bob窃取了Alice的手机银行账号和密
码等信息，并准备将Alice手机银行上的钱全部转移到他提前准备好
的“骡子账户”（mule account，帮助转移资产的中转账户）上去。出于
安全的原因，手机银行每次只允许最多转账1000元。于是，Bob就准备
每次转账1000元，分多次将Alice的钱转完。

作为风控系统，该怎样及时检测并阻止这种异常交易呢？我们需要
针对这种异常交易行为构建一个规则或模型。不管规则还是模型，它们
的输入都是特征，所以我们必须先设定要提取的特征。经过简单思考，
我们立刻想到了如下几个有利于异常检测的特征。

·最近（如过去1h）支付账户交易次数。

·最近（如过去1h）接收账户接收的总金额。

·最近（如过去1h）交易的不同接收账户数。

确定了提取的特征后，接下来通过设定规则或模型来决定交易是否
异常。假设我们决定使用规则系统来判定交易是否异常，当输入的特征
满足以下条件时，即判定交易是异常的。

·在过去1h支付账户交易次数超过5次。

·在过去1h接收账户接收的总金额超过5000元。

·在过去1h交易的不同接收账户数不超过2。

现在风控系统要提取的特征及用于判定异常的规则都已经确定了，
接下来就是具体实现这个风控系统的过程了。



11.2.1　实现原理

我们使用Flink来实现风控引擎，并依旧采用Kafka作为事件的输入
流。风控引擎总体上分为两部分，即特征提取部分和风险评分部分。

在特征提取部分，为了减少特征计算的整体耗时，需要并行计算各
个特征。那怎样并行化特征计算呢？Flink中的KeyedStream非常贴心地
提供了对流进行逻辑分区的功能。使用KeyedStream，我们能够将事件
流分成多个独立的流，从而实现并行计算，这正好满足我们对特征进行
并行计算的需求。但问题又来了，我们应该怎样选择对流进行分区的主
键呢？或许我们觉得随机分配就好了。但这是不行的，因为特征计算的
过程会涉及流信息状态的读写，如果特征被不受控制地随机分配到Flink
的各个节点上去，那么就不能保证读取到与该特征相关的完整流信息状
态（也就是历史信息）。所以，必须按照特征用到的字段对流进行分
区。

图11-4所展示了使用Flink实现风控系统的原理。当接收到事件时，
我们给该事件分配一个随机生成的事件ID，这个事件ID在之后会帮助我
们将分散的特征计算结果合并起来。通过flatMap操作，将事件分解
（split）为多个“事件分身”，每个“事件分身”代表一个或多个关键信息
字段。然后，使用这些关键信息字段（key）作为分区键将事件流划分
为KeyedStream。这样，属于同一key的“事件分身”会被路由相同的存储
该key状态的节点上去。状态节点对key的历史信息进行更新，并将历史
信息附加到“事件分身”上。之后，就可以根据这些历史信息计算特征
了。

当特征计算完成时，计算结果是分散在各个节点上的，我们还需要
将这些“事件分身”合并起来，所以这一次根据原始事件的事件ID对事件
进行路由。由于使用的是事件ID，所以先前被分解为多个部分的“事件
分身”会被路由到相同的节点上。这样，就能将分开的特征计算结果重
新合并起来，从而得到完整的特征集合。之后，将特征集合输入基于规
则的风险评分系统，就可以判定本次转账事件是否异常了。至此，我们
实现了一个风控引擎的核心功能。



图11-5　使用Flink实现风控系统的原理



11.2.2　具体实现

我们按照图11-5所示的原理实现基于Flink的风控引擎。具体实现如
下：

public class FlinkRiskEngine {

    // 定义风控模型需要使用的特征
    private static final List<String[]> features = Arrays.asList(

            parseDSL("count(pay_account.history,1h)"),

            parseDSL("sum(amount#rcv_account.history,1h)"),

            parseDSL("count_distinct(rcv_account#pay_account.history,1h)")

    );

    private static String[] parseDSL(String dsl) {

        return Arrays.stream(dsl.split("[(,)]")).map(String::trim)

                .collect(Collectors.toList()).toArray(new String[0]);

    }

    // 不同的特征使用不同的键，我们先需要获取这些键的值
    private static final Set<String> keys = features.stream().map(x -> x[1]).collect(Collectors.toSet());

    // Flink风控引擎的完整流程
    public static void main(String[] args) throws Exception {

        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        env.enableCheckpointing(5000);

        // 创建从Kafka读取消息的流
        FlinkKafkaConsumer010<String> myConsumer = createKafkaConsumer();

        DataStream<String> stream = env.addSource(myConsumer);

        DataStream counts = stream

                // 从Kafka中读取的消息是JSON字符串，我们首先将其解码为JSON对象
                .map(new MapFunction<String, JSONObject>() {

                    @Override

                    public JSONObject map(String s) throws Exception {

                        if (StringUtils.isEmpty(s)) {

                            return new JSONObject();

                        }

                        return JSONObject.parseObject(s);

                    }

                })

                // 将事件根据特征计算所基于的键分解为多个部分，这样可以实现键状态的分布存储
                .flatMap(new EventSplitFunction())

                // 根据键划分为KeyedStream

                .keyBy(new KeySelector<JSONObject, String>() {

                    @Override

                    public String getKey(JSONObject value) throws Exception {

                        return value.getString("KEY_VALUE");

                    }

                })

                // 将键的历史信息添加到事件上，键的历史信息就是所谓的流信息状态
                .map(new KeyEnrichFunction())

                // 基于键的历史信息计算出特征，将计算得到的特征添加到事件上
                .map(new FeatureEnrichFunction())



                // 根据事件ID将原本属于同一个事件的不同特征部分路由到相同的逻辑流中
                .keyBy(new KeySelector<JSONObject, String>() {

                    @Override

                    public String getKey(JSONObject value) throws Exception {

                        return value.getString("EVENT_ID");

                    }

                })

                // 将原本属于同一个事件的特征合并起来，形成包含原始内容和特征计算结果的事件
                .flatMap(new FeatureReduceFunction())

                // 已经有了所有特征的计算结果，于是可以根据基于规则的模型进行判定了
                .map(new RuleBasedModeling());

        counts.print().setParallelism(1);

        env.execute("FlinkRiskEngine");

    }

上面是Flink风控引擎的整体流程。在上面的代码中，开始从Kafka
读取的消息是JSON字符串，因此需要先将其解析为JSON对象。将事件
根据计算特征所需要的键分解为多个“分身事件”，具有相同键的“分身
事件”被路由到相同的状态节点，完成对该键历史信息的更新和增强。
基于历史信息计算出特征，并将计算结果添加到“分身事件”上。之后，
根据事件ID将原本属于同一事件的“分身事件”路由到相同的状态节点上
合并起来，得到完整的特征集合。最后就可以根据基于规则的模型进行
风险判定了。当然，上面的代码描述的是整体流程，其中的几个关键类
实现还需要进一步详细说明。

首先是EventSplitFunction类。在消息解析为JSON对象后，我们使用
EventSplit-Function类将其按照特征计算需要的键进行分解，从而原本的
一个事件被分解为多个“事件分身”，其中除了一个“分身”代表原始事件
外，其他“分身”各自代表一个计算特征时所需要的键。

public static class EventSplitFunction implements FlatMapFunction<JSONObject, JSONObject> {

    private static final Set<String> keys = FlinkRiskEngine.keys;

    @Override

    public void flatMap(JSONObject value, Collector<JSONObject> out) throws Exception {

        // 分解之前生成一个事件ID，用于标记分解后的事件原本属于同一次事件
        String eventId = UUID.randomUUID().toString();

        long timestamp = value.getLongValue("timestamp");

        JSONObject event = new JSONObject();

        event.put("KEY_NAME", "event");

        event.put("KEY_VALUE", eventId);

        event.put("EVENT_ID", eventId);

        event.putAll(value);

        out.collect(event);

        // 上面是将事件的原始内容作为一个部分，下面是将每一个键各自作为一个部分
        keys.forEach(key -> {

            JSONObject json = new JSONObject();

            json.put("timestamp", timestamp);



            json.put("KEY_NAME", key);

            json.put("KEY_VALUE", genKeyValue(value, key));

            json.put("EVENT_ID", eventId);

            genKeyFields(key).forEach(f -> json.put(f, value.get(f)));

            out.collect(json);

        });

    }

    // 用于划分KeyedStream时所使用的键
    private String genKeyValue(JSONObject event, String key) {

        // 只支持"历史记录"这种键类型，读者可以根据实际需要在此增加新的键类型
        if (!key.endsWith(".history")) {

            throw new UnsupportedOperationException("unsupported key type");

        }

        String[] splits = key.replace(".history", "").split("#");

        String keyValue;

        if (splits.length == 1) {

            // 如果没有条件字段，就将目标字段当作条件字段。主要根据条件字段的值生成分区键
            String target = splits[0];

            keyValue = String.format("%s#%s.history", target, String.valueOf

(event.get(target)));

        } else if (splits.length == 2) {

            // “#”符号后的字段为条件字段，主要根据条件字段的值生成分区键
            String target = splits[0];

            String on = splits[1];

            keyValue = String.format("%s#%s.history", target, String.valueOf(event.get(on)));

        } else {

            throw new UnsupportedOperationException("unsupported key type");

        }

        return keyValue;

    }

    private Set<String> genKeyFields(String key) {

        if (!key.endsWith(".history")) {

            throw new UnsupportedOperationException("unsupported key type");

        }

        // 将键所涉及的原始消息字段提取出来，之后添加到分解后的事件里
        String[] splits = key.replace(".history", "").split("#");

        return new HashSet<>(Arrays.asList(splits));

    }

}

接下来是KeyEnrichFunction类。在KeyEnrichFunction中，使用
ValueState这一KeyedState实现了流信息状态的分布式存储。我们将每个
key的最近100个历史记录保存在了ValueState中，之后的特征计算都是
基于各个key的历史记录。

public static class KeyEnrichFunction extends RichMapFunction<JSONObject, JSONObject> {

        private ValueState<Serializable> keyState;

        @Override

        public void open(Configuration config) {

            keyState = getRuntimeContext().getState(new ValueStateDescriptor<>("saved keyState", Serializable.class));

        }



        private <T> T getState(Class<T> tClass) throws IOException {

            return tClass.cast(keyState.value());

        }

        private void setState(Serializable v) throws IOException {

            keyState.update(v);

        }

        @Override

        public JSONObject map(JSONObject event) throws Exception {

            String keyName = event.getString("KEY_NAME");

            if (keyName.equals("event")) {

                return event;

            }

            if (keyName.endsWith(".history")) {

                JSONArray history = getState(JSONArray.class);

                if (history == null) {

                    history = new JSONArray();

                }

                history.add(event);

                //我们只保存每个key的最近100个历史记录
                if (history.size() > 100) {

                    history.remove(0);

                }

                setState(history);

                JSONObject newEvent = new JSONObject();

                newEvent.putAll(event);

                newEvent.put("HISTORY", history);

                return newEvent;

            } else {

                throw new UnsupportedOperationException("unsupported key type");

            }

        }

    }

在获得每个key的历史记录后，接下来基于这些历史信息来计算各
个特征。具体实现在FeatureEnrichFunction类中。

public static class FeatureEnrichFunction extends RichMapFunction<JSONObject, JSONObject> {

        private static final List<String[]> features = FlinkRiskEngine.features;

        @Override

        public JSONObject map(JSONObject value) throws Exception {

            String keyName = value.getString("KEY_NAME");

            if (keyName.equals("event")) {

                return value;

            }

            // 这里简单通过遍历的方式，找到keyName所能计算的所有特征，然后进行特征计算
            // 更好的方式是直接通过映射表map的方式获取每个keyName能够计算的特征列表
            for (String[] feature : features) {

                // 特征定义的第二个值是计算该特征的键
                String key = feature[1];

                if (!StringUtils.equals(key, keyName)) {



                    continue;

                }

                // 特征定义的第一个值是计算方法 

                String function = feature[0];

                // 特征定义的第三个值是计算窗口
                long window = parseTimestamp(feature[2]);

                JSONArray history = value.getJSONArray("HISTORY");

                String target = key.replace(".history", "").split("#")[0];

                Object featureResult;

                // 下面根据特征计算方法选择具体实现函数，这里的实现方法比较简陋，就是if-else；
                // 更好的方法是通过映射表map来选择实现函数
                if ("sum".equalsIgnoreCase(function)) {

                    featureResult = doSum(history, target, window);

                } else if ("count".equalsIgnoreCase(function)) {

                    featureResult = doCount(history, target, window);

                } else if ("count_distinct".equalsIgnoreCase(function)) {

                    featureResult = doCountDistinct(history, target, window);

                } else {

                    throw new UnsupportedOperationException(String.format

("unsupported function[%s]", function));

                }

                value.putIfAbsent("features", new JSONObject());

                String featureName = String.format("%s(%s,%s)", feature[0], feature[1], feature[2]);

                value.getJSONObject("features").put(featureName, featureResult);

            }

            return value;

        }

    }

在特征计算完毕后，各个计算结果尚且分布在各个计算节点上，我
们需要将这些分散的特征计算结果收集并合并起来。这个过程具体实现
在FeatureReduceFunction类中。

public static class FeatureReduceFunction extends RichFlatMapFunction<JSONObject, JSONObject> {

        private ValueState<JSONObject> merged;

        private static final List<String[]> features = FlinkRiskEngine.features;

        @Override

        public void open(Configuration config) {

            merged = getRuntimeContext().getState(new ValueStateDescriptor<>

("saved reduceJson", JSONObject.class));

        }

        @Override

        public void flatMap(JSONObject value, Collector<JSONObject> out) throws Exception {

            JSONObject mergedValue = merged.value();

            if (mergedValue == null) {

                mergedValue = new JSONObject();

            }

            String keyName = value.getString("KEY_NAME");

            if (keyName.equals("event")) {

                // 将代表原始事件的"分身"合并到结果中
                mergedValue.put("event", value);



            } else {

                // 将代表各个特征计算结果的"分身"合并到结果中
                mergedValue.putIfAbsent("features", new JSONObject());

                if (value.containsKey("features")) {

                    mergedValue.getJSONObject("features").putAll(value.getJSONObject("features"));

                }

            }

            if (mergedValue.containsKey("event") && mergedValue.containsKey("features")

                    && mergedValue.getJSONObject("features").size() == features.size()) {

                // 如果属于同一个事件ID的事件及所有特征结果都已经收集齐全了，
                // 就可以将该合并结果输出了，同时需要将状态清掉，以避免资源泄漏
                out.collect(mergedValue);

                merged.clear();

            } else {

                // 如果属于同一事件ID的各个"事件分身"尚未收集齐全，就更新下合并状态，不做任何输出
                merged.update(mergedValue);

            }

        }

    }

在合并了所有特征计算结果后，即可得到完整的特征集合，接下来
通过基于规则的模型来判定本次转账事件是否异常。具体实现在
RuleBasedModeling类中。

public static class RuleBasedModeling implements MapFunction<JSONObject, JSONObject> {

    @Override

    public JSONObject map(JSONObject value) throws Exception {

        // 按照前面我们设定的交易异常规则，判定交易是否异常
        boolean isAnomaly = (

                            value.getJSONObject("features").getDouble

                            ("count(pay_account.history,1h)") > 5 && value.getJSONObject("features").getDouble

                            ("sum(amount#rcv_account.history,1h)") > 5000 &&

                            value.getJSONObject("features").getDouble

                            ("count_distinct(rcv_account#pay_account.history,1h)") <= 2 );

        // 将风险判定结果添加到事件上
        value.put("isAnomaly", isAnomaly);

        return value;

    }

}

至此，一个基于Flink的风控引擎就实现了。完整代码可以参见本书
配套代码。



11.3　本章小结

本章使用两个实时流计算应用案例对前面章节中的零碎知识点进行
了汇总，目的是让读者能够在这两个案例中更加清晰地了解这些知识点
在流计算系统中扮演的角色及所处的位置。我们使用CompletableFuture
框架实现的带DSL使用界面的特征引擎，是一个针对数据流进行特征提
取的通用工具。虽然这个工具还比较简陋，但是它代表了构建一个特征
引擎的通用组成模式。例如，我们可以将执行计划执行层用Flink来替换
自己实现的流计算框架，那么就可以弥补自己构建的这个轮子的诸多缺
陷，如事件处理顺序的保证、对故障恢复后状态一致性的保障、更灵活
的资源调度和更方便的分布式状态管理等。

在Flink实现的风控引擎中，我们充分使用Flink对流的逻辑划分功
能及状态管理功能。从整个实现来看，这就是一个很典型的Flink流计算
应用。如果对比我们自己实现的流计算应用，不难发现，Flink的计算模
式非常像把单JVM进程内的流计算过程扩展到了分布式集群。如果我们
不强调“流”这种计算模式，那么完全可以将Flink理解为一个分布式
JVM，各个任务分配的线程相当于CPU，而State则相当于内存。由于
Flink的State可以用磁盘存储，而机器可以水平扩展，所以理论上，
Flink这个分布式JVM的“CPU”和“内存”都是“无限”的。按照分布式JVM
理解Flink框架，可以大大扩展Flink的使用场景，而不仅仅将其视为一
个专门用于处理流数据的工具而已。当然反过来，当我们用Flink来解决
问题时，又会发现，很多业务场景其实是可以直接或间接转化为流计算
应用场景来解决的。所以，不得不说，就像UNIX哲学“万物皆文件”一
样，这种“万物皆流”的思想确实会帮我们打开一扇解决问题的新大门。
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