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献给

徐立华 同学



一个受人尊重的民族

不妨为人类贡献一点儿数学和物理



没有创造，

天才便不可原谅！



人们有浅薄的惯性，

坚持克服这种惯性的极少数人成就了人类的伟大。

浅薄不该是我们的宿命，浅薄是我们要拒绝的恶习。



ax2+bx+c=0
Fμv=[Dμ,Dν]



Necesse igitur est optimum mundum a Deo electrum fuisse.
——Gottfried Wilhelm Leibniz

上苍必然是选择了最好的世界。

——莱布尼兹



作者序

We are all in the gutter,but some of us are looking at the stars.
——Oscar Wilde

我们都身陷阴沟里，但有人仰望星空。

——王尔德

我想写一本垂直的书。具体地，我想写一本描绘从一元二次方程到

规范场论的数学和物理演化路径的书。用数学和物理惯常使用的符号语

言来说，本书要描绘的是一条从一元二次方程ax2+bx+c=0到标准模型

SU(3)×SU(2)×U(1)理论的概念演化路径，补上发现历程之历史的和心理

的缺口，途中要经过复数、超复数、群论等数学型的和电磁学、量子力

学、相对论、量子场论、规范场论等物理型的著名景点，还会碰到卡尔

达诺（Cardano）、塔尔塔亚（Tartarglia）、欧拉（Euler）、拉格朗日

（Lagrange）、阿贝尔（Abel）、鲁菲尼（Ruffi ni）、伽罗华

（Galois）、柯西（Cauchy）、黎曼（Riemann）、凯莱（Cayley）、克

莱因（Klein）、哈密顿（Hamilton）、格莱乌斯（Graves）、麦克斯韦

（Maxwell）、格拉斯曼（Grassmann）、外尔（Weyl）、薛定谔

（Schrödinger）、伦敦（London）、维格纳（Wigner）、内山菱友、杨

振宁等一干为我们构筑了神奇数理风景的人物。记住这些伟大的名字，

记住那些同这些伟大的名字相联系的概念、思想和方程。天才是上天派

到人间的使者，他们用独特的语言为我们讲述自然的奥秘。从

ax2+bx+c=0到Fμν=[Dμ,Dν]再到SU(3)×SU(2)×U(1)，这中间有许多天才的



思想，也有一些看似平凡的步骤，可惜在教科书中大多被遗漏了。对于

我这个笨人来说，这些恰是困扰我的地方。这些年来，我时常会在从事

糊口型劳作之余试图建立起那些丢失了的细节，一旦弄懂了一点儿我就

喜不自胜。这种经历伴我度过了很多年的孤独岁月。每当我打通一个小

关节，我都会诧异于人家是怎么轻松想到了的。某一天，我发现了一个

惊天的秘密，就是那些伟大的人物之所以那么轻松地就成就了他们的伟

大，不只是因为聪明，最重要的是人家很早的时候就念过正经的、有学

问的书。他们生来注定要伟大，他们所受的教育指向伟大，在成长的岁

月里他们一直有伟大的自觉。

记得是1978年夏季某日，12岁乡间少年的我在自家房后的河岸上捡

到了半张揉皱了的《参考消息》，在那上边看到了胶子、夸克、非阿贝

尔群等奇怪的字眼，天书一般。那年秋，我开始接触到一元二次方程，

令我感到新奇因而印象深刻的是那个b2-4ac。1994年闲来无事时，我在

德国凯撒斯劳滕（Kaiserslautern）大学物理系的图书馆里思考高阶代数

方程的解法（那时候要靠在图书馆找资料）。面对一元五次方程没有有

限根式解的说法，我自己推导出了拉格朗日对称多项式，然后试图用方

程xn=1的根张开的空间构造解的一般形式，然后，然后就一筹莫展了。

后来我知道，法国小青年伽罗华在1830年前后就解决了这个问题，并深

刻地影响了数学的发展。让我大受刺激的是，伽罗华辞世时也才不足21
周岁，也就是说，人家是在20岁以前就学会了解决这些问题的系统知识

的。我呢，我20岁以前学过什么代数方程的知识？b2-4ac？
这件事一直压在我心头。虽然这些年来我拉拉杂杂地学过晶体群，

读过群论在量子力学中的应用、抽象代数，但也一直没有把五次方程没

有有限根式解相关的学问弄通过。2017年，我不想再这样糊弄自己了。

哪怕因为不务正业砸了饭碗，我也要把这个问题理理清楚。不把这个问

题弄清楚，心里不敞亮。这本小书，可以说就是记录了我为了弄懂一元

二次方程从而一路学到规范场论的笔记，当然还有一些个人思考。有些

思考是我个人得来的收获，我也不揣鄙陋写进了书里。我这么说是因为



我真不知道此前有相关文献。若有人发现在此前的某个文献里有相关论

述，盼不吝指教以正视听。

这本书的内容涵盖我误以为小时候就学会了的一元二次方程直到我

现在清楚地知道我也不甚了了的规范场论，这中间经过一元三次、四次

方程的解法，一元五次方程的没有代数解的证明，抽象代数特别是群论

的发展，复数（复分析）及其在物理学中的应用，四元数与八元数这些

超复数，群的表示与应用，电磁学理论、广义相对论与量子力学，等

等。本书，以及其他的拙著，唯一的限制来自作者本人的水平、眼界与

品位。在我写作的时候，我从来都是预设读者们都是好学之士

（mathematician的本义）的。面对这些内容，少年（无关岁数）朋友们

完全不必心生怯意，这本书是为你们写的，我会努力让你们看懂的。本

书的内容对你们有益，最重要的是，我认为这是每个人在20岁前就该学

会的——至少你要学过。我再强调一遍，本书的关键内容之一，代数方

程理论，是差不多200年前一个法国中学生为我们于仓促间创造的。面

对本书的内容，教授朋友们也完全不必心生鄙夷。我个人的经历是，哪

怕是我第一天上算术课就开始学的加法，也是deceitfully simple（具有欺

骗性地看似简单），有很多我没认识到、即便认识到也可能理解不了的

内容。学问的深浅，取决于学习者自身境界的深浅，这真是一件有趣好

玩的事儿。

从一元二次方程到规范场论，对于作者本人来说，就是脚下与云端

了。我生长于泥泞之中，不止是雨天上学的路上满是泥泞，我读到初三

时课桌还是泥垒的呢。脚下有泥，天上有云，我不想让我的双脚总停留

在泥泞中。所谓“人在泥里，气在云端”，这真是一句鼓舞人心的话。就

学数学而言，ax2+bx+c=0就是脚下泥泞的开始了，可是它里面隐藏着通

向云端的学问。云泥作对照，古已有之。拿我1978年学过的一元二次方

程课本，对比拉格朗日1770年的《关于方程代数解的思考》

（Réflexions sur la Résolution Algébrique des équations），所谓云泥之

别、高下立判就是这个景象吧。而在我试着阅读拉格朗日这本经典的时



候，果然有“乘云行泥……何尝不叹”（语出范晔《后汉书》）的感觉。

所谓受过教育的人啊，总要多多地去读一些深刻的书才好。

这本书如我从前的著作，依然会关注所讲述对象的历史。一门学问

发生的历史，必然暗含它的内在逻辑，虽然成熟学问的逻辑关系未必是

其历史的再现。学问要严谨，历史则是学问的联络。本书试图体现的是

学问自身发展的逻辑，而对人的提及则着眼于未来科学家的培养，那些

学问家与其所创造的具体学问之间的关联、相遇绝不是偶然的，那中间

的联系至少是放言有能力培养科学家的人该关注的地方。我总认为，给

初学者的数学和物理的好教科书应当是七分学问、三分历史。这是我的

观点，我的著作受我的观点支配。本书每一章前除了摘要和关键词，还

会列出相关的关键人物，这也算是鲁莽的创举。一本好书首先必须是一

件艺术品。其次，一本学术书必须有学术的品位。这本书，一如我从前

的和未来的书，严格按照学术著作的格式撰写。我们的少年，尤其是立

志成为科学家的少年，要从小习惯于科学范式，早早受到严格的学术训

练。读书，要读真是书的书。

借助这本书，我还想传达一个被蔑视了的，也许只是被忽视了的观

念，即数理一家。从前的数学家、物理学家是一个人的角色，那些有能

力认识自然从而为我们创造物理知识的人，大多是数学达人甚至本身也

是数学的缔造者，having a visionary with the deepest sense of
mathematics。实际上，如果我们检视一下科学发展的历史，就会发现从

前的数学和物理很多是共生的、相纠缠的。笔者多年修习物理最惨痛的

教训是，没有基本的数学功底那物理就是一团迷雾，这种感觉在初学量

子力学和相对论时特别强烈。我希望我们的物理课程还能多少沾上一点

儿从前的古典传统，把数学、物理、哲学放在一起参详。譬如煮粥，大

米小米玉米碴儿，红豆绿豆蚕豆瓣儿，放一起，熬成一锅的紧致绵密、

浑然一体，求的是能融会贯通、涵气养神。2019年，承朋友襄助，笔者

在一所高校开启了“学不分科”讲座，就是为了传达这种理念。后来这个

名称被散播了开来，看来不乏心有戚戚之人。啥叫专业？广袤背景上的



过人之处，那才叫专业。

我一如既往地拒绝认为本书内容太难的评论。这本书确实很难，首

先对笔者来说就很难，否则笔者也不会花了数年的时间才将它写成。可

是，畏难不是必然会造成我们的浅薄吗？恰恰是因为笔者在从前求学和

做学问的过程中学的东西太浅，浅薄得愧对祖宗，才有了如今深深的愧

意以及愧意催生的这本书。其实，以我的能力，我能介绍的这些远远谈

不上高深。这本书里的内容，可多是100年前甚至200年前人家少年的创

造物啊。我们得有怎样的勇气才好意思嫌它难呢？心灵，应该朝高远处

悠荡。

不要强求读懂一本书所有的内容。内容能完全读懂的书是不值得读

的，或者说对做学问是没有帮助的。一本书应该含有一些一时读不懂的

内容，一时不易弄懂但又有必要弄懂的内容才是一本书的价值所在。理

解当前内容的钥匙在下一个高度上。学习如登山，总要登到力所不逮处

才肯停歇。即便这停歇时，也请不要放弃向更高处的张望。知识的疆域

不是平的。居高临下是观风景的正确打开方式之一：会当凌绝顶，一览

众山清楚。

可能是因为作者表述不到位，也可能是因为自己理解不到位，遇到

一下子读不懂的书那是学者的日常。在不能一遍就懂的时候你一定要坚

持读下去。读完一本完全不懂的书是一个读书人的基本素养，而坚持读

完一本打开了的书也是读书人对自己的礼赞。多年前，我一个希腊语的

字儿都不认识，但我数着字母读完了柏拉图的《蒂迈欧篇》

（Τίμαιος）。读完了再看那希腊语文本，字儿固然还是不认识，但感觉

亲切多了。

绝大部分人类已有的数学、物理知识，就物理而言也许超过80%，

还未进入中文世界，还未为我们所认识，遑论应用之，发展之。数学相

较而言可能更严重、也更不严重。数学是显性的，它的成果可以都体现

在纸面上，而物理学却具有更多水面以下的东西。物理学是水中的冰

山，露出头的只是一角。对一门学问最好的敬重，是学会它，应用它，



延伸它，深化它直至最后使它成为历史的遗迹。不要用静止的、单纯的

眼光看待一门学问，要学会看到每一门学问后面的艰辛（它教你如何做

学问）和前方的无限风景（它教你往哪里做学问）。

多少基础知识，我只学了个皮毛，更多的是闻所未闻。幸亏，我没

无知到以为天下知识只有我知道的那么一点儿那么愚蠢的地步。多少未

曾认真学过一天数学的人在真诚地叫嚣数学很难学。只有深入地学习过

数学的人，才能真正理解数学的艰难所在，而这时的他对数学已爱得不

能自拔。数学的魅力，是任何有思想的人都无法抗拒的。

总有人指望学习低配版，总有人试图教给别人简化版，愚以为这可

不是什么好习惯。学问就该以学问本来的面目呈现到我们面前。删减了

的学问，不是简化不简化的问题，而是不完备的问题。没有完备，就没

有正确理解。太多的问题，不理解还因为我们未曾深入过。每一个水滴

都联系着大海，蕴藏着整个大海的信息。本书里遇到的每一个主题，都

有大海一样的宽广与深邃。把你扔到深水里挣扎，让你学会在风浪里搏

击，那才是教育的艺术。

知识的贫穷限制了我们的想象力，但是受过一定程度教育的人应该

告诉后来者在远处、高处有更多、更美的风景，甚至有那些我们只是道

听途说但未曾亲临也无力想象的风景。多少人不过学了几年加减乘除外

加数理方程微分几何就以为自己懂得了加减乘除。每当我看到b2-4ac，
我就会想起童年的我自己。因式分解是我小时候做过最认真的事情，没

有之一，那就是解代数方程的基本功啊。那些无人教诲的岁月，那些无

处安放的好奇心，都在贫瘠的土地上随风扬长而去。

亲爱的朋友，不要害怕读不懂。当你捧起这本书的时候，你已经不

是原来的你了。如果你发现你还是你，那请你耐心地把这本书读完再

说。作为这本书的作者，本书所涉及的许多内容我也不懂，可我依然决

定写这样一本书，我想用这样的一本书来安慰那些个从前不同时刻的

我。那个可怜的小男孩，曾经的我，那时候没有书，没有老师，只有无

知的眼里浓得化不开的懵懵懂懂。



这是一本导引性的小书，an introductory booklet。
Introduce,intro（往里）+ducere（导引），就是领入门。其实正确的说法

是我恍惚置身一个看似是门的地方，向你指点许多个可能是门的地方。

从这本书你会看到一条断断续续的从脚下到云端的小路，云端之上有更

广阔的天地。从泥泞的脚下到旷远的云端是一条真实的路，因为抽象而

比真实更加真实。我非常笨，任何跳跃我都跟不上，都需要补足。也为

此，我写书总喜欢把历史的、逻辑的步骤给补齐了，免得跟我一样笨的

读者看不懂。我不可能在这样的一本书里深入讲述我提及的所有主题。

但是，你请注意，我提及了（Yet I mentioned it!）。那意味着我知道了

点儿什么。那意味着，这个世界存在那样的学问，（对我而言）很深的

学问。那是人类中的精英带给人类的宝贵财富。学会她，赞美她！赞美

自然，赞美知识的创造者，赞美热爱知识的我们自己。依科学史而观

之，每一个时代，都有零星的不那么猥琐。

写书的人，大概只能欺负或者怜悯青少年朋友知识之暂时不足。所

以，一本书欲图见功，还得指望读者的合作意愿（sympathetic
willingness to cooperate is expected from the reader）。一本书，当然是写

给那些愿意读它、想从中学到点儿什么的人的。博学如大神海尔曼·外
尔也明言其经典著作《经典群》（The classical groups）不是写给对相关

内容烂熟于胸的傲骄又博学的人的（rather than for the proud and learned
who are already familiar with the subject）。关于这本书的缺点，我自己

都忍不住要批评。但是，我还是觉得，无所助益的批评是无意义的。这

本书的所有缺点，无它，都来自作者的力有不逮，这在最后两章尤为明

显。

本书撰写过程中，笔者有幸阅读了部分真大学者之原始文献，时常

得享抓耳挠腮的喜悦。其间的感慨之一，便是这些大学问者之文采斐

然，所谓“不求其成文，而文生焉者，文之至也”。故而阅读真学问家之

文章，不独可以窥见其学识之渊博，亦可浸染其文意之隽秀。我希望，

此书面世之后，吾中华少年在解一元二次方程的时候，手边的参考书能



是拉格朗日的《关于代数方程解的思考》和克莱因的《二十面体与五次

方程解教程》之类的典籍。

庄子《外篇·刻意》云：“刻意尚行，离世异俗，高论怨诽，为亢而

已矣；此山谷之士，非世之人，枯槁赴渊者之所好也。”好吧，我就是

枯槁赴渊者，我不跟命运别扭。关于书的命运，我觉得书的命运就是作

者的命运，虽然法国人说过一本杰作（本书不是）出版以后就有了自己

的命运，与作者无关了。作者应该在工作的乐趣和去除了思想负担的释

然中找到回报而不问其他，管它是赞扬还是非难，失败还是成功。某智

者云，他写这些书除了自娱自乐以外若还有任何想法他都是三倍的傻蛋

——这个态度我很赞赏。本书的学术价值，我个人认为在于补（通）足

（告）从一元二次方程到规范场论之间的知识断层，其社会意义在于给

中国未来的学子介绍那些把学问从脚下做到了云端的榜样。

这本书的风格，如果谈得上有什么风格的话，就是聊家常话。聊作

者的困惑、思考、惊喜与感慨，捎带着分享找到的原始文献。有作者认

为一本好书应该让读者读完后有成就感和美的感觉。成就感好说。一个

人若能坚持读完这本书，知道Gal(K/F)和SU(3)×SU(2)×U(1)的字面意

思，就足以有点儿成就感了。至于美的感觉，这个却让人为难了。成就

一篇美文，哪怕是对数学、物理著作而言，也是著述第一义，却也是极

难达到的境界。著述者有此意识，也十分地努力过了，结果未能差强人

意，那也是没法子的事儿。范晔所谓“此书行，故应有赏音者”，这得算

是许多作呕心沥血状的作者的愿望吧。

我的书，期待“风神颖悟，力学不倦”的少年。

2017年05月14日 动笔

2020年09月13日 完稿

PS. 建议读者从第二章开始读起，遇到不懂的地方可跳过去，坚持

读完，返回头仔细阅读第一章导论以后再开始第二遍。有足够数理基础

的朋友可自行选取合适的阅读策略。本书尽可能提供相关主题的关键原



始文献，其中非英文的文献名会翻译成中文，以供读者决定是否查阅。

感谢曹逸锋同学拨冗阅读了本书的初稿并给出了有益的修改意见。



第1章 导言

Natura non facit saltus.
—— Gottfried Wilhelm Leibniz

大自然不玩跳跃。

——莱布尼兹

物理学是理解自然的学问，希腊文的物理，φυσιζ，本意就是自

然，而我们的老祖宗也认为“物理固自然”（杜甫语）。一如整体的人类

文明，物理学的进展是伴随着数学作为它的语言同步进行的，一定程度

上是以数学的进展为前提的。历史上数学、物理是一家，关于这一点在

修习经典力学——包括光学和流体力学——的时候感觉特别明显，微分

和变分计算是经典力学的数学前提。物理和数学的分家，甚至两者内部

之狭窄区域间也变得老死不相往来，固然有学问分化的客观原因，恐怕

更多的是因为人之主观取舍。数学家不关注数学是物理一部分的事实，

可能只是嫌麻烦，而物理学家们不关心数学的有效性与严谨性，可能只

是嫌麻烦，也可能有其他的因素在作祟。然而，不管数学家与物理学家

的心性如何变化了，物理学要用数学表达，要仰仗数学来完成公理化、

系统化从而得到升华的事实却不会改变。

缺乏足够的数学知识是学物理者学物理时遭遇的最大障碍，未清晰

阐述物理背后的数学主线是某些物理教科书天然的缺陷。笔者亲身体会

之一可资为例，不识普通三维世界矢量是四元数的虚部以及如何用四元

数表示转动，稍微严肃一点儿的量子力学文本读来都会让人茫然无头



绪。

量子力学（量子场论）、广义相对论、规范场论是一般物理系的学

生也会望而却步的学问，它们的典型特征是其中有艰深数学的广泛应

用。对这些艰深的数学，青年时期即已融会贯通，中年时期便运用自

如，几乎是那些近代杰出物理学家的标准范儿，我们普通人却只有望洋

兴叹的份儿。

将物理学的大概内容，包括经典力学、经典光学、热力学与统计力

学、电磁学（电动力学）、量子力学、相对论和规范场论等等，放到一

起参详，吾等智力平平之人固然不能指望有所创建，但或许能瞥见那里

面若隐若现的一些物理理论赖以成为理论的数学内容。将这些粗浅的认

识脉线说出来，无论对错，都可能有益于后来者的学习。

本书从代数方程讲起，先谈论如何解一元二次方程、三次方程、四

次方程以至五次方程遭遇代数不可解的问题。代数方程首先带来整数→
有理数→实数这样的数域扩展，在解三次方程时不得不接受 的存

在，从而有实数到复数的数域扩展，但也是从一元数到二元数的数系扩

展。由复数引来复变函数、复分析、复几何等内容。由二元数引出了四

元数、八元数这些数系，有关于可除代数的胡尔维茨定理。四元数引出

了标量和矢量的概念，四元数可用来表述转动。由四元数经矢量分析、

扩展的学问、线性结合代数发展出了线性代数，这可是理科学生的必修

课程，是近代物理的基础之一。由一元五次方程代数不可解问题引出了

群的概念，当然群的概念也来自几何、分析和数论。群论帮助构造了代

数方程理论，作为必要的表达工具它也是量子力学和相对论的基础。熟

悉了二元数（复数）、四元数和群论的语言，可以更好地理解量子力学

和狭义相对论。有了一点儿量子力学和狭义相对论的基础，配合在微分

几何、场论基础上习得的广义相对论知识，容易顺着外尔（1918）→薛

定谔（1922）、伦敦（1927）、福克（1927）→外尔（1929）→杨振

宁-米尔斯（1954）→肖（1955）、内山菱友（1956）→杨振宁

（1974）这条时间线学得一点儿规范场论的皮毛。这里是掺杂着我的情



感的我的粗浅理解，希望能有益于读者。我就是想告诉未来的少年们，

世上有这些知识，而且这些知识的发展脉线大体是这样的（图1.1）。

如果我们愿意，我们能学会，哪怕是只学会一点点，那也很好。

图1.1 本书相关内容关系图

本书涉及的部分代表性表达式罗列如下：

一元二次方程：x2+bx+c=0，解为 。形式解为

一元三次方程：x3+px+q=0，解之一为

复数：



四元数：

八元数：

群最大正规子群合成列：

标准模型：SU(3)×SU(2)×U(1)
能将这些表达式各自的相关内容补齐，把故事用公式从ax2+bx+c=0
一路讲到SU(3)×SU(2)×U(1)，是本书对作者本人、对读者的预期。

为了迅速获得对本书全貌的一个大概了解——了解大概以后细节探

究才能做到有的放矢，建议读者先浏览下面的内容概览。在阅读完相关

的章节时，请留心此处强调的关键内容。

代数一词来自花剌子模，意思是移项后等式两端恢复平衡；方程的

中文原意是线性方程组，西文（Equation；die Gleichung）意思是相

等、等式。对于多项式方程 ，建议把变量x看成具有

长度量纲[L]的物理量，则系数a1,a2,…,an及其组合都有相应的量纲[L]k。

求解过程中出现的任何表达式，相加（减）的项具有相同的量纲。方程

总可以利用切恩豪斯变换改写成

的形式，xn-1项缺省。



一元二次方程

系数为有理数的一元二次方程，x2+bx+c=0，古巴比伦时期即有公

式解 。方程解可为无理数。若Δ=b2-4c<0，则遇到 的问

题，方程无解。此方程可用平面几何图解。将方程改写成(x -x1)(x -x2)=0
的形式，得基本对称多项式s1=x1+x2，s2=x1x2。由，

，根可用待得到的根表示，为 ，

±1为方程x2=1的根，由此可见方程结构的深意。

一元二次方程启发我们，对于多项式方程：1.系数可表示为根的对

称多项式，伴随着正负号的交替；2.用根之差的乘积 构造判别

式；3.用待求的根来表示根；4.根的表示中会用到分圆方程xn=1的根，

算法是内积；等等。

一个整数系数的一元二次方程，就足以引出诸多博大精深的内容。

例如，x2-x-1=0的根 之倒数 ，为黄金分割数。黄金分割

数同斐波那契数列相关联，那里面隐藏着诸多自然过程的奥秘。

简单的一元二次方程和高深的规范场论其实有很好的类比。

x2+bx+c=0中含一次项bx，总可以经切恩豪斯变换而变成x2=c这样的简

单二次型的形式，笔者以为这应该也是一种规范自由度。进一步地，在

c>0的情形，加入尺度变换 ，方程变为x2=1的样子（这暗示了

xn=1的解对求解一般代数方程的意义）。反过来说，二次型x2=c可添加

一次项而成x2+bx+c=0的样子。未来的规范场论，是将关于时空结构的

微分2-形式加上关于电磁相互作用的微分1-形式的叙事，本质上都是二

次型如何纳入一次项的问题。

一元三次方程

一元三次方程的一般缺项形式为x3+px+q=0，有卡尔达诺解公式



此外有胡德法得到同样的结果。解法的本质是将解表示为两个未知

数之和，得到一个一元二次方程。当 时，又遇到 的问

题，不得已要接受 存在的事实。欧拉（Leonhard
Euler,1707―1783）记 ，为单位虚数。形如a+ib的数为复数。方程

另两根为

其中

或者

引入了 ，则当 时，一元二次方程有解

复数解必以共轭对α+iβ，α-iβ的形式出现。这其实是说，

韦达法利用恒等式cos(3θ)=4cos3θ -3cosθ，不具有一般性意义。

一元四次方程



一元四次方程常见于求圆锥曲线交点问题。方程x4+cx2+dx+e=0有
三个自由参数，费拉里、笛卡尔、欧拉、贝佐、拉格朗日和拉马努金等

都给出了别出心裁的解法，但万变不离其宗，都是寻找三阶的辅助解式

方程。拉格朗日系统地分析了四次方程的解法，引入了对称多项式和解

式方程的概念，指出根的置换性质是理解方程代数可解性的关键。

一元五次方程

一元五次方程可以一直约化到布灵形式，x5+px+q=0，但给出根式

解的尝试都失败了。欧拉发现x5-5 px3+5 p2x -q=0形式的五次方程可解，

范德蒙和瓦林开始怀疑五次多项式方程是否有公式解。拉格朗日对根的

置换作了深入讨论，认识到方程的代数可解性依赖于解的置换对称性。

方程可解在于找到一个合适的方程根的有理函数作为辅助解式，这个策

略对五次多项式方程失效。将n次多项式方程的n个根与分圆方程xn=1的
n个根，作矢量内积然后求其n次方，结果如下：

到五次方程，事情突然变得可怕了。

1799年意大利人鲁菲尼试图证明五次方程代数不可解，1824年挪威

人阿贝尔证明了通用求根公式不存在。Abel-Ruffini定理断言：“五次及

五次以上的一般多项式方程没有代数通解，即用加减乘除和有限根式表

达的解。”到了1830年，法国数学天才伽罗华彻底解决了五次多项式方

程何时可以有根式解的问题，引入了群的概念，发展出了伽罗华理论。

这里的思想转变是，从根而不是系数的角度去考察方程的可解性，即研

究方程的结构。



伽罗华理论关于五次及五次以上方程代数不可解的证明从根的置换

出发。根的置换构成群。群有最大正规子群，对一个群可构造其最大正

规子群合成列， ，如果合成列的指数都是素数时（商

群都是阿贝尔群），该伽罗华群才是可解的，相应的代数方程是可解

的。对于群Sn，n≥5，群Sn的第一个最大正规子群一定是交替群An，而

交替群An，n≥5，是单群，不可解。具体地，一般五次方程的根置换群

为群S5，群S5的最大正规子群是阶数为60的交替群A5，60不是素数。

阿诺德通过考察参数环路的对易式 ，用拓扑学证明了

五次方程的根式解必是无限嵌套的。

五次及更高阶方程解

五次及更高阶方程一般没有有限根式解，但可利用特殊函数求解。

当且仅当其伽罗华群包含于20阶弗罗贝尼乌斯群F20中时，五次方程有根

式解。克莱因（Felix Klein,1849―1925）将解五次方程同正二十面体对

称性的研究联系起来。可解的五次、六次方程，解的过程与结果也是特

别繁杂的。比如方程x5=2625x+61500，其解为

,j=0,1,2,3,4。阿诺德等人研究过

七次方程的解。

欧拉研究了无穷阶方程的解，却得到了级数和

诸般神奇结果。

代数基本定理断言n次代数方程有n个复数解，实系数代数方程复数

根以共轭对的方式出现。

不能作为代数方程解的实数称为超越数，e和π都是超越数。

复数



解代数方程引入了复数 复数z=x+iy对应于复平面上

的一个点。复数有

等多种表示。虚数i的几何意义同垂直方向上的运动相关联。虚数i
作为算符的意义是平面内转动π/2，eiπ/2=i。欧拉公式eix=cos x+isin x足够

神奇，而eiπ+1=0则被誉为最美数学公式。复数用于三角函数证明势如破

竹。复数可用于平面几何证明，一目了然且信息量大。比如，将三角形

的顶点记为z1,z2,z3，则三角形的中心对应点z=(z1+z2+z3)/3。
复数作为变量的函数是复变函数，复变函数的解析性是非常强的约

束。解析的柯西-黎曼条件为

一个复变函数是解析的，意味着其环路积分为零：

复变函数积分让我们能计算一些几乎无法下手的实变量函数的积

分。复数还用于解常微分方程。基于复数的傅里叶级数

和傅里叶分析



贯穿物理学的发展史，后者也构成一个数学分支。类似地，还有拉

普拉斯变换

其中s是复数。复分析、复几何等都是令人炫目的数学领域。许多

物理量也都更倾向于用复数表示，基于复数的代数方程和微分方程进入

物理，极大地促进了物理学的发展。量子力学的波函数ψ是时空的复值

函数，希尔伯特空间是复数域上的复值函数矢量空间，薛定谔方程

不过是在系数中引入虚数i的扩散方程，而将波函数及其共轭

当成变量的拉格朗日量、哈密顿量出没的物理理论首先是复变函数理

论。复数总是以共轭对的面目出现的，这关联着许多种不同的对偶性。

对偶性会带出不确定性原理，量子力学中的海森堡不确定性原理是其

一，数学中早就有详细阐述。相对论的时空可写成(ict,x,y,z)的形式，这

是双四元数。

四元数与八元数

复数z=a+bi中的加号只有符号意义。哈密顿认为复数就是二元数

(a,b)，其加法和乘法的运算规则才是本质。四元数q=a+bi+cj+dk，其中

i2=j2=k2=ijk=−1，ij=−ji，jk=−kj，ki=−ik，是哈密顿对二元数的推广，其

实部为标量，三个虚部构成三维世界矢量，可用于表示速度、电场等。

四元数乘积不满足交换律，q1q2≠ q2q1，四元数构成可除代数。由四元数

乘积(0,v1)(0,v2)(-v1· v2,v1×v2)，引入了矢量点乘和叉乘的概念。用四元数

可轻松证明四平方数恒等式。四元数还可表示为 通过共

轭操作v'=qvq-1描述矢量的转动；可表示为2×2矩阵 基就是

2×2单位矩阵加上泡利矩阵；表示为4×4矩阵，基就是4×4单位矩阵和狄

拉克矩阵，这就和量子力学、相对论联系起来了。



哈密顿引入了微分矢量算符 进一步地，引入

这些可用于表示电动力学。亥维赛德和麦克斯韦用矢

量记号表示了经典电磁学，得到了麦克斯韦方程组。从麦克斯韦方程组

引出了关于光的认识以及狭义相对论。

四元数q=a+bi+cj+dk中的(a,b,c,d)若为复数，则是双四元数。时空坐

标(ict,x,y,z)即是双四元数，这是理解时空结构的出发点。对于复数

O=A+Bi0，如果分量(A,B)是四元数，则构成八元数。记8个单位八元数

为{e0,e1,e2,e3,e4,e5,e6,e7}。选定e0=1，八元数的乘法有480种可能的定义。

在哈密顿的普通四元数世界矢量的基础上，吉布斯和亥维赛德各自

独立地发展出了矢量分析。只在三维空间中矢量叉乘才有定义。哈密顿

的多重代数理论，矢量分析，加上格拉斯曼的扩展的学问以及佩尔斯的

线性结合代数，最终有了今天的线性代数。差不多同时诞生的矩阵理

论、格拉斯曼代数和克利福德代数同它们都有亲密的内在联系，也都是

物理表述的数学基础。

可除代数只有一元数（实数）、二元数（复数）、四元数和八元

数。这是胡尔维茨定理。代数的运算律是在数系发展过程中逐渐丢失后

才被认识到的。

群论

群是满足乘法结合律、有逆、有单位元的封闭集合，可以用矩阵、

函数、算符等对象予以实现。群论有代数方程的、几何的、数论的、分

析的起源。群有结构，群元素可以分为不同的共轭类，子集也可以构成

群。群元素乘积一般有性质g1g2≠ g2g1，若总有g1g2=g2g1，这样的群是阿

贝尔群。群的最大正规子群合成列可以将群分为可（分）解群与不可

（分）解的群。伽罗华群为可解群的代数方程是代数可解的。

群论知识的内核是群的表示。对于有限群，不可约表示没有不变的

子空间，记可能的不可约表示的维度为nα，满足 ，n是群的元素



数。舒尔引理描述不可约表示的正交关系，这是有限群表示的关键。连

续群可用单位元素附近的生成元代数表示。描述时空转动的洛伦兹群是

非紧致的李群，角动量、自旋、旋量、同位旋等概念都和它有关。洛伦

兹群的李代数有六个生成元J1,J2,J3,K1,K2,K3，有如下关系

群论之于物理学的应用，在晶体学、量子力学、相对论、规范场论

等领域各有侧重不同。特殊酉群SU(2)和SU(3)对物理学有特别的意义。

群论揭示了对称性在物理理论中的关键角色，诺特定理在拉格朗日量的

对称性与守恒律之间建立起了联系。对称性借助群论成了构造物理理论

的出发点。

规范场论

经典电磁学被总结在麦克斯韦方程组中。采用磁矢势

表述电磁学，有一个冗余的自由度。这引入了规范和规

范函数的概念。

引力理论采用微分几何的语言，弯曲空间的协变微分引入了克里斯

多夫符号 可由时空的度规gμν得到。从微分几何的角度，可以把与克

里斯多夫符号可类比的联络当作基本量，不同的联络定义不同的微分几

何。引力场方程不能完全确定时空的度规，还留有6参数洛伦兹变换的

自由度。



外尔研究广义相对论和电磁学，从数学形式上注意到了电磁学可能

是引力的伴随现象。引入额外的矢量函数作为联络处理矢量在时空中的

平移问题，会带来一个长度的尺度因子

薛定谔建议把尺度因子理解为相因子

1929年外尔再次考虑电子与引力问题，把电磁场理解成了引力场的

伴随现象，从而有了规范场论。在规范场论中，规范场是时空几何的联

络，规范场的场强可表示为与联络相联系的曲率。电荷守恒被证明是规

范不变性的结果，从而与能量-动量守恒有了同样的数学基础。

此后，在1954年起短短的两年内，相继出现了关于E2空间同位旋对

应的规范场论，即杨-米尔斯场论，肖关于E3和E4空间同位旋的规范场论

的推导，以及内山菱友的广义洛伦兹群意义下规范场论的一般化推导。

SU(2)群和SU(3)群下的非阿贝尔规范场论被用于理解弱相互作用和强相

互作用，创立了描述弱电理论和强相互作用的量子色动力学等物理理

论，标准模型统一了强、弱、电磁三种相互作用，被称为

SU(3)×SU(2)×U(1)理论。1974年，杨振宁给出了规范理论的积分形式表

述，把引力场作为规范场加以讨论。

规范场论是数学物理的巅峰，是数学与物理交叉促进的典型，反映

的是人类为了理解自然所进行的不懈努力。诺特定理是理论物理的基

石。最小作用量原理、诺特定理和洛伦兹群表示，这是理解理论物理的

三把钥匙。

凭此概览部分的只言片语可于茶余饭后高谈阔论。若你还是个爱惜

脸面的人，你会在大话说出去后的某个时刻想办法给自己补台，这样你

就会在持续的学习与进步中得欢喜。果如此，幸甚，作为作者与读者的



你我皆大欢喜。



第2章 一元二次方程

Those equations,are they not poems?
那些方程难道不都是诗吗？

摘要 代数方程来自日常生活，各文明古国都早有研究。多项式方

程中只涉及乘法和加法，系数一开始皆为正整数，但随着对代数方程认

识的深入，逐步带来了从整数到有理数到实数的数域扩展，以及从一元

数到二元数（复数）的数系扩展。一元二次方程x2+bx+c=0的通解可表

示为 ，古巴比伦即已有之，但由这个看似简单的解却依

然会引入判别式、对称多项式、置换对称性、共轭等深刻的数学概念。

方程的解要用待求的解表示为 的形

式，这样才能洞察方程结构的意义。这公式里的±不是加减号，而是用

到了方程x2=1的根±1或者x2=-1的根±i组合来构造待求的根。等学完抽象

代数，尤其是群论的知识，回过头来看一元二次方程，就能放下轻蔑之

心，更好地理解其中的奥秘。一元二次方程的内容博大精深，简单的整

系数方程x2-x-1=0，其根 之倒数 为黄金分割数，这一个数

相关的数学就够终生学习的了。一元二次方程中二次项结合一次项的形

式提供了一个理解规范场论中微分2-形式与微分1-形式之间关系的视

角。

关键词 一元二次方程；判别式；对称多项式；置换；交替；共

轭；内积；数域；数系

关键人物Al-Khwarizmi



§2.1 代数方程概念简介

印象中，笔者上初二的时候开始学习解形如

的代数方程。这样的方程来源于实际生活，比如土地买卖，因此在

如中国、巴比伦、阿拉伯等古文明的文献中都有记载。刘徽注《九章算

术》有句云：“群物总杂，各列有数，总言其实。令每行为率，二物者

再程，三物者三程，皆如物数者程之，并列为行，是为方程。”这可看

作是汉语“方程”一词的来源。当然，我们知道这句里的方程对应今天的

线性方程组。在西语中，德语的die Gleichung，英文的equation，希腊语

的εξíσωση，字面上都是“等（式）”的意思，与不等式是近亲。如同在

古代中国，古代西方（西亚、希腊）的方程问题也是用文字描述的，以

后才逐步有了用字母表示已知数和未知数的做法。举例来说，在出土的

公元前1600年的一块巴比伦泥板上，据说有“数之平方比其自身多

870”这样的题，写成当代数学的形式，就是x2-x=870。在古希腊丢番图

的《算术》（Diophantus’ Arithmetica,ca. 250 A. D.）一书里，有一个字

母表达式为 ，可按如下方式翻译

，写成现在的形式即为

x3-2x2+10x-1=5。欧几里得《几何原本》之题II.11的表述为“一条直线截

为两截，由该直线同其中一截构成的长方形的面积等于另一截构成的正

方形的面积”，用现代代数语言，就是求解方程a(a -x)=x2。代数，

algebra，这个词是公元9世纪造的，出现在花剌子模（Muhammad ibn
Musa al-Khwarizmi,约780―850）于公元830年所著的一本算数书Hisab
aljabr wal-muqabalah中。在阿拉伯语中，al+jabr，字面意思是恢复平



衡、接骨的意思，就是移项后恢复平衡；wal-muqabalah，指的是“合并

项”。这本书名及其指代的内容，在西方就慢慢简化成了algebra一词，

汉译“代数”。
自然科学来自自然。代数方程一定起源于我们日常之所见的自然存

在和由此生发的现实问题。x2=x·x，我们称之为平方（square; quadrat;
），x3=x·x·x，我们称之为立方（cube; kubus; ），这在不

同语言里都是一样的。平方和立方都是来自自然的几何概念，对应平面

中的正方形和三维空间中的立方体（图2.1)。很自然的，代数方程研究

一开始针对的是一元二次方程和一元三次方程。二次方程，英文为

quadratic equation，三次方程，英文为cubic equation。不过，英文平方

的，quadratic，一词字面来自数词4（正方形是四角形），注意不要和

四次方程（quartic equation）弄混了。顺带提一句，所谓的squaring the
circle，不是什么化圆为方，而是为圆找到一个等面积的正方形，就是

找寻圆的面积公式。对于任何一个平面图形，能依据它作出一个正方形

就能得到它的面积。面积，量纲是长度平方（square），你细品品。

图2.1 平方与立方

代数方程很古老，代数方程自然重要，那里面充满智慧。关于代数

方程，值得注意的是随着对方程认识的深入所带来的数域扩展、数系扩

展。早期的代数方程，比如ax2+bx+c=0，其中的系数a,b,c,是（正）整



数，看起来方程是由三个系数定义的。如果有有理数的概念，

ax2+bx+c=0可改写为

其中的系数b c,是有理数，这时候方程看起来是由两个系数定义的

了。巴比伦时期的数学，0，负数，以及有理数/无理数的概念都还没有

出现。数域的扩展，是代数方程研究首先带来的一大重要数学进展，其

同后来的数系扩展是代数方程研究之价值所在，读者请特别关注。记

住，代数方程里面只有乘法，xn=x· x· … ·x及不同次幂项之间的相加关

系。不要被x2-4=0这样的方程形式给蒙蔽了，以为里面有减法，它是方

程x2+a=0关于a=-4的实例，那不是减号，是负数。

代数学是数学的重要分支，但是在18世纪末、19世纪初之前代数就

是关于多项式方程的学问。在20世纪，代数变成了公理化体系的研究，

同数论、几何和分析并列为数学的四大分支。为我们构造代数学的著名

数学家包括高斯（Carl Friedrich Gauss,1777―1855），伽罗华（évariste
Galois,1811―1832），哈密顿（Sir William Rowan
Hamilton,1805―1865），凯莱（Arthur Cayley,1821―1895），戴德金

（Richard Dedekind,1831―1916），诺特（Emmy Noether，
1882―1935）等人，其中艾米·诺特女士被称为近世代数之“父”，希望

阅读过本书以后大家能对他们熟悉起来。他们是人类心智的启蒙者。

在正式开始学习解代数方程之前，让我们先严肃地再看看解代数方

程到底是个什么问题。看看代数方程 ，这是一组

性质已知的系数(a0,a1,…,an)（其中a0=1)，一般认定为有理数或者实数，

同一个性质待定的未知数x的不同次幂（乘法）通过乘法和加法（未来

会有内积的概念来表示这种分量分别相乘而后相加的运算）得到0的问

题。所谓代数方程的一般代数解，就是用系数通过加法、乘法和开方

（对幂的逆运算）把未知数x表示出来。显然，解代数方程问题的内核

在于理解“加法”和“乘法”。而什么是加法和乘法呢？借着学习代数方程



的机会，不妨深入了解一些加法和乘法的基本内容。

首先，不要误解为代数方程里有加减乘除。这里遇到的减法，可能

是对加上负数的误解。比如关于等式2-5=-3，试比较“2减5等于负3”的说

法同“2加负5等于负3”的说法，其意义是不一样的。前一种说法涉及加

法与减法（运算、操作）以及正数与负数，方程左边只有正数，而右边

冒出了个负数的概念；后一种说法涉及加法和正、负数，方程两边都有

负数的概念，比较一致。加法是自然的操作，而减法是加法的逆操作，

两者大有不同。加法遵循结合律，(1+2)+3=1+(2+3)，减法就不行，(1-
2)-3 ≠1−(2 -3)。物理上，什么是减法，也是大有讲究的，例如原子发光

的电子跃迁过程就对应能量的减法。至于乘除，乘法是自然的操作，可

以单独构成代数（即大学时要学的群论），而除法是作为乘法的逆运算

出现的。除法，从数学和物理的角度来看，都是罕有的、不易处理的运

算（操作）。关于这里的微妙差别，本书会时常提及。



§2.2 一元多项式方程

形如

的方程被称为一元n次多项式方程（monic polynomial equation），

其中n为自然数，系数a0,a1,…,an为整数。可以把方程(2.2)两边同除以a0，

改造成

的形式，此处系数a1,a2,…,an为有理数(rational number)，意思是它们

是可表示为整数比（ratio）的数。我们一般都学过如何解一元二次方程

x2+bx+c=0；有些人可能还学过解一元三次方程的约化形式x3+px+q=0。
自然，还有四次方程、五次方程、六次方程等更高次的代数方程。在数

学史上，关于多项式方程解的问题曾上演过多出荡气回肠的剧目，有不

少天才的数学家都围绕这个问题挥洒过他们过人的才华。这不是一个简

单的问题，这是一个不简单的问题。

在深入讨论多项式方程的解之前，笔者先和大家分享一个如何记住

这些方程和解方程过程中出现的公式的一个诀窍——一个基于物理学家

视角的记忆诀窍。因为不容易记住一些方程或者公式，许多人早在用尽

自己的聪明才智之前就从学习数学的道路上退却了，殊为可惜。关于这

一点，数学家难辞其咎。在数学家眼里，方程 里

的变量x和系数a1,a2,…,an，以及由它们组合而来的各种形式的项，不过

就是个数而已。可是，如果我们引入物理的观点，把变量x和系数a1,a2,
…,an都看成物理量，这就是一个物理的方程，事情会变得明显有意义得



多。个人习惯，我总是把变量x看成表示长度的量，具有长度量纲[L]。
因为加法要求具有相同量纲的物理量相加才有意义，因此方程

中每一项的量纲都是[L]n；相应地，系数a1的量纲是

[L]，系数a2的量纲是[L]2，依此类推，系数an的量纲是[L]n。在接下来的

求解过程中出现的任何表达式，其相加（减）的项都应该具有相同的量

纲。比如，在解三次方程x3+px+q=0时会出现因子 。或许某个时

刻我们含糊了，到底该是 还是 呢？如果考虑到p的量纲是

[L]2，而q的量纲是[L]3，则显然表达式 是错的。当然了，赋予变

量x长度量纲的益处还远不止于此，在代数方程一般理论中，比如谈论

拉格朗日的对称函数的时候，这个问题会更加突出。数学家们只是不太

关心这个问题而已。



§2.3 一元二次方程的一般代数解

一元二次方程x2+bx+c=0在古巴比伦人那里就得到了系统研究。早

期巴比伦代数有一个基本问题是，求一个数，其与倒数之和为一个已知

数。用现代记号来表示，就是求x，满足x+1/b=x；由此得到一元二次方

程x2-bx+1=0。他们的求解方法是先求出(b/2)2，然后计算 ，最终

给出解的形式为 和 ，这可看作是一元二次方程

的通解。由于巴比伦人还不会使用负数，因此二次方程的负根是略而不

提的。等价的几何问题是，一块长方形的地，已知边长之差以及面积，

求边长。用现代记号来表示，就是一元二次方程(x -b)x=c。比如此前提

到的巴比伦泥板上的方程x2-x=870，巴比伦人给出了详细的解法以及结

果x1=30和x2=-29，但巴比伦人只关切根x1=30。在负数未被引进的年

代，或者变量x明确是类似长度这样的物理量时，x为负数的解是不合理

的，其被舍弃是非常合理的。或许在他们当时考虑的问题中，x就是某

个城池或者某块田地的边长。

方程x2+bx+c=0的通解容易通过配平方得到：

这个表达式出现在公元一世纪的古希腊。

但我们确实还经常会遇到b2-4c<0的情形，如何看待 就成了

问题。因为没有一个数的平方是负的，这时候人们就宣称此时方程

x2+bx+c=0无解。就x是实数的情形而言，这个做法是合情合理的。今天

我们知道，若b2-4c<0，(2.4)式里的根为复数，我们说此时方程

x2+bx+c=0有共轭的一对复数根。但是，坚持负数开根号有意义，或者



说理解了引入 的必要性，那是在研究一元三次方程时才遇到的问

题。一般介绍代数方程的文献会让我们依据单位虚数i的定义， 或

者i2=-1，想当然地以为它是在解一元二次方程时引入的。这是误解。最

重要的是，等学到了薛定谔（Erwin Schrödinger,1887―1961）1922年为

挽救“引力与电”这篇规范理论论文所作的努力时，会知道 的写法

是不合适的。 ，不可取舍（见第10章）。

量Δ=b2-4c被称为discriminant，汉译“判别式”。Δ 可以用来区分方程

有不同根的情形。若Δ>0，方程有两个不同的实数根；Δ=0，方程有两

重的实数根；Δ<0，方程无实数根，或者按照后来的理解，有两个共轭

的复数根。谈论ax2+bx+c=0这样的系数为整数的情形时，Δ=b2-4ac。每

当看到b2-4ac，笔者都会想起自己的少年时光。



§2.4 几何法解一元二次方程

几何法解方程，有限制，但它也提供独特的视角，会为我们带来独

特的启发，有必要了解一下。几何法解方程，一个限制是画图用到的量

必须是正的。考虑代数方程

其中b,c>0。写成这样的形式，我们可以认为x,b,c都拥有相同的量

纲，这里当然是长度的量纲。作直径为b的圆，中心为O，在其最底部A
处作切线段AR=c，从R处向上作垂线段。若线段交圆于两点S和T（图

2.2），则线段RS和RT的长度就是方程的两个根；如果线段和圆仅交于

一点S，则RS=b/2是方程的重根；如果线段和圆没有交点，那是因为

（b/2）2<c2，方程没有实根，或者说方程有两个复数根，这是后话。你

看，方程有复数根意味着我们没法用几何法解这个方程。其实，这一点

历史上是反过来的，几何法解方程遇到的困难让人们认识和接受了虚数

（复数）的存在（参看图7.1）。我们在复数一章中会回到这个问题。



图2.2 几何法解一元二次方程



§2.5 一元二次方程与分割数

一元二次方程，如果我说它内容博大精深，可能很多人都笑了。我

们先不说它的一般形式，我们只举系数b和c为小的整数的例子，会发现

它们引出来的数学就是许多人闻所未闻的了。比如，方程x2-x-1=0，它

的两个根为 ；x2-2x-1=0，它的两个根为 ；x2-4x+1=0，它

的两个根为 。2,3,5可是最开始的三个素数， 会是好

相与的吗？ 可是大名鼎鼎的分割数，分别被称为黄金

分割数、白银分割数和白金分割数。就黄金分割数而言，关于它的专著

就汗牛充栋。这三个分割数，竟然就联系着三维空间中仅有的10次、8
次和12次准晶结构，神奇不神奇？更多的介绍超出本书范围，请参见拙

著《一念非凡》和《惊艳一击》的相关章节。



§2.6 解一元二次方程的深意

许多书本介绍一元二次方程就到此为止了。其实还有很多很多的内

容我们没注意到，因为对付这么简单的问题那些内容不是显而易见的，

只有真正的研究者才能从中看出端倪。那些内容对解更高次方程，以及

建立一般的方程理论，是必要的基础。

再强调一遍数域的问题。关于多项式方程，很多文献会说方程

中的n+1个常数a0,a1,…,an都是实数，这是真不明

白。若谈论整系数的情形，这n+1个参数a0,a1,…,an是整数。若论有理

数，那方程就是 的样子，只有n个参数a1,a2,…,an，都

可以表示为两个整数之比。汉语的有理数，是对rational number的翻

译，而rational number是说它是整数比（ratio of two integers）。有理数

当然以无理数为对照。进一步地，对于方程

这会引入 这样的不能表示为整数之比的数，它们是irrational
numbers（非整数之比的数，无理数）。这才有了从整数到有理数再到

实数（有理数加无理数）的数域扩展。多项式方程带给人类的一大成就

就是数域的扩展。此外，对于系数为实数的方程 ，

总可以通过切恩豪斯变换（Tschirnhaus transformation）[1],x→ x -a1/n,将
其变换为 的样子，也就是说，一个实系数n次多项

式方程实际上可约化为有n-1个独立参数的方程。这是解三次、四次多

项式方程用到的基本事实，相关的求解过程会把解分别表示成两个、三

个独立变量的线性组合。这不是瞎猜的诀窍，虽然一开始可能是瞎猜。

设若一元二次方程的两个根分别是x1和x2，则方程就是



的样子。如果一元二次方程的一般形式写为

则有

s1和s2被称为基本对称多项式（elementary symmetry polynomial），

这个概念很重要。注意到，将(x1,x2)作置换变成(x2,x1)，s1和s2不变，所

以置换（permutation,字面意思是统统改变）的概念很重要。在一般形式

的方程x2-s1x+s2=0中，s1和s2（高次方程会有更多的基本对称多项式）前

面的符号是正负交替的，所以“交替的”（alternating）这个概念很重要，

请记住。再者，若b2-4c<0，两个复数根可以写成α+iβ 和α-iβ 的形式，这

样的一对复数是共轭的（conjugate）。其实任何 这样的一

对数，比如 ，都可以称为共轭的，体现的是加减是一对互逆运算

的事实。一对 这样的共轭数所表达的和与积就不再有平方

根。所以，你看共轭的概念很重要。不知共轭之花样繁多及其重要性，

可以作为不懂物理的判据。

还有一个基本问题，数域和数系的扩展问题。ax2+bx+c=0中的系数

可都是整数，而x2+bx+c=0中中的系数要求为有理数即可。这是数域的

扩张。方程中的未知数的幂指数都是整数，而在根表达式中就出现了开

根号。根式 就是xp/q，其实就是将幂指数从整数域扩展到了有理数

域。到目前为止，我们都在谈论有理数，或者再进一步扩展为实数。但

当b2-4c<0，方程有两个复数根，我们又引入了复数。实数是一元数

（unarion），而复数z=a+ib有两个部分，是二元数（binarion）。这里又

牵扯到数系的扩展了。这是后话。

回到方程的解，作形式上的考察也会发现一些有趣的、后来用得着



的性质。 ，可见 也是对根的置

换不变的表达式。由 可得

你看，对于解二次方程我们用到了两个根的差，很关键的一步，对

于高次方程是用到不同组合的两个根之差的乘积：

其平方是判别式。还有，我们要习惯把

理解成

根的表达里没有减法，±1是二次分圆方程x2=1的根，我们这是用分

圆方程的根展开待求的代数方程根呃，这和傅里叶（Joseph
Fourier,1768―1830）变换的思想是相通的。这些都是非常重要的内容，

是我们学习二次方程时很少会教的内容（就没打算把我们往深里教

啊！）。这里暗含的思想是，方程的根是用方程的系数表示的，不过系

数是作为根的基本对称多项式出现的，是非本质层面的。也就是说，将

根用尚未求出的根（通过对称多项式、判别式以及预解式）来表达，这

才是理解如何解代数方程的关键。这个弯儿连数学家一时都转不过来

——稍后在拉格朗日（Joseph Louis Lagrange,1736―1813）关于代数方

程的分析中我们会看到这个天才思想的威力。到底是否存在这种表达，



即是否有代数解，要由预解式的某些置换对称性来决定。这个说法为时

尚早，只有当方程变到高次难以求解时，我们才能理解这一点的意义，

也才能深切体会那些想到这些关窍的数学家的天才。低处的深刻与神

奇，要到高处才能学会欣赏。

物理的思想与概念要用数学表达。用代数方程表达几何关系的目标

贯穿数学的发展史，此思想传统可回溯到古希腊。平面几何同一元二次

方程有着深刻的联系。考察长方形的边长和面积公式，

L/2=a+b,S=a×b，显然它们具有置换对称性（图2.3)。注意，这个长方形

的边长和面积公式就是一元二次方程的根的对称多项式啊（三次方程的

对称多项式对应正四面体的几何特征）。这里潜伏着代数方程最深的理

论，可以用几何体研究代数方程，后来的克莱因等人就是用正二十面体

研究五次方程解的问题的。物理现实的对称性，反映为数学方程解的置

换对称性，概念转移了。代数方程带来的对称、共轭的思想要深入体

会。比如：

这看似是两个不同的数，但是就作为方程 的根这一点来

说，它们俩是对称的、不可区分的。请习惯这种思维，这对学习高深一

点儿的代数理论很有用。



图2.3 长方形两边的置换效果

2020年8月1日，笔者想到关于一元二次方程也许可以作如下理解。

对方程x2+bx+c=0作变换

这是纯粹的平移变换，方程变为

进一步地，作变换

这是尺度变换（rescaling）。则当b2-4c>0，方程变为x2=1，其有两

个根x1,2=±1。未来我们知道，此解的集合{1,-1}构成乘法群C2。若b2-



4c<0，方程变为x2=-1。对此我们有两种选择：1)认为无解；2)为了解这

个方程，拓展数系。后来我们选择了拓展数系，认为方程x2=-1有两个根

x1,2=±i。这样思考的意义是，关于一元二次方程我们只需要理解x2=1和
x2=-1就行了，x2=1和x2=-1提供了关于一元二次方程最基本的表示工

具。关于一元二次方程的学问最后就落到了x2=1和x2=-1上。x2=1和x2=-1
是两个不连通的世界，这一点在数学、物理（比如晶体对称群）中随处

可见。x3=1和x3=-1没有什么差别，因为用变换x→-x可由一者得到另一

个，它们的解本身就包含着对复数的需要。笔者以为，这也是我们在解

一元三次方程时被逼不得不接受虚数存在的原因。x1,2=±1和x3,4=±i一起

构成了方程x4=1的根，根集合{1,-1,i,-i}构成乘法群C4。我怀疑这地方就

隐藏着代数方程只到四次方程有代数解的奥秘——至此方程已超越加法

和乘法应有的复杂度了，接下来解可不是能构成阿贝尔群的了。

几何上，x2+bx+c=0的形式解为

当b2-4c>0时，可以理解为在实数轴上解x1、x2对称地分列在

的左边和右边。当b2-4c<0时，若我们已接受了方程x2=-1的解为±i，则方

程x2+bx+c=0的解为

后来，我们知道形如α+iβ 的数是复数，其几何诠释是复平面内的一

个点。在复平面内，解



对称地分列在 的上边和下边。

代数方程x2+bx+c=0可以看作是二次型x2=c同线性方程bx=c的叠

加。未来的规范场论，是将关于时空的微分2-形式叠加上关于电磁相互

作用的微分1-形式的叙事，本质上都是二次型纳入一次项的问题。从这

个角度看问题，或可以极大地克服学习规范场论的畏难情绪。

总结一下，简单的一元二次方程的解，就引入了基本对称多项式、

置换、交替、共轭、判别式等重要概念，还带来了数域与数系的拓展

（如何获得这样的进展才是该学的），这些概念会引领着我们去求解更

复杂的代数方程。上述几个概念也构成了理论物理的部分基础。

对于任何一样学问，如果我们觉得简单，那一定是因为知道的少。

参考文献
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[1] 切恩豪斯变换可以是y=x+b，y=x2+ax+b，y=1/x，甚至一般的多项式除式y=g(x)/h(x)，其中

h(x)在原方程f(x)=0任一根上的值都不为零。
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第3章 一元三次方程

将欲取之，必固予之。

——老子《道德经》

摘要 一元三次方程是实践中不是很容易遇到的方程，其解的难度

相对于二次方程上了一个台阶。我国在公元前1世纪就有一元三次方程

的数值解法。三次方程公式解有卡尔达诺公式，以及用胡德法和韦达法

得到的表示，这些解法都是基于一元三次方程的缺项形式x3+px+q=0只
有两个独立变量因而可以转化为二次方程的事实。解一元三次方程会遇

到负数开平方的问题。保留负数开平方的无奈引入了虚数，进而引入了

复数，从而开辟了数学的新天地。 被接受作为一个实在的数学对

象，说明科学史上其实哪有什么革命，只是有人遭遇了万不得已而已。

一元三次方程根的一般表达式会用到方程x3=1的根，其中两个是复数，

注意二次方程的解表达式用到了方程x2=1的解，这暗示代数方程根的形

式表达存在着某些一般性的内容，有待我们进一步发掘。

关键词 一元三次方程；缺项形式；预解式；虚数；复数

关键人物Khayyam,Del Ferro,Fior,Tartaglia,Cardano,Ferrari，
Hudde,Vieta,Bombelli



§3.1 一元三次方程的缘起

一元三次方程（cubic equation）很早就引起了人们的注意。在我

国，约成书于公元前1世纪的《九章算术》和唐朝的《缉古算经》里都

有关于一元三次方程的数值解法。在西方，古希腊学者如阿基米德因为

解圆锥曲线相交的问题（一般情况下有4个交点）讨论过三次方程的解

（最多有3个不同的实数根）。其实，代数方程本身就是几何问题，也

是实在的物理问题。文献记载，是波斯数学家海亚姆（Omar
Khayyam,1048―1131）注意到一元三次方程有不止一个根的。一个有趣

的现象是，需要解一元三次方程的情境似乎不容易遇到，这恐怕也是许

多人一生都不会有学习一元三次方程解法的冲动的原因。物理学上倒是

有两个现成的例子。我们生活在三维空间，物理问题中常遇到3×3的矩

阵，比如物体的转动惯量就是一个3×3的对称矩阵。求3×3矩阵的本征值

问题就要解一元三次方程，即求解特征方程

另一个例子来自热力学。1873年，范德瓦尔斯（Johannes Diderik
van der Waals,1837―1923）给出了一个关于气体的状态方程

这实际上是一个关于体积V的三次方程。这个方程允许研究相变问

题。



代数方程从二次变到三次，从物理的视角来看，是问题的空间从二

维到三维的变化，或者说自由度从两个到三个的变化，求解难度陡然上

升。一般情况下，方程的三个根是纠结在一起的，恰如古树的盘根错

节。如何找寻三次方程的一般解形式，是人类认识史上的一个大事件。

我们将看到，解三次方程的努力将数学引导到了意想不到的境界。



§3.2 解一元三次方程

代数法解三次方程，要等到16世纪。欧洲复兴时期意大利波隆那的

数学家发现三次方程可以约化成

三种形式，这里p和q都是正整数，因为那时候还没引入负数的概

念。费罗（Scipione del Ferro,1465―1526）会解这三种形式的方程，并

把方法传给了他的学生费奥尔（Antonio Fior,生卒年不详）。1535年，

塔尔塔亚（Niccolo Fontana,1499―1557。Tartaglia是其外号，结巴的意

思）又重新发现了三次方程的解，在1530年解出了方程xx32+=25。塔尔

塔亚与费奥尔拿解三次方程作赌局，但塔尔塔亚只给结果不泄露解法。

最后，塔尔塔亚还是被说服了，把解法告诉了医师卡尔达诺（Girolamo
Cardano,1501―1576）。卡尔达诺是个天才加流氓的混合型人才，他

1545年出版的《大术》（Ars Magna）一书就有关于塔尔塔亚解法的详

细讨论，当然言明了这是塔尔塔亚发现的方法。《大术》一书还介绍了

费拉里（Ludovico Ferrari,1522―1565）发现的将四次方程约化为三次方

程的方法。

一元三次方程总能化为

的形式，这是它的缺项形式（depressed equation）或者约化形式



（reduced form），中文文献一般用缺项的说法。一元三次方程之约化

形式(3.4)的一个通解，即所谓的卡尔达诺公式，形式为

求得了这一个根，另两个根就水落石出了。笔者宁愿将这个公式写

成

的样子，这样我们就能看透这公式的奥秘。它包含两项，每一项都

是三次根号下含有二次根式。三次根式下的项，其量纲必须和q的量纲

相同，为[L]3，则其下二次根式里的项之量纲必须为[L]6。用 来表达

且要满足上面对量纲的要求，回头再看看卡尔达诺公式，就觉得它的样

子很合理（下面研究解法时请注意分母上2和3的来源）。注意，这个解

形式的关键是，用根式套根式（nested radicals）来表达根。

如何得到卡尔达诺公式呢？对一般形式的x3+px+q=0，设根的形式

为

这个假设的合理性在于约化方程本身具有由系数p、q定义的两个自

由度，三次根号的表示针对三次方程，且不会带来值的正负性的限制。

将 代入方程，得

进一步地，可要求



也即

将上式消去v，得到辅助方程

这是一个一元二次方程，容易得到

于是得到卡尔达诺公式(3.5)或者(3.6a)。式(3.11)里u和v表达式里的

±号互换不影响结果，因此实际上是同一个根。知道了三次方程的一个

根x1，可以用x3+px+q=0除以(x -x1)得到一个二次方程，从而得到另外两

个根。具体地，

其中



这时候我们还不会把 写成 。注意，如果

则

注意到什么了没有？

关于一元三次方程解公式(3.5)的应用，我们可以举个例子。比如对

于方程x3+6x=20，按公式有 。这个公式不能这么放

着，得往前再走一步， ，故x1=2。顺便说一句，其实面

对x3+6x=20这样的简单方程，会估算其根的值也是该学会的本事。令

x=1，方程变成7=20，x=1偏小了；试试x=2，嗯，方程变成20=20，正

好。现在你会手动估算方程x3+6x=21的根了吧？试试。

对于方程x3+bx2+cx+d=0，其一般求解过程可按如下步骤进行。计

算Δ0=b2-3c和Δ1=2b3-9bc+27d，进而计算

则三个根可表示为

其中 是方程x3=1的根。此处我们已经接受复数的

概念了——这个新概念下面要认真讨论。这个解的通式只对C≠0成立。

若Δ0=0，Δ1=0，，方程有三重根-b/3。若Δ0≠0，但是 ，则方程

有一个根(4bc -9d -b3)/Δ0和一个二重根(9d -bc)/2Δ0。根表达式(3.12)暗含



的要点是它是用x3=1的三个根辅助表示的，这一点意义深远。

下面的方法据说来自荷兰数学家胡德（Johannes
Hudde,1628―1704），此人曾任阿姆斯特丹市长和荷兰东印度公司总

督。针对约化形式的三次方程x3+px+q=0，设

则方程变成了

可令

而现在我们可以把uv33、当作变量，则它们必是二次方程

的两个根。有读者可能已注意到了，这里和卡尔达诺公式的推导过

程就是假设(3.13)x=u+v与假设 之间的区别，方程(3.16)和方

程(3.10)也一模一样，似乎区别不大。但是，假设(3.13)会导向一个用u3

和v3构成其对称多项式（symmetric polynomial，记住，这是一个重要的

概念）的预解式方程，大有深意，这个表示立方的3是“3”次方程之预解

式，即一个“6”次方程里的那个6的因子！ 分析一下这里的哲学。方程

x3+bx2+cx+d=0形式上意味着三个自由参数，b,c,d，对应三次方程，没

问题。由切恩豪斯变换得到x3+px+q=0，那形式上就只有两个自由参数p
和q，故假设x=u+v有其合理性，x还是具有两个自由度。关键的是，我

们得到了u3和v3作为根的辅助二次方程。一方面，二次方程有解，我们

把本来的问题解决了。另一方面，这个解的过程发生了从辅助变量u、v



到u3、v3的跃变，这里似乎隐含着一个陷阱！当我们研究四次方程时，

这个陷阱变得明显了；而未来当我们研究五次方程时，这个陷阱会露出

它无限深的狰狞面目。

解三次多项式方程另有韦达（Franciscus Vieta,法语写法为François
Viète,1540―1603）法。看看约化三次方程x3+px+q=0的模样，看看x3=1
的三个解1，ei2π/3和ei4π/3以及欧拉公式eix=cos x+isinx，我猜测这几个内容

是导致三次方程韦达解法的原因。韦达法的主旨是使得方程x3+px+q=0
与恒等式

形式上一致。恒等式(3.17)来自展开式

将cosθ 当成变量，且若能使得cos(3θ)是常数的话，这个恒等式就是

三次多项式方程的一般形式。令 ，代入方程x3+px+q=0，得

所以，必须有 ，得 ，其中

k=0,1,2。于是，得到三个根

这是有三个实根的情形。如果遇到 情形，只有一个实

根（这是后话），可表示为：

若p<0,



若p>0,

这个公式用到了双曲函数sinh、cosh，样子有点吓人。其实，只要

知道三角函数cos、sin与双曲函数cosh、sinh只不过是变量为实数还是虚

数的差别，这些公式本身就是一致的。韦达法思路清晰，中心思想就是

把三次方程改造成cos(3θ)展开式的形式。但是，这种方法不具有一般

性。抽象，一般性，才更有意义。



§3.3 一元三次方程解的危机与虚数的引入

一元三次方程解的卡尔达诺公式揭示了一个有趣的问题，即三次方

程和二次方程一样，有时会遭遇负数开平方的问题。解一元三次方程，

当 时，这个问题就会浮现出来。这一次却不能简单地将

负数开平方一扔了之了，因为当 时，三次方程可能依然有

三个（实数）根。卡尔达诺在《大术》一书中就给了一个例子。对于方

程x3−15x -4=0，按照他的公式应有 。此时似乎不能因

为遇到负数开平方根就简单地判定该方程无解，它分明有根x=4（另两

个根为 )。1560年，邦贝里（Raphael Bombelli,1526―1572）发现

，只要不问负数开平方根的意义闷头往下算，就可以找到

根x=4。
不妨这样想。构造已知实数根是x1，x2，x3，满足x1+x2+x3=0的三次

方程(x -x1)(x -x2)(x -x3)=0，这样的方程具有x3+px+q=0的形式，很容易遇

到 的情形，但3个实数根分明就在那里。这说明，人们必须

严肃对待负数的平方根了。我们必须把负数的平方根当作一个严肃的、

真实的数学对象接受下来。在1572年出版的《代数》（L’Algebra）一书

中，邦贝里建议为了求得三次方程的实根，至少可以临时接受负数平方

根的存在。在这种意义上，它是短瞬的（ephemeral），是个过渡性工具

（intermediate tool）。后来我们知道，负数平方根不是ephemeral，而是

联系着数系扩展这样一个大问题。

定义 为单位虚数，虚数是瑞士数学家欧拉1777年给取的名

字，代数方程一般解的形式可写成复数ab+i的形式。复数概念的引入，

在数学园里引入了一只大怪物，不仅开启了数系向四元数和八元数的拓



展，带来了复分析，它还是物理学的基本要素。量子力学的关键概念是

波函数，单分量的波函数是复值函数，作为泡利方程和狄拉克方程解的

多分量波函数是旋量（spinor），而旋量是四元数的作用对象

（operand）。复数开辟的新天地太广阔了。



§3.4 关于一元三次方程解的深度思考

仔细考察三次方程解的方法，会发现一些有趣的内容，这些内容是

后来数学家走得更远的关键。笔者以为，胡德的解法利用了三次方程约

化形式具有两个自由度的事实，通过假设x=u+v让方程的变量x，或者

根，具有了方程的自由度。利用这个自由度，引入特殊的假设，从而实

现了方程向低阶的约化。卡尔达诺的方法原则上也是。这是这类解法的

中心思想。这个方法之所以行之有效，是因为得到的预解方程是一个只

含变量之6、3和0次方项的六次方程，故它实质上是一个关于变量之3次
方的二次方程。在当前的层面上，这可看作是个偶然巧合，但它实际上

暗含了多项式方程的内在性质，对于未来我们理解任意阶方程的可解性

它是出发点。

二次方程很简单，两千年以前的各古文明都有人会解。三次方程一

下子变得相当不简单。二次和三次的结合立马变得吓死人。比如，

y2+y=x3-x2就引入了模型式（modular form）的概念。还有费马（Pierre
de Fermat,1607―1665）大定理说xn+yn=zn对于n≥3就没有整数解，说不

定证明就着落在三次方程上。就解方程本身来说，三次方程带来了预解

式的问题，以及复数问题。解四次方程反而是容易的，原则上它遇到的

问题和三次方程一样，但没有了在荆棘中趟路的需求了。

三次方程引入虚数和复数概念的过程，分明是个压着牛头喝水的过

程。如果不是看到分明3个实数根就在那里，而偏偏还遇到了负数开平

方的问题，估计人们很难接受负数开平方的存在。人不被逼到万不得已

的地步，是很难接受新事物的，心理上过不了那一关——主要是因为不

明白（后来的量子力学也有同样的历程）。我个人认为，这种不愿意接

受新事物的心理有其正面的意义：我想明明白白地接受。如今，复数的



概念在课堂上被随手教给学生，人们对复数的使用也习以为常了，这不

是理解基础上的接受。忽略了对这个艰难心理过程的描述，是教授科学

创造此一实践的一大遗憾。

复数的引入，让任意二次方程和三次方程有了一般形式的根表达。

但是，复数的这个功能，连它的庞大功能中的一角儿都算不上。复数的

概念掀开了人类智识史上波澜壮阔的一幕，当时没有任何人意识到。

参考文献

［1］ Mario Livio,The Equation That Couldn’t Be Solved,Simon &
Schuster(2006).中译本为《无法解出的方程》（王志标译），湖南科学

技术出版社(2008)
［2］ Karlheinz Haas,Die mathematischen Arbeiten von Johann

Hudde(1628-1704),Bürgermeister von Amsterdam（阿姆斯特丹市长胡德

的数学成就）,Centaurus 4(3),235–284(1956).
［3］ John Hymers,A Treatise on the Theory of Algebraical

Equations,3rd ed.,Deighton,Bell(1858).
［4］ étienne Bézout,General Theory of Algebraic Equations,Princeton

University Press(2006). 此书为法文原版Théorie générale des équations
algébriques,Ph.-D. Pierres(1779)的英译本(Eric Feron译）

［5］ Camille Jordan,Traité des substitutions et des équations
algébriques（论置换与代数方程）,Gauthier-Villars(1870).



卡尔达诺

Girolamo Cardano 1501—1576



第4章 一元四次方程

It(hammer)gave neither fi nish nor beauty to the results.
——Augustus de Morgan

（锤子得到的）结果既不圆满也无美感。

——德·摩根[1]

Il faut que j’y songe encore.
——Joseph Louis Lagrange

我再想想。

——拉格朗日

摘要 四次方程还算是常见的代数方程，求圆锥曲线的交点问题就

会产生四次方程。四次方程有多种解法，包括费拉里、笛卡尔、欧拉、

贝佐、拉格朗日和拉马努金都给出了别出心裁的解法，但是万变不离其

宗，不过都是寻找三阶的辅助解式方程。寻找三阶的辅助解式方程可以

是直接地下行，也可以是策略地上行——得到一个六次方程，但是实际

上是关于平方的三次方程。四次方程的成功求解让人们产生了多项式方

程都有代数解的幻觉。拉格朗日在对称函数的概念基础上提供了系统的

解式法。

关键词 一元四次方程；圆锥曲线；预解式；对称函数

关键人物Leibniz,Ferrari,Descartes,Euler,Bézout,Lagrange,Ramanujan



§4.1 问题的导出

一元四次方程（quartic equation）在几何问题中会经常见到。求两

条圆锥曲线的交点，或者一条直线同圆环面的交点，直观上最多有4个
交点，最后都会化为求解一元四次方程问题（图4.1)。举个简单的例

子，椭圆 ，将它简单地绕中心转过90°，得到另一个椭圆

，求这两个椭圆的交点就会得到一个一元四次方程。求解四次

方程的研究始于何时，没有明确的记载，但有案可查的解出现于1540
年。一开始，也是走因式分解的路子，若能将四次多项式分解成一次和

三次多项式之积，或者两个二次多项式之积，那就能利用现成的二次方

程或三次方程的公式解，直接写出结果来。做四次多项式的因式分解，

猜是主要手段，但猜不对也是常事。说个插曲。1702年，莱布尼兹

（Gottfried Wilhelm Leibniz,1646―1716）曾提及x4+a4不能写成一次型或

二次型的乘积形式，后来尼克劳斯·贝努里（Nikolaus Bernoulli，
1687―1759）又曾断言x4-4x3+2x2+4x+4不能写成一次型或二次型乘积形

式。1742年，欧拉写信给尼克劳斯·贝努里，告诉他x4-4x3+2x2+4x+4可
以分解为 ，其中 （欧拉总

有神来之笔），而x4+a4的分解式为 。关于

莱布尼兹会说x4+a4不可分解，我有点儿不相信。这个因式分解笔者初二

时就会，x4+a4(x2+a2)2-2a2x2，一目了然啊。莱布尼兹会犯这种小错误？



图4.1 两圆锥曲线相交，一般有4个交点



§4.2 一元四次方程的几种解法

四次多项式方程

总可以通过变换x→x-b/4约化为

的形式，称为缺项四次型的（depressed quartic）方程。如果碰巧是

x4+cx2+e=0的形式，则称为双二次型的（biquadratic），它其实是变量为

x2的一元二次方程，因而容易求解。一元四次方程的解最先由费拉里

（Ferrari）于1540年发现，发表于卡尔达诺的《大术》一书中（见第3
章）。对方程(4.1)配平方，得

将左侧平方项中再引入一个待定常数m，变成

我们看到右侧是关于x的二次函数形式，假设它也可以写成完全平

方的形式，则要求



这是一个关于m的三次方程，是可解的。注意，这里已经隐含了解

式（resolvent）的思想了。对于任何解得的m，原方程(4.2)变为

两边开根号，就得到两个二次方程，进一步地得到方程的四个解，

可表示为

其中±1、±2表示在这两处分别独立取+、-号，故有4种组合。解(4.6)
式中有除以 的问题，若m=0会是个麻烦。不过m=0来自式(4.4)之d=0
的情形，而若d=0，则原方程被约化为x4+cx2+e=0的形式，可直接求

解，无须用到这个方法，故m=0不会造成任何困难。特别提请注意，解

(4.6)式中的两处±，如果还遇到后面根号下的值为负的情形，实际上会

让我们看到集合{1,-1,i,-i}，这是正方形或者方程x4=1对应的循环群C4。

那些对称性的思想，都出现在从前的简单表达式中，我们要学会看见它

们。

费拉里提供的这个解法，其中的关键过程是得到了一个辅助性的三

次方程，拉格朗日称之为resolvent[2]，resolvent equation，预解式方程，

而贝佐（Étienne Bézout,1730―1783）称之为la réduite，约化式。三次方

程的阶比四次方程低，三次方程的解法是已知的。这似乎给我们一个提

示，对于一般多项式方程，如果有办法将之导向一个低阶的代数方程而

因为低阶的方程是有解的，那就能够给出它的一般解。到目前为止，我

们发现二次、三次和四次代数方程是有根的一般表达式的。

1637年，笛卡尔（René Descartes,1595―1650）提供了另一个求解

四次方程的方法，直接分解四次函数为二次函数乘积的形式：



注意，这里有3个待定变量u,v和t，这要求：

因此，进一步地有关系式u2(c+u2)2-d2=4u2e，这是一个关于u2的三次

解式方程（resolvent cubic）

它是可解的。对于给定的u，由三次预解式方程(4.9)和etv=可导出

注意，对于给定的u2，虽然u有正负两种取值方式，但是调换u和-u
只是调换了t和v，还是得出同样的方程分解方式(4.7)。

欧拉也提供了四次方程的一个解法。由假设

出发（这个假设是借助c,d,e来决定u,v,t三个待定系数），设x1，

x2，是(x2+ux+v)=0的两个根，x3，x4，是(x2-ux+t)=0的两个根。显然，−
(x1+x2)(x3+x4)=u2是三次方程(4.9)，即(u2)3+2c(u2)2+(c2-4e)u2-d2=0，的一

个根。但方程(4.9)有3个根，因此另两个应该分别对应组合−(x1+x3)
(x2+x4)和−(x1+x4)(x2+x3)。假设方程(4.9)的根为u2=α,β,γ 三种可能，则有

，以及x1+x2+x3+x4=0。在选择根的时候，可

以要求 的值。实际上，这就是 。这个表

达式，还有 这三种两两相加

再相乘的组合，已经体现了用根的置换性质探讨方程可解性的思想了，



在方程论中以及证明五次方程无根式通解时会派上用场。

关于一元四次方程，拉格朗日提供了系统的解式法。将方程(4.2)的
4个解x1，x2，x3，x4，根据克莱因群（Viergruppe，由4个置换构成的

群，V={0;(1,2)(3,4)；(1,3)(2,4)；(1,4)(2,3)}）作变换[3]，组合出

则量s1，s2，s3，s4，可唯一地决定x1，x2，x3，x4。已知s1=0。那么

另外3个量s2，s3，s4，是多项式方程 的根。将s2，

s3，s4，的表达式代入，再将展开过程中得到的x1，x2，x3，x4，的基本

对称多项式用c,d,e代入，即

发现最后得到的就是方程(s2)3+2c(s2)2+(c2-4e)s2-d2=0，这个方程与出

现在欧拉解法中的(u2)3+2c(u2)2+(c2-4e)u2-d2=0（式4.9)相同。这里的问题

是，拉格朗日触及到了解多项式方程的核心概念了：基本对称多项式、

解式和群。笔者1994年走到了式(4.12)，知道它必有深意，却无力往前

推进一步。未来我们会知道，这里需要一个哲学思想上的突破，即用还

未求出的根来表示待求的根，关注方程根表达式的结构！

注意在求解四次方程时引入的预解式方程形式上是六次方程，但这



个六次方程是特殊的，是关于一个变量之平方的三次方程，故本质上还

是三次方程。这让欧拉相信，对于一般代数方程而言，总有比原方程低

一阶的预解式方程。多么美好的期望。

关于一元四次方程，如今人们知道可以直接导出其预解式方程来。

对方程x4+px2+qx+r=0，令x=u+v+w，代入方程中硬性地展开，得

令其中的

则有

把u2，v2，w2，当作某个一元三次方程的根，上面的式(4.15)就是相

应的根的对称函数，而方程形式就是

这就是预解式方程。

1765年贝佐也找到了一个四次方程的求解方法，收录于其1779年出

版的著作《代数方程一般理论》（Théorie génerale des équations
algébriques）中，其中对根的对称函数有些相当有价值的讨论。为了解

x4+px2+qx+r=0，贝佐考察辅助方程



（cyclotomic equation，即分圆方程，用于求解代数方程首先出现在

这里）和方程

他要通过消去y来获得根x。他将方程(4.18)分别乘以1,y,y2,y3得到4
个新方程，消去其中的y,y2,y3，利用分圆方程y4-1=0，会得到一个关于

a,b,c的方程组。消去a和c，得到关于b的六次方程为

而这是关于b2的三次方程，故问题是可解的。后续步骤同前。不

过，这里是冲着原方程中的系数b而设计的解法。如果是冲着a或c去
的，类似的考虑会得到一个24阶的预解式方程。A warning shot across
the bow（掠过船头的警告射击）？这警告我们，一般情形下，预解式方

程可能是更高次的方程。

就四次方程的解法，笔者注意到它突出了一个非常有趣的哲学实

践。对于四次方程这样足够复杂的问题，解决的办法就是往低次分解、

约化，这也是法语resolvent、reduite的本意。然而，这个约化，可以是

直接地下行，也可以是策略地上行。贝佐的方法就是典型的高开低走，

先往高次方程方向走，但是那高次方程是关于一个未知变量之平方的低

次方程。这个策略，也许对我们解决其他问题有帮助。就学问来说，有

时候低层次的内容反而要在学会足够多的更困难、更深刻的内容之后才

能理解。

如何解四次方程，在从前没有互联网的时代，肯定一直有人在独立

思考这个问题。1902年，天才数学家拉马努金（Srinivasa
Ramanujan,1887―1920）就又给出了一个很有创意的解法。从如下方程

组出发：



消去y得到方程a2(d -cx)=(b -x2)2。当然对付四次方程可只用三个自

由参数，故可固定一个，比如可令a=2，得x4-2bx2+4cx+(b2-4d)=0，这就

是缺项四次方程的标准形式(4.2)，x4+px2+qx+r=0。令

把这些代入方程组(4.20)（记住，已经选择了a=2），得

这正是α2,β2,γ2构成的对称多项式（由式（4.22a）可知为什么要选择

a=2了），故它们是三次方程z3-bz2+dz -c2/4=0的解。解出了α2,β2,γ2，自

然就能得到根x=α+β+γ 了。

上述这个解法，可以整理改造如下：从方程组

出发，这对应四次方程

解辅助的三次方程



得到3个根α,β,γ，则 就是四次方程(4.24)的根。

拉马努金的这个解法，还是要导向三次预解方程，可以说万变不离

其宗。但是，它很物理。它的思想基础是，平面上的两条抛物线一般交

于4个点，可由两个抛物线方程构造出一个一元四次方程，而由这两个

抛物线方程也可以构造出相应的辅助三次预解式来。

一元四次方程的解相当麻烦，但数学家们还是找到了足够多的解

法，在寻求解的过程中也带来了对代数方程这个数学对象的一般性思

考。从后来的发展来看，将解方程转变为对方程本身的认识是此一数学

领域里了不起的一大步。
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法国数学家、哲学家笛卡尔

René Descartes 1596—1650



法国数学家、物理学家拉格朗日

Joseph Louis Lagrange 1736—1813



第5章 一元五次方程代数不可解

It isn’t that they can’t see the solution. It is that they can’t see the
problem.

——G. K. Chesterton

不是他们看不出解，他们看不出问题。

——切斯特顿

摘要 解一元五次方程的尝试意料之外地皆遭遇了挫折。拉格朗日

系统研究了二次、三次和四次方程的解，发现根的表达同与多项式相联

系之根的对称组合有关，从而有了对称多项式、预解式、判别式等概

念。鲁菲尼和阿贝尔分别于1799年和1824年给出了五次方程不可解的证

明。伽罗华于1830年前后引入了群的理论，给出了一般五次方程代数不

可解的证明以及什么样的多项式可解的伽罗华理论。由此开启的近世代

数研究成了数学的新分支，而其中的群论为物理学研究带来了有力的工

具。阿诺德用拓扑方法的证明，把根的置换对称性中的置换用路径具体

地呈现了出来，别出心裁。看似简单的问题只有在更高的层面上加以审

视才能看出它的微妙来。

关键词 一元五次方程；预解式；判别式；对称多项式；可解性；

群；伽罗华群；伽罗华理论

关键人物Vandermonde,Lagrange,Gauss,Ruffi ni,Abel,Galois,Arnold



§5.1 解一元五次方程

现在人们已经成功地给出了二次、三次和四次多项式方程的通解表

达式，下一步自然是向五次多项式方程进军。基于求解三次和四次方程

的成功经验，数学家对于解五次方程信心满满。不过，在接下来的一百

多年里进展却很不顺利。瑞典隆德大学的历史老师布灵（Erland Samuel
Bring,1736―1798）找到了一个变换[1]，可以把五次方程约化到

不过这看似简化了问题但实际上却于事无补。欧拉发现

这类方程是可解的，但这是特例。欧拉未能解一般的五次方程，尽

管他在研究过程中找到了解四次方程的新方法，也算是功不唐捐吧。

法国人范德蒙（Alexandre-Theophile Vandermonde,1735―1796）和

英国人瓦林（Edward Waring,1736―1798）怀疑到底五次多项式方程是

否也有表达看起来挺对称的那种通解。拉格朗日捡起了这个思想，才有

了代数方程发展史上关键性的《关于代数方程解的思考》（Réfl exions
sur la Résolution Algébrique deséquations）一书。拉格朗日对根的置换作

了深入的讨论，认识到方程的性质及其可解性依赖于根（某种组合）的

置换对称性。他发现，方程可解在于找到方程根的某种置换不变的函数

（未来伽罗华只需要读懂这个概念），但是这个策略对五次多项式方程

失效。此时，人们似乎已经感觉到了五次方程没有根式通解。高斯

（Carl Friedrich Gauss,1777―1855）说也许不难严格证明五次方程的通

解不能表达为代数公式，但没了下文。



1835年，英国人杰拉尔（George Birch Jerrard,1804―1863）提交了

一篇论文，宣称找到了五次方程的一般解表示。哈密顿受命审阅这篇文

章。哈密顿花了一个晚上给出了这篇论文的报告，认为这篇论文包含了

很多聪明的数学，但是没有提供一般解。到下个月杰拉尔干脆宣称找到

了任意次方程的解，还是交由哈密顿审阅。哈密顿认为杰拉尔的方法不

能解五次方程，这当然基于他自己对五次方程的研究。在1836年5月31
日这一天，哈密顿给杰拉尔写了一封124页的长信，详细阐明了为什么

他给出负面的评审结论。当然，杰拉尔从未被说服。实际上杰拉尔不是

找到了五次方程的解，而是找到了一个变换，把五次方程变成了三项正

规（trinormal）的形式

哈密顿自己曾研读过阿贝尔的不可能证明（后面会提及），还挑出

了两处小错。哈密顿还写了“论阿贝尔关于四次以上一般方程不能用根

式及根式函数有限组合表达其根一事的论证”（On the argument of
Abel,respecting the impossibility of expressing a root of any general equation
above the fourth degree by an fi nite combination of radicals and radical
functions），这篇文章一如他的其他文章一样难读。后来在1879年，克

罗内克（Leopold Kronecker,1823―1891）提供了一个简单的证明，再后

来就有了伽罗华理论。

对一般代数有理解的人容易接受高次代数方程不可解局面的出现，

愚以为这也是逻辑链条突变[2]的例子——二次方程可解，三次方程可

解，四次方程可解，但是在五次方程这里戛然而止。到这个地方，五次

连乘x·x·x·x·x已经不能支撑根式解的存在了。



§5.2 拉格朗日的总结

拉格朗日在1770―1771年间将解四次以下的多项式方程的各种技巧

放在一起考察。拉格朗日发现，一个n次代数方程，用其可能的根来表

示，形式应为

其中si称为基本对称多项式。基本对称多项式关于根的置换是不变

量！又，既然方程的形式为 ，那解之差（的某种函数）可能就意

味着点儿什么。定义

Δ=δ2可作为判别式（discriminant）。函数δ 随着根的置换只会改变

符号，显然函数Δ=δ2关于根的置换是不变的。如果方程有重根，Δ=0。
对于最简单的二次代数方程来说，δ=x1-x2；Δ=(x1-x2)2=(x1+x2)2-4x1x2=s2

1-
42，即人们熟悉的b2-4ac或者b2-4c。对于三次方程，

。如果一个n次多项式方程的伽罗华群包含于交

替群An，则Δ会是个完全平方数。这是后话。

拉格朗日引入了多项式方程解式（resolvent）的概念。解式也是多

项式，也叫解式方程（resolvent equation）。解式方程的根能用来帮助



解原来的多项式方程。三次方程的解式x2-Δ 称为二次解式（quadratic
resolvent），其根出现在三次方程的根表达式里。四次方程的解式称为

三次解式（cubic resolvent），那是具有八元素的D4群的解式。对于方程

x4+cx2+dx+e=0，解式的一个选择是R(x)=8x3+8cx2+(2c2-8e)x -d2。当解式

的阶次比原来多项式方程的阶次低时，就可以用低次方程的根去解高次

方程。

拉格朗日研究二次和三次方程的解，发现了一个模式。将n次多项

式方程可能的n个根与相应的分圆方程xn=1的n个根作为矢量求内积后求

其n次方，有如下结果：

你看，到五次方程的时候，事情突然变得可怕了。

后来，凯莱（Arthur Cayley,1821―1895）于1861年为五次方程提出

了一个根的表达式 ，相应的5
个根置换会只有6种结果。这样得到的解式是五次多项式的最大可解伽

罗华群的解式，它是一个六次多项式。6种结果虽然比24种结果简单多

了，但它依然是个颠覆性的结果：解式的阶次比原来的多项式的阶次

高！从前解多项式方程的法子失灵了。五次及五次以上的多项式方程根

的代数公式可能不存在！

基本对称多项式，判别式，以及待解方程之根同分圆方程之根的内

积的n次方，这是解代数方程过程中会遇到的量之全体，它们都是待求

方程之根的函数。前两者都是置换不变量，而后者在根置换下的结果会

随着方程阶数的升高变得复杂起来。方程的可解性问题可能就着落在此

处。拉格朗日引入的概念和分析结果，后来被伽罗华系统地利用了，从



而有了伽罗华理论。



§5.3 不可解证明

拉格朗日详细考察了求解二、三、四次多项式方程的方法，意识到

五次及五次以上方程的求根公式可能不存在。虽然他未能证明自己的断

言，但是，他提出的根的置换理论揭示了问题的本质，带来了最后解决

这个问题的曙光。1801年，高斯证明分圆多项式（cyclotomic
polynomial）xp-1当p为费马素数时可以用根式求解（由此他得到了圆内

接多边形的尺规作图法，详情参见拙著《惊艳一击》），这使得人们意

识到，至少有一部分高次方程是可以用根式求解的。我猜测这里有素数

的出现，与不可约有关，可回答伽罗华理论中商群阶数为素数的问题。

1799年，意大利人鲁菲尼（Paolo Ruffi ni,1765―1822）发表了两卷本、

共516页的《方程的一般理论》（Teoria Generale delle Equazioni）一

书，试图证明五次方程不可解。1810年他又向法国科学院递交了一篇论

五次方程的长文，被拒稿，理由是审稿人没空验证其中的内容。1813
年，鲁菲尼再次发表了另一版本的不可能性证明，不过是在一个不知名

的杂志上发表的。尽管鲁菲尼的工作未引起数学界的重视，且自身有一

些缺陷（没证明根式是方程根的有理函数），但却是探究五次方程解的

路程上的一大步。1824年，挪威人阿贝尔（Niels Henrik
Abel,1802―1829）证明了五次代数方程通用的求根公式是不存在的。结

合高斯关于分圆多项式的结论，接下来的问题自然是如何判定具体的代

数方程是否有根式解。到了1830年，法国数学天才伽罗华彻底解决了五

次多项式方程何时可以有根式解的问题，不过他的结果也一直没有能够

发表。1846年，在伽罗华辞世14年之后，他的这一伟大成果才终见天

日。伽罗华首次提出了群（法语为Groupe）的概念，并最终利用群论解

决了这个世界难题。1870年，法国数学家约当（Camille



Jordan,1838―1922）根据伽罗华的思想撰写了《论置换与代数方程》

（Traité des substitutions et des équations algébriques）一书（此书703
页，比鲁菲尼的书更长），人们才真正领略了伽罗华的伟大思想。伽罗

华的思想后来衍生出了伽罗华理论，属于抽象代数的一个分支。



§5.4 Abel-Ruffini定理

Abel-Ruffini定理断言：“五次及五次以上的一般多项式方程没有根

式通解（general solution in radicals），即用加减乘除和有限根式表达的

解。”这就是所谓的代数方程无解性定理。注意，这里的正确表达是“加
减乘除和有限根式”，一些书中经常把“有限”这两个字给漏掉了。必须

强调，1. 没有代数解不排除其他形式的公式解，比如用椭圆函数和超几

何函数表示的解；2. 所谓的根式是有限的根式，无限嵌套的根式是有可

能作为解的；3.一般多项式方程没有代数公式解，不排除一些特殊系数

的方程有代数公式解。其实，判断哪些特殊系数的方程有解以及如何解

恰是后来的伽罗华理论之威力所在。

鲁菲尼的长文，一般是没人读了。阿贝尔的论文命运也不济，总是

被拒稿。他1824年发表了一篇法文的，因为自费，所以极为简明扼要，

只有短短的6页。笔者愚鲁，虽然读了，其间有些推导的空隙也补不

上。比如文中的“如果可解会引出一个矛盾”，我就没看出那矛盾是啥。

讽刺的是，阿贝尔自己在文章的第一段中就说其文章的目的在于补上空

隙（remplir cette lacune），但他的文章对于我们这些数学弱头脑来说满

是空隙。



§5.5 伽罗华理论[3]

拉格朗日的思想启发了伽罗华。伽罗华从拉格朗日的思考中到底看

到了什么？各种数学书籍都语焉不详，或许对数学家来说那是显然的。

我猜想，这里的思路应该是这样的，解由系数决定，

，这个映射就是欲寻找的表达式。但是，拉格朗日发现，系数应以根的

基本对称多项式的视角来看待，这样

这里 这个映射带有结构性的信息。伽罗华于是

把关注点放到了 上，这是用根的结构化组合(s1,s2,
…,sn)来表示根，表面上看是抛开了系数来谈论方程的解。这恰是伽罗

华文章被拒绝的原因。那个（有限）群概念里必须强调的封闭性，恰是

这里的根之基本对称多项式的封闭性。伽罗华把研究方程的可解性问题

转换成了方程根的置换群的可（分）解问题——看到组合(s1,s2,…,sn)容
易想到根的置换。

伽罗华的思想可大致概括如下。首先，每个方程都具有自己的对称

外形（symmetry profi le），根的置换对称性是方程的特征。置换是关键

词，一个n次多项式，其最大的置换对称性由置换群Sn来表征（群的概

念以及从群概念的角度谈论代数方程的可解性问题，见后面的第9章。

可在阅读完第9章后回头来看此处的内容）。第二步，找出正规子群

（normal subgroup），即属于一个共轭类的子群。然后有最大正规子群

（maximal normal subgroup）的说法。正规子群还有它的正规子群，这

样可以追踪得到一个完整的最大正规子群家系（a genealogy of maximal
normal subgroup）。第三步，只有特殊类型的伽罗华群才是可（分）解



的。伽罗华群是可解的，对应的方程才是有解的。一个群是可解的，当

且仅当其每一个正规子群的指标（composition factor）都是素数，即前

级正规子群的阶数总是其最大正规子群阶数的素数倍。若一个伽罗华群

是可解的，解方程的过程就可以分解为一些简单的过程，其中只涉及低

级次方程的解。对于一般形式的五次方程，置换群S5是不可解的，因为

它的最大正规子群A5的指数是60，而A5群是单群，它的最大正规子群就

是群{e}，只有一个元素。显然，60不是素数。

具体地，证明步骤简述如下。

1.一般n次多项式的伽罗华群是Sn。

2. 群Sn的第一个最大正规子群一定是交替群An。

3. 如果伽罗华群的合成列（composition series）中的指数始终是素

数，则称伽罗华群是可解的，相应的代数方程是可解的。

4. 对于n=2，A2群就是平凡的，二次方程可解。对于n=3，A3群就是

三阶的循环群，这是一个阿贝尔群，三次方程可解。对于n=4，A4群不

是简单的，它的最大正规子群是克莱因的V群（英文为four-group，其指

数为3，而3是素数），四次方程可解。对n≥5，An群总是简单的（故它

也是它关于群{e}的商群），且是非阿贝尔群，故五次以上方程一般不

可解。一个五次方程当且仅当其伽罗华群是20阶的弗罗贝尼乌斯

（Ferdinand Georg Frobenius,1849―1917）群F20的子群时，即为F20、D5

或者Z/5Z群时，才是可解的。

对于具体的五次以上代数方程，判断是否可解就是研究它的伽罗华

群的可解性。作为第一步，要计算具体方程的伽罗华群。伽罗华群告诉

你方程根的样子，尤其是根式嵌套有几重。

计算伽罗华群（对方程的根进行置换）不是一件容易的事情。它是

置换群Sn的子群，故只需要考虑子群的共轭类。不过，随着n的增大，

群Sn的子群共轭类的数目急剧增加，计算伽罗华群的难度也随之上升。

其实，只要计算传递子群即可（transitive subgroups）。对于n=2的情

形，传递子群只有1种；n=3，有2种；n=4,5，各有5种；n=6，有16种；



n=7，有7种，等等。注意，当n为素数时，可能性都少，这是群的特

点。

必须指出，即便知道了伽罗华群，五次方程也很难解，那不是一般

人能干的活儿。至少从推导过程来看，那也是非常艰巨的任务。更多内

容见第6章。

为了讨论代数方程解关于数的分类，要引入一个专门概念，域

（field）。简单地说，如果一类数的集合，其相加和相乘的结果还在这

个集合里，这就构成一个域。有理数，实数和复数是我们熟悉的、在解

代数方程时要关切的域，分别记为Q，R和C。关于代数方程，我们把系

数限定在实数域内，而解限定在复数域内。但是，实数域、复数域都是

大域，里面有丰富的域结构。代数方程还涉及有理函数域。有理函数仿

照有理数，其分子分母都是多项式而已，它们也构成域，即对乘法和加

法是封闭的。

域有大小不同。从一个小的域F扩展到大的域K，就是扩域，记为

K/F。比如 就是个域，记为 。一个系数域为K的多项式

P(x)的根域是系数域的最小扩展L，它满足如下性质：它使得多项式P(x)
可以分解为一次因式的乘积，而所有一次因式的根都在这个扩展域L
中。一个系数域关于某个多项式的根域就是将根加进去的最小扩域。比

如多项式p(x)=x2-2，系数是有理数，令根域为 ，就把根都包括进去

了。若从域F扩张到K域，K=F(α)，αn=a∈F，则K是F的单根式域扩张。

如果存在扩域系列，F=F0⊂ F1…⊂ Fn=K，每一个都是前一个的单根式

扩张，则K是F的根式扩张，这是一个通过添加方根得到的括域。谈论

多项式方程，要提及那个包含了系数和根的根域，似乎是理所当然的。

所谓可解，就是通过有限次添加方根得到的系数之K扩张包含该多项式

的根域。

如果两个域之间有映射关系，满足



则这两个域具有相同的结构，我们说它们是同构的。两个域到底怎

么个同构法，体现在这个映射f上。

对于多项式P，设其系数域为F，多项式在数域F上的根域记为K。

考察从根域K到根域K但保持域F的元素不变的域同构（自同构），这些

同构的全体构成了一个群，记为Gal(K/F)。这就是著名的伽罗华群。伽

罗华群是置换群Sn的一个子群。若伽罗华群是可（分）解的，则相应的

多项式方程是可解的。

至此，我们只需要理解“群是可解的”是什么意思，就算是理解了伽

罗华理论了。简单地说，群是满足乘法封闭性的集合，它包含单位元

e，所有元素g有逆g-1，且乘法要满足结合律。群的元素个数就是群的阶

数。一个群中的部分元素所构成的集合也可能满足群的定义，这是群的

子群。如果H是G的子群，对于群元素g∈G，h∈H，总有ghg−1∈H，则

H是正规子群。这个正规子群定义用到的是共轭算法。群的正规子群也

许还有正规子群。如果群G有如下的最大正规子群序列

，前一个是后一个的最大正规子群，且后一个群的阶数是前一个群的阶

数的素数倍，则这样的群是可解的。S5群的最大正规子群序列是

，其中A5的阶数60，显然60不是素数。由此得出的结论是，一

般五次方程没有有限根式解（见5.4节）。

一个代数方程的根，就这个方程而言，它们是共轭的（yoked
together），不可分辨的（一个意义下不可分辨的对象可以在更具体的

意义下是可分辨的）。这是伽罗华理论的核心。伽罗华理论就是用群论

提取那些根（所构成之表达式的）对称性的性质，从而得到那些根作为

数的性质。

关于群的理论和代数方程可解性的讨论，更多内容见第9章。



§5.6 伽罗华其人其事

伽罗华是法国数学家，有评论认为其能进入人类最伟大数学家排名

前30。伽罗华在19岁时就给出了多项式方程根式可解的充分必要条件，

为群论和伽罗华理论奠立了基础。伽罗华于21岁上死于一场决斗，过早

地结束了他天才的生命。难以想象，若天假其年伽罗华到底还能为数学

做出哪些突破。顺便说一句，同年热力学的奠基人卡诺（Sadi
Carnot,1796―1832）病逝，享年仅36岁。

伽罗华的母亲能流利阅读拉丁语古典文学，她亲自教导伽罗华到12
岁。伽罗华于1823年入路易大公中学（Lycée Louis-le-Grand），14岁时

对数学表现出兴趣。伽罗华找到了一本勒让德（Adrien-Marie
Legendre,1752―1833）的《几何原本》（Éléments de géométrie），秒

懂。伽罗华15岁时阅读拉格朗日的《关于方程代数解的思考》和《函数

计算教程》（Leçons sur le calcul des functions），前者激发了他日后研

究代数方程理论的热情。

伽罗华1828年报考巴黎工科学校，没被录取，于是入巴黎高师学数

学，次年发表第一篇论文，是关于连分数的。恰此时，他做出了关于解

多项式方程的重大发现，撰写了两篇论文投给巴黎科学院。柯西

（Augustin-Louis Cauchy,1789―1857）负责审稿但拒绝发表，原因不

明。1929年伽罗华再考巴黎工科学校，仍没被录取，原因不明。

伽罗华将其关于代数方程理论的论文投稿了几次，但是终其一生都

未能发表。1830年柯西建议伽罗华把论文寄给巴黎科学院秘书傅里叶，

去参评科学院的大奖（Grand Prix），但是傅里叶不久辞世了，伽罗瓦

的文稿丢失。尽管如此，1830年伽罗华还是发表了三篇论文，其中之一

奠定了伽罗华理论的基础。1831年泊松（Siméon Denis



Poisson,1781―1840）建议伽罗华把关于方程理论的工作递交巴黎科学

院，伽罗华于1月17日照做了，到了7月份，泊松评论伽罗华的工作既不

清晰也不严格，但建议作者把他的全部工作作为一个整体发表。泊松的

报告于10月份送达了已在监狱中的伽罗华手中（伽罗华是一个狂热的革

命者，那时他正在监狱里服刑）。

伽罗华对这个报告一方面很恼火，决意不再向巴黎科学院投稿，而

是通过私人发表，但另一方面他又认真对待泊松的建议，开始把自己的

文稿收集起来，撰写一篇比较系统的论文并于1832年4月29日投了出

去。

1832年5月30日，伽罗华和人决斗，不幸中弹于两日后辞世，年仅

21岁。伽罗华非常清楚决斗对他意味着什么，决斗前一天他彻夜都在给

朋友书写关于他的数学遗嘱（证明）之主要思想（outline the idea of his
mathematical testament），给拟递交的论文加了注解，并附上三篇文稿

（图5.1)。近代德国数学家、物理学家外尔（Hermann
Weyl,1885―1955）曾这样评价道：“这封信，就其所包含之思想的新颖

与丰富而言，或许可以说是人类文献中之最具分量的篇章。”



图5.1 伽罗华与人决斗前夜所书写手稿的最后一页倒数第二句可见“déchiff rer tout ce
gachis（破解这一堆乱麻）”的字样

1843年，数学家刘维尔（Joseph Liouville,1809―1882）审阅了伽罗

华的论文并给予了高度肯定，伽罗华的论文从而得以发表在1846年
10―11月那期的《纯粹与应用数学杂志》（Journal de Mathématiques
Pures et Appliquées）

上。此论文之最重要的贡献是提供了高于五次的方程没有一般根式

解的证明。虽然此前鲁菲尼于1799年发表了一个五次方程无解的证明，

阿贝尔于1824年也给出了五次方程没有根式表达的公式通解的证明，但

伽罗华的理论提供了对问题更深刻的理解，由此诞生了伽罗华理论。依

据该理论，可以决定任意一个多项式方程到底有没有根式解。

在伽罗华最后致朋友的那封信中，伽罗华请求他的朋友去公开请求

德国数学家雅可比（Carl Gustav Jacob Jacobi,1804―1851）或高斯关于

此定理的重要性而非其对错的意见。然后，他希望有人在解读他这



篇“胡写乱划”时能得到有益的东西。伽罗华是第一个在当代意义上使用

群这个概念的人，从而确立他群论奠基人之一的地位（群概念有多种来

源）。他还发展了正规子群的概念，以及有限域的概念。

伽罗华文章的坎坷命运，也可能与思想的惯性（惯性是物理学的主

角）有关。从一元二次方程算起，人们习惯的都是谈论加于系数的某种

条件决定方程的可解性，而伽罗华给出的是加于根的条件。伽罗华的理

论是对思想惯性的革命。

少年，未哭过长夜，不足以言爱情；未读过伽罗华，不足以谈数

学。



§5.7 阿诺德的拓扑证明

大约在1963年，苏联数学家阿诺德（Владии́ мир И́ горевич Арноо́
льд,1937―2010）从拓扑学的角度提供了一个关于五次方程不可解的证

明，这个证明非常迷人、非常震撼。这个证明的要点是把根的置换对称

性中的置换用路径给连接起来。就是说，阿诺德把分立的置换操作给连

续化了！这就如同我们看人家玩魔术，玩魔术的人把左右手里的东西互

换了，我们看到的就是结果——东西互换了。阿诺德所做的就是把这个

左手的东西交到右手、右手的东西交到左手的具体路径给画出来，让我

们清楚地看到过程。此处关切的是路径之与长度无关的性质，属于拓扑

学的范畴。

用几何的眼光考察最简单的二次方程x2+bx+c=0解的问题。给定一

个复平面内b和c两个点，对应另一个复平面内作为方程x2+bx+c=0之根

x1，x2，的两个点。在系数复平面内移动系数b和c，会观察到根复平面

内对应的根的移动。以方程x2-x+0.5=0为例，b=-1，c=0.5；x1≈-1.28，
x2≈0.78。在系数平面内让参数c绕个小圈子回到原处c=0.5，可观察到在

根复平面内两个根也各自绕一个小圈子回到原位。这个很好理解。现

在，让c绕个大点儿的圈子回到原处，会发现对应的两个解的运动结果

是它们换位了。发生根的置换了！This is really,really weird. 也就是说，

根的置换这种操作，可以由方程系数连续地走过一个回路来实现（笔者

好奇的是，阿诺德是怎么发现这一点的。后来，我想明白了，“无他，

唯脑熟且手熟尔！”）。

这个观察有什么意义呢？它告诉我们，从方程参数到方程根的映

射，即根的表达式，不能是一个连续函数。有人可能会反驳说，不对

啊，二次方程x2+bx+c=0的解公式 ， ，是连



续函数啊。错！开根号 这个操作不是个（复数域上的连续）函数。考

察开根号的结果，例如 ，会发现t=0时，对应 ；t=1时，对应

的是 。也就是对应一个变量值，可能有两个结果，这不是函数。

这可以理解为，c中的c绕环路从1回到1造成方程x2=1的两个根发生置换

了。二次方程的根表示使用开根号是一种选择。

为了推进我们的讨论，我们记x1，x2，…，xn∈C为复空间C（根空

间）里的n个点，对应的多项式(x -x1)(x -x2)…(x -xn)为多项式函数空间Fn

中的一个点，记为p。对于根的任意置换，在函数空间中都存在关于点p
的一个诱导该置换的环路。

这里讨论的关键落在函数空间Fn中（其中每个点都是一个n阶多项

式）的环路的一个性质上了。函数空间Fn中关于p点的任意两个环路γ1，

γ1，其对易式

对应的环路，使得f(p)α的图像，其中f(p)是连续函数而α 是有理数，

在根空间中也是个环路。这意思是说，环路对易式 对应的环

路，经连续函数再开根号这样的函数f(p)α所得到的像，是根空间中的一

个环路，而非造成根的置换。

现在考察三次多项式方程的情形。设诱导了置换(1,2,3)的环路为

γ1，诱导了置换(1,2)的环路为γ2
[4]，我们会发现其对易式[γ1,γ2]表示的环

路也造成了3个根的置换。但是，从函数空间Fn到根空间的映射，如果

选择连续函数，包括 的组合的话，应该造成根空间中的一个环路而

非置换。这说明三次方程的解公式必然要求根式的嵌套。

现在阿诺德考察S5群的120个置换操作得到的120×120个对易关系，

发现结果中有60个置换操作是对易式的结果。此时说明五次方程的解公

式必然要求根式的嵌套。继续研究这60个置换构成的对易关系，发现结

果还是妥妥的这60个置换操作，即对易关系进入了一个循环。也就是

说，如果五次方程能表示为根式形式的话，这个根式必是无限嵌套的



（参见Alekseev 2004）。至此，五次方程的有限根式不可解得到了从拓

扑角度的证明。

阿诺德的证明可简述如下。

1.考察二次方程，观察到系数在函数空间里的环路引起解的置换。

没有连续函数可以将二阶多项式联系到其一个根上。二次方程根的表达

式要用到根式，就可以理解了。

2.对于任意多项式，其n个根的任意置换，都存在函数空间里的一

个环路能诱导这个置换。

3.考察环路的对易式，函数空间Fn中的两个环路γ1,γ2，有从函数空

间到解空间C的连续函数f，如果函数空间Fn中的点p绕对易式环路

[γ1,γ2]，而α是有理数，则fα(p)是C空间中的环路。也就是说，若对易式

环路还能诱导非平凡的根的置换，那么解公式就不能是简单的根式，而

必须是根式套根式。

4.考察三次方程，比如置换对应的两个系数环路之对易式环路所对

应的仍是置换，则解公式必须是嵌套的根式。

5.五次方程根的120个置换，对应的两个系数环路之对易式环路会

对应其中的60个置换，包括置换(12345)，说明根公式必须是嵌套的根

式。而这60个置换对应的任意两个系数环路之对易式环路仍对应这60个
置换，说明根公式必须是无限嵌套的。QED.

拓扑视角下的五次方程不可解证明是非常独特的，可应用于诸多其

他场合，比如微分方程奇点的拓扑分类问题，哈密顿系统一次积分的不

存在性问题，等等。



§5.8 多余的话

笔者是1977―1978年刚上初中的时候学习因式分解（factorization）
和代数方程的。那时候，我们别说有法国巴黎高师那里的顶级数学家当

老师，我们连任何意义上的数学老师都没有！成功地找到一个代数表达

式的因式分解，曾给那个赤脚上学的少年带来怎样的欢乐啊，我至今都

难以忘怀。1995―1996年我在摆弄真空仪器之余，时常思考代数方程解

的问题，了无头绪。虽然从二、三次方程的解能看出排列组合以及方程

xn=1的根的影子，但我只能想到用xn=1的n个根来展开待解方程的根，

却没想到从待求的根与xn=1的根之内积之置换上看问题。没办法，没这

个水平啊。这个问题一直压在我的心上，多年来我就想弄明白这个问

题。还有，很长时间里，我没把解方程的“解”同因式分解的“解”和可分

解群中的“分解”以及物质的“溶解”当作一回事，这影响了我对问题的理

解。解和分解，都是solve; 可解的和可分解的，都是soluble。西文里解

代数方程，就是分解多项式函数。读中文文献，解（求解）、分解容易

给人不同概念的感觉，大谬也。若只有我一人这么笨，那就万幸。

从代数方程理论可以看到拉格朗日―高斯―伽罗华这条思想的脉

线。拉格朗日对二、三、四次方程的解与解法的审查，新概念的引入，

以及对置换之关键角色的洞察，除了他的天才，还有对方程的熟悉——
拉格朗日长于各种计算。没有投身过实践的天才是个无从证实其天才的

天才。实践还会激发人的天才。高斯关于分圆多项式（与尺规作图法有

关）的研究，指出了xp-1(p是费马素数）型多项式是可以有根式表达的

——至此你就明白他为什么能用尺规法做出圆内接17边形了。伽罗华看

懂了这一切，解式，置换，群，正规子群（共轭），合成列的指数应为

素数，这些概念构成了伽罗华理论的要素。



伽罗华的成就在于他是个天才，更在于他的世界里有成群的天才前

辈。法兰西是一个伟大的国家，这个国家的伟大之处之一是盛产数学

家。在伽罗华生命中出场的法兰西同胞，包括拉格朗日、勒让德、傅里

叶、泊松、柯西、刘维尔等，都是一等一的数学大家。天才的孩子，如

果遇不到高水平的老师，则不招老师喜欢必然是宿命。虽然，人的胸怀

与学识并不必然正相关，但你很难指望一个水平低下的人有多宽阔的胸

怀。伽罗华也不招老师喜欢（爱因斯坦也是），幸运的是，他的世界里

有天才前辈光芒的照耀。

伽罗华的成就不是天上掉下来的。作为一个中学生，他阅读的是勒

让德的《几何原理》，是拉格朗日的《解析函数论》。他一上来试图延

拓的是拉格朗日走过的路，而拉格朗日是那个对牛顿不服气，感叹“可
惜微积分只需要发明一次”的人。我们的少年，有哪个是在中学时期就

读过顶级学问创造者的（原文）著作的？少年，若你也想让自己的天才

发出光芒，到顶尖学者身边去，到学问的海洋中去。

太多的学问，其本身也许没有价值，但对它的回答所带来的新的问

题及其答案，可能具有意想不到的意义。代数方程研究之最令我惊讶

处，是知识疆域的扩展。整数向有理数分数的扩展，实数向复数的扩

展，代数概念（群、环、域、代数、模型式）的扩展。这些扩展把人们

带到了更高的层次上去审视原始的问题，会发现原来看似简单的问题只

有在更高的层面上才能看出它的微妙来。一个问题的解和一个问题的提

出，这两者不必然在一个层面上或者一个语境中。我们学的东西都太简

单了！ 别以为你能理解那些简单的内容，那些看似简单的内容是因为

你知道得少才显得简单的。在更高的层面上，你才能享受理解复杂的快

乐。解代数方程导出的群论，简直就是为近代物理设计的语言。学会群

论吧，只有这样你才会成为一个合格的物理学家！

关于代数方程解的系统理论介绍，超出了本书的范围（真实的原因

是超出了作者的水平），有兴趣的读者请系统学习近世代数相关课程。
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[1] 先用y=x2+mx+n把方程x5+ax4+bx3+cx2+dx+e=0变换成y5+uy2+vy+w=0，再用变换

z=y4+py3+qy2+ry+s，就能变成z5+pz+q=0的形式了。此处细节从略。再强调一遍，解可解的高次

代数方程是非常繁琐的事情。科学家这门职业首先是个体力活儿。

[2] 《逻辑链条的尽头》，构思中

[3] 本节内容比较难懂，第一遍阅读本书时可以跳过。

[4] 置换（1，2，3）的意思是1→2，2→3，3→1，置换（1，2）的意思是1→2，2→1。
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第6章 五次及更高阶方程解

Lisez Euler,lisez Euler,c’est notre maître à tous.
——Pierre Simon de Laplace

阅读欧拉，阅读欧拉，此公乃吾人师也。

——拉普拉斯

God is a mathematician of high order…
——P. A. M. Dirac

上帝是个高阶数学家……
——狄拉克

摘要 一元五次方程一般没有有限根式解，但这不妨碍具体的五次

方程可解。如果方程的伽罗瓦群可解，它就是根式可解的。五次方程有

根式解，当且仅当其伽罗华群包含于20阶弗罗贝尼乌斯群F20中。此外，

有多种其他的方法，比如利用椭圆函数、超几何函数等特殊函数，可以

解五次方程。由五次方程的布灵形式x5+ax+b=0和三次方程x3+ax+b=0样
子很像也能找出新解法。一元六次方程更不可解，但是研究六次方程的

解一样带来新的知识，比如借此表征了所有根式可解的五次方程。对于

可解的五次、六次方程，解的过程也是特别繁杂的。阿诺德等人研究过

七次方程的解。欧拉更是研究了无穷阶方程的解，最终得到了级数和



以及其他诸般神奇结果。代数基本定理断言n次代数方程

有n个复数解，实系数代数方程复数根以共轭对的方式出现。代数基本

定理不是代数的，其证明光靠代数是无能为力的，要用到拓扑、分析方

面的知识。不能作为代数方程根的实数称为超越数，e和π都是超越数。

关键词 一元五次方程；一元六次方程；伽罗华群；特殊函数；无

穷阶代数方程；代数基本定理；超越数

关键人物

Euler,D’Alembert,Laplace,Tschirnhaus,Argand,Bring,Jerrard,Malfatti,Frobenius,Hermite,Liouville,Lindemann,Kronecker,Klein,Gordan,Dummit,Arnold



§6.1 一元五次方程解

伽罗华理论证明了一元五次多项式方程一般没有有限根式通解，但

这并不表示所有的五次方程都没有根式解。实际上，对于具体的五次方

程，其伽罗华群可以是对称群Sn，也可以是亚循环群[1] Mn，二面群
[2]Dn，交替群An或者Cn群，等等。可以通过计算具体代数方程的伽罗华

群来判定它的可解性：若伽罗华群是可解的，则方程是根式可解的。但

是，原则上可解和能写出解的表达式仍然是两码子事儿。计算出伽罗华

群和得到具体解的表达式都不是一件容易的事儿。此外，没有根式解，

但可以用其他的函数来表示解，比如用椭圆函数。克莱因于1884年发表

了一篇题为《正二十面体与五次方程解》的长文，戈尔丹（Paul Albert
Gordan,1837―1912）差不多同时期也有类似的讨论，将五次方程、转

动对称性和超几何函数结合到了一起。利用一些超越函数，比如θ函
数、魏尔斯特拉斯——函数或者戴德金η函数，也可找到五次方程的公

式解。德国数学家克罗内克（Leopold Kronecker,1823―1891）曾试图理

解五次方程为什么可以用椭圆函数来解。法国数学家厄米特（Charles
Hermite,1822―1901）在“论一般五次方程的解”一文中则论证了为什么

拉格朗日的解法不能用于五次方程。这两位都写过题为“论一般五次方

程的解”的文章。给出五次方程新的公式解是一个能展示数学家真正水

平的挑战，至少到1999年还不断有五次方程新解法涌现呢。就算群论说

五次及更高次方程是没有一般根式解的，试图找出一般根式解的注定徒

劳的努力也会结出硕果。感兴趣的读者，建议阅读本章后的参考文献。

因为五次方程很难得到公式解，且有限根式解还被证明是不可能

的，所以，解五次方程问题惊动了几乎所有的世界上最伟大的数学头

脑，也就容易理解了。



欲解高次方程，第一步是约化。欧拉就把一般五次方程一直约化到

了x5−10qx2-p=0的形式。1683年，瓦尔特（Ehrenfried
Walther,1651―1708）对五次方程开始进行系统的研究。Ehrenfried
Walther即是Count of Tschirnhaus，故后人以爵位封地名Tschirnhaus（切

恩豪斯）称呼他。切恩豪斯爵士引入变换

可以把一般代数方程

变成

的形式，故文献中会把变换(6.1)称为切恩豪斯变换（Tschirnhaus
transform）。切恩豪斯爵士觉得根据他的变换，继续下去也许能消去xn-2

项以至于所有的低次幂项，直至最后只剩下xn=a0形式的方程。针对一般

方程(6.2)，他引入替换

由方程的n个根x1，x2，…，xn计算相应的y1，y2，…，yn，选择参

数p和q，使得 ，这样就得到yn+b3yn-3+…+bn-1y+bn=0形式的方

程。注意，(n-1)和(n-2)次幂项都消掉了。那么，引入变换

y=x4+px3+qx2+rx+s，就能够将一般的五次方程约化为y5+bn-1y+bn=0的形

式。不过说来容易做来难。具体计算得到这个最简化的形式要由布灵在

1786年才完成，1852年由杰拉尔重新发现，是故



称为Bring-Jerrard标准形式，或者布灵标准形式。

将五次方程约化为布灵标准形式(6.4)，若两个系数a和b可参数化为

a=5(43)μ ν4

其中参数μ和v为有理数，则方程是可解的。又或者如果有

其中ε=±1，c≥0，e≠0，方程也是可解的。当然了，根的表达非常复

杂。克莱因把方程约化为

的形式，进而解相应的正二十面体方程，根可用四变量的超几何函

数表示。正二十面体的点群为 群，其多项式方程就是五次的。戈尔

丹的解法利用了多面体多项式（polyhedral polynomials）的概念，这些

多项式的根落在多面体的顶点上、边中心处和面心处，因而具有相应的

对称性。比如，对于正二十面体多面体，对应其顶点的多项式为

；对应边的多项式为

；对应面的多项式为

，这些多项式之间有关系

其中的幂指数5-3-2就是正二十面体的对称轴的特征。你看，从式

(6.8)好像能看到一元五次方程、正十二面体和正二十面体的影子(5-3-
2)。

厄米特在1858年发现五次方程可以用椭圆函数（雅可比θ函数）求



解。厄米特一直关注五次方程解问题，他在1842年（同年考入巴黎工科

学校）就发表了“关于五次方程代数解的思考”一文，震惊了国际数学

界。厄米特发现x5+ax+b=0和约化的三次方程样子x3+ax+b=0很像，而后

者有解。定义

其中zi是周期为ω1和ω2的魏尔斯特拉斯（Karl
Weierstrass,1815―1897）℘ 函数。往下一通构造，得到一个被约化为x5-
x+ρ=0形式的方程。或者反过来说，对于方程x5-x+ρ=0，k是四次方程

k4+z2k3+2k2-z2k+1=0的解，其中 。这样，由k就可以得到五次方

程的解。厄米特的方法后来又被克罗内克用来对付x5+cx+c=0形式的方

程。

关于五次方程解，数学物理大家克莱因1884年撰有《二十面体与五

次方程解教程》（Vorlesungen über das Ikosaeder und die Auflösung der
Gleichungen vom 5ten Grade）一书。克莱因研究高于四阶的代数方程，

尝试用超越方法去解五次方程，因此注意上了二十面体具有五次转动对

称性（和五次方程根的置换对称性有对应。记住，任何有限群都同构于

一个置换群）的事实。他用二十面体群解决了五次方程的非根式解问

题，相关研究让他发表了一系列关于椭圆模函数的论文。克莱因在这本

书中讲述了自守函数理论，以及如何将代数同几何联系起来。我把这本

书的章节安排照录下来，供读者朋友感受大学问家看（我们误以为简单

的）问题的多层次与多角度。《二十面体与五次方程解教程》一书章节

安排如下。

第一部分

第一章 规则多面体与群论

第二章xy+i简介

第三章 基于函数论对基本问题的讨论第四章 基本问题的代数特征



第五章 一般性定理和对主题的探讨

第二部分

第一章 五次方程发展史

第二章 几何内容简介

第三章 五次方程的主方程

第四章 不变形式以及六次雅可比方程

第五章 一般五次方程

显然，这跟笔者能想象到的正二十面 体和五次方程的可能内容出

入很大。克莱因关于自守函数和椭圆模函数的研究成果见于他和朋友一

起撰写的《椭圆模函数理论教程》和《自守函数理论教程》等书，厚厚

的四大本，前后耗时20年。

上述关于如何解五次方程的介绍都是不完备的，因为要用到很神奇

的构造以及一些超越函数，如果都解释清楚，早超出本书的范围和作者

的水平了。为了对解的复杂性有个直观认识，举个简单点的例子吧。对

于可解五次方程x5-20x4−10x2−1=0，其根之一为

对于可解五次方程，还有马尔法蒂（Giovanni Francesco
Malfatti,1731―1807）于1771年发现的根表达式。这是第一例用六阶预

解式解五次方程的成功案例。五次方程的预解方程是个六次方程，似乎

无助于获得五次方程的解。可是马尔法蒂发现若六次预解方程有有理

解，则该五次方程可解。用后来的伽罗华理论观照，马尔法蒂算是表征

了所有根式可解的五次方程。马尔法蒂对付的是方程



看似只有两个系数c和d的情形，但是还是个很强的限制，“this does
not restrict the generality as much as it seems at first glance”。我们看到马

尔法蒂给的假设解为含4个参数的形式：

由根构造出一个五次方程，讨论参数该满足的条件，中间会得到一

个特殊的六次预解式，其实是双三次预解式。双三次预解式有根式解，

就可以得到原五次方程的根式解。比如，对于方程xx5=+262561500，其

根式解为

马尔法蒂这算是呈现了一个经典传统的解法。

1991年杜米（David. S. Dummit,1954―）给出了可解五次方程的确

切公式表达。杜米从伽罗华理论出发，发现五次方程有根式解，当且仅

当其伽罗华群包含于20阶弗罗贝尼乌斯群F20中。这里的关键是，把五次

方程解存在的判据系于关联的六次预解式方程的有理根的存在。记20阶
弗罗贝尼乌斯群F20的两个生成元为置换(12345)和(2354)，针对方程多项

式（我们得习惯把方程写成这个形式！）

构造在域Q(s1,…,s5)上的满足六阶方程的群的稳定子θ及其5个共轭

（用原方程的根表示的），这个六次方程的对称多项式是原来方程的对

称多项式的函数。这个六阶方程还有二次项因子，属于可解的。举例来

说，方程x5-5x+12=0的预解式为



有两个二次项因子x2+1250x+6015625和x2-3750x+4921875。这个方

法一方面要用到群论知识（见第9章），另一方面繁杂的计算也是必需

的。



§6.2 一元六次方程解

一元六次代数方程（sextic equation,hexic equation）即形式为

的方程。六次方程出现的场合不多。五次方程的凯莱解式是一个六

次多项式方程，算一个。五次以上方程没有有限根式解，所以关于六次

方程倒是省了相关的讨论。不过，与五次方程一样，伽罗华理论可以帮

助回答哪些六次方程可解。根据伽罗华理论，一元六次方程有根式解，

当且仅当它的伽罗华群被包含在一个48级的群（有52种不同构的类型）

中，该群将根集合的一个分拆稳定为三个两根子集；或者包含在一个72
阶群（有50种不同构的类型）中，该群将根集合的一个分拆稳定为两个

三根子集。

一般六次方程可以用费里（Kampe de Feriet,1893―1982）函数来

解，约化六次方程可以用克莱因解五次方程时用到的广义超几何函数

（generalized hypergeometric functions）。形如

的六次方程是雅可比六次方程，可用魏尔斯特拉斯椭圆函数解。这

些使用特殊函数的解法，此处不作深入讨论。

针对六次方程，总有人在研究一些特殊情况下的解。此处举一例说

明。若方程形式为

即可表示为一个（本构）三次多项式的平方减去一个二次多项式的



平方，这个当然可以进一步因式分解，从而得到两个三次方程：

欲使这样的分解成立，展开方程(6.17)，使其各项的系数同原方程

(6.15)一一对应，得到

共6个方程，决定6个未知变量b0，b1，b2和c0，c1，c2，但并不能解

出这6个未知数，因为六次方程的解原则上不一定是根式解。但我们就

是为了找寻根式解，所以可以引入一个补充条件，比如要求c2=0。然后

从上面条件可以依次得到b2，b1，b0。解c1时，c1只确定到符号（正负符

号不定），只要不为零就行。然后可进一步解出c0。也可以选择补充条

件c0=0，按照上述步骤，逐步确定系数b0，b1，b2和c1，c2。由于此解法

只针对一些系数特殊的情形有效，不具有一般意义。

解可解的六次方程的过程也能累死人。阿诺德曾考虑过一般七次方

程的两变量函数解。这样的事情，我们常人别说自己做得出来，就算是

那论文让我们看一遍也有点儿力不从心。我这是真实感受。



§6.3 代数基本定理

作为本书代数方程这部分的收尾，我们最后再来关注一下代数基本

定理。

解方程嘛，自然就会关注方程解的数目问题。一开始，人们关心的

多项式方程系数是有理数，然后扩展到实数。根呢，一般关注的也是实

数根——实数根反映物理的真实。经验表明，一次代数方程x-a=0确实

有一个实数根；二次方程有两个实数根，有时候没有实数根；三次方

程，有时候有一个实数根，有时候有三个实数根，这让人们猜测n次多

项式（实系数）方程可能最多有n个根。这个猜测最早出现在德国数学

家罗特（Peter Roth,1617―?）于1608年出版的《有理算术》

（Arithmetica Philosophica）一书中。法国数学家吉拉尔（Albert
Girard，1595―1632）[3]在其于1629年出版的《代数领域的新发明》

（L’invention nouvelle en l’Algèbre）一书中也有代数基本定理的早期想

法，他提到n次多项式（实系数）方程可能有n个根，neither more nor
less。吉拉尔给了个例子，x4=4x -3确实有4个根，1（双重根），

。注意，这表明在17世纪初方程的解已经扩展到了复数

域。

关于多项式方程根之数目的陈述，涉及代数基本定理。代数基本定

理指出，每一个复系数的单变量多项式至少有一个复根。因为实数包含

于复数，则实系数的多项式也必然至少有一个复根。这相当于说复数域

是代数闭合的。进一步地，既然每一个多项式都至少有一个复根c，连

续利用除法P(z)/(z-c)（注意，复数有除法，这一点很重要），可得到低

一阶的多项式，其也至少有一个复根，这样就能证明n阶复系数多项式

方程有n个复根。代数基本定理可以表述为：每一个复系数单变量n次多



项式有n个复数根。就实系数多项式而言，任意n次多项式总可表为

的形式，其中ai，bj，cj∈R。根据二次型方程的根公式，当根为复

数时，是一对共轭复数。这就是我们常说的实系数多项式方程的复数根

都是以共轭对的方式出现的。

其实，代数的基本定理可能名不副实。首先它不是代数的问题，至

少不是近世代数意义上的问题，它其实只是关于普通的多项式方程的一

个论断；其二，它也没啥基本的；第三，它的证明用纯粹的代数方法可

不行，当前的证明都要用到实数的解析完备性，而解析完备性可不是个

代数概念。

代数基本定理的证明很难，也花样繁多。1746年，达朗贝尔

（JeanBaptiste le Rond D’Alembert,1717―1783）就尝试过证明代数基本

定理。后来，欧拉于1749年，德·封瑟内（François Daviet de
Foncenex,1734―1799）于1759年，拉格朗日于1772年，拉普拉斯

（Pierre-Simon Laplace,1749―1827）于1795年都有过证明该定理的努

力。后4种证明都假设了根的存在，要证明的只是根应该是a+bi的形

式，用现代的词汇来说是证明多项式分裂域（根域）的存在性。1799年
高斯给了一个从几何角度出发的证明，但有拓扑的缺陷，后来由奥斯特

洛夫斯基（Aлeкcáнp Mápкoвич Oстрóвский,1893―1986）于1920年给

补齐了。代数基本定理的第一个严格证明由阿冈（JeanRobert
Argand,1768―1822）于1806年发表，1813年作了修订。注意，这也是

第一次将该定理涉及的多项式之系数明确为复数。高斯在1816年给出了

另外两个证明，1849年给出了原初证明的新版本。上述证明都不是构造

式的证明，魏尔斯特拉斯在19世纪中叶要给出代数基本定理的构造法证

明，未果，直到1940年克内泽（Hellmuth Kneser,1898―1973）才给出了

这一类型的证明。此外，还有阿尔米拉（Jose María Almira,1972―）和

罗梅罗（Alfonso Romero,1956―）给出的一个黎曼几何证明。假设复数



多项式没有零点，那意味着存在球S2的平直黎曼度规，可球不是平的，

，即其高斯曲率的积分为4π。有矛盾！所以复数多项式必有零

点，即至少存在一个复数解。

关于代数基本定理存在多种几何的、拓扑的和基于复分析的证明，

但都不容易弄懂，此处不作深入介绍了。

既然代数基本定理断言n次代数方程必有n个复根，则愚以为方程的

解可形式上写成

的样子。方程的n分量的系数矢量(a1，a2，…，an)唯一地决定了n分
量的根矢量(x1，x2，…，xn)，至于如何决定， 可以理解为一个操作/
算符（operator），但显然不是线性的，它是个结构依赖于维度的算

符。研究如何构造出算符 ，可以提供继续研究代数方程解的新角度。

顺带提一句，代数方程给我们带来数域和数系的扩展，对数的本质

带来了许多有趣的深刻认识。一个例子是超越数。对于实系数代数方

程，能作为根出现的实数被称为代数数，而有些数永不可能是代数方程

的根，这样的数被称为超越数。刘维尔于1844年首次证明了超越数的存

在。1873年厄米特（Charles Hermite,1822―1901）证明了自然数e是超

越数。1882年，冯·林德曼（Ferdinand von Lindemann,1852―1939）证明

了π 是超越数。这很重要。此外还带来了复数。如今再回头看欧拉公式

eiπ+1=0，会更深刻地感觉到它的美妙、深奥。一个公式纳入了代数的单

位元0,1，单位虚数i，还有两个超越数e和π，空前绝后。



§6.4 无穷阶代数方程探索

五次代数方程很难解，再略高一些阶次的代数方程更鲜有人问津，

很难想象从任意高阶次的代数方程还能得出什么结果。然而，真正的数

学家总会出人意料。对于任意的n次多项式方程，f(x)=xn+an-1+xn-1+…
+a1x+a0=0，有根x1，x2，…，xn，则方程还可以写成

的形式，显然有一次项的系数

欧拉猜测，这个结果对于无穷次代数方程也成立。这样，他用这个

关系考察函数展开所得到的无穷次多项式方程。比如展开式

右侧对应的多项式方程应该有根x=(nπ)2,n=1,2,…。于是根据式

(6.23)，有

于是得级数和



瓦利斯（John Wallis,1616―1703）曾经得到的神奇结果。

别问欧拉是怎么想到 的，估计你要天

天醉心于此也能有这样的发现时刻。欧拉的工作方式，让我很受启发。

做什么？如何做？我不知道。但是，总要先做点儿什么，而后思考，而

后反思，而后内省（What to do? How to do? I don’t know. Just do
something,and then think,and then refl ect,and then retrospect）。
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第7章 复数

人皆取实，己独取虚。

——《庄子·杂篇·天下》

Imaginary gardens with real toads in them.
——Marianne Moore

虚幻的花园里有真实的癞蛤蟆。

——玛丽安·摩尔

摘要 一元三次方程的解使得人们不得不接受 的真实性，并将之

记为 =i，从而引入了复数z=x+iy。虚数i的几何意义同垂直方向上的

运动相关联。复数z=x+iy对应于平面上的一个点。复数有

等多种表示，各有深意。复数天生是平面

内的生物，使用复数进行平面几何证明，简洁明快。简单的复函数迭代

就可能得到意想不到的复杂几何图案。复数还可用于解常微分方程。基

于这些认识，许多物理量，包括阻抗、介电常数等等，也都更倾向于用

复数表示。复数作为变量的函数是复变函数，复变函数的解析性是非常

强的约束。复变函数积分让我们能计算一些几乎无法下手的实变量函数

的积分。基于复数的傅里叶分析是贯穿物理学发展史的数学方法，它自

身也构成一个数学分支。类似地，还有拉普拉斯变换。此外，复分析、

复几何等都是令人炫目的数学领域。基于复数的代数方程和微分方程进



入物理，极大地促进了物理学的发展。量子力学的波函数是时空上的复

值函数，希尔伯特空间是复数域上由复值函数所张的矢量空间，而将波

函数及其共轭当成变量的拉格朗日量、哈密顿量出没的物理理论显然首

先是复变函数理论。复数总是以共轭的面目出现的，这关联着许多种不

同的对偶性。对偶性会带出不确定性原理，量子力学中的海森堡不确定

性原理是其中之一，数字中早就有详细阐述。相对论的时空写成

(ict,x,y,z)的形式，但它不是简单的虚数或者复数，它涉及的是双四元

数。泡利方程、狄拉克方程中的波函数分别是旋量和二旋量。

复数将数学和物理一下子提升到了具有理论品味的层次，但这只是

一个伟大历程的开始。

关键词 虚数；复数；复变函数；复分析；柯西-黎曼条件；柯西积

分定理；傅里叶变换；拉普拉斯变换；复值函数；量子力学；波函数；

相对论；复几何；复化；旋量

关键人物

Leibniz,Euler,Bombelli,Descartes,Gauss,Wallis,Wessel,Carnot,Argand,de
Moivre,Hamilton,Cauchy,Riemann,Fourier,Laplace,Clifford,Cartan,Ehrenfest,Julia



§7.1 虚数的引入

平方的引入是个极为自然的过程。正数的平方为正，负数的平方也

为正。那么开平方这个求平方的逆运算只针对正数，也就是很自然的

了。人们不会主动去给负数开平方，负数开平方求根一定是某个情形下

硬闯进来的。

在求解一元二次方程x2+bx+c=0时，若b2-4c<0，人们认定方程无

解。这样的方程是不理性的，直接忽略就是。针对当时一元二次方程

x2+bx+c=0出现的现实情景，这种态度无可厚非——它简直是自然而然

的。但是，在解一元三次方程的时候，情形就有点儿尴尬了。比如，在

解一元三次方程x3=15x+4的时候，直接套用卡尔达诺的解公式，就有

。如果保留负数的平方根闷头往下算，会发现

，于是找到了根x1=4。这中间的困难是，我们要忍受

的存在。

保留 还能得到正确的实数根，这事儿确实匪夷所思。据说莱布

尼兹就接受不了保留负数的平方根还能得到实数这种事情，但在其身后

留下的文章里在好几处有这样的计算。比如解方程x3−13x-12=0，按照

公式有 ，进一步地有 ，可

得x1=4。又比如解x3-48x+72=0， ，则可得x1=6。
这样看来，接受 的存在是必须的了，为此需要克服心理上的障

碍。其实，人类接受负数的存在就经历过这样的克服心理障碍的过程。

在我国，负数的概念及其加减运算法则在《九章算术》里就有，而负负

得正则直到13世纪末才由数学家朱士杰给出。在1299年刊行的《算学启

蒙》一书中，朱士杰提出：“明乘除法，同名相乘得正，异名相乘得

负。”公元7世纪的印度数学家婆罗笈多（Brahmayupta,约598―668）已



有明确的正负数概念，并深谙其乘法规则：“正负相乘得负，两负数相

乘得正，两正数得正。”欧洲方面，欧拉在1765年出版的《代数全面介

绍》（Vollständige Anleitung zur Algebra）一书中有关于负数乘负数的

模糊讨论。现在的人们，对负数的接受几乎在不知不觉中就完成了。你

看，数就是一种思想而已……是某种不可触摸的东西（A number is an
idea... It is something intangible.），在研究代数方程时，这种必须接受新

思想的局面我们经历了几次。

意大利工程师邦贝利（Rafael Bombelli,1526―1572）率先克服了接

受 的心理障碍。在他1572年的《代数》（Algebra）一书中，邦贝利

遭遇了前述的一元三次方程x3=15x+4，套用卡尔达诺的解公式他发现

。如果这个方程存在（实数）解（其实，早看出来了

x=4是根），则形式上必有 ，与此同时 ，即

解的两部分必是这种意义上共轭的，它们的和留下了一个我们期待的实

数。心理障碍克服了就好，但克服了心理障碍以后的问题认识更需要见

识。

接受了 的存在，我们回头再看一元二次方程x2+bx+c=0，其两个

根为

当b2-4c<0时，我们说这两个根是互为共轭的（conjugate; joked
together; in conjugacy）。这个共轭的意思，如同在一元三次方程的根中

出现的 一样，是相加、相乘会将这个引入的对象给甩掉（这其实是

来自 是两个应同时出现的结果的事实）。广义地，对于类似

（a,b都是有理数）这样的一对数，都可看作是共轭的，它

们的和与积甩掉了 。

时光进入17世纪，接受 的存在已是无可避免。1637年，笛卡尔

在《几何学》一书中引入了虚数（imaginary number）的说法。1777



年，欧拉引进了符号i表示单位虚数。一般教科书中会写成 =i，严格

说来，这有其不正确的地方。虚数的引入，是因为表示负数的平方根的

需要，i和-i都是方程x2=-1的根，它们是同时被定义的，具有交换对称

性，或者说是共轭的，是代数不可分辨的（algebraically
indistinguishable）。i与-i代数无法区分，凡对i成立的等式，对-i也成

立。把 =i和 =-i互换，我们会看到一元二次方程和一元三次方程

的根表示结果都不变——这本就是应有之义。最重要的是， =i和
=-i可能是必须同时存在的，薛定谔这样的数学物理学家是明白这一

点的（参见第10章）。不妨这样理解，

，其中右侧括号里出现的各种可能是等价的，应同时出现。

有了前述的讨论，我们获得了一些关于一元二次方程的新认识，比

如它的根总是共轭的一对。对于方程x2-2ax+a2-3b2=0，根为

。这样的写法，是说a与 之和构成了共轭的一对。任何 形式

的数经加减乘除和开方，其结果还是 的形式。x2-2ax+a2+b2=0，根

为x1,2=a+(±bi)，任何α+βi形式的数经加减乘除和开方还是α+βi的形式。

可见，±i作为x2=-1的根和 作为x2=2的根， 作为x2=3的根，用来

表示一类一元二次方程的通解，形式上是一致的，没有什么难理解的。

对于一元二次方程x2+bx+c=0，根公式的正确表达为

即根形式上由两项之和构成。当b2-4c>0时，开根号得到正负两个根

和-b/2相加毫无问题。但是，但是当b2-4c<0时，两个根原则上可表示成

的样子，其中



仔细考察表达式

虽然其中的加号就是从前我们习惯的加号，但是加号这个操作在这

里似乎没（法）进行下去，它只具有形式上的意义。形如

的数如今我们称为复数。复数这个概念是1813年由高斯引入的。高

斯还认为复数有等级，还有比复数更是复数的数，他称之为vera umbrae
umbra（十足的阴影之阴影）。我们将会看到，如何理解式(7.3)里
的“+”号是个有意思的话题。

的被注意与被接受，是人类智识史上有趣的一环。1852年1月
13日，哈密顿在给德·摩根（Augustus de Morgan,1806―1871）的信中强

调，应该有人写一写 的历史。关于 的历史，有兴趣的读者请参

阅专门文献。



§7.2 复数的意义与表示

复数z=x+iy可以如从前的实数一样相加和相乘，只需记住相乘时有

i2=−1即可。对于z1=a+ib,z2=c+id，有

1863年，魏尔斯特拉斯（Karl Weierstrass,1815―1897）证明复数是

实数唯一的交换代数扩展（commutative algebraic extension）。难道复

数就是为了表示代数方程的根，就是遵从实数的加法与乘法规则那么简

单？

虽然复数z=x+iy中的加号按照代数方程的根来理解就是寻常的加

号，但它又确实将复数分成两种性质不同的部分，实部x=Re(z)和虚部

y=Im(z)。也就是说，后面的虚部或许揭示了我们熟悉的“+”还隐藏着一

些我们不知道的秘密。一个显然的问题是，实数是有顺序的数

（ordinate），给定两个实数a和b，我们总能说a≥b，或者a<b。但是，

对于两个不相等（实部和虚部分别相等的两个复数相等）的复数，我们

却不能作大小的比较。



图7.1 用两个长度和一个角度确定一个三角形

还记得可以用几何方法研究代数问题吗？英国人沃利斯（John
Wallis,1616―1703）注意到虚数的几何表现是平面内竖直方向上的运

动，这见于其1685年出版的《代数学》（A Treatise of Algebra）一书。

考察用两个长度a、b和一个角度α决定一个三角形的问题。假设α是线段

a同水平方向的交角，在水平线上的顶点为A，则当b>asinα 时，在以线

段a的另一端点P为原点，以b为半径画圆，得到的两个同水平线的交点

就是点B的候选（图7.1中用B、B'以示区别），则△APB或者△APB′ 就
是满足条件的三角形。问题是，若b<asinα 呢？沃利斯认为用从P点到水

平线的交点C所得的线段PC为直径作一个圆，以P点为圆心，b为半径作

圆，其同前一个圆相交的两点依然是点B的候选。这样得到的△APB或
者△APB′ 依然是由两个长度a、b和一个角度α所决定的三角形。这里的

意义（后人参详出来的）是，当b2−(asinα)2<0开平方出现虚数的情形，



其几何意义是所求结果（三角形）在竖直方向上的运动。这不再是在水

平方向上的左右移动，而是移到了旁边。按照哈密顿的说法，虚数意味

着几何中不能实现的交叉或者接触（non-real intersection or contact in
geometry）。

第一个发表复数的几何表示的是挪威人韦塞尔（Caspar
Wessel,1745―1818）。复数的几何表示在1787年就已经出现在韦塞尔的

工作中了，但到了1799年才发表。这篇文章后来被法国人于埃勒

（Christian Juël,生卒年不详）于1895年重新发现，由李（Sophus
Lie,1842―1899）重新发表。1799年，韦塞尔首先指出复数可诠释为复

平面内的一个点。韦塞尔是一位测绘员，因此对线段的方向有深刻的体

会，1797年他用丹麦文写了“方向解析表示的尝试”一文。这篇论文发表

后即归于寂寞，直到1895年才被重新发现，并于1897年被译成法文。有

方向的线段的加法比较简单，加号的意思是把后面线段的起点挪到前面

线段的终点（负值就用反方向的线段表示）。比如有三个长为a,b,c的线

段构成三角形，若线段带上方向的话，这三条带方向的线段构成三角形

的事实可由方程 表述（图7.2）。一个有方向的线段由其长度

和方向角来决定（这不就是极坐标嘛。极坐标来自自然，比笛卡尔坐标

系早多了）。韦塞尔的贡献在于意识到怎样把线段相乘：有方向的线段

的乘法是长度相乘而其方向角相加。这样，因为bi表示的有方向的线

段，自乘以后为-b2，这落在正实数代表的线段方向（平面坐标的x轴方

向）的反方向上，那么bi表示的有方向的线段就应该和x轴方向成90°的
夹角，那就是y轴。好了，用笛卡尔坐标系的y轴表示虚数，则复数

z=x+iy就是复平面上的一个点（任意非平行的两条直线可构成平面的坐

标系，但是只有互相垂直的两条直线才构成复平面的坐标系。这是复平

面不是一般意义上的平面的一个特征）。明白了这一点，接下来发生的

事情就海阔天空了。



图7.2 三条有方向的线段构成一个三角形

对虚数性质的认识有一个对学物理者来说格外有趣的插曲。老卡诺

（Lazare Carnot,1753―1823），热力学奠基人卡诺（Sadi
Carnot,1796―1832）的父亲，在其1803年出版的《位置的几何》

（Geometrie de Position）一书中，要解决一个几何问题：将一线段分成

两截，其积为原线段之平方的一半。写成代数方程，即x(a -x)=a2/2，其

形式解为

卡诺认为，这个结果说明题中要求的将线段分成两截的点不在线段

上。同时期的法国人比埃（Adrien-Quentin Buée,1748―1826）认为这个

方程的根意味着分割点是在线段的上方或者下方——那个i指向垂直方

向。本来是一个左边还是右边的问题，答案却是旁边[1]。捎带着说一

句，许多我们现在抛弃了的以为是错误的东西，其实是科学研究之最真

实的也一样具有伟大意义的组成部分。注意，此处提到有方向的线段，

不要和vector（汉译“矢量”）的概念相混淆。vector可以有长度和方向，

但不必然有长度和方向（参见第8章）。

把复数z=x+iy理解为平面上的一个有方向的线段，可以写为r∠θ的
形式，对应z=x+iy=r cosθ+ir sin θ。这个长度加幅角的表示就可以带来很



多数学，比如证明三角函数公式。复数在三角函数证明中可以说是势如

破竹，这是因为三角函数本身就是在谈论满足勾股定理的平面的性质，

而复数是关于这种平面的代数。举例来说，1∠α 和1∠β 代表长度为1的
复数，它们的乘积是1∠(α+β)=cos(α+β)+isin(α+β)，将1∠α 和1∠β 按照

复数规则直接相乘，会发现

这是两角之和的三角函数的展开，直截了当。自然地，有

公式(7.6)称为棣莫弗（Abraham de Moivre,1667―1754）公式。棣

莫弗公式被誉为三角函数恒等式制造机器。比如，由(cosθ+isinθ)3=cos3θ
+isin3θ，展开可见其实部对应着cos3θ=4cos3θ -3cosθ，这个恒等式曾被

韦达用来解一元三次方程。复数在加减乘除开方的运算下是完备的，这

个性质太重要了。

既然(cosα+isinα)(cos β+isin β)=cos(α+β)+isin(α+β)，这说明函数

f(α)=cosα+isinα和指数函数f(x)=ekx都都满足关系：

实际上，函数f(x)=eix和函数f(α)=cosα+isinα 具有完全相同的性质，

故而有



此为欧拉恒等式（1748）。

令α=π，可得欧拉公式

此欧拉公式被评为最美的数学公式，没有之一。愚以为，欧拉公式

应该是最美妙的公式，在一个公式中集中了5个最基本的数学元素

e,π,i,1,0，其中e和π 是两个基本的超越数（非代数数），1和0是代数必

需的两个单位元素。那么i呢，是这两个世界的连结？

复数给我们带来的数学多了去了，光是数论里的内容就够人学一辈

子的，要不也不会有解析数论之说。实数的性质在复数语境下可以被更

好地理解。为什么呢？也许复数内隐含的实部与虚部的关联，那是时刻

不曾丢失的关联，揭示了更多的实数的性质。这和物理的思想是一致

的：在同彼事物的相互作用中我们获得了对此事物的理解。法国数学家

阿达玛（Jacques Hadamard,1865–1963）曾说过：“The shortest path
between two truths in the real domain passes through the complex domain.
（实域中两个真理之间的最短路径经过复域）”。这句话够我们体会的

了。

韦塞尔的论文是丹麦文的，这影响了它的转播，给我们留下复数正

确表述的声誉落在了一个叫阿冈（Argand）的人的头上。阿冈是瑞士

人，可能是个钟表匠（钟表会告诉我们方程解xn=1的意义呃）。关于阿

冈的姓名和生卒年月等资料皆不确切，其人的文章署名一直是简单的

Argand，跟笔名似的，结果让历史研究无法得出确切结论。阿冈把i解
释为平面内90°转动（不是绕垂直于纸面的轴转转动90°。这是两回事

儿！），他还引入了复数模（modulo）的概念，对于复数z=a+ib，其模

为 ，但这个荣誉一般书里却都给加到了法国数学家柯西的头上。

这样我们就有了复数的几何表示，称为Argand diagram。对于复数

，其中 ，arg(z)是幅角，记号arg就来自Argand。有了

模和幅角的概念，复数可以表示为指数形式，z=reiθ，其中用到了欧拉



恒等式eiα=cosα+isinα。阿冈的伟大之处还在于其在1806年的文章中证明

了代数基本定理，他是第一个谈论代数方程中的系数为复数情形的代数

基本定理的人。顺便说一句，对于固定的实部和虚部，复数就是平面中

的一个点；但如果实部和虚部是变化的，比如都取整数，即z=m+in，这

样的复数称为高斯整数，其图像为正方格子。笔者很荣幸曾用高斯整数

的概念证明过定理（参见拙著《一念非凡》）。

好了，我们现在已经成功地引入了虚数和复数的概念。引入虚数只

需要克服接受 或者x2=-1的心理障碍。这是第一次，以后再遇到平方

引出-1的算法，可能心里面就会容易接受些。平方的结果为-1的，有的

是更复杂、更隐蔽的形式。比如群论中关于有限群表示的一个公式：

你看群元素的平方，g2，经过求特征χ之后再平均，才得到一个-1，
它的意思是对应的表示是pseudo-real（赝实的）。这个和x2=±1分别对应

实（real）根、虚（imaginary）根相比略复杂一些，与1对应的是real表
示；与-1对应的是pseudo-real表示；和imaginary表示对应的那是0。如果

你愿意理解，它就是可以为你所理解的。进一步地，我们也已经构造了

复数的如下不同表达。

还有别的表达形式吗？有的，而且不止一个！比如，复数还有矩阵

表达形式。

复数可以表示成如下的矩阵形式：



按照矩阵的加法相加，按照矩阵的乘法相乘，将矩阵值det(z)=a2+b2

当成对应复数的模平方，则矩阵表示

就完全再现了复数的代数。

由复数表示(7.10d)，则有

可见复数的共轭对应作为其表示的2×2实矩阵的转置。设想复数的

实部和虚部都是复数，即

则

这是转置共轭（conjugate transpose），对应的其实还是作为表示的

4×4实矩阵的转置。量子力学中的波函数是复函数，算符对应的是复数



矩阵，故总有转置共轭的问题，有算符及其伴随（adjoint）算符的说

法。

复数有矩阵表示，这再一次表明代数是关于运算法则的学问，而表

示可以有不同的选择。用矩阵表示的复数

是单位矩阵，因为det(z)=cos2θ+sin2θ=1，但是我们已知

就是二维平面的转动矩阵。这可能暗示我们，复数同二维平面内的

转动有关，它表示转动兼或尺度缩放。还有，函数f(z)=u(x,y)+iv(x,y)雅
可比行列式（Jacobian）就是个2×2矩阵：

但是，对复变函数，这个雅可比行列式应该是个复数，有

的一般形式，这就再现了复变函数解析的Cauchy-Riemann条件（见

下）。这部分还联系着经典力学的哈密顿正则方程和辛几何

（symplectic geometry）。symplectic是比complex更complex的对象之

一，它字面上就是这个意思（参阅拙著《物理学咬文嚼字》）。

复数还有克利福德（William Kingdon Clifford,1845―1879）代数表

示。将复数表示为



其中σ1和σ2是克利福德代数的生成元，满足σ1σ2=-σ2σ1，对应的微分

为∇=σ1∂x+σ2∂y。若函数f=u+Iv是解析的，则有∇f=(σ1∂x+σ2∂y)
(u+σ1∂2v)=0，提取出的结果就是Cauchy-Riemann条件。这个形式的复数

表示至少对于代数几何太重要了。

我们列举了复数的五种表示。我们得记住：“A rose is a rose,and a
pig by any other name is still a pig.（玫瑰就是玫瑰。猪换个名字也还是

猪）”。但是，形式有时候就是有超越内容的威力，这大概就是辩证法

吧。虚数和复数带来的内容远超我们的想象。举例来说，考察著名的定

积分

引入变换x=tanθ，

这是初等微积分中的一个常见习题。不过这个积分可以换个做法：

于是，有 ，也就是

这个结果也太神奇了。所以，你看，面对任何数学和物理的概念，

都别急着觉得自己懂了。懂了是有限的局部，不懂是无限的整体。任何



时候你觉得懂了任何一个概念，那都是错觉。



§7.3 复数的数学应用

复数（虚数）的应用这个话题太大。随便挑个角度加以一般难易程

度的阐述，都需要一本厚厚的专著。本节只浮光掠影地介绍一些简单的

内容，到复（值）函数在量子力学中的应用为止。

§7.3a 复数与平面几何

从一元实数到二元复数的拓展，可以来自切实的生活场景。左边、

右边的概念分别对应实数轴上的负数一侧和正数一侧。当我们谈论旁边

的时候，无意中就将语境拓展到了二维的平面了。复数天然地是二维的

生物。用复数解决平面几何的问题，有势如破竹之感。

试举一例。设平面上有两点，用复数表示为z1和z2，定义这两个复

数的加权平均为 ，则z随λ 的变化就是z1到z2的线段：当

λ=0时，z=z1；当λ→∞，z=z2。特别地，当λ=1时，可以得到z1和z2连线

的中点，为 ；而当λ=2时，得 ，这说明z将z1到z2的线

段分成了2∶1的两段。现在考察由复数zA，zB和zC构成的三角形，其边

的中点对应的复数分别为(zA+zB)/2，(zB+zC)/2，和(zC+zA)/2，。利用公式

，计算表明将到顶点的距离和到对边中点的距离按照2∶1分
割的点所对应的复数都是(zA+zB+zC)/3。等一下，这是什么意思？这意思

是说，三个复数所定义的一个三角形，其中心就对应这三个复数的算术

平均(zA+zB+zC)/3，是三条中线的交点，它将所有的三条中线都按照2∶1
的比例分割。其实，后面这句“它将所有的中线按照2∶1的比例分割”是



引申的结果，不重要。重要的是，三角形的中心是其三个顶点在复数意

义下的算术平均。

这一段笔者本来想加个图的，但最后决定不加。读者如果需要，请

自己画图理解这段文字。图是辅助性的，你要有超越看图的能力。更多

的用复数理解平面几何的介绍，参见拙著《惊艳一击》。

强烈建议读者学完复数以后，一方面往前学复变函数，一方面往后

用复数研修一遍平面几何。

§7.3b 复变函数

复数z=x+iy作为变量的函数是复变函数。单复变量函数f(z)与一般

的两实变量函数g(x,y)相比，因为复数的结构使得函数f(z)具有很多有趣

的性质。函数f(z)可以写成如下形式：

即用两个实函数表示。比如对于函数z→ f(z)=1/z，有u(x,y)=
。

函数的微分性质是我们首先要关注的。一个复变函数f(z)，若它是

解析的，则在局域中沿各个方向上得到的微分都相同。自然地，f(z)沿
着实轴和沿着虚轴的微分应该是一样的，即

这就是复变函数f(z)解析的Cauchy-Riemann条件。对于

f(z)=u(x,y)+iv(x,y)，Cauchy-Riemann条件的显式表达为



Cauchy-Riemann条件可以通过如下考虑得到。在z=z0的邻域内展开

，其中当Δz→0时，η（Δz）
→0。定义[2]

利用 ，上式意味着

但是， 不是完好定义的，它在实轴和虚轴上的结果就不一

样。如果f(z)是解析的话，则 的系数必须为零，即

这也是Cauchy-Riemann条件。解析的Cauchy-Riemann条件是个很强

的约束，一个函数很容易就是非解析的，比如 ，即求复数的复共

轭，就不是解析的。

如前所述，用克利福德代数表示复数，z=x+Iy=x+σ1σ2y，其中

σ1σ2=-σ2σ1；而微分是∇=σ1∂x+σ2∂y，可见对于复变函数f，有要求

就对应Cauchy-Riemann条件。

复平面上的正交坐标系都有相应的Cauchy-Riemann条件。设有正交

坐标系(n(x,y),s(x,y))，即内积(∇n,∇s)为零，对于满足条件

的函数f(z)=u(x,y)+iv(x,y)，有



这还是Cauchy-Riemann条件的形式。比如，极坐标系(dr irdθ)是正

交的，因此有 。

Cauchy-Riemann条件因为意味着∇u ⋅∇v=0，这样函数f(z)是保角

的，也就意味着vdx+udy是一个调和的微分形式。由CauchyRiemann条
件，分别对x,y微分后相加，有

这就是拉普拉斯方程 。

当然也能导出 。

设有由

定义的复结构。函数矢量

的雅可比行列式为

Cauchy-Riemann条件意味着



意思是这两者是对易的。

Cauchy-Riemann条件联系着这么多的内容，可见形式太重要了，希

望大家有机会尽可能多地见识到Cauchy-Riemann条件联系着的具体内

容。

有了对复变函数解析性的认识，可以讨论代数基本定理了。对于复

数域上的多项式方程，可写为

代数基本定理表明，此方程必有根。注意，若an=0，则z=0就是一

个根，定理得证。所以，一般情形可设an≠0。我们假设方程没有解，即

f(z)≠0，现在研究函数φ(z)=1/f(z)，显然有 。那么，对于充分大

的半径R，在以半径为R、以原点为圆心的圆之外的区域内φ(z)有界。但

是φ(z)是个解析函数，故它在圆内也应该是有界的。这样，在圆内φ(z)
是解析的、有界的，则根据刘维尔定理它必是常数。这与

（不可能是常数），相矛盾。故方

程 必有解。一个复变函数是解析的，意味着它绕环

路的积分为零：

这是柯西第一积分定理。

进一步地，有

恒等式 被称为柯西第二积分定理，它告诉我们环路



（也译成围道）C内部任一点上的函数f(z)可以由在环路C上的函数f(ζ)所
决定，这反映的是解析函数所具有的全局关联性。

说起积分，必须提到留数定理。若函数在环路C上是解析的，在环

路内部除了一些孤立的奇点以外也是解析的，则有

其中 是函数在奇点ak上的留数。若点a是函数f(z)的m阶奇点，

则相应的留数为 。若点a是函数f(z)简单的一

阶奇点，则 。有了复变函数的留数定理，许多无法下手的

定积分得以被积了出来。比如，计算电磁学中与偶极矩有关的一个积分

，作变换

，其中环路C是复平面上的单位圆。显

然，对于函数 有两个一阶奇点，z1=p和z2=1/p。对于

p<1，只有z1在积分环路包围中，计算此处的留数，得积分：

这是著名的泊松积分。用复变函数的留数定理求一些很困难的定积

分会让我们一般人很有成就感，读者朋友一定要试试。比如，试计算定

积分

§7.3c 复几何



复数是平面内的存在，天生带有几何的特性。因为复数对于代数算

法具有完备性，即对于一般代数算法的结果仍是一个复数，故复数特别

适合玩迭代游戏。没想到，有人随手玩一玩，就发现了新天地。法国数

学家尤利亚（Gaston Julia,1893―1978）摆弄迭代，比如研究多项式迭

代fc(z)=z2+c，即

这样的迭代会引出尤利亚集（Julia set）的概念，即由那些其迭代

的轨迹保持有界的点所组成的集合。对于不同的参数c，能得到不同

的、但都是非常迷人的尤利亚集图案。图7.3给出的是对应c=−0.4+0.6i和
c=0.2854+0.01i的结果。

图7.3 对应c=−0.4+0.6i和c=0.2854+0.01i由+迭代fc(z)=z2+c得到的尤利亚集图案

复数将数学极大地拓展了。实数域上定义的数学对象，实分析、实

流形、矢量空间等等，都对应着在复数域上的扩展，有复分析、复流

形、复矢量空间等等。“复”字修饰的数学对象，其含义只有我们投入地

学习了才知道它是多么复杂，以及它又是将多么复杂的问题给变得简单

了。



§7.4 复数之于物理学

§7.4a 振荡与转动

实系数的代数方程引入了复数。实系数的常微分方程后来有意无意

间也使用了复数解。考察一个二阶常微分方程：

引入尝试解y=ekx，代入方程：

得到关于k的代数方程k2+bk+c=0。我们知道，取决于b2 -4c>0还是

b2 -4c<0这有一对共轭的解k=k1± k2或者k=k1± ik2。即便在k=k1± ik2的情

形，将通解表为

的形式，因为有k=k1± ik2的共轭性质，故总能保证实数解的存在。

式(7.22)表示的变化有振荡的表现。由通解再加上一个特解，就算是找

到了方程(7.20)的解了。

复数解常用于电路分析，而且后来干脆把相关物理量就表示成了复

数。按照定义，在电阻R上I=U/R，在电感L上U=LdI/dt，而在电容器C
上，U=∫ Idt/C。对于振荡电路，电流用振荡函数表示，I=I0eiωt，在电感

上有U=iωLI，这相当于RL=iωL；而在电容上，U=I/(iωC)，这相当于



。也就是说，电感和电容在振荡电路中被等效成了虚电阻。复

数、虚数表示的物理量在电路分析中让许多计算变得简单，但我们必须

牢记实际的物理图像是什么。数学要严谨。在物理情景中随意引入复数

是个不走心的过程。

复数用于物理，威力是巨大的。多看一眼欧拉恒等式eiα=cosα
+isinα。若幅角是随时间变化的：

函数eiωt描述在单位圆上的匀速转动，而cosωt，sinωt表示的是简谐

振荡。这个公式的意思是，二维的匀速圆周运动在任何一个过圆心的轴

上的投影是简谐振动。这个事实，承担了整个第一次工业革命之大部。

第一次工业革命利用热来驱动机械，可是被驱动的机械的运动则表现为

圆周运动驱动振动，或者是反过来用振动来驱动转动。不明白？好好观

察一架老式缝纫机。那是第一次工业革命情境中数学与物理的完美结

合。函数 有波的形象，物理学后来描述波的时候大多是打虚

宗量指数函数的主意。提醒一句，愚以为波在物理学中的主导地位，也

许碰巧只是因为水的特殊性质而已——水有“皮”，其表面张力一方面足

够大到能形成可见的水面波动，另一方面又足够小到随便有个风吹草动

就能激发起水面波动。

§7.4b 物理量复数化

在物理学中，有一些物理量干脆就被当成了复数。复数物理量一般

被用来描述与衰减（decaying）或者弛豫（relaxing）有关的现象。一个

著名的例子是复介电常数，ε(ω)=ε1(ω)+iε2(ω)。类似ε(ω)=ε1(ω)+iε2(ω)这
样的复值函数，基于复数的解析性，还有Kronig-Kramers关系表达其实

部与虚部之间的内在关联，即



其中P表示取积分主值。基于Kronig-Kramers关系，实验测量了衰减

过程对应的ε2(ω)，就能计算得到ε1(ω)。
给我们习惯的实数物理量加个虚部的作法，我猜，来自解对应受迫

阻尼谐振的、带一阶微分项的二阶微分方程：

其中ω0是简谐振动方程 中的本征频率，ω 是外加驱动的

频率。考虑对应的无源振动方程 ，取一般振荡解形式为

x∝eikt，代入方程，得代数方程-k2+2iαk+1=0，单位虚数i赫然出现在k的
线性项中。令代数方程解形式上为k=k1±ik2，则有 ，所以

量 的虚部对应衰减（增益）。

把物理量扩展成复数，是在谐振响应近似的语境下进行的，有一定

的合理性。但是，把物理量当成复数，或许只有有限的合理性。一个考

量是，物理量作为复数，它会表现出复数的性质吗？比如它会遭遇完备

性的问题吗？即作为复数它在加减乘除开方等操作下都是复数吗？实际

上，许多作为复数的物理量，别说乘法，可能连加法都没有。机械振动

的振幅与振动能有关，或者电磁波的振幅与光强有关，相应的复数表示

其模平方都有了合理的物理意义。但是，被当成复数的物理量其模平方

都有物理意义吗？有一个例子，对于介电材料，折射率和介电常数之间

的关系为 ，当介电常数取ε(ω)=ε1(ω)+iε2(ω)的形式时，折射率也用

复数表示了。但是，物理性质按照相应的复数表示从纯数学的角度，比

如算符的完备性，加以深入考察的，笔者孤闻寡陋，至今未见。

用复数表示物理量的成功，引导有人把一些物理量硬生生地扩展成

复数，比如有把时间这种基本物理量扩展成t=t1+it2形式的作法，我不知



道该如何理解。如果这种做法具有合理性，物理理论至少应该提供该物

理量作为复数必然出现的方程。再者，作为复数，该物理量遵循复数运

算的事实也应该有具体的体现。时间以t=t1+it2的面貌出现的理论还无意

面对这两点挑战。一个更加大胆的用复数表示物理量的尝试是用两个不

同的物理量拼凑出一个复数来。一个典型的例子是有人误以为电场E和
磁场B构成一对复数，这就有点儿开玩笑了。电场E是三维矢量，但磁

场B不是矢量。如同动量p和角动量L，动量是三维矢量，而角动量不

是。电场E和磁场B一起按照如下方式构成二阶反对称的电磁场张量。

电磁学理论的数学比较成熟，这也是其令人信赖的学术基础。还有

更加狂野的复化物理量的情形，即把两个不同类型的物理量拼成一个复

数。在一些凝聚态理论中，时间和温度被拼成了一个复数t+iT-1。这样

做的道理，形式上是因为 代表的动态演化同e-βH（β=1/kT）代

表的统计遭遇了。这样得到的复数物理量能在什么意义上体现复数的算

法呢？或者反过来想，复数的运算能为这样的表示成复数的物理量带来

哪些新的物理呢？这些也许都有讨论的意义和必要。自然的奥秘就在那

里，它迷惑着好奇者的心灵。

§7.4c 傅里叶变换

笔者曾问过一个问题：“如果要为热力学、量子力学、电动力学、

固体物理、晶体学、图像处理等学科找一个共同的关键词，请问这个关

键词是什么？”我自己对这个问题的答案是傅里叶分析。



1822年，法国人傅里叶在研究热传导的时候发现一些函数可以写成

傅里叶级数的形式，即

其中

傅里叶级数的前身可追溯到古埃及托勒密的本轮-均轮宇宙模型，

其实就是正弦函数相加。一般人会大大低估正弦函数相加构造不同形状

的曲线的威力。对于傅里叶级数的这个表示，我有一点异议。我认为还

是应该写成

的形式才好，其中包括n=0项。有人可能会说，sin(0·x)=0为什么要

放进去呢？这里的道理是，一个项等于0和根本没有这样的一项，这是

两回事儿！ 函数sinnx和cosnx作为微分方程

的解，是成对出现的——这是其可以变换为e±inx表示的基础。所有

的sinnx和cosnx作为坐标轴张成一个空间，这个和问题的完备性有关，

缺一不可。那个维度上的投影贡献为0，但那个完备空间的一个维度是

存在的。所谓的函数展开，就是一般的函数可以表示为某个用函数张开

的空间里的一个矢量。

傅里叶级数展开最不可思议的地方是，不连续的函数，比如锯齿状

的函数，竟然也能用sinnx和cosnx这样的连续函数展开（奥妙在于它是



无穷级数展开。无穷的情形总会冒出一些有限的情形下不会出现的局

面）。就这一点就足以让傅里叶级数展开的被接受过程有些曲折。

注意到欧拉公式eix=cos x+isin x，从傅里叶级数的研究自然过渡到

了傅里叶分析。复数完成了对托勒密和傅里叶的提升。傅里叶分析使用

复函数e±inx在实变量函数f(x)、F(k)之间完成角色变换。因为技术的原

因，一般会把傅里叶变换描述为从时域到频域的变换，即将关于时间的

函数f(t)经积分

变换为频域上的函数F(ω)，在合适的条件下有逆变换

傅里叶变换带来很多解决数学问题的便利。比如，对时间的微分表

现为频域上的乘以频率，而时域上的卷积对应频域上的直接乘积。后者

的意思是，若函数f(t)是函数g(t)和h(t)的卷积，即

则它们对应的傅里叶变换函数F(ω)、G(ω)和H(ω)满足关系

这个在物理上大有深意，可惜在它被使用的语境中很少有人提及。

卷积，探测器对输入信号的响应过程就是卷积，对输入信号施加卷积的

函数就是探测器的特征，也就是说仪器的输出是对输入信号的卷积。当

进行傅里叶变换后，输入信号的变换函数，G(ω)，等于输出信号的变换

函数F(ω)，除以探测器特征函数的变换函数H(ω)，对这样得到的输入信

号的变换函数G(ω)=F(ω)/H(ω)作作逆变换，就得到了我们想得到的本源

信号。



傅里叶变换从一开始就是个物理问题。关注的研究对象是扩散方程

（热传导方程），使用的展开函数是波动方程的解sinnx和cosnx，即方

程

的解。改写成

的形式，这是求算符 的本征函数问题。二阶微分算符 物

理上对应的是动能，或者说我们把动能改造成了对空间坐标的二阶微分

算符。在量子力学中，由量子化条件 ，约当（Pascual
Jordan,1902―1980）认定这相当于 ，则动能，只写简单的一维形

式，为 。你可能已经敏锐地察觉到，量子力学还和傅里

叶分析有关？对喽。有些被说得神乎其神的量子力学的内容，若你也跟

着一溜神气地胡咧咧，说明你数学底子有点儿欠缺。虽然给出了第一个

量子力学波动方程，薛定谔就不拿量子力学装神弄鬼。在薛定谔眼里，

薛定谔方程就是复系数的热传导方程。

考察一个一维弹簧振子（谐振子），总能量为

忽略系数和量纲的问题，总可以把它写成H=q2+p2的形式，其中q和
位置有关，p和动量有关。q2+p2这样的二次型，太完美了，它是学物理

的人一定要弄透其数学的关键对象。二次型q2+p2包含加与乘两种运算，

这都是二元运算，且最经济地用了两项。q2+p2用极简的方式包含了足够



多的数学，你甚至可以说此处隐藏宇宙的奥秘。有一种说法，如果你弄

懂了

描述的谐振子模型，你就学会了75%的物理！

q2+p2和pq是一回事儿。作因式分解：

注意虚数被偷偷地带进来了。作变换 ，就有

。两个量q和p，假设有某种共轭关系，其乘积，qp，就是个

有趣的对象。用它构造个函数，比如ei2πqp，再考虑到物理上qp的量纲是

角动量的量纲，是作用量的量纲，还碰巧是普朗克常数h的量纲，而数

学函数的宗量（argument）必须是个无量纲的数，故应该选取 的形

式。这个函数可以用来在函数f(q)和F(p)之间建立起傅里叶分析。此语

境下的这个变换被称为约当变换，但它就是傅里叶变换。

1927年，海森堡（Werner Heisenberg,1901―1976）在一篇文章中指

出，对于形如

的波函数，其经过约当变换，不，傅里叶变换，后得到的关于p为
变量的波函数为

且有关系



这是一个纯数学的结果，在傅里叶变换里早就有，即函数f(q)的
support（不为零的区域）的大小和变换后的函数F(p)的support的大小，

其乘积为定值。就是这么个纯数学的平凡结果，被不负责任地演绎成了

量子力学的基本原理（the uncertainty principle），甚至有“不可能同时

精确测量粒子动量和位置”之类的荒唐言辞。其实，西文表达中的

simultaneously，其意思不是at the same time，它是“既……又……”的意

思，是说不能鱼与熊掌兼得，不能既用位置这个图像（picture）又用那

个动量图像看问题。薛定谔1935年把量子力学的这种不完备性比喻为云

雾的照片，它就是模糊的，但又不同于因为镜头散焦所得到的模糊照

片。位置和动量是一对互为共轭、互为对偶的概念，这里有个对偶性

（duality）的问题，其实质体现在相空间体积这个概念里。关于不确定

性原理的详细批判，参见拙著《物理学咬文嚼字》之四十四篇。

由x和p构成的相空间提供了对经典力学的描述，加于x,p上的约束

是最基本的量子化条件。似乎(x,p)先天就是复共轭的，所以有

傅里叶变换联系着它们，所以哈密顿正则方程和Cauchy-Riemann条件的

结构相同。问题是，凭什么物理意义的(x,p)就是对偶的或者构成二元数

的关系呢？这大概也是数学在物理领域中之难以理解的合理性要考虑的

话题吧。傅里叶分析同众多的对偶性相联系，这包括矢量空间对偶性

（vector space duality），凸对偶性（convex duality），理想-变体对偶

性（ideal-variety duality），希尔伯特空间对偶性（Hilbert space
duality），群对偶性（group duality），等等。对偶性的表现就是不确定

性原理（uncertainty principle）。于是有海森堡不确定性原理

（Heisenberg uncertainty principle），哈代不确定性原理（Hardy
uncertainty principle）等不同的不确定性原理。海森堡不确定性原理只

是重述了一个平凡的数学关系，在量子力学语境中被无端地夸张和赋予

了许多莫须有的物理内容，想来令人唏嘘。

比傅里叶变换复杂一点儿的有拉普拉斯变换：



其中s=σ+iτ 是复数，也就是说它将一个实数域上的函数变换为一个

复数域上的函数。拉普拉斯变换提供了一个非常有效的解微分方程的方

法，笔者有幸用拉普拉斯研究过离子辐照诱导的固相扩散问题。拉普拉

斯变换应该从其产生的动机出发加以深入理解。

§7.4d 复数之于量子力学

量子力学源起光之能量的量子化。旧量子力学里没有复数。玻尔兹

曼（Ludwig Boltzmann,1844―1906）的气体分子动能的量子化

（1877），普朗克（Max Planck,18 58―1947）的黑体辐射中光的能量

量子化（1900），玻尔（Niels Bohr,1885―1962）的氢原子模型用电子

的非连续能级跳跃作为发光机制（1913），索末菲（Arnold
Sommerfeld,1868―1951）的三维振动子模型（1916），康普顿（Arthur
Compton,1892―1962）处理X射线的电子散射引入光的动量量子

（1923），在这些讨论中都不见复数的影子。然而，德布罗意（Louis
de Broglie,1892―1987）将电子也当作波（1923―1924），1925年海森

堡试图得出谱线强度公式，复数就不可避免地出现了。经典物理在解释

水波和光波双缝干涉时，复数eikx就已经被派上了用场；而海森堡，以

及他之前的克莱默斯（Hans Kramers,1894―1952），在构造谱线强度理

论时都用的是傅里叶分析。1913年的玻尔量子化条件是

的形式，其中还只有实数。到了1925年，海森堡和玻恩给出的量子

化条件变成了[x,p]≠0，实际上指向了



注意，这里海森堡考虑的是谐振子模型（取m=1；k=1），要求能

量是量子化的 ，但在把谐振子哈密顿量 改造成

H=A+(t)A(t)的样子时，通过变换

虚数i就偷偷地溜进来了，英语表述会用lurk in这个短语。1926年，

薛定谔就选定 函数描述电子的波，借助Hamilton-Jacobi方程

构造出了量子力学的基本方程

其中单位虚数i赫然在目。在物理方程中显性地引入虚数，薛定谔

方程是第一个。你无法不把这个方程的主角，波函数ψ，当成一个复值

的时空函数。实际上，波函数的诠释就是模恒为1的复值函数，

，此即所谓的归一化条件。波函数ψ 被说成是概率幅，但它是个复数；

而概率密度 是波函数的模平方，是个实数。波函数ψ是复数（二元

数，binarion），而概率密度 是实数（一元数，unarion），ψ 比
的故事多。柯恩（Walter Kohn,1923―2016）懂得这个道理，所以发展

出了密度泛函理论。概率幅和概率之间是实数和复数的区别，愚以为求

概率是个结构约化、退化的过程。波函数满足叠加原理，若ψ1和ψ2是系

统的波函数，则线性叠加ψ=c1ψ1+c2ψ2，其中c1和c2是复数，也是系统的

波函数。可见所谓的希尔伯特空间，是复数域上用复值函数构成的矢量

空间。

所谓的薛定谔方程，实际不过就是扩散方程



的复化（complexifi cation）。作替代t→it，扩散方程就是自由粒子

的薛定谔方程。薛定谔本人就是这么认识量子力学方程的，他在

1931―1933年有一些论文就是从复化经典扩散方程的角度讨论量子力学

的。在薛定谔那里，量子力学没有任何神奇的地方——啥经典物理都不

懂的人才会神秘化量子力学，鼓吹量子力学的神奇可以遮掩一点儿自己

的无知。

顺便说一句，薛定谔方程（7.43）若写成 的形式也一

样成立。再强调一遍，凡对i成立的等式，对-i也成立。薛定谔1922年改

造外尔理论引入虚数时，彭罗斯（Roger Penrose,1931―）在提及虚数的

诸多场合，用的都是 而非i。记住， 。

波函数ψ 是复数，是二元数，那就必然有拓扑的故事，比如表现出

Berry相，也叫几何相（geometric phase）。在波动系统的描述中都有这

个问题。当参数沿着一个环路变化一圈时，可能会获得相位变化。干涉

效应可演示相位的变化。比如一个量子力学体系之第n个本征态的

adiabatic evolution[3]，其当参数沿环路改变之由本征态随变化着的哈密

顿量而引起的相位变化即为Berry相，可表示为

其中C是环路，R是参数化环路的参数。经典体系的傅科摆也表现

出几何相位。

将波函数ψ 及其共轭ψ*作为独立变量构成拉格朗日密度，这是量子

场论的起点。由此容易理解，量子场论会用到复分析的技术。或者，如

果我们始终分别用数学的目光、物理的目光与数学物理的目光去仔细考

察一个物理理论，我们就能看到一个物理理论的奇妙处。奇妙处即平凡

处。

关于复数在量子力学中的应用，有人就怀疑量子力学不可避免地要

用到复数，那复数的性质与其用法匹配得很好吗？经典物理中我们都用

的是实数来描述观察现象，量子力学也是把观测量约化为实数的。这里



有两点要注意。其一，经典物理中我们也有引入复数描述物理量的做

法，它是辅助的还是实质性的？其二，复数其实不是我们从前理解的复

数，它只是有结构的二元数或者矩阵，完全可以坚持用实数的语汇讨论

它——有趣的是，这竟然真实地发生在将U(1)规范理论推广到SU(2)规
范理论的过程中。究其实，是在量子力学中我们需要用耦合的一对物理

量说话而已，这可能恰是共轭量、相空间的本意，有一对共轭的、对偶

的量要绑定到一起。

量子力学的数学可能是不严谨的。有这种疑问，不奇怪。

薛定谔方程里的波函数是个复数标量，它在解氢原子问题时只揭示

出了三个量子数 。为原子中的电子引入第四个量子数ms，动机来

自实验事实，它的表示体现在泡利方程中的二分量波函数上，但那个波

函数不是二分量矢量，而是旋量。旋量，可看作是同欧几里得空间相联

系的（复）矢量空间中的元素，此概念的一般数学形式由数学家卡当

(élie Cartan,1869―1951)于1913年提出，而spinor一词则是物理学艾伦费

斯特(Paul Ehrenfest,1880―1933)于1924年在研究量子物理时造的

(Quantenmechanik,量子机制，俗谓量子力学，这个词也是1924年出现

的）。旋量由转动下的行为表征，用一个酉矩阵来表示其变换。旋量对

坐标的逐渐转动敏感，表现出路径依赖，其整体转动与张量的转动不

同。又，狄拉克方程中的波函数是二旋量（bispinor），单单一个旋量

不满足宇称对称性，要两个才行。后来，基于旋量还发展出了扭量

(twistor)理论，这是描述光的行为所发展出来的数学。扭量理论是否正

确我不能判断，但笔者坚信光的行为称得上专门的数学。此是后话。

可以在克利福德代数下讨论旋量。克利福德代数是结合代数，可以

由欧几里得空间加一个不依赖于基的内积加以构造。选定了欧几里得空

间的正交基以后，克利福德代数的表示由γ矩阵所产生，这些矩阵满足

一组正则的反对称关系。旋量就是这些矩阵所作用于其上的列矩阵。在

三维空间情形，泡利矩阵就是相应的γ矩阵，而两分量的列复矢量就是

旋量。对于四维时空，狄拉克矩阵就是相应的γ矩阵，而四分量的列复



矢量就是相应的（二）旋量。特定维数的欧几里得空间，选定了有内积

定义的克利福德代数，选定了基以及相应的γ矩阵，这个γ矩阵作用于其

上的列矢量就是对应的旋量。对于三维空间，泡利矩阵是相应的γ矩
阵，在这种情况下，自旋群（spin group）与矩阵值为1的2×2酉阵群同

构，故应是SU(2)群。群以共轭乘积的方式作用于泡利矩阵所张开的实

矢量空间，实现一个该实矢量空间的转动群；该群也作用到旋量上。更

多相关内容，见第10章。

§7.4e 复数之于相对论

单位虚数i也显性地出现在相对论中。对于平直时空，时空间距为

ds2=dx2+dy2+dz2-(cdt)2，这是典型的赝黎曼几何。如果我们把时空坐标

记为(ict,x,y,z)，时空间距还是采取欧几里得度规，可表示为

这就是ds2=dx2+dy2+dz2-(cdt)2。有人根据(ict,x,y,z)，就断言这是复数

表示，说时间t以it的身份出现，于是就有了虚时间（time is imaginary）
的说法。必须指出，这个认识可能是错的。

我们生活在三维空间中。三维空间矢量，是哈密顿在1843年作为四

元数的虚部而引入的表示，即记四元数q=a+xI+yJ+zK，其中

I2=J2=K2=IJK=-1，而四元数的虚部 就是我们在电磁学、电

动力学中习惯使用的三维空间矢量表达（后来几何代数会揭示，这里的

I,J,K不是矢量而是二矢量，但它们张成了矢量空间）。如同复数，四元

数的模平方为 ，与时空间距的表达不一样。如果令标量

a=ict，，则q=ict+xI+yJ+zK的模平方与时空间距的表达可以达成一致，

但这样得到的四元数的性质就变了。在这种情况下，a,x,y,z,都扩展到了

复数域上，q=ict+xI+yJ+zK是双四元数（bi-quaternion）。也就是说，我



们在狭义相对论里遇到的时空坐标表示(ict,x,y,z)，其中的矢量分量x,y,z
看似实数是因为它们碰巧取了复数的实部，而ict作为这个双四元数的标

量，其看似虚数是因为它碰巧取了复数的虚部。一句话，不要想当然地

根据时空坐标表示(ict,x,y,z)就认定有虚时间。时空坐标是由双四元数表

示的。四元数、双四元数将在第8章详细介绍。



§7.5 多余的话

把两个量凑成一个复数，在近代物理学研究中简直成了常玩的把

戏。除了前面提到过的把时间和温度放到一起写成复数那种不容易往前

推进的做法以外，把物理量写成复数形式很多时候是会把理论往前推进

很远的。比如，把位置与动量加起来构成相空间，引入产生-湮灭算

符：

这样谐振子的拉格朗日量就能写成

的形式，此做法的妙处是再现了普朗克1911年作为0到1之间等概率

分布的平均值所引进来的零点能(1/2)。这样得到的零点能，后续的故事

甚至被有人拿去解释宇宙的方方面面，幻想太投入了。

还有把轨道角动量的两个分量写成

形式的，考虑角动量的对易关系， ，则有

。对于L2和Lz共同决定的本征态 ，

也落在这些本征态 张成的空间里。自

旋亦可依同样的步骤处理。规范场论中，费米自由场拉格朗日量为

，其中的ψj,j=0,1,2,3，是四维欧几里得空间的矢量。这些

波函数和描述粒子的场是这样联系的：



不考虑波函数自身的数学性质，这个变换形式上就是把两个东西用

那“i”给联系到一起了。

一个复数z=x+iy的引入，就把世界给极大地拓展了。New systems
of number evolve with the advent of new physics（新数系随着新物理的出

现而冒出来），太美妙了。让我们更开心的是，复数还仅仅是个开始。
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瑞士数学家欧拉

Leonhard Euler 1707—1783



法国数学家傅里叶

Joseph Fourier 1768—1830



第8章 超复数

Never mind when.
——Sir William Rowan Hamilton in 1859

别在意啥时候（才会有用）。

——哈密顿

More is different.
——Philip W. Anderson

多者异也。

——安德森及其应用

摘要 四元数是哈密顿对二元数（复数）的推广，成功开启了近世

代数的大门。四元数是第一个非交换代数。哈密顿将四元数的纯虚部称

为矢量，实部称为标量。由矢量的四元数乘积引入了点乘和叉乘的概

念。麦克斯韦从泰特那里学会了四元数运算，针对微分矢量运算发明了

矢量散度和旋度的概念，三分量的普通四元数世界矢量被麦克斯韦和亥

维赛德用于电磁学的表述，吉布斯和亥维赛德由此各自独立地发展出了

矢量分析。矢量分析是对严谨的四元数代数的实用主义裁剪，用处明

显，但对电磁学来说危害巨大。乱糟糟的▽点乘-叉乘让电动力学成为

大多数物理系学生的噩梦。泰特为捍卫四元数进行了艰苦的斗争，但结

果还是矢量分析得以大行其道。哈密顿追求建立一般的多重代数，吉布



斯试图将矢量分析推广，加上格拉斯曼创立的扩展的学问，以及佩尔斯

创立的线性结合代数，于是最终有了今天的线性代数。差不多同时诞生

的矩阵理论、格拉斯曼代数和克利福德代数同它们都有亲密的内在联

系，也都是物理表述的数学基础。弄清楚四元数、矢量分析和线性代数

背后的代数学知识和相互间的关系，普通物理教科书中的数学表述可能

就不显得那么令人迷惑，也就能理解为什么电动力学里的矢量叉乘又叉

乘怎么在量子力学里就不见了。矢量之所以是矢量在于它所遵循的代数

结构，它无须有方向，甚至也可以没有长度。

四元数以后还诞生了八元数、双四元数等，它们是超复数。按照复

函数可微的要求，四元数也就是线性函数q → a+bq和q → a+qb是可微

的。八元数代数没有结合律，八元数函数连可微性都丢失了。代数的运

算律是在数系发展过程中逐渐丢失后才被认识到的。

关键词 超复数；四元数；标量；矢量；除法代数；胡尔维茨整

数；八元数；双四元数；矢量分析；克利福德代数；线性代数

关键人物

Hamilton,Eisenstein,Graves,Maxwell,Cayley,Tait,Gibbs,Grassmann,Peirce,Hurwitz,Clifford



§8.1 复数作为二元数

复数z=a+bi以及复变函数f(z)的引入极大地促进了数学、物理的发

展。举个小例子。复数具有完备性，两个复数的乘积仍然是个复数：

对两侧取复数的模平方，得

这看似是一个很平凡的演算，但是如果a和b都是整数的话，(ac-bd)
和(bc+ad)也必是整数，则恒等式(8.2)的意义是，任意两个整数平方之和

的乘积必是两个整数平方之和。复数的研究一直是数学家们感兴趣的领

域，可以说复数展露的奇妙让数学家为之着迷。大约在1830年，25岁的

爱尔兰数学家、天文学家哈密顿——对，就是力学概念哈密顿量

（Hamiltonian）里的那个哈密顿——认为把复数写成一个实数加一个虚

数的做法是有误导性的。笔者在1984年学习复变函数时也注意到了复数

加法(a+bi)+(c+di)=(a+c)+(b+d)i里面的三个加号意义似乎不一致——实

部与虚部之间的加法似乎只是个记号而已，但也就到此为止，不敢质疑

也没有能力质疑。哈密顿认为复数z=a+bi里的这个加法符号只具有形式

意义，关于复数重要的是它遵循的算法而不是表示成什么样子。比如可

以把复数表示成矩阵的形式：



复数的加法和乘法对应矩阵的加法和乘法，这同样甚至可更好地表

示二维平面的几何。把复数写成矩阵形式，则对于模为1的复数，相应

矩阵的一般形式为

这分明就是二维空间笛卡尔坐标系下的转动变换，复数乘积有表示

二维平面内转动的功能——这是一个物理学家会更看重的特点。当然

了， 这样的形式还和保角变换有关系，还联系着哈密顿方程和

辛几何，等等，这是后话（不要小瞧这一年级时学过的加法，那里面有

太多的东西我们这辈子可能都没意识到）。总而言之，哈密顿意识到复

数应该是一种遵循具体算法的具有两个分量的数，写成(a,b)就可。他称

之为代数偶素（algebraic couple），现在也叫二元数，二元数并不奇

怪。比如，若a和b都是有理数，形如 这样的数就足以构成代数，

它们的加减乘除都是闭合的，即结果仍是 的形式。 当然是实

数，但笔者觉得它似乎已经有二元数的意思了，可以理解为由有理部和

（关于 的）无理部两部分拼接而成的。

复数，complex number（复杂的数），当写成二元数形式时，我们

理解了它是composite number（复合数）。复合才是关键。



§8.2 四元数的引入

复数，或者叫二元数，除了用于解代数方程还能描述二维空间里的

转动，仅凭后面这一点就足以奠定复数在物理学中的地位。可我们生活

在三维空间，三维空间里的转动才是物理学家最迫切想知道如何描述

的。可怜笔者大学时的经典力学课里竟然只学转动的欧拉角描述，而三

维转动的欧拉角描述是不科学的：1. 不唯一；2. 有奇性；3. 不构成群

（参见第10章群论。这一点很重要。洛伦兹变换是否构成群差别可大

了。庞加莱（Henri Poincaré,1854―1912）要求洛伦兹变换构成群是相

对论发展过程的重要一步）。哈密顿受到复数的启发，想到应该构造

triplet[1]，三重数或者三元数，来描述物理空间里发生的现象。仿照复数

的形式z=a+bi，哈密顿设想三元数应该具有形式

包含两种虚部i和j，要求满足i2=j2=-1。这看似没有多少难度。然

而，求三元数同自身的乘积时会出现ij和ji，

这是不同于虚部i、j或者i2、j2的新元素。令ij=ji=0或者ji=-ij，都能

让(8.6)式中的bc(ij+ji)这一项消失。但是，这消除不了任意两个三元数的

乘积以及任意两个三元数模平方的乘积（我们希望它还是一个三元数的

模平方）所带来的问题。这让哈密顿很苦恼，相关研究反反复复地放下

又拾起，转眼13年过去了也未能毕其功。

值得注意的是，在这个过程中哈密顿愿意选择ji=-ij，这意味着放弃

了乘法的交换律(ji=ij)，确实需要见识和勇气（对做科学来说，所谓的



勇气可能只是有见识的表现）。放弃对AB=BA的坚持，是近世代数的

第一步，真正具有革命性的意义。

时光到了1843年6月，一个叫爱森斯坦（Gotthold
Eisenstein,1823―1852）的19岁德国青年到爱尔兰登门拜访，与哈密顿

就一些共同关切的数学问题进行了亲切友好的交谈。爱森斯坦的来访极

大地刺激了哈密顿的神经，他觉得如果他不赶紧解决他的三元数（三重

数）问题，那么对这个问题的解决很可能会落入这个德国年轻人的手

里。接下来的日子里，哈密顿重拾三重数研究，终日里苦思冥想。1843
年10月16日那天下午某刻突然灵光闪现，哈密顿发明了四元数

（quaternion）！

哈密顿发明的，是形如q=a+bi+cj+dk的四元数，为此他需要引入第

三个虚数k2=-1。四元数中的三个单位虚数满足关系（记住这两个关系，

这是矢量分析重点要继承的关系）

以及

哈密顿是在顺着都柏林的皇家运河去开会的路上想到了四元数的，

激动不已的他在Brougham桥上刻下了这个公式i2=j2=k2=ijk=-1。顺便说

一句，高斯（Carl Friedrich Gauss,1777―1855）在1819年就发现了四元

数，但是到1900年才公之于世。

后来我们知道，哈密顿想要的是具有除法的三元数，但那根本就不

存在，四元数的代数才是除法代数。四元数在加减乘除开方等运算下是

闭合的。两个四元数的乘积还是四元数，用这个性质可以轻松证明任意

两组四个整数平方和之积还是四个整数的平方和，其实就是验算而已，

都不能算证明。哈密顿关于四元数的思想，见于他的两本书《四元数讲

义》（Lectures on Quaternions）和《四元数基础》（Elements of



Quaternions），后一本本来是要作为前一本的简化版的，结果却越写越

深、越写越厚，哈密顿对数学的态度由此可见一斑。更多内容，请参阅

拙作《磅礴为一》关于哈密顿的相关章节。顺便说一句，除法代数只有

二元数、四元数和八元数，此为胡尔维茨（Adolf Hurwitz,1859―1919）
定理，见后。



§8.3 四元数的算法与其他表示

类似二元数，四元数有加法和乘法规则如下：

乘法规则直接使用(8.7)式就能得到。根据四元数乘法，集合

Q8{1,i,j,k,-1,-i,-j,-k}构成群，即为四元数群（quaternion group）。基于

(8.7)式定义的乘法，容易理解一般地q1q2≠q2q1，即四元数乘法不满足交

换律。四元数不满足乘法交换律要求我们修正关于函数的认识。以指数

函数为例，容易验证 ，但 ，可见

一般地 不成立。

四元数乘法的这个表达式有点复杂，哈密顿把四元数q=a+bi+cj+dk
分成q=r+v两部分，其中的r是实部，哈密顿称之为scalar（标量，即尺度

因子）；v=bi+cj+dk是虚部，哈密顿称之为vector（矢量）。我们在力学

中遇到的位置矢量表示， ，在电磁学中遇到的电场矢量表

示， ，就是这样引入的。确切地说，此处提到的是普通四

元数世界矢量（ordinary quaternion world vector），是三维的。引入了

四元数的标量加矢量的记号，q=(r,v)，四元数的加法和乘法规则可重新

表述如下：



上式中的v1·v2和v1×v2的意义，在考虑四元数的实部为零的情形下，

即q=(0,v)，的乘法结果立即就明白了：

v1·v2和v1×v2分别是（普通四元数世界）矢量的点乘和叉乘。如果单

看矢量部分，两矢量相除，v1/v2，并不是矢量，但它可以是一个四元

数。哈密顿在其著作中就用专门的一章“作为矢量之商的四元数”谈论这

个问题，可说是对其情有独钟。三个以上的矢量的积，结果也该是四元

数。矢量的意义在后来的矢量分析中有了推广，见下。顺便说一句，任

意维的两矢量间都有内积和外积的问题，这在复数所在的二维情形就已

现端倪。方程x2=-1有两个根，这让z=x+iy和 具有内在的共

轭对称性。在诸多物理情景中，它们应该是同时出现的。 ，加

上熟悉的勾股定律，其意义就不言而明了。进一步地扩展，对于复数

z=x+iy，w=u+iv，有 ，你看积的右侧有两项，第一项为

xu+yv，第二项为yu-xv。这是不是让你看到了矢量的内积和外积？

参照复数，对四元数q=a+bi+cj+dk，定义其共轭为q*=a-bicj-dk，则

有

|q| 称为四元数的模，则可进一步定义四元数的逆：

有了逆的定义（有逆是群性质的关键），四元数就是有除法的代

数。对于 。注意前述公式的写法，四元数乘法不



满足交换律，所以要注意顺序。显然，关于四元数积的共轭与逆，有

，反映的是所谓的内卷的反自同构（involutiver
antiautomorphismus）。四元数的共轭可以用四元数自身来表示：

这个1/2与表述转动时的1/2角度似乎有关。四元数有模，则四元数

构成一个四维度规空间，两个四元数之间的距离定义为d(p,q)=|p-q|。
四元数也可以写成极坐标形式：

或者 ，其标量为a=|q| cosφ，，也就是说 是

（普通四元数世界）单位矢量。由 ，可以定义四元数的对数函

数， 。对于四元数运算p'=qpq-1还可以求微分

此结果可以用四元数自身来表示：

这些都为四元数的应用带来了方便。

四元数可以有多种其他的表达形式。其一是把四元数当作复数对，

是复数域C2上的二维矢量空间。令C2空间里的基矢量为1和j，矢量的两

个分量为任意的复数，则(a+bi)1+(c+di)j这样的复数对，令ij=-ji，就能

表示四元数，满足四元数的运算规则。其二，是将四元数表示成形如

的2×2复矩阵。这样的矩阵，大家可以验证一下，它遵循四



元数的加法和乘法。注意 ，也就是说四元数的

2×2矩阵，其矩阵值就是四元数的模平方。四元数的矩阵表示可以理解

为四元数张成了一个四维线性空间，4个基矢量分别为

这个四元数的矢量部分表示与泡利矩阵

之间相差一个虚数因子-i。泡利矩阵是针对原子物理中遭遇的二值

问题而由泡利构造的。笔者不知道泡利是否精研哈密顿的著作从而有所

借鉴，但是四元数2×2矩阵表示的矢量部分可以用来描述电子的自旋，

这本身已经足以让人为之着迷。强调一点，描述自旋的数学在电子被发

现以前就有了，它不是量子力学带来的学问。所谓量子力学视角下电子

这类自旋1/2粒子的波函数有奇异转动行为的说法，嗯，夏虫语冰吧。

四元数可以用二元数表示，反过来二元数也可以用四元数表示。选

取任意四元数ε，满足εε=-1，则z=ξ+ηε，其中ξ，η∈R，是复数，而

g(z)=u(ξ,η)+v(ξ,η)ε 是复函数。这是一个复杂回归简单但简单里依然内置

（embedding）复杂的案例。

四元数的第三种表达形式是将四元数的每个虚部对应两个2×2泡利

矩阵之积，即令i=σ3σ2,j=σ1σ3,k=σ2σ1，可以验证，这样的表示满足四元

数的运算规则。在这个图像里，四元数对应的不是矢量，而是两个矢量

的积，是二矢量（bivector）。这种表述，揭示了四元数更深刻的（几

何）内容，每一个二矢量的量纲是面积，它对应两个矢量所张成的平面

里的一个有面积、有取向的量（在三维空间里，平面的取向可由与平面

垂直的方向上的矢量来表示。为什么在三维空间里，有些不是矢量的



量，比如磁场强度B，被误当成了矢量？这就是原因。这样的电动力学

是讲不清楚电磁的本质的）。这样，四元数和复数的关系就清楚了：在

二维空间，有两个矢量方向σ1和σ2，故只能定义一个二矢量或者说一个

虚数，故虚数是z=a+bi的形式，其中i=σ1σ2是个2×2矩阵。而在三维矢量

空间，三个矢量方向为σ1、σ2和σ3，于是可以定义3个二矢量，即有3个
虚数。也可以用克利福德代数来理解四元数。在 代数里，三维

矢量，其基为σ1,σ2,σ3，满足σiσj=σjσi，四元数即对应 代数的偶部

。有兴趣的读者请参阅几何代数的相关内容。

四元数的第四种表达形式是4×4矩阵，比如，将(a,b,c,d)分别放入图

8.1的4×4矩阵中1,i,j,k对应的位置上，就得到了对应四元数q=a+bi+cj+dk
的一种表示。有趣的是，竟然有48种等价的不同表示（三维空间的点群

中，就Oh群有最多的、多达48个等效点。此非巧合。四元数与晶体群

有关，都关联着三维空间的转动）。构造原则如下：对角线都是1，要

求矩阵满足Mmn=-Mnm此一规则。第一个元素是1；第二个元素有3×2种
选择（后面的2来自正负号自由度）；第三个元素有2×2种选择；第四个

元素有1×2种选择。把1换成a，k换成b，i换成c，j换成d,就是一个四元

数的48种4×4矩阵表示的可能之一了。相对论量子力学中的狄拉克矩

阵，就是四元数的4×4矩阵表示。

图8.1 四元数4×4矩阵表示的构造方式

举例来说，四元数的4×4矩阵表示之一是



这是个分量为(a,b,c,d)的四维线性空间里的矢量，4个基矢量为

看到了狄拉克矩阵没有——用四元数表述转动，不引入标量部分是

残缺不全的。狄拉克矩阵γμ(γ=0,1,2,3)就是完备的。

严格说来，四元数的算法是实数域上的四维结合赋范可除代数

（fourdimensional associative normed division algebra over the real
numbers）。关于四元数的数学太深奥了，我能说的不多。

四元数的代数有多种不同的表示，但总要保持的是其内禀结构。由

此看群的表示，就容易理解了。



§8.4 四元数的威力与意义

四元数构成可除代数，非交换性是让四元数不同于其他数系（实

数，复数）的唯一性质。四元数是第一个非交换代数。就代数学发展来

说，它算是打开了潘多拉的盒子。四元数的威力更强大。证明1748年欧

拉发现的四平方（整）数恒等式（four-square identity）对于四元数来说

只是一个演算而已。但是，如果没有四元数，这个恒等式的证明如果不

是不可能的，那也是非常繁琐的。试演算一例。比如，(1+2i+3j+4k)
(2+3i+4j+5k)=(-36+6i+12j+12k)，这表明有等式

，酷！再者，四元数的非交换性

带来很多意想不到的结果，其中之一是四元数多项式方程会有多于多项

式幂次的解的数目。比如，关于方程

即对于q=a+bi+cj+dk要求a2-b2-c2-d2=-1,2ab=2ac=2ad=0，其解为

但这是一个三维空间里的单位球。也就是说复数方程z2+1=0的解是

±i，为两个孤立的值；四元数方程q2+1=0的解是流形S3。这正是空间拓

展的真义啊，难道四元数表示转动（量子计算）的能力就在于此吗？单

位四元数的S3群和SU(2)群之间有同构关系。四元数里的有限群应该指

向R3空间里的有限转动群，包括循环群Cn，描述多面体的关于二面的Dn

群，关于四面体的T群，关于八面体的O群，以及关于二十面体的I群
（到这里就没有了，这和五次代数方程不可解有关联。很想知道二十面

体和平移对称性不兼容是不是就是五次方程不可解的体现）。具体地，



群Cn由﹤en﹥产生，n阶；2Dn由﹤e2n,j﹥ 产生，4n阶；2T由﹤i,ω﹥产

生，24阶；2O由﹤qO,ω﹥产生，48阶；2I由﹤qI,ω﹥ 产生，120阶，其

中en=exp(2πiC/n)，表示独立于四元数的一个单位虚数，ω=(-1+i+j+k)/2；
。此处内容请结合四元数、群论和固

体空间群一起参详。

四元数的威力是多方面的，如前所见，它的许多表述都是不依赖于

坐标的选取的（coordinate-free），这显得紧致而且容易推导。举例来

说，使用四元数作变量的势函数用一个方程就表达了麦克斯韦方程组。

四元数构成群，多种物理上的协变群，如SO(3)群、洛伦兹群、广义相

对论涉及的群、克利福德代数SU(2)群、共形群，等等，都可以联系到

四元数构成的群。

§8.4a 表示矢量空间

四元数是用来描述时空的，哈密顿一直都有这个想法。四元数的

逆，可以描述时空的保角变换（conformal maps）。四元数里的矢量所

表示的普通世界空间是对称的，空间里的运动学和麦克斯韦方程都可以

完全用四元数的语汇加以描述。纯矢量作为四元数的虚部，提供了关于

物理现象的方便表示。一切计算均可按照四元数的代数进行，我们要牢

记这是实部为零的四元数的代数就好了。

上式右侧的实部，加个负号，就定义为矢量的点乘，而虚部就是矢

量的叉乘或曰外积。1846年，哈密顿甚至引入了微分矢量算符

，进一步地有 ，这些在物理上会迅速用

到电动力学上去。哈密顿此时实际上有了矢量分析，但他可舍不得把自



己的四元数弄成个简化版，他摆弄全套的四元数都是得心应手。

§8.4b 表示转动

单位四元数q,|q|=1，被哈密顿称为versor，这个词字面上和转动有

关，译成转量[2]。所有的单位四元数的集合构成一个群，提供了一个表

示三维指向以及转动的数学记号，简单、紧致、科学有效。转量子群的

像是一个点群。

设u是个四元数里的单位矢量，则单位四元数q=cosφ+usinφ 通过共

轭b操作

对矢量的两次转动， ，这对应q=q2q1, 。转

动的欧拉定理体现在四元数乘积上了。借助四元数，欧拉定理得到了说

明，而且很容易计算出结果的转轴和转角，太好使了。容易证明，三维

空间中，任意两个不同轴的转动定义一个镜面反射。由四元数转动

v'=qvq-1，即共轭操作，也很容易导出矩阵形式的v'=Rv，由

则R是单位四元数q对应的转动的3×3矩阵表示。

用四元数的矩阵表示，可以对一个四维矢量，按照如下共轭的方式

v'=q1vqr进行转动，其中qr和ql是两个可对易四元数的4×4矩阵表示（注意



四元数有48种四维矩阵表示！）

若采用如下的四维矢量的四维矩阵转动表示：

其中

这里可见四元数不同表示之间的关系。推导细节就不列举了。总

之，用四元数的矩阵表示描述转动，表述紧致，计算容易。

四元数在量子力学中出现的地方很多。量子力学的波函数是一个从

物理空间到复数的映射，Ψ:R3→C，俗谓波函数是一复值函数（不是复

变函数），转动满足 。然而，泡利1924年发现对于电子来

说，波函数是一个从三维物理空间到四元数（二阶复数）的映射

Ψ:R3→C，转动应是 ，故对于转动 （注

意，此处转动是用四元数共轭表示的）。四元数也用于相对论。对于四

维时空，定义双四元数 ，即Q=(i0ct)1+xi+yj+zk，此四元数的标

量和各矢量分量都是复数。

四元数表示空间转动的能力，让四元数成了经典力学、晶体学、量



子力学和相对论的基础。期待有人撰写四元数在这些领域中应用的详细

介绍。就描述转动的能力而言，罗德里格斯（Olinde
Rodrigues,1795―1851），1840年就已独立发现了四元数。

行文至此，有必要将复数表示转动和四元数表示转动放到一起考察

了，由此可以得到一些新的认识。单位复数表式转动时，单位复数表示

为一个2×2实矩阵，见(8.4)式。这个矩阵作用的对象（operand）为由两

个实数构成的列 ，转动应表示为

对象 被当作是复数，是因为如果(8.25a)成立则如下等式也成

立：

故对复数（矩阵） 同二实数列 （碰巧）可不加区分，

或者是未意识到需要加以区分。在（双）四元数语境中，事情就不一样

了。四元数可表示为2×2的复矩阵，其中一类特殊的可以是厄密矩阵，

2×2厄密矩阵作用的对象是二复数列 。二复数列 不对应四元数，

它也不能理解为两复分量的矢量，它是一个新的数学对象，称为旋量。

从这个角度理解，引入旋量就很自然了[3]。顺带说一句，复平面常被当

成欧几里得平面，细微处有不妥的地方。复数x+iy表示平面，四元数意

义下的ξj+ηk也是平面，但它们是不同的——内禀的数学不同。



§8.5 四元数的延伸

§8.5a 数系的推广

四元数可以看作是双复数（bi-complex number），即复数z=x+iy的
实部和虚部都是另一套虚数，x,y∈ z '=a+jb。普通四元数q=a+bi+cj+dk
中，(a,b,c,d)都是实数。如果(a,b,c,d)可以是复数，即二元数，则

A=a+bi+cj+dk这样的数称为双四元数（bi-quaternion），由哈密顿于

1844年发明。再强调一遍，薛定谔方程是对扩散方程（实系数微分方

程）中的时间加以复化（complexifi cation）得到的，狭义相对论的时空

有对作为四元数实部的时间的复化。狭义相对论中的时空坐标表示

(ict,x,y,z)不是简单的用虚数时间的矢量，而是双四元数，所以它承载

的、而我们未曾理解到的内容多着呢（这是就对相对论的理解而言，我

们和彭罗斯不可同日而语的原因）。双四元数可以按照四元数相加、相

乘。双四元数有5种类型的共轭数与之对应，分别是复共轭、四元共

轭、反共轭、转置和厄密共轭等。双四元数可作为实系数四元数之代数

方程的根。如果把四元数的分量(a,b,c,d)都换成四元数(A,B,C,D)，则有

Q=A+Bi2+Cj2+Dk2，其中A,B,C,D∈H，这样的数是二阶四元数。二阶虚

数i2,j2,k2和一阶虚数i,j,k遇到时，不发生运算。可以进一步地构造更高级

别的四元数，不再赘述。顺带说一句，当有两个虚部为0时，四元数退

化为复数。

对于复数O=A+Bi0，如果分量(A,B)都是四元数，这样的数构成八元

数（octonion），满足乘法



其中， 是相应的四元数共轭。在四元数被构造出来仅仅两

个月后，1843年12月26日格莱乌斯（John T. Graves,1806―1870）就报

告说他构造了八元数，他一开始管它叫octaves，后来改成了octonion。
哈密顿发现八元数是非结合的（non-associative），即乘法一般有

R（ST）≠（RS）T。这时时光已到了1844年7月，发现八元数是非结合

的导致了结合律这档子事第一次被提出来。八元数现在也叫Cayley
number，是因为凯莱曾在1845年3月的英国《哲学杂志》（Philosophical
Magazine）上提出了类似的八元数。格莱乌斯构造出八元数以后，把文

章交给哈密顿审阅，但哈密顿是出了名的完美主义者，把事情给耽搁

了。为此，哈密顿只好对朋友道歉。八元数也满足模平方乘积的定理，

即任意8个整数平方和之积仍为8个整数的平方和。格莱乌斯试图证明16
个整数也有类似的定理，无果；后来一个姓杨（J. R. Young,生卒年不

详）的数学家独立得到了8个数平方乘积的结果，他试图推广到任意个

2n个平方和的情形，也是无果。这些研究一起，反而证明了16个平方和

恒等式的不可能性。当然，现在我们明白，除法代数只有一、二、四、

八元数的情形。更高的代数需要牺牲更多的运算规则。这些规则的牺牲

让人们认识了它们的存在与具体性质。这个世界上，太多的事物是在失

去的时候其存在才能被注意到的。

§8.5b 代数的推广

四元数的代数性质很好，几何性质不是很理想。1847年在考虑四元

数几何性质的时候，哈密顿把四元数q=a+bi+cj+dk分为scalar part（标量

部）和vector part（矢量部）。第一次提出了scalar的概念。哈密顿1846
年甚至称呼四元数为grammarithm（图算术）。四元数的形象是一个数

加上一段线（directed right line），是一个scalar和一个vector的形式和

（形式和在克利福德代数中更加发扬光大）。哈密顿也是第一个用矢量



表示带方向的任意线段的。四元数矢量的乘积会出现第四个方向，但是

对其他三个方向是不区分的。这些都让哈密顿很困惑。到底四元数的几

何意义是什么，这要依赖对四元数的深入研究。有一种说法，四元数提

供了不需要坐标的解析几何。其实，四元数有丰富的几何内涵，它后来

被发掘出的内容远超过哈密顿当初的想象。

哈密顿的学生泰特（Peter Guthrie Tait,1831―1901）也是著名的数

学物理学家，是热力学创始人之一。泰特是四元数的强烈拥护者和传播

者，写过《四元数初论》（An Elementary Treatise on Quaternions）一

书。麦克斯韦（James Clerk Maxwell,1831―1979）是从泰特那里学到的

四元数，当然明白四元数的物理意义，故他支持四元数。麦克斯韦指

出，哈密顿把四元数之虚部的乘积结果分为标量部分和矢量部分的举措

具有重要的物理意义！ 麦克斯韦甚至认为四元数是朝向获得关于空间

的量的知识迈出的一大步，可同笛卡尔引入坐标系相媲美。许多物理现

象有相似的数学表达，如果关注这些数学形式，就能对物理现象有更好

的理解——不得不说，麦克斯韦是真有洞见的物理学家。麦克斯韦接着

讨论哈密顿的微分矢量算符▽，造出了convergence（散度）和curl（旋

度）这两个概念，即 以点乘和叉乘的方式作用于一个

（普通四元数世界）矢量上。麦克斯韦看到的是哈密顿的矢量用来表示

空间里的物理现象的优点，而非仅仅是简单的计算方法“... but it is a
method of thinking... It calls upon us at every step to form a mental image of
geometrical features represented by symbols!”

麦克斯韦同时使用坐标和四元数表示电磁学现象。这么做的一个不

方便的地方是，按照四元数的约定，矢量同自身的点乘（模平方）是负

数，但是用（笛卡尔）坐标表示时那得是正数，这有点儿拧巴。用麦克

斯韦自己的话说，这整个是plough with an ox and an ass together（用一头

牛和一头驴配套犁地）。

如今人们学习电动力学时一般用到的数学工具是一个叫作矢量分析

（vector analysis）的技术。矢量分析的发明人是美国人吉布斯（Josiah



Willard Gibbs,1839―1903）和英国人亥维赛德（Oliver
Heaviside,1850―1925）。亥维赛德把复数引入电路分析，故对将四元

数用于物理没有任何心理障碍，当前形式的麦克斯韦方程组就是他写出

来的，这是矢量分析的一大成就。这两个人都是在阅读麦克斯韦1873年
的经典《论电与磁》（A Treatise on Electricity and Magnetism）时有感

而发，认为有简化或曰裁剪四元数以供表述电磁学的实际需求，最后各

自独立地发展出了矢量分析。阅读麦克斯韦著作的吉布斯注意到，对于

电磁学来说用不着保留整套的四元数代数，故在1888年下决心发明矢量

分析体系。吉布斯说，他看出来就关于电磁学而言，把矢量的点乘和叉

乘保持在一个式子里不是个好主意（笔者以为这是个非常错误的想法，

该在一起的就得放到一起，理论的完备性是其威力的来源与保障），故

而他把叉乘和点乘当作两个独立的矢量操作。吉布斯于是构建了具有两

种乘法的矢量分析，以及微分算符▽对标量和矢量的不同作用。吉布斯

的灵感也来自哈密顿以及泰特的著作，但根本上还是来自麦克斯韦的思

想。吉布斯的《矢量分析基础》（Elements of Vector Analysis）一书于

1881年面世，但到1901年才正式刊行，由其学生威尔逊（Edwin Bidwell
Wilson,1879—1964）编辑出版。同一时期，亥维赛德也是受麦克斯韦著

作的影响在英国独立发展出了矢量分析，于1881年和1883年以“磁力与

电流的关系”（The relations between magnetic force and electric current）
为题发表了关于矢量分析的建议，系统的矢量分析出现在他1893年出版

的《电磁学理论》（Electromagnetic Theory）一书的卷一里。亥维赛德

是在1888年才听说美国人吉布斯也发展了矢量分析的。

（三维物理空间的）矢量分析是出于表述电磁学、电动力学的需要

而来的对四元数的实用主义裁剪，它确实带来了一些便利和发展。但

是，因为矢量分析是对严谨的四元数代数的实用主义裁剪，因此它的危

害也是巨大的。众多的一团糨糊似的电动力学教科书和众多笔者这样的

学电动力学却学了一脑子糨糊的人，就是证据。

四元数满足普通数和二元数的除交换律以外的所有代数运算规则，



最重要的是它有除法。但是，取出其中的矢量部分作为单独的体系，问

题可就麻烦喽：1. 矢量有点乘和叉乘两种乘法（甚至被有些人误以为是

独立的），且乘积的性质还不一样，原则上它们都不是矢量啊（学物理

的容易明白，两个同样对象的乘积，其量纲就不一样，它必然是不同性

质的物理量），叉乘的结果只是在三维空间碰巧因为对偶关系可以当作

矢量而已（有兴趣的读者请参考几何代数的相关表述）；2. 矢量叉乘不

满足结合律，这是大事情，是四元数没有的大问题；3. 矢量没有除法；

4. 矢量模平方不满足模平方乘积恒等式；5. 矢量不为零但叉乘可能为

零，这是代数最要避免的事情。这些问题都是因为（普通四元数世界）

矢量只是四元数的局部（虚部），故有叉乘的可能性，而一般意义下

（其他维度）的矢量就没有叉乘运算了。比如，量子力学里的波函数可

当作希尔伯特空间里的矢量，但没有波函数的叉乘。后世的电动力学教

科书作者不理解那里面的（普通四元数世界）矢量及其算法的来源和性

质，越抄越乱。

到了1893年，拥护四元数的人和拥抱新的矢量分析者之间的矛盾就

冒出来了，甚至爆发了激烈的争论。其实，四元数与矢量分析之争也是

比较奇怪的事儿。（普通四元数世界）矢量分析本来就脱胎于四元数虚

部的乘法，特殊的地方不过是给矢量模部分加个负号以及后来引入的微

分算符，按理说它们不该成为互为敌对的两种方法。据说，因为矢量分

析更直接贴近物理问题而为物理学家们所拥护，这话如今看来也未必有

道理，甚至有反讽的味道。首先矢量分析有内伤，学起来也很麻烦；至

于更贴近物理问题嘛，那得看是什么物理问题。描述转动还是得用四元

数。

哈密顿从二元数出发去构造triplet（三重数），结果落到了

quaternion（四元数）上。作为一个被形而上学武装到牙齿的抽象派学

者，哈密顿也一直在寻找polylets of ever higher dimensions（更高维的多

重数）。在哈密顿发展四元数的同时，将矢量拓展到高维线性空间的可

能性由格拉斯曼（Hermann Günther Grassmann,1809―1877）取得了进



展，这体现在他1844年出版的《线扩展的学问》（Die lineale
Ausdehnungslehre）一书中，此乃线性代数的鼻祖（参阅拙著《磅礴为

一》)。格拉斯曼比哈密顿更早且是从几何的意义上注意到存在AB=-BA
这样的乘法。1862年，格拉斯曼还出版了《扩展的学问——完备严谨

版》（Die Ausdehnungslehre vollständig und in strenger Form
begründet）。然而，由于追求抽象、严谨，格拉斯曼的书也是只有无畏

的数学家能读，故此书在出版后的30年里几乎无人问津。尤其值得一提

的是，1845年格拉斯曼在电动力学里放弃了作用等于反作用的信条（参

见Neue Theorie der Elektrodynamik,1845）。格拉斯曼认可数学是形式的

理论，他用最一般和最抽象的方式研究空间里的带方向的线（directed
lines in space）。格拉斯曼的目的是将几何抽象化。注意，带方向的

线，这个形象后来被赋予给了vector一词，甚至成了vector的标准解释，

这也是汉语“矢量”一词的由来。我愿意再强调一遍，vector作为字，是

携带者的意思，作为数学概念它可不是什么既有大小又有方向的量——
vector的性质由它所遵循的线性运算法则来定义，它可以没有方向，甚

至没有长度。关于矢量的误解对于四元数的认识是致命的。

格拉斯曼还为我们提供了格拉斯曼代数，满足规则

你看出来了，这可以用来描述费米子。看看，早在量子统计出现之

前，它可能用到的数学就准备好了。

吉布斯在1881年出版《矢量分析基础》（Elements of Vector
Analysis）一书时是读过格拉斯曼的著作的。吉布斯矢量分析里的某些

矢量性质，并不局限于三维矢量。哈密顿、格拉斯曼和吉布斯，他们的

研究都指向multiple algebra（任意多重代数）。但是，凯莱认为多重代

数始于美国人佩尔斯（Benjamin Peirce,1809―1880）。这人也是一个热

情的四元数支持者。佩尔斯1870年就写成、在1881正式出版了《线性结

合代数》（Linear Associate Algebra），在1855年还出版过《分析力



学》（Analytical Mechanics）一书，可见受哈密顿影响至深。Peirce认
为“The greatest value of the square root of minus one was its magical power
of doubling the actual universe,and placing by its side an ideal universe,its
exact counterpart,with which it can be compared and contrasted,and,by
means of curiously connecting fi bres,form with it an organic whole,from
which modern analysis has developed her surpassing geometry!”。这一句不

好翻译，留待读者学完微分几何、覆盖群、规范场论等内容回过头来自

己品味。在《线性结合代数》这本书里，派尔斯总结了那时的所有超复

数和少于7个单位的线性结合代数。吉布斯1886年发表过一篇名为“多重

代数”（Multiple Algebra）的文章，1887年凯莱也发表了同名文章。

Ausdehnungslehre（扩展的学问）、vector analysis（矢量分析）、

multiple algebra（多重代数）和multiple associate algebra（多重结合代

数），这些思想汇集到一起，我们上大学时都要学的linear algebra（线

性代数）这门学问于是水到渠成了。我算是大概明白我学过的线性代数

教科书差在哪里了。

说起线性代数，必须提到矩阵一词。线性代数的关键词是linear
transformation（线性变换），它是多重代数的根本。线性矢量的变换常

用一个矩阵表示。一般科学史认为矩阵一词由凯莱于1858年提出，吉布

斯认为凯莱1858年的文章“矩阵的理论”（A Memoir on the Theory of
Matrices）的基础其实已经见于1844年格拉斯曼《扩展的学问》了。实

际上，1844年，爱森斯坦发表的“关于三次式的一般研究”（Allgemeine
Untersuchungen über die Formen dritten Grades）一文也包含矩阵的思

想，这是艾森斯坦于1843年夏拜会哈密顿以后发表的，而哈密顿就是被

同他的谈话给吓到了从而全力以赴捡起他多次放下的triplet研究最后发

明了四元数的。其实，像n2个量的方块（block），代数方程组的判别

式，函数变换的雅可比判别式，等等，都容易让人想起矩阵，或者说它

们就是矩阵。

有趣的是，自1890年后物理学家接受了矢量分析，作为矢量分析之



母体的四元数却被弃置道旁。笔者读完十年大学，都没接触过四元数

（怪我自己）。维塔克（Sir Edmund Whittaker,1873―1956）于1940年
曾呼吁复活哈密顿的四元数，当时也没有多少响应。然而，四元数里的

深刻数学与物理怎么可能会被埋没呢？哈密顿当年就对四元数的价值深

信不疑，它是关于自然的反映，它一定会带来更多的数学与物理。我们

就慢慢等着看好了。Never mind when，哈密顿1859年对泰特这样说。其

实，哪用等多久，克利福德（Willian Kingdon Clifford,1845―1879）代

数在1870年的出现，作为四元数作用对象的旋量在1924年的提出，立时

就让四元数在电磁学和经典力学以外，比如量子力学，发现了更神奇的

应用，这让真想了解物理的物理学家不得不认真学习四元数。至于由四

元数开启的发明代数对象和代数规则给数学带来的影响，笔者不懂，不

论。强调一下，linear algebra不是什么线性代数，就是线的代数。

§8.5c 另一种意义上的代数推广

克利福德代数是对四元数代数的推广。克利福德代数是带二次型的

K-域上的矢量空间所产生的代数，是含幺结合代数（unital associative
algebra）。克利福德代数标记为 ，其中V是矢量空间，Q是二次

型。对于实数域上的矢量空间，配备了非退化的二次型Q的克利福德代

数可标记为 ，对应的空间V的正交基中有p个满足 ，q个满足

。整数对(p,q)称为二次型的记号[4]。若空间V的维度为n,则代数

的维度为n2。比如 是由{1,e1,e2,e1e2} 张开的四维代数，后

面的三个元素，其平方皆为-1，且互相反对易，这就是与四元数同构的

啊。狭义相对论下的时空的代数为 ，指的是

空间上的代数。定义了相应代数的二次型Q(v)，可

定义两矢量的内积



实数域上的克利福德代数有时候也称为几何代数（geometric
algebras）。用几何代数重现的经典力学，那才叫优雅。

如果 就是外代数。外代数、外微分，用这些语言重新表

述一些物理内容，简洁、明快。比如用外微分推导热力学的麦克斯韦关

系式，就是简单的练习题。关于克利福德代数及其在物理学中的应用，

请参阅几何代数方面的专著。



§8.6 八元数

类似二元数和四元数，八元数有一个实部，另有七个虚部。记8个
单位八元数为 ，任意一个八元数可表示为单位八元

数的实线性组合，即

二元数、四元数是把实部直接写出来，为了统一，八元数的标量基

元素e0是显性表达出来的。四元数的加减以各分量加减即可，乘除比较

麻烦。选定e0=1，八元数的乘法有480种可能的定义。其中常见的一种

可能选择是：

其中i j k,,1,2,,7，δij是Kronecker符号，εijk是反对称张量，对于

ijk=123,145,176,246,257,347,365，εijk=1。这么复杂的记号体系，它告诉

我们八元数不愧是超复杂的数。八元数共轭为

，八元数与其共轭的积， 。

格莱乌斯本人在发明了八元数后，随即就用八元数证明了八平方数定

理：任意两组8个整数平方之和的积一定是8个整数平方之和。

如前所述，八元数有个简单点儿的定义，即定义为一对四元数

(a,b)，其乘法为 为四元数共轭。这

是所谓的八元数Cayley-Dickson构造，看似好记，其实也不容易，要注

意乘法的顺序。八元数乘法既不满足交换律，也不满足结合律。

我们生活在三维空间。自然地，复数和四元数有众多物理学上的应

用。八元数维度多，太复杂，乘法既不能交换也不满足结合律，想将八



元数用于物理学不是一件容易的事儿。矢量乘以单位复数或者与四元数

相乘分别产生了正交群SO2和SO4，乘以单位八元数则产生了正交群

SO8。关于八元数的物理应用，笔者不太了解，就此打住。

如果按照复函数可微那么严格要求，四元数也就是线性函数

q→a+bq和q→a+qb是可微的。八元数不只是遭遇代数规则的丢失，连可

微性都丢失了。



§8.7 Hurwitz定理

胡尔维茨（Adolf Hurwitz,1859―1919）是德国数学家，对代数、几

何、分析、数论都有研究。我们提及的四元数，就有专门的Hurwitz
quaternion。胡尔维茨有个关于复合代数的Hurwitz定理，1923年才得以

发表，告诉我们为什么复合代数只有1-,2-,4-,8-元数4种情形。如果一个

二次型在代数的非零部分定义了一个到正实数的同态，则代数必须是和

实数、复数、四元数和八元数（之一）同构的。这其中，四元数已是非

交换的了，而八元数是非交换、非结合的。Hurwitz定理意味着平方和

乘积的恒等式只能发生在1-,2-,4-,8-维（元）的情形，这是胡尔维茨早在

1898年就证明了的。胡尔维茨代数是有限维的未必满足结合律的代数，

被赋予一个非退化的二次型恒等式Q(ab)=Q(a)Q(b)。而如果用到的系数

域是实的，且二次型是正定的，则有内积关系

这样的代数是欧几里得-胡尔维茨代数（Euclidean Hurwitz
algebra）。Hurwitz定理的证明要用到代数的深层次知识。埃克曼

（Beno Eckmann,1917―2008）于1943年用有限群的表示，舍瓦雷

（Claude Chevalley,1909―1984）于1954年用克利福德代数，也都证明

过。细节不提，这里只说结论。证明过程最后都着落到整数N>1能否被

数2(N-2)/2整除的问题。我们看到只有N=2,4,8这三种情形满足这个要求。

也就是说只有一元、二元、四元、八元数构成除法代数。

提起胡尔维茨，顺便说说整数问题。实数中的整数来自自然，其实

是先有整数后有实数。关于复数的整数问题，z=m+in，其中m和n是实

整数，被称为高斯整数，它在复平面内的图像是正方格子。那么关于四



元数，四元数整数是什么样子的呢？q=a+bi+cj+dk，a,b,c,d全是实整

数，这就是四元数整数吗？胡尔维茨提出了Hurwitz integer的概念，即

q=a+bi+cj+dk，但其中a,b,c,d全是实整数或者半实整数。这里涉及到整

数的意义，除法得到的余数应比除数小。笔者对四元数整数概念中的各

个实数域上的元素可以是半整数比较感兴趣，难道这和粒子的自旋指标

可以为半整数有关吗？



§8.8. 多余的话

笔者从1983年接触电磁学、矢量分析和线性代数，后来在2003年前

后接触四元数，一直有一种四元数出现得晚的错误印象。其实，矢量分

析，线性代数，克利福德代数，都切切实实是在四元数以后发展起来

的，是四元数上的生长物（outgrowth）。1890年以后的物理学家接受了

矢量分析，而四元数这个母体却被弃置道旁。麦克斯韦、亥维赛德他们

是在四元数的基础上给出了我们在普通电磁学、电动力学教科书里看到

的那个样子的电磁理论的——但众多的专业书籍竟然对四元数只字不

提。可是，在四元数语境下的电磁理论（以至相对论和相对论量子力

学）的表述多么紧致、系统、简单明了啊！那么，为什么会出现这么不

堪的局面呢？愚认为，就物理学的数学表述而言，人们也是不自觉地从

下流的。四元数之最要紧处，是它是可除代数。四元数如欲全面胜出，

那物理现象必须要求有除法，这样四元数就不得不自然地被采用了。令

人欣慰的是，四元数，以及后来的八元数，在物理学中得到了越来越多

的应用，也带来了众多只有它们才能带来的新认识。

四元数与哈密顿其人的哲学倾向，是一个有趣的科学史话题。是哈

密顿首先去掉了加在实数之上的代数运算规则限制，放出了恶魔。但是

去掉这些限制的代数学的进步，让我们更加深刻地认识了这些限制的意

义。这个事情具有特别的哲学意味。一个存在，也许只有当它失去的时

候，我们才认识到它的存在，才能深刻地认识到它是怎样的一个存在。

或者，对于一个对象，在它缺失的语境中才能得到最恰当的理解。或

许，从这个角度来看，关于粒子物理，尤其是那个湮灭算符，我们因此

会有不一样的认识。

哈密顿关于四元数的思想，见于他的两本书，1853年的《四元数讲



义》和1866年的《四元数原本》。前者太长、太艰涩，但是后来的简版

却越写越多变成了他辞世以后才由其次子埃德文编辑完成的巨著。哈密

顿对学问的态度由此可见一斑。这让笔者想起了泡利（Wolfgang
Pauli,1900―1958）的传记No time to be brief [5]。这个书名很难翻译，是

个拧着的说法，没有时间了（请回忆伽罗华临终的那句“我没有时间

了”），所以不可以草草了了。关于哈密顿此人，笔者以为也许他的传

记应该是No way to be brief，即无由草草、无法浅薄。浅薄无声是我们

这些俗人的宿命。哈密顿这样的巨擘，其思想的洪流波澜壮阔。哈密顿

是数学家、物理学家，但他首先是哲学家，他的那些深刻的思想如今没

有人再愿意理解了！可是，剔除了那些哲学的精神，他的数学和物理哪

里会有无穷无尽的影响呢。
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[1]具有三个组成部分的对象。汉语翻译习惯会带上那种对象具体属性的描述，比如三胞胎、三

重态，但是triplet字面上只有三的意思。

[2] 类似意思的还有rotor。这不是电机里的转子，而是几何代数里的一个对象，其将任何多矢量

（multivector）绕其原点转动。b共轭是谈论两头牛的关系，它们因为共轭从而往一个方向上用

力。数学和物理中到处都是共轭的概念，请注意不同语境下的共轭意思可不一样啊。

[3] 笔者是2020年10月26日再次修订时想到了2×2实矩阵和复矩阵作用对象的不同的。

[4] signature,有标准将其译为“符号差”。
[5] 偶然发现此句出自帕斯卡(Blaise Pascal,1623—1662)的《致外省人的信》之第16封。
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德国数学家格拉斯曼

Hermann Günther Grassmann 1809—1877



第9章 群论

The utmost abstractions are the true weapons
with which to control our thought of concrete fact.

——Alfred North Whitehead

极度的抽象是我们把控关于具体事实之思考的真刀实枪。

——怀特海

Mathematics loves symmetry above all.
——James Clerk Maxwell

数学最钟爱对称性。

——麦克斯韦

Over the Universe there is a group of symmetry.
宇宙之上有一个对称群。

——作者的自言自语

摘要 对代数方程解的思考带来了群论。群论另有几何的、数论

的、分析的起源。数学的发展带来了群论出现的必然，而群论应用于物

理学才见其威力，它带来了物理学的极大进展，扩展了自身的疆域且变

得更加深刻。群是满足乘法结合律、有逆、有单位元的封闭集合，可以

用矩阵、函数、算符等对象予以实现（表示），从而可以作用于不同的



数学对象上。群表示论是群论的硬核内容。就有限群而言，不可约表示

没有不变的子空间，循着这个线索容易理解有限群表示的关键：舒尔引

理。有了群论知识，就容易理解一些物理学的内容，如角动量、自旋、

旋量、同位旋等概念。群论之于物理学的应用，在晶体学、量子力学、

相对论、规范场论等领域各有侧重不同，应专门修习、混杂着修习。群

论揭示了对称性在物理理论中的关键角色，基于这些理论新发现的物理

现实让人们见识了数学之于物理之不可理喻的合理性。对称性借助群论

后来成了构造物理理论的出发点。对称性原则是客观存在赋予物理学的

必然信条。

关键词 代数结构；对称性；群；共轭类；群表示；有限群；置换

群；交替群；变换群；阿贝尔群；非阿贝尔群；李群；李代数；单群；

线性群；子群；正规子群；不变子群；商群；合成列；伽罗华群；空间

群；洛伦兹群；自旋表示，同构；同态；自同构；直积；直和

关键人物

Lagrange,Cauchy,Abel,Gauss,Lie,Galois,Cayley,Klein,Poincaré,Cartan,Lorentz,Schur,Frobenius,Hölder,Jordan,Dyck,Dedekind,Curie,Weyl,Wigner
在系统地学习了代数方程的解与不可解之后，该认真地考虑代数结

构了。代数结构是带算法和公理的集合，在抽象代数中有很多不同的代

数结构。本书将以走马观花的方式关注几个物理学也特别关切的代数结

构。一个集合，若其上定义了加减乘除，则称为域（field。另外，物理

学的场论，theory of field，字面上也是这个field）；若其上定义了加法

和乘法，则称为环（ring），比如整数就构成一个环；若其上只定义了

乘法，那是群。集合是物理对象，算法是实实在在的物理操作，相继的

操作某种意义上可以看作是操作（算符）的乘法。本章关注物理学的一

个重大关切：群。



§9.1 群的定义与性质初步

现在，解代数方程的努力把我们一步一步带到了一个数学和物理学

都无法回避的数学领域：群论。群，可以说就是个有特定乘法的集合，

貌似简单之极，但群论却是一门博大精深的学问。群论可用于几乎所有

的数学与物理领域，故有“挖掘工具”的美誉。群和对称性、共轭、等价

性、不变性以及不可区分性等特殊概念相联系，故而会随时随地在物理

学中现身。试图在一本著作中阐述清楚群论的一个侧面可能都无能为

力，遑论本书的一个章节。本章中笔者将循着历史的必然轨迹接近群

论，把目光限制在与代数方程解以及物理学有关的群论点滴上。其目的

之一，也是为下一章规范场论的介绍做准备。

§9.1a 群的定义

群G是这样的集合，针对集合中的元素可以定义一个二元运算

（binary operation），俗称乘法，使得任意两个元素的乘积都是该集合

的元素。换句话说，群G关于其乘法具有封闭性（closure），即其乘法

是一个G×G→G的映射（自身相乘到自身的映射，从量纲的角度看，这

个映射中应该有个同量纲的系数。你看，学物理从G×G→G的形式就能

看出群必然有结构因子的问题）。此外，该乘法还有如下性质：1. 满足

结合律（associativity），即对于任意的群元素p,q,r，有(pq)r=p(qr)；2.
存在单位元（identity element）e，对于任意的群元素g，有ge=eg=g; 3.
对于任意的群元素g，都存在唯一的逆g-1，有gg-1=g-1g=e。群定义中的乘

法需满足的三个条件是在群论发展过程中经一百余年的思考才最终确立



的。此三个条件各有深意，若能参照具体物理语境中的操作可能更有深

刻体会，下文会针对性地随机予以阐发。最小的群可仅由两个元素组

成，G={e,a}，其中e是单位元，a是一个为自身逆的元素（元素g的逆g-1

可以就是g本身），aa=aa-1=e。物理上，a可以是照镜子这个动作，单位

元e是啥也没做；数学上，可以选择e=1，a=-1，乘法是普通的乘法；也

可以选择 ，乘法是矩阵乘法，有 ；当

然也可以是 这么个最小、最简单的群G={e,a}，可

是联系着物理上的镜面对称、时空反演、宇称、电荷共轭等概念，千万

不要小瞧了哦。

再举一个稍微复杂点儿的例子，8个元素的集合{±1,±i,±j,±k}按照四

元数的乘法法则就构成了四元数群Q8。注意，四元数的乘法不具有交换

性，因此四元数群Q8是一个非阿贝尔群。

§9.1b 群的性质初步

群是按照一个运算规则，比如正二十面体的相继对称转动，组织到

一起的一个集合。群是由元素的集合与运算规则共同构成的，运算规则

比元素重要。一个群里的元素并不是在所有意义上都是等价的——找出

有意义的等价标准很有必要。群的概念整体上可对应物质，有个大的概

念（共性）和与共性相容的各种亚结构。群里面有丰富的结构。群论首

先有必要把这些结构厘清。当然，取决于群元素的数目、具体乘法以及

其内部结构等因素，群会表现出很多不同的性质。

一般来说，群元素的乘积有性质g1g2≠g2g1。但是，有一类群，其中

的元素乘积满足g1g2=g2g1，这样的群是交换群，又称阿贝尔群。考察两

个群元素g1和g2，若g1g=gg2，由于群元素始终有逆的存在，故有g1=gg2g-

1。令元素g遍历整个群G，对于具体的g2就能筛出所有的满足g1=gg2g-1的



元素g1来，归于一个共轭类（conjugacy class）。一个共轭类里的元素具

有许多共同性质。群可以表示为共轭类的集合。存在共轭类为群的表示

打开了一扇大门。

群G中的一部分元素也可以按照同样的乘法构成群H，称为子群，

记为H＜G。单位元素{e}和群G本身是两个平凡的子群，一般情形下谈

论子群指的是非平凡子群。一个群G可以有多个子群，子群的交集仍是

子群。举例来说，集合{1,-1,i,-i} 按照复数乘法构成一个群，C4群，其子

集{1,-1} 按照复数乘法也构成一个群，C2群。

如下几个群的基本概念应当了解一下，它们在此前谈论代数方程解

的时候提及过。

正规子群：设群H是群G的子群，若对于任意的g∈G总有gH=Hg，
则称群H是群G的正规子群。显然，如果群G是置换群，则群G的所有子

群都是正规子群。交错群An就是置换群Sn的正规子群。

单群：一个群，如果只有平凡正规子群，则称为单群（simple
group）。单群不能再拆分。比如，当n≥4时，交错群An是单群。这个结

论对理解五次方程代数不可解有用。

拉格朗日考虑了子群陪集的概念。设H是群G的一个子群，可以定

义陪集集合如下：G/H={aH|a∈G}，此为左陪集；或者G/H=
{aH|a∈G}，此为右陪集。陪集的每一个元素本身都是集合，群H也是

其中之一，其是由单位元素{e}所生成的陪集{eH}。对于正规子群，左

陪集与右陪集是相同的。

商群：设H是群G的正规子群，H的所有陪集G/H（读成G mod H）

关于其上的运算aH·bH=(ab)H就构成一个群，称为群G关于子群H的商群

（quotient group，类似除法里的商）。赫尔德（Otto
Hölder,1859―1937）于1889年引入了商群的概念。此前商群是被看作成

辅助解式方程的伽罗华群的，赫尔德把它当作陪集群。

商群的概念之所以被提炼出来，是因为它展现了群的结构，这也是

它在伽罗华理论中具有重要地位的原因。举例来说，C12群可记为



，乍一看它和C11群 除了相

差一个元素别的也没有区别。然而，注意，C4={1,-1,i,-i} 是C12群的正规

子群，商群C12/C4是一个3元素的群，{e,a,a-1}。C12群比C11群有丰富的结

构。如果G是李群，而H是群G的正规子李群，则商群G/H也是李群。这

样李群G就有纤维丛的结构，群G/H是基空间，群H是纤维。这样李群就

和微分几何的纤维丛理论联系上了[1]。



§9.2 群概念起源

群论是代数学的一个小分支。群可用于数学的各个分支，可以想见

它必然有多处不同的起源。公认的群论起源有四，按时间顺序大致为：

1. 经典代数（J. L. Lagrange,1770）；2.数论（C. F. Gauss,1801）；3.几
何（F. Klein,1874）；以及4.分析（S. Lie,1874; H. Poincaré & F.
Klein,1876）。

§9.2a 群的代数起源

一元二次方程的解，巴比伦人在公元前1600年就找到了，三次、四

次方程的代数解法约出现在1540年。到了18世纪中叶，关于一元三次、

四次方程有了足够多的解法，而解五次方程的尝试却总是无功而返。群

论开始于1770年，那一年拉格朗日反思代数方程的基本理论问题，包括

根的存在性和性质。一个代数方程，有（根式）解吗？如果有，该有几

个？实根与复数根又各占几个？愚以为，最该问的也许是根之间的关

联，或者说方程应该体现出的结构。最重要的是，关于代数方程，那时

尚没有解的一般理论。

拉格朗日发现，解三次、四次方程的方法（见第3、4、5章）都是

约化到一个辅助方程，即解式方程。辅助方程若比原方程降一阶，就能

得到根式解，因为二次方程的解是容易得到的。拉格朗日考察任意n次
多项式方程f(x)=0的约化问题。方程f(x)=0有n个根，选择一个关于f(x)=0
的根与系数一起构成的有理函数R(x1,x2,…,xn)，作根的置换，如该函数

有k个不同的值y1,y2,…,yk，则解式可选择为多项式



拉格朗日指出，k必是n!的因子。怎么选择这个有理函数R呢？这是

个问题。举例来说，对于一元四次方程，选择函数R=x1x2+x3x4，在24种
根置换下此函数只有3个不同值。也就是说，凭借这个过程可以把四次

方程导向一个三次的解式方程。三次方程可解，因此四次方程可解。关

于五次方程，拉格朗日找到的一个辅助解式方程是六阶的。考察5！
=120的因子，分别为2,3,4,5,6,8,10,12,……想找到在5个根的120种置换下

只取2、3或4个值的有理函数R(x1,x2,…,x5)，拉格朗日发现他做不到。拉

格朗日这篇论文的意义，在于第一次把方程的可解性同根的置换联系到

了一起。这里，笔者想强调一下，根的置换是解代数方程的真正核心问

题所在。拉格朗日认识到解的必要条件是存在低一阶的解式方程，后来

的阿贝尔与伽罗华证明了对于高于四次的方程这种情况一般来说不存

在。但是，辅助解式方程的构造并不是基于一套明确的方法，因此不具

有严格证明的功用。

伽罗华在1832年发现，代数方程的性质反映在唯一地同方程联系在

一起的一个数学对象的性质中，即方程的群中。伽罗华第一次使用了

groupe一词，他发明了正规子群（normal subgroup）的概念。伽罗华注

意到，解式方程的存在性等价于方程群的一个素数指标的正规子群

（normal subgroup of prime index）的存在性。伽罗华发现的群的那个操

作，就是根的置换。根的置换保持根之间在方程系数域上的关系不变。

笔者个人的理解是，对于一个n次代数方程，它的n个根，就谈论代数方

程来说，都是等价的。

顺带说一句，置换是对permutation一词的翻译。Permutation，
per+mutare，意思是彻底地变动。在概率论等领域，我们把permutation
译成了排列，permutation and combination，即排列与组合。考察一个具

有n个对象的集合的排列（置换），比如n张不同花色的扑克牌从左到右

排成一串之所有可能性，第一张牌有n种选择，第二张牌有n-1种选择，

依此类推，最后一张牌只有1种选择，故这串牌的花样有



种可能性，简记为P(n)=n!。计算从n个对象的集合中挑出m个对象

的可能性，这是组合算法，记为C(n,m)或者 ，有公式

置换群，permutation group，是有限群。柯西在1815―1844年系统

研究过置换。他把全同置换（identity permutation，不做任何变动）也当

作一个置换，引入类似 这样的循环符号表示置换（下一行是上

一行置换后的结果），还提出了柯西定理：对于置换群，如果素数p是
群阶的因子，则存在阶为p的子群。素数在群的语境中有特殊地位。请

回顾伽罗华关于五次以上方程不可解的理论。

约当（Camille Jordan，1838―1922）深入研究了代数方程和置换

群，这见于他1869年的“论一个16阶方程”（Sur une équation du 16ème
degré）和1870年“替换与代数方程讲义”（Traité des substitutions et des
équations algébrique）等文章。约当提出了技术层面上可解群的概念和

群合成列的概念。那个时期，置换群更多的是用substitution group（替

换群）的说法，这也是伽罗华的用词。

§9.2b 群的数论起源

高斯1801年在其《算术研究》（Disquisitiones Arithmeticae）一书中

总结了当时的数论研究成果。该书开启了有限阿贝尔群的研究，当然表

述用的不是如今我们熟悉的群论术语。有限阿贝尔群包括模m的整数的

加法群，关于模p（p为质数）的整数的乘法群，二元二次型（binary
quadratic form）等价类群，方程xn=1的n个根组成的群，等等。分圆方



程xn=1的根xm=ei2πm/n，m=1,2,…,n-1，群元素相乘为普通的复数相乘，它

们构成一个n阶循环群（n-th unit root group）。如果n是个费马素数，高

斯证明解这个分圆方程可以约化为解一系列二次方程，这也是尺规法画

圆内接17边形的理论基础（高斯的墓碑上就是圆内接17边形图案）。

至于二元二次型等价类群，稍微有点复杂，但仍是初等数学。其

实，是费马―欧拉―拉格朗日这条线上的数论研究让人们注意到了二次

型这样的“广义数论”对象。考察二元二次型f（x，y）=ax2+2bxy+cy2作

线性变换

得到二次型 是等价类。计算表明

b2-ac=b'2-a'c'，即判别式Δ=b2-ac是二次型的一个变换不变量。当然了，

Δ=b2-ac相等的二次型不一定是等价类。高斯定义了二元二次型的合成

操作，即直接相乘，使得二元二次型的等价类可构成群。比如，等价类

[f（x，y）=x2+5y2] 和等价类[g（x，y）=2x2+2xy+3y2]就构成群。计算

表明：

这是[f（x，y）]等价类，而[f（x，y）]· [g（x'，y'）]是[g（x，
y）]等价类，[g（x，y）]· [g（x'，y'）] 是[f（x，y）] 等价类。这形式

上就是a·a=a，a·b=b，b·b=a，可见它们构成一个2阶循环群。

§9.2c 群的几何起源



群的几何起源指的是克莱因1872年的入职演讲，即所谓的埃尔朗恩

纲领。在这个纲领中，克莱因把几何的分类当成了变换群下的不变性研

究。几何是关于图形在变换下不变之性质的研究。克莱因指出，“群作

为不同的学问出现在近代数学之各处，它作为分门别类的原则贯穿最变

化多端之各个领域”。这样的群包括投影群、相似群、椭圆群，其实还

必须有仿射群，以及它们所关联的几何。变换群则可指向无限群。本来

是研究图形的几何关系的，但是研究重心很快就滑向了对变换的研究。

对变换的分类，最终导致了克莱因对几何学的基于群论的综合。

克莱因的《二十面体讲义》（Lectures on the Icosahedron）隐藏着

刚体转动对称性、多项式方程解和函数论之间的内禀关系。更进一步关

于群的认识，包括只有李（Sophus Lie,1842―1899）的连续群变换才是

真正的描述运动的群（group of motion）；与狭义相对论有关的群包括

刚体运动群、仿射群、圆变换、球变换等；形式（form）在变量的变换

下之不变性的研究（有Cayley-Silvester不变量理论，可以说是埃尔朗恩

纲领的先驱）是物理学的重大关切，等等。在广义相对论中，能量-动
量张量的形式就是个要依据对称群去寻找的物理对象。对称性本身作为

物理研究对象的思想，始于居里(Pierre Curie,1859―1906)。

§9.2d 群的分析起源

挪威数学家李是数学史上的一个关键人物，他于1874年引入了连续

变换群，即我们今天常说的李群的一般理论。连续变换

其中a1，a2，…，am，是参数，可构成连续变换群。比如，变换



其中a,b,c,d为实数，ad-bc≠0，就构成连续变换群。李还把连续变换

群从代数方程向微分方程领域扩展。微分方程的伽罗华理论由皮卡

（émile Picard,1856―1941）于1883/1887年和维西奥（Ernest
Vessiot,1865―1952）于1892年的工作完成。

庞加莱和克莱因在1876年前后研究自守函数，其在变换 ，

其中a,b,c,d为复数，ad-bc≠0，所构成的连续变换群或者其子群下是不变

的。举例来说，当a,b,c,d为整数且ad-bc=1时，变换 构成的是同

椭圆模函数相联系的模式群。扯远了，打住。



§9.3 群的性质进阶

伽罗华是第一个有结构思想的数学家。群论的研究，某种意义上是

关于群之结构及其表示与作用的研究。

很多来自不同出处、貌似不同的群，其实可能具有某种程度上相同

的结构。设(G,○)和(G',●)是两个不同的群（这样表示是同时强调群的元

素及其乘法），若存在映射f:G→G'，使得对于任意的a,b∈G，有

f(a○b)=f(a)●f(b)，则称映射f是一个从群(G,○)到群(G',●)的同态

（homomorphism）。进一步地，若映射f:G→G' 是一一对应的，则称映

射f是一个从群(G,○)到群(G',●)的同构（isomorphism）。同构和同态

（homomorphism）的着眼点都在morph（形，结构）上，前缀iso-
,homo-的意思都是“同”，但是同的程度不同而已。另有一个拓扑学中遇

到的映射homeomorphism，与isomorphism和homomorphism一样，字面

上都是“同+构”的意思，被译为同胚。同胚是拓扑空间范畴中的同构。

一个群G到自身也有许多同构（映射，函数），这些函数构成的集合，

配上映射的合成运算作为乘法f○h()=f(h())，也构成一个群，称为自同构

群，记为Aut(G)。找出一个群的子群和自同构是认识其结构的重要途

径。

群元素的数目，记为|G|，有限的群，称为有限群。对于有限群，凯

莱定理说，每一个有限群都同构于某个置换群（对称群）的子群。也就

是说，研究了置换群Sn，就相当于研究了所有可能的有限群。

群G是由一个特殊乘法所定义了的集合。对于物理学家感兴趣的

群，群可能是个操作（operation）、算符（operator）的集合，具体的群

元素作用于哪个对象之上，即它的operand是什么，也是群论的重要关

切对象。对于物理上遇到的一些群，比如自旋群，找到其表示以及表示



作用于其上的操作对象就是相关的群论研究。

代克（Walther von Dyck,1856―1934）在1882年的“群论研究”一文

中用生成元（generator）和生成关系定义群，他是第一个明确要求群定

义中必须有逆的（即可除。请参考可除代数理解）。群的本质不再是表

现于具体的表示形式中，而是存在于群元素间的关系中——这个思想很

物理。有限群用其生成元及其关系表征，生成元的数目是群的秩

（rank）。举例来说，元素i是C4群{1,-1,i,-i} 的生成元，明显地，其他三

个元素皆可由生成元得到，i2=-1，i3=-i，i4=1。或者，选择-i作为生成

元，明显地，(-i)2=-1，(-i)3=i，(-i)4=1（请体会i和-i的不可区分性）。有

限循环群只需一个生成元，但可能有多个群元素都可以作为生成元。再

比如群{e,a,a2,a3,b,ab,a2b,a3b}是有两个生成元的群。如果令b2=e，bab-1=a-

1，则这个群就是描述正方形对称性的D4群。1884年，克莱因给出了一

个有两个生成元但是只有4个元素的群（著名的Kleins’ Viergruppe），

，具体列出元素则是{e,a,b,ab}，这是阶数最少的非循

环群。用生成元表示群，可以把数论、代数方程和几何得出的不同群统

一地纳入抽象群概念中去。

约当最先提出了两个群元素的交换子（对易式）的概念，[a,b]=a-1b-

1ab。戴德金（Richard Dedekind,1831―1916）等人于1897/1898年在研究

哈密顿群（所有子群都是正规子群的一类非阿贝尔群）的过程中引入了

群元素交换子以及交换子子群的概念。如果一个群有交换子子群，就不

是单群。阿诺德在用拓扑方法证明一元五次方程代数不可解的过程中就

用到了交换子子群的概念。



§9.4 群表示初步

凯莱指出：群是由其符号的组合规律定义的。然而，当我们应用群

论于诸般物理问题的时候，光有符号是不够的。群及其作用的对象，要

有具体的表示。群，一如观音菩萨，随类应化，有诸般化身方可济世

（图9.1)。用来表示群的数学对象有矩阵、算符，还有多项式甚至函

数，其中尤以矩阵最为常见。矩阵可以加、乘，可能有逆，可具有不同

的对易行为，可作为函数的宗量，可以作为算符，等等。一方面矩阵能

表现出群的多面性质，另一方面它又特别物理，故特别适合群的表示。

如无特别说明，此处的表示皆指用矩阵表示。

图9.1（a）千手观音相（b）鱼篮观音相观音能具千般异相，群亦当如是观



§9.4a 有限群表示

元素数目有限的群为有限群。有限群表示理论来自弗罗贝尼乌斯、

伯恩赛德（William Burnside,1852―1927）等人。

对于一个n阶有限群G，n=|G|，总存在表示R(g)=1，这种平凡表示

没有什么意义。反过来，总可以选择作用于n维矢量空间的n×n阶可逆矩

阵Mij，要求满足关系

这是所谓的正规表示[2]。但是，对于阶数高的有限群，正规表示或

许有冗余，可以约化，用阶数更少的可逆矩阵表示，当然都要满足(9.7)
式。这就引入了群的可约与不可约表示的问题。若表示是不可约的，其

对应的表示空间是不变的。找出置换群的不可约表示是有限群表示论的

重点。不可约表示是群论应用于物理学的起点。从技术层面上说，是如

何分解n×n阶可逆矩阵Mij，使得得到的低阶矩阵仍是群表示的问题。

设群元素g对应矢量空间V上的线性变换A(g)，D={A(g)} 是群的一

个表示，有A(g2)A(g1)=A(g2g1)，A(e)=1，A(g-1)=A(g)-1。如果V的一个子

空间在群表示D={A(g)}下不变，那就是表示D的一个不变子空间。如果

空间V在D作用下没有不变子空间，那么表示D就是不可约的。群表示的

可约与不可约体现在是否有不变子空间上。设群G在空间V上的表示为

D，若V是不变子空间的和，则表示D也可以表示为不可约部分之和,
，相应的矢量空间分解为 。相应地，群表

示的矩阵总是对角线上区块相连的样子。

有限群的不可约表示是其应用的起点。

那么，一个群表示是不可约的判据是什么？这就要用到舒尔（Issai
Schur,1875―1941）引理了。设有两个不同的不可约表示，不可约表示1
为D1={A(g)}，在空间V中，其中的矢量为x；不可约表示2为D2=
{B(g)}，在空间W中，其中的矢量为y。假设存在从空间V到空间W的线



性变换P，对于x∈V，y∈W，有y=Px；若对所有的群元素，有

则P必是一对一的，或者P=0。也即是说，若两个表示D1和D2是不

等价的，满足关系B(g)P=PA(g)的只能是P=0；若两个表示D1和D2是等价

的，满足关系B(g)P=PA(g)的P在两个表示之间建立起了一个同构关系。

关系式(9.8)意味着

是相似变换，或者说对应的两个表示是等价的。

如果表示是个复表示，设λ 是变换P的一个本征值，即是方程det(P-
λI)=0的根。假设映射Q=P-λI满足A(g)Q=QA(g)，则要么Q=0，要么Q是

一个非奇性的变换。但是，因为det(Q)=det(P-λI)=0，后一种可能性可以

排除。也就是说，若关于群的一个不可约表示空间的一个线性变换P和
该不可约复表示的所有变换A(g)是可交换的，A(g)P=PA(g)，则导出结

果P-λI=0。这就是所谓的舒尔引理。对于阿贝尔群，

A(g)A(h)=A(h)A(g)，也即任一个作为群表示的变换A(g)也是那个空间的

相似变换P，故有A(g)=λ(g)I，每个群元素对应一个复数λ(g)，是故阿贝

尔群的所有不可约表示空间都是一维的。

理解舒尔引理对群论的意义，关键是看这个引理怎样导向群表示的

正交关系。舒尔引理谈论的是在群的两个不可约表示之间可以存在什么

样的线性映射的问题。这里的关键是交换。多维空间对多维空间的映射

是矩阵，有本征值问题。

舒尔第一引理说，如果两个维度不同的不可约表示存在关系

M[1]S=SM[2]，必然意味着S=0。如果有两个维度相同的不可约表示，但

作用在不同的希尔伯特空间上，M[1]S=SM[2]也必然意味着S=0。如果作

用于同一个希尔伯特空间上，则M[1]=SM[2]S-1，这两个表示是等价的。

对于同一个不可约表示，若存在矩阵S，使得对于任一群元素，存在



M(g)S=SM(g)，则S必是一个常数乘上单位矩阵。这是第二引理。这是

上一节内容用矩阵概念的表述。

舒尔引理回答有限群不可约表示的数目与类型问题。首先，有限群

的所有表示，依据群平均内积 ，都是酉的，即总有

关系M(g-1)M(g)=1。这意味着 .对于两个维度分别

为dα和dβ的不可约表示M[α],M[β]，总可以构造矩阵

（这是关键），其中N是个任意的dα×dβ阵列，这样就建立起了关系式

。于是，根据舒尔引理，容易得到当M[α],M[β]，为不

同的不可约表示时，存在等式

这个等式的意思是，两个不可约表示，针对所有的群元素各自选取

一个矩阵元，它们作为n维矢量，n是群的阶，是正交的。另一个重要的

等式为

其中dα是不可约表示M[α]的维数。这个等式的意思是，针对所有的

群元素同一个不可约表示的矩阵元构成正交归一集合。

既然有限群的任何矩阵表示都等价于一个酉表示，可直接假设不可

约表示的矩阵 是酉阵，其中(λ)是不可约表示的指标，满足

。则对于不可约表示，有正交关系



由这个正交关系，再加上identity representation [3]是不可约表示的事

实，则对于其他的不可约表示，必有

即任何其他不可约表示的矩阵元对群元素之和为0。关系式

(9.11)―(9.13)有助于得到表示矩阵的显式表达。

有必要谈谈群表示的特征标表。设群G={g} 有表示D={A(g)}，定义

特征标（character） ，即群元素的特征标为其表示矩阵的迹

（trace）。选定一个群元素g，操作hgh-1,h∈G，得到的一个元素集合定

义了一个共轭类。在有限群的不可约表示论中，共轭类扮演了重要的角

色。共轭类里的所有元素，其表示（矩阵）有同样的特征标（迹）。这

样，针对一个群的表示，可以构造特征标表，其中群元素按照共轭类归

类。特征标表是群的不变量。给定了一个有限群，先根据群元素的乘法

作共轭类划分。共轭类数目等于其不可约表示的数目，而不可约表示的

维度等于其在正规表示中的多重性（出现的次数）。由一个群的共轭类

划分，就可以找到其不可约表示的特征标表。弗罗贝尼乌斯于1896年引

入了特征标表理论，开创了群表示论这一分支。特征标表的行是正交

的， ；如果元素g和h不属于同一个共轭类，特征标表的列也是正

交的， 为元素g的中心化子

（centralizer）的阶数。

对式(9.11)求迹，得 ，即对任何不可约表示，有

。若一个可约表示是由不可约表示构成的， ，其中rα是不可

约表示χα出现的次数，这样，显然有

对于那个天然的n阶正规表示， 。单位元独自构成一个共轭



类，所以 ，而一个nα维的不可约表示在正规表示中出现nα次，故有

关系式

这是个硬性的要求。反过来， ，而把一个整数分解成整数平

方和在许多时候其方式是唯一的。这为找到正确的群表示提供了便利。

举例来说，交替群A4是置换群S4的子群，有12个元素，可分为四个

共轭类。故按照舒尔引理，可根据 来分解群的阶数12，得

12=12+12+12+32，所以A4群的12维正规表示的构成是沿对角线的三个不

同1×1矩阵和重复出现3次的一个3×3矩阵。针对所有的不可约表示的可

能维度nd，给出相应的表示群元素的nd×nd阶矩阵，就算完成了有限群的

表示。

可用一个简单的群来检验舒尔正交关系对群表示的意义。考察S3

群，有六个元素，分为三个共轭类。分解6=12+12+22，故有三个不可约

表示，两个一维的和一个二维的。六个元素的二维不可约表示的矩阵分

别为

容易验证，1. 除了单位元，其他群元素的迹皆为0；2.二维表示矩

阵的四个矩阵元所构成的六维矢量都是正交的。

舒尔正交关系也可用于李群和李代数的表示，只需要把正交关系中

的求和改成正确的积分形式即可，太复杂，此处不论。

§9.4b 连续群表示



(1)一般推导

为连续变换选择合适的参数t，使得变换A(t)~g满足关系式

群元素的乘法变成了参数的加法。因为A（t2+t1）=A（t2）

A（t1），必然有A(0)=I，故可取A(t)=exp(Xt)的形式，其中 （字符

上的点表示对参数的微分。下同）。因为 ，在连续群表示

A(t)=exp(Xt)的参数t=0附近，算符X就决定了连续群的全部内容。

考察二维转动群表示R(θ)为例。用复数来表示二维空间转动，令

θ=ωt，z(t)=eiωtz(0)。微分，得到 。如果把二维空间坐标写成矢

量，容易验证 对应关系式

矩阵

就是描述无穷小转动的矩阵。注意，D2=-I，对应i2=-1（其实，或

许（±D）2=-I才更全面。参见第10章关于 的讨论）。一般地，二维

矢量在转动下的变换为r(t)=exp(tωD)r(0)，代入 ，得

这给出了我们熟悉的用转角表示的形式



变换

保持二次型x2+y2形式不变。变换

也保持二次型x2+y2不变。所有保持二次型x2+y2不变的变换构成二

维正交群O(2)。对于

其表示的群记为SO(2)群。SO(2)群，即二维特殊正交群，这里的二

维是指它作用的空间是二维的，它实际上是一个单参数连续群。

洛伦兹变换使得x2-(ct)2或者(ct)2-x2不变。对二次型x2-y2作变换，

不变的连续变换要求 选择

，于是有

于是得到洛伦兹变换



关于洛伦兹群的讨论，见后。

(2)李代数的性质

关于（紧致）连续群的变换，可由形如A(t)=exp(tX)中的无穷小变

换 所决定。其实，也不奇怪。连续群单位元素附近的结构包含

了群的所有信息。无穷小变换X的集合称为李代数rG或者无穷小环

（ring）。若A(t)∈G，则对于实数a，A(at)∈G，故aX∈rG；又，设

A(t)∈G，B(t)∈G，则C(t)=A(t)B(t)∈G，故有若X∈rG，Y∈rG，必有

X+Y∈rG。可见李代数rG是一个矢量空间。

进一步地，由C(t)=A(t)B(t)A-1(t)B(t)∈G，微分C(t)=A)t)B(t)A-1(t)B-

1(t)后令t=0，有李代数元素 的结果。二次微分后令t=0，得

。元素 可近似地表为

因此XY-YX也是该群的无穷小变换，但是对应的参数是t2。对易式

[X,Y]=XY-YX∈rG是李代数中的元素。对易关系可看作是李代数的乘

法。对易式是反对称的，因此有雅可比恒等式。

若李代数的基为E1，E1，…，Em，其维度m是群的参数个数，根据

上述内容，基之间必有关系

注意，结构因子 有关系 ，对应的雅可比恒等式

为群的结构关系。这些内容在李群应用的语境中，如广义相对论、



规范场论等，都常见到。

寻找李代数比确立李群的表示要简单。李群唯一地决定了它的无穷

小代数，反过来则不一定。李代数的基，对易关系，以及群的结构关

系，是李群应用时必然涉及的关键要素。



§9.5 群论的眼光回头看代数方程

在学习了一些群论基础以后，用群论的眼光回头看代数方程，会看

到不一样的风景。

首先，就有理数域上的代数方程 来说，这是一

个有结构的形式，其中出现的算法是“乘法”和“加法”。换个角度看，方

程左侧可以看作是n+1维矢量(xn,xn-1,…,x,x0)同（有理数）矢量(1,a1,…,an-

1,an)之间的内积。右侧为零，即这样的两个n+1维矢量是正交的。我们看

到，可解方程的根(x1,x2,…,xn)是系数的有理函数同方程xn=1的n个根之间

的组合。请读者记住，多项式方程，系数有正负，但是算法只有“乘
法”和“加法”，这一点对于理解代数方程和构建代数方程的理论很重

要。代数方程的语境中没有“减法”。
根据代数基本定理，当我们把方程系数和根都推广到复数域上时，

方程 有n个复数根。方程的n个根就理解方程的各种

性质而言，它们是等价的、不可区分的，这样容易用它们构成对称函

数。对称性是代数方程理论的一个关键词。

吉拉尔是第一个认真研究代数方程根之对称函数的，而且将之同另

一个也是他提出的重要数学概念，帕斯卡三角[4]，相联系。在《代数领

域的新发明》（Invention nouvelle en L’algèbre）一书中，吉拉尔提到方

程根的数目问题，以及根的对称函数，并发展了对称函数的定理，即n
阶方程的n个根组成的对称函数所含项（标记为fi rst fraction,second
fraction,……）的数目等于帕斯卡三角第n行的相应数目（笔者认为应该

加上0次方项，见下）。吉拉尔把这个三角称为triangle of extraction。吉

拉尔也是第一个写出斐波那契数列递推公式的人，而斐波那契数列和帕

斯卡三角恰是有深刻关系的（参见拙著《一念非凡》）。吉拉尔虽不是



发明连分数（continued fraction）的人，但他天才地研究了连分数。用

连分数表示代数方程，会告诉我们很多内容。此外，吉拉尔还是深入研

究光的折射（refraction）的人，从字面上看不奇怪吧。

拉格朗日后来引入了对称函数的概念。记方程的n个根为(x1,x2,
…,xn)，则原方程形式为

笔者额外形式上定义(x1,x2,…,xn)(0)=1（意思是关于根的0阶函数等于

1。具体形式不定）[5]，由此可得对称函数：

这个对称函数很有趣，将根作置换，函数值不变，这是应有之义。

连同额外定义的(x1,x2,…,xn)(0)=1算上，你看左边式子里的项数依次为

1,n,n(n-1)/2,…,n(n-1)/2,n,1，这是二项式展开(x+y)n（它体现了加法与乘

法的精义）的系数 。将不同n对应的组合数 ，即对于不同阶多项式

方程的对称函数的项数，作为一行从上到下摞起来，可得到帕斯卡三

角。式(9.21)右边是方程的系数，但前面多了个因子(-1)m-1，排列起来是

，负号是交替出现的。你看，置换、交替的概念很重要，很

自然地出现在了方程理论中。由此，也就能看出额外引入(x1,x2,…,xn)
(0)=1的意义，这样的描述才是完备的。

这里体现的哲学思想是，代数方程是个有结构的存在；根都是等价



的，可以构成对称函数，在置换下是不变量；方程的根可以用待求的根

来表示，根之间的关系会指向方程的可解性问题。如前所述，一元二次

方程(x-x1)(x-x2)=0，对应方程x2+bx+c=0，其中b=-(x1+x2)，c=x1x2，故而

根的形式表示应为

方程规定了单个的根写成全部根之函数的形式。这是通向方程解抽

象研究的关键一步。因此，方程可解性的研究着落在方程的结构或者根

的结构的研究上。

拉格朗日引入新的用根表示的有理函数R（x1，x2，…，xn)，不同

于对称函数，其随根的置换可以有不同的值ξ1，ξ2，…，ξk。若k＜n，
则多项式方程(x-ξ1)(x-ξ2)…(x-ξ1)=0可作为辅助的解式方程。此方法对三

次、四次方程有效，但是对五次方程无效。有理函数R（x1，x2，…，

xn)的构造无章法可循，但它启发了代数方程的研究。

1826年，阿贝尔宣称不是所有的五次方程都有有限根式解。阿贝尔

发现，能用根式求解的代数方程（其实就是二次、三次和四次方程），

根的根式解表达都是方程系数和单位根凑成的有理函数。伽罗华把方程

可解性的问题转化为具体方程的置换群及其子群结构的问题。笔者以

为，这里的关键是“有限根式意味着什么”的问题。紧接着的伽罗华理论

宣称，一个代数方程有有限根式解，当且仅当它的伽罗华群是可解的。

每一个方程，都和一个根的置换群相联系，现在称之为伽罗华群。

伽罗华群体现根的对称性。对于任意一个取有理数的关于根的多项式函

数，伽罗华群中的置换都使得该函数的值不变。伽罗华将每一个方程对

应一个数域，一个包含全部根的域，这个域又对应伽罗华群。一个方程

是否可解的关键，是方程的（有理）系数域可否经过有限次根号运算扩

张成根域（比如方程x2-2=0的系数是整数1，0，-2，但是根是无理数



）。

伽罗华理论的第二个关键概念是正规子群。对于一个群，找到其最

大正规子群，确定其最大正规子群的合成列，如果一个群的最大正规子

群（商群是单群）合成列的因子都是素数（这意味着相应的商群都是循

环群，其可由一个群元素的幂得到。幂的逆运算就是开方）的话，这样

的群是可（分）

解群。这意思是说，总可以通过开方进入下一层面。伽罗华提出了

群的概念，研究群的结构，从群的结构研究方程的可解性，是数学史上

的创举。伽罗华理论未能被及时接受，是因为他的理论超前于他的时

代。同时代无人能领会的创造，才算得上真正的天才创造。伽罗华理论

涉及群和域，群只有乘法，域有乘法和加法，这正好是代数方程的精

髓。愚以为，研究代数方程可解性，应看到解方程是拼接可能的解的幂

，使其同有理系数构成的矢量成正交关系，即满足条件

。

粗略地说，一般n次代数方程对应置换群Sn。置换群Sn中的置换可

以分为偶置换（由偶数次邻位对换得到）和奇置换，其中偶置换构成

群，称为交替群An。交替群An是置换群Sn的最大正规子群。对于n≥5，
An都是单群。这样合成列的因子便不是素数，群不是可解的，相应的方

程不是有限根式可解的。以五次方程为例，置换群合成列为

，而群A5的元素数为60，不是素数，故商群A5/{e} 不是循

环群。一元五次方程没有有限根式解，即俗话说的五次方程代数不可

解。

代数方程的性质都在方程的伽罗华群里了。伽罗华引入了自共轭子

群（正规子群），把群分成单群和复合群。一个可解群，其最大正规子

群合成列中，子群阶数之商为一素数。也就是说，商群必是一个素数阶

群，而素数阶群必为循环群。可解群中的正规子群关于上一级正规子群

的所有陪集必须为一个循环群。循环群是阿贝尔群，则用一个生成元通

过乘方（逆运算就是开方）就能表示。合成列的最后一个对象是单元素



群{e}，这说明借助循环群这表示是一路乘方进行下去的。换一种表

述，对于一个群，一点一点分解它的最大正规子群序列，

，相应地，有商群系列， ，若

商群总是素数阶的循环群，则这群是可分解的。注意这里的要求，是循

环群且其阶数还必须是素数，这是特殊的单群。

自巴比伦人给出一元二次方程公式解3600多年后，或者自拉格朗日

思考代数方程约250年后，或者自伽罗华发展出伽罗华理论约200年后，

在许多地方多项式方程还被错误地教着，一元二次方程的解还从未被正

确地写出来过，甚至连大学生都不学一元三次方程的解，想来令人唏

嘘。



§9.6 几个重要酉群

在粒子物理中我们会遇到SU(3)×SU(2)×U(1)理论的说法，这里涉及

三个特殊的群，U(1)，SU(2)和SU(3)。U是unitary的首字母，unitary汉
译“酉”或者“幺”。Unitary group U(n)，酉群U(n)，是复数域上的n×n阶酉

阵U构成的群。酉阵满足条件U*U=UU*=I，故总可以变换成对角形式。

复数域矢量空间中的等度规变换是酉的，保矢量的模平方不变。Special
unitary group，SU(n)，是由矩阵值为1的酉阵构成的李群，汉译“幺正

群”或者“特殊酉群”。特殊酉群SU(n)的李代数su(n)由迹为0的、反厄米

特的（skew-Hermitian）矩阵构成。（特殊）酉群对物理学具有特别的

意义，U(1)群用于电磁相互作用的描述，SU(2)用于电弱相互作用的描

述，而SU(3)则用于量子色动力学中关于强相互作用的描述。

U(1)群。数学上，U(1)是酉群U(n)的n=1的特例。酉群U(1)对应圆

群，可由模为1的复数eiθ以复数乘法为群乘法来表示。群U(1)是阿贝尔

群。对应的特殊酉群SU(1)是只有单位元的平凡群。群U(1)描述量子电

动力学的规范对称性。

SU(2)群。SU(2)是二维复矢量空间的等度规群，作用于C2空间中的

S3球上。根据要求U*U=1，detU=1,其一般形式应为

的形式，其中 ，而 ，这就是泡



利矩阵。或者，由U*U=1，得其无穷小变换需满足关系X*+X=0，即它

是反厄密的。三参数反厄密的、迹为零的矩阵，一般形式为

容易看出其三个基即是泡利矩阵。SU(2)群可以完全由其三个李代

数的基表示。又，一个酉阵总可以变换成对角形式，故对于SU(2)，一

般地，可表示为

SU(2)群与模为1的四元数群同构，与S3球微分同胚，可用于表示三

维空间里的转动。从SU(2)到转动群SO(3)有一个满射的同态。SU(2)还
与旋量对称群Spin(3)相同，这时的转动有旋量表示。

SU(3)群。SU(3)群要复杂得多。SU(3)群是三维复矢量空间的等度

规群，其作用在C3空间中的S5上。SU(3)群的李代数su(3)的生成元为

，其中λa就是物理文献中可见的盖尔曼（Murray Gell-
Mann,1929―2019）矩阵，为迹为0的3×3厄米特矩阵，它们分别是

后来，我们知道，这些矩阵与基本粒子分类有关。SU(3)一开始是



为了自旋统计引入的。关于夸克以及胶子之间的强相互作用的非阿贝尔

规范理论是基于SU(3)群的。夸克可类比于电荷，而8个用颜色标记的胶

子则类比于光子。更多内容见第10章。



§9.7 时空里的转动

我们生活在三维空间，这个事实被确立为物理学第零定律。显然，

三维及以下维度空间里的运动天然地是我们需要理解的运动。加上时间

的(3,1)-维闵可夫斯基（Hermann Minkowski,1864―1909）时空是各种物

理现象展现的舞台。如果我们愿意关切广义相对论，则要习惯弯曲时空

的黎曼几何；而如果我们愿意掌握规范场论，我们还得习惯采用任意联

络的非黎曼几何。理解了时空的对称性，是理解运动以及相互作用甚至

存在本身的基础。运动总可分解为平移加转动。三维空间和(3,1)-维闵

可夫斯基时空里的转动，是群论应用于物理学可率先见功的地方。

§9.7a 角动量

笔者有个观点，角动量是个物理学起源性的概念。开普勒

（Johannes Kepler,1571―1630）行星三定律之第二，说的就是有心力两

体问题的角动量守恒。牛顿（Isaac Newton,1642―1726）的万有引力理

论是有心力的理论，完美地解释了行星轨道形状以及与之相联系的角动

量守恒。1900年，普朗克（Max Planck,1858―1947）为了得到黑体辐射

谱分布公式而引入的光量子假说中的常数h，其量纲也是角动量。1918
年外尔为了统一引力与电磁理论所引入的那个尺度因子γ，其量纲也是

角动量。最小作用量原理的作用量，其量纲是角动量，相空间体积的量

纲也是角动量。这就不能简单地当作巧合了，这些事实反映的是物理学

之最本质的东西。角动量只是时空对称性内禀性质中最容易为我们所感

知的部分罢了。为了解释氢原子光谱，玻尔构造了氢原子的行星模型，



所谓的量子化条件 ，不过就是对氢原子的行星模型中的角动量

的限制。在解氢原子的薛定谔方程时，也是首先动用角动量守恒的事实

（分析）让问题得到了简化的。位置、动量是一元物理量（矢量），而

角动量L=r×p是二元的物理量，由位置矢量和动量矢量的外积而来，角

动量是导出性的、反映（内在）关联的概念。角动量和作用量的量纲相

同，似乎作用量一般更多的是同Et或者Ht相联系的。其实，若用4-矢量

形式表示，时空4-矢量为(ct,x,y,z)，动量4-矢量为(E/c,px,py,pz)，此两个

4-矢量按照四元数相乘，结果就会有Et和r×p。由于历史的原因，物理表

述用的语汇与语境长期存在混乱，请读者学习物理时多留心。

转动群G可以用无穷小变换rG来表示，即可以用无穷小变换的基的

表示矩阵X作为群元素的表示。三维空间中，转动关于x、y和z轴的无穷

小变换分别为

由此可以构造三维转动群的表示理论，或者作为应用的出发点。

在量子力学中，位置、动量，因而角动量，都是当作算符处理的。

角动量，是由物理空间的转动——其转动群记为R(3)或者O(3)——诱导

而来的，是作用于希尔伯特空间状态函数ψ 上的算符。对于波函数ψ 这
样的L2函数，变换r→r‘=Rr，诱导了变换ψ'(r ')=ψ(r)。可写成ψ'(r)=ψ(R-1r)
的形式。或者，写成ψ'(r)=Rψ(r)的形式，则R是作用于波函数上之转动

的算符表示。

若转动带来的坐标变换为r '=r+dr，逆变换为r '=r-dr，有



其中参数t是转动角度。对于转动，比如绕z轴，引起的效果是

dx/dt=-y，dy/dt=x，dz/dt=0，对应的作用于函数上的无穷小转动算符为

类似地，可得

角动量算符定义为 满足李代数，因而角动

量满足李代数。其实，从定义 ，可以直接验证

，即L满足李代数。

角动量是物理量，算符也必须是厄密算符，满足(Jψ,ψ)=(ψ,Jψ)。用

无穷小转动来说，那是(Pψ,ψ)=-(ψ,Pψ)，P*=-P(P*是P的伴随算符）。构

造算符A=exp（tP)，其满足关系式etP*etP=I，故有(Aψ,Aψ)=(ψ,ψ)，即

A=exp（tP)是个酉算符。有必要把三维空间转动群O(3)的不可约表示Dj

选为酉的。

记不可约表示Dj的正交基为

。这是在量子力学教科书中常见到的角动量

作用到用角动量量子数表征的量子态上的结果。具体地，球谐函数[6]

维的 表示。相关内容此处未能



详细阐述，请参照专著认真修习。

§9.7b 洛伦兹群

对于物理学和学物理的人来说，最重要的一个群大概要数洛伦兹群

了。洛伦兹群是只考虑时空转动不考虑时空平移的庞加莱群，或者说庞

加莱群是非齐次洛伦兹群。洛伦兹群是反映时空转动对称性的李群。洛

伦兹群（的无穷维表示）是理解狭义相对论和相对论量子力学的必要基

础。洛伦兹群是单群，半单群，但不是连通的，还不是紧致的。就有限

维表示而言，缺乏单连通性让洛伦兹群有自旋表示，而非连通性还意味

着为了获得对完备洛伦兹群的表示，时间反演T和空间反演P得单独处

理。我怎么觉得，这些对物理学家来说都是喜讯呢——粒子物理学家、

晶体学家都会注意到时间反演和空间反演所带来的特别的物理。

洛伦兹群是保 不变的时空变换，故而可标记为

O(3,1)群，群SO(3,1)+是洛伦兹群的连通部分。群SO(3,1)+的覆盖群为

SL(2,C)。洛伦兹群可以用矩阵、线性变换或者作用到某个希尔伯特空

间上的酉算符来实现。洛伦兹群的表示理论的分类与表征于1947年完

成。特别地，洛伦兹群的表示提供了处理自旋的理论基础。

洛伦兹群是四维时空的转动群，是一个6参数的连续群，其是12参
数的O(4,C)群的子群。SU(2)让SO(3)群表示简单了，SL(2,C)也可让洛伦

兹群表示变得简单。作为SL(2,C)群的一个群G，以X'=GXG*的方式作用

于时空坐标的外尔表示

上。或者用一般的复二维空间表示，考虑厄密性，令



这相当于为闵可夫斯基空间选择了(+,-,-,-)度规。厄密矩阵

对应的四个基2×2矩阵分别为

σ0是单位2×2矩阵，后三个即是所谓的泡利矩阵，皆为迹为0、本征

值为±1的矩阵。此处可见泡利矩阵是SU(2)群的无穷小变换，满足关系

式

其中δjk是Kronecker符号，εjkl是Levi-Civita符号，这个公式和欧拉公

式一样神奇。泡利矩阵的对易关系

称为洛伦兹代数。SL(2,C)群的无穷小变换为六个迹为0的矩阵，三

个是泡利矩阵，另三个是它们各自乘上i。也即是说，作为洛伦兹群覆

盖群的SL(2,C)群，利用泡利矩阵可以实现它的李代数，六个生成元分

别为



闵可夫斯基时空R3,1的等距群，SL(2,C)群，也可用4×4矩阵表示，

其六个生成元，三个是关于空间转动的，三个是关于推进（boost）的。

比如关于x轴的转动，

这是一个反厄密的矩阵，写成Z(θ)=exp(-iθJ1)的形式，得生成元为

依次类推，可得

与此相似，关于t-x推进，



写成B(η)=exp(-iηK1)的形式，得生成元

依次类推，可得

此六个生成元有李代数：

洛伦兹群也可以是R4空间微分同胚群的子群，故其李代数可以等同

于R4空间的基灵（Wilhelm Killing,1847―1923）矢量场。在一个空间上

产生等距变换的矢量是基灵矢量。这六个基灵矢量分别是：



爱因斯坦注意到洛伦兹群也适用于描述能量-动量空间的转动，保

不变（取c=1)，故质量

是洛伦兹不变量（现在你知道谈论什么加速粒子质量增加是多么荒

唐了吧。粒子质量是不变量）。实际上，洛伦兹变换是狭义相对论的精

髓所在，狭义相对论涉及的张量都要按照洛伦兹变换进行变换。洛伦兹

变换描述的是R3,1维空间里的变换，不可以单拿出一个维度上的变换关

系过度发挥。关于洛伦兹变换的一个根深蒂固的误解是运动方向上的长

度收缩，这是一个洛伦兹和爱因斯坦都持有的错误观念。彭罗斯这样的

数学家会从洛伦兹变换是时空共形变换的角度直接排除这种观念。洛伦

兹变换从一开始就是一个让球波看起来还是球波的变换。实际上，一个

运动的三维物体在静止观察者那里的视效果只是发生了转动，即所谓的

Terrell-Penrose转动。关于这一点，几何代数的证明比较直观易懂。如

果考虑平移，闵可夫斯基空间的完备等距群是庞加莱群。维格纳

（Eugene Wigner,1902―1995）对庞加莱群的不可约表示的分类就是依

据式(9.31)中的质量指标m以及自旋指标s进行的。

对于一个k分量的量子力学波函数，其在固有洛伦兹变换Λ 下的变

换为 ，其中DΛ[ ] 是属于洛伦兹群的(m,n)表示之某个直

积的k维矩阵形式的表象函数。克莱因-戈登方程和狄拉克方程及其解就

是洛伦兹不变的。

如前所述，李代数su(3,1)的基可以由前述的3个转动生成元Ji和3个

推进生成元Ki构成。作基的复化， ，这两者分

别满足李代数的对易关系：

这里可以看出，李代数 对洛伦兹群表示的同构上的意



义。李代数su(2,C)的最高权重表示（highest weight representation）用标

签 标记。这里就能看到自旋的影子了。洛伦兹代数的有

限维不可约表示由一对这样的半整数来标记。比如，粒子的动量4-矢量

在表示 下变换，旋量在 表示下变换，而能量-
动量张量之迹为零的部分按照(1,1)表示变换。在表示(0,0)下变换不变的

是洛伦兹标量。表示(m,n)与表示(n,m)的直和形式更具有物理意义，因

为这样可以使用实数域上的算符。比如 是所谓的二旋量

表示，见于狄拉克的电子理论，而电磁场张量是在表示 下变

换的。关于这些表示的具体矩阵形式，过于繁杂，此处不作介绍。



§9.8 旋量

四元数引入了标量和矢量的概念。在过去的物理中，尤其是在相对

论中，我们习惯了用标量、矢量和张量区分不同的物理量，它们都是随

坐标变换而齐次变换的量。实际上，这些可统一按照张量来理解，矢量

是1阶张量，而标量是0阶张量。举例来说，薛定谔方程 中的波

函数ψ 就是标量（其作为希尔伯特空间里的矢量身份是另一重意义上

的，不要混淆），狭义相对论里的动量Pμ和磁矢势Aμ都是矢量，而电磁

场强度Fμν是2阶张量。与标量、矢量和张量不同的，还有旋量，这个概

念在群论以及近代物理中扮演着重要的角色。回避这个概念是某些近代

物理表述让人感到困惑的原因之一。

旋量由卡当在1913年提出，后经外尔、彭罗斯等人发展成了比较系

统的数学体系。费米子要用旋量描述。比如，量子力学中关于电子的泡

利方程

其中的波函数 就是旋量，此即一般所说的旋量类似两分量复

矢量的原因。狄拉克方程里的波函数是四分量的，应该理解为二旋量。

但是，只看到旋量类似两分量复矢量的样子不足以理解旋量，旋量之显

得另类的地方在于它有特殊的变换性质。旋量是同狭义相对论完全掺和

在一起的，不妨从洛伦兹群的角度来回答什么是旋量。

从数学角度来看，一个2×2的酉阵，形式为



的方式变换，此即是旋量。但是，我们更关切的是物理上的旋量，

按照洛伦兹群对应的酉阵作用于其上的那种旋量。物理的2×2矩阵是复

的、酉的，是个很强的约束。

如前所述，根据狭义相对论，将时空坐标写成厄密矩阵

我们知道，把时空变换完全按照4-矢量(t,x,y,z)T的形式处理，转动



就可以用4×4正交矩阵（属于SO（4）群）处理。已知，空间坐标转动

的三个生成元分别为Jx,Jy,Jz（见式9.30)，它们是反对称的且也形成洛伦

兹代数[Jx,Jy]=iJz。

时间同三个空间坐标之间的推进变换对应的3个生成元为

Kx,Ky,Kz（见式9.30)，它们是对称的且不形成洛伦兹代数。容易验证，

。这个关系，可以写成

这就是文献所说的与旋量有关的李代数开根号（the roots of Lie
Algebra），这是 的旧事重现，也强调两种情形都应该保留。已知

有对应关系 ，我们不妨接受对应关系

，这样我们就有了两个不同的反映时空洛伦兹

对称性的2×2酉阵

作为它们的作用对象的二（复）分量的量 ，就称为旋量。对应

的旋量定义为左手性的，称为外尔旋量；对应 的旋

量定义为右手性的。描述相对论量子力学的理论要求存在两种旋量，大

自然中也必须存在电子和反电子。可以这样理解，洛伦兹群告诉我们，

如果旋量形式上是四分量矢量的一半，那就应该有两种旋量。狄拉克的

四分量矢量波函数是二旋量，因此狄拉克方程是宇称守恒的；泡利的波

函数是单个旋量，泡利方程不是宇称不变的。

关于存在，可从描述存在的时空的性质得到物质的性质。比如电子

自旋与时空结构是相联系的，好神奇啊。



§9.9 物理学中的群论举例

数学是物理学的语言与工具，群论完美地体现了这一点。群论被誉

为挖掘工具，是有道理的。群论起源于数学研究，但它在物理学中展现

了其作为认识世界之工具的威力。可以说，没有群论，就没有当代物理

学。实际上，对称性如今甚至成了构造新物理学的出发点。群论帮助塑

造物理学的功用是多方位的。若能从对称性的角度从头系统地回顾物理

学的建立，莎特莱侯爵夫人（émilie du Chatelet,1706―1749）所谓的

institutions de physique，并仔细检视其内在结构和生长点，必有益于物

理学未来的发展。笔者多年来一直希望能看到这方面的进展。

本节将从晶体学、量子力学和相对论的角度，简要介绍群论在物理

学中的应用。

§9.9a 空间群

群可用于表征几何体的对称性，这一点在晶体学上表现得尤为突

出。三维空间中的晶体是由原子或者分子严格按照三个方向上的重复平

移得到的，即若在点r0上有一个构成单元，则在位置

上，其中n1，n2，n3，为整数，a1，a2，a3为一组基矢量，也必有构成单

元。三维空间晶体的对称群称为空间群（space group），因为平移对称

性的限制，共只有230种。关于晶体的对称性问题，笔者愿意这样理

解。先忘掉原子或者分子，晶体可理解为由平行六面体作为单胞在空间

密堆积而成的。考察平行六面体的三边长以及夹角的不同可能性，可分

为三斜、单斜、正交、四方、三方、六方和立方共七种情形，此为七种



晶系之说。进一步地，考察在相应的平行六面体上允许放置原子

（motif）的可能性，进一步地有三斜之P、单斜之(P,C)、正交之

(P,I,F,C)、四方之(P,C)、三方之P、六方之P和立方之(P,I,F)共14种可

能，P代表最朴素的情形——一个单胞一个原子，C表示底心，I表示体

心，F表示面心，这样的平行六面体骨架经过平移充满整个空间得到的

晶格，称为布拉菲（Auguste Bravais,1811―1863）格子（1850年提

出）。现在，我们可以把目光集中到一个有限大小的凸多面体的对称群

（点群，point group）上了，因为要和平移对称性相恰（凸多面体要通

过平移充满空间），因此晶体的点群只允许有1-、2-、3-、4-、6-次转

轴，外加上镜面和空间反演这两个对称元素，故只有32种。32种点群罗

列如下：三斜2种



图9.2 晶体32种点群的群-子群关系

晶体的点群中没有五次转轴。但是具有五次对称性的三维物体是非

常自然的，小到分子，比如C60，大到人类建筑。典型的具有五次对称

性的几何体是正二十面体，其对称群I值得特别关注。正二十面体群I曾
被拉格朗日和克莱因拿来研究五次方程的解。考察一个正二十面体，其

特征是12个五重对称的顶点V，30条边E（过边的中点有二次转轴）和

20个正三角形的面F（过面的中心有三次转轴），显然满足欧拉公式

该结构的对称群为{235}，简记为I群，有60个元素，其中15个二次

轴贡献15个群元素，10个三次轴贡献了20个群元素，6个五次轴贡献了

24个群元素，外加单位元，正好是60个。具有60个元素的I群，与置换

群S5之最大正规子群，即交替群A5（五次方程代数不可解证明中的主

角），同构。如果考虑正二十面体构型还可以保有与二次轴垂直的镜



面，则该结构的对称群为 ，简记为Ih群。Ih群有120个元素，这是

三维空间中一个多面体所能拥有的最高对称性——它最接近球，故而许

多高度对称的三维有限尺寸的物体都会采取这样的对称性。Ih群与具有

120个元素的置换群S5并不同构。具有Ih群对称性的一个著名例子是C60
分子，60个碳原子组成了一个凸多边形，其特征是60个顶点，90个边和

32个面（12五个边形和20个六边形），显然满足欧拉公式V-E+F=2。因

为是用小的平面去缝制一个接近球面的多面体，故老式足球也是C60分
子样的结构（是科学，不是巧合）；反过来看，这也是C60分子被称为

巴基球的原因。

具有五次转动的微颗粒，当它继续长大想成为晶体时就会遭遇对称

性不匹配的挫折。这个挫折的一个直观表现就是会限制可获得的正二十

面体孪晶颗粒的大小，笔者实验室曾获得的最大正二十面体Ag孪晶颗

粒边长约为8mm（图9.3)。晶体为了获得平移对称性会采取不同的策略

以克服五次对称性带来的内在困难，这个过程中发生的晶体颗粒的微结

构变迁是笔者一直感兴趣的研究课题。

图9.3 正二十面体Ag孪晶颗粒对比图（a）展示了正二十面体对称元素的一个绣球

（b）由32个小面拼成的足球（c）正二十面体Ag颗粒

§9.9b 群与量子力学



自1770年到1930年，在群论经历了160年的蓬勃发展以后，欧洲一

般意义上的一流物理学家对群论仍然一无所知。更有甚者，标志新量子

力学诞生的薛定谔方程出现于1926年，而外尔和维格纳各自用群论发展

量子力学所衍生的专著在1928年和1931年就及时出现了，此一举动竟然

被污蔑为群瘟（Gruppenpest）。（当时德国某些）一流物理学家之愚蠢

与蛮横真让人瞠目结舌。也不知道这种愚蠢和蛮横后来绝迹了否？

维格纳认为劳厄（Max von Laue,1879―1960）或许是第一个认识到

了群论天然地作为发展量子力学之工具的意义的人。用群论能获得关于

问题的第一层定位（obtain a fi rst orientation）。量子力学起源于对光谱

的研究。维格纳认为认识到所有的光谱学规则都源自对称性是最重要的

结果。

按照薛定谔1926年论文的题目，量子化就是个本征值问题。求解一

个（表示算符的）矩阵α 的本征值的方程为久期方程（secular
equation）

量子力学中对称性的表现是算符的相似变换，形如β=σ-1ασ（在群论

里称为共轭）。可以证明， 成立，因此有

也就是说，一个算符的本征值（谱）关于相似变换是不变量。

与本征值关联的是本征函数。考察两个算符H和T，Tφ=λφ，即φ 是
算符T对应本征值λ 的本征函数。若算符H和T对易，即HT=TH，则有

THφ=HTφ=λHφ，也就是说，Hφ 也是算符T对应本征值λ 的本征函数。

Hφ 与φ 相差一个常数因子，Hφ=εφ，这是说φ 也是算符H的本征函数。

对易的两个算符有一组共同的本征函数。

将这个定理应用于晶体的量子力学问题。考察哈密顿量算符



和晶体的周期平移算符T，由于哈密顿量中的动能和势能项

经周期平移都不变，故有HT=TH。为简单起见，用一维情形具体地说

明。设晶体的周期为a,平移n个周期的平移算符记为Tn，显然有

，平移Tn有表示或者说其本征值（相当于表

象函数）为 。显然，令ψ(x)=eikxu(x)，要求u(x+na)=u(x)，
这种形式的波函数就是平移算符的本征函数。可以将ψ(x)=eikxu(x)ikx推
广到三维情形， ，这种形式的波函数称

为布洛赫（Felix Bloch,1905―1983）波。固体物理里有布洛赫定理

（Bloch,1928），谓晶体中电子的能量本征态必为布洛赫波。选定

ψ(r)=eik-ru(r)，代入能量本征值方程Hψ(r)=εψ，得本征值方程

形式上看，这相当于电子在晶体中其动量算符经历了变换

，这和电动力学中电子在电磁场中的动量算符要作替换 是

一个意思。这和规范场论里对微分算符的扩展也是一脉相承的。布洛赫

定理是固体物理中电子能带理论的基础。

群论在量子力学中的应用是全面的，时空、内禀自由度以及动力学

算符的对称性，多粒子体系的交换对称性，波函数作为希尔伯特空间模

为1的复矢量可为群提供表示，这些事实都为群论在量子力学中的应用

提供了切入点。有句话说得好，分子谱就是舒尔引理的应用。充分论述

群论在量子力学中的应用远超本书的范围，相关的专著汗牛充栋。有兴

趣、有能力的读者请专门修习。

§9.9c 群与相对论



时空是物理展现的舞台，时空构成了许多物理的背景支撑。相对论

关注物理方程关于时空的对称性，因此群论是相对论表述的主要数学工

具。实际上，在狭义相对论发轫之初，是庞加莱坚持关于麦克斯韦波动

方程的变换要构成群才确立了洛伦兹变换的最终形式。在关于运动物体

的电动力学研究中，或者让麦克斯韦波动方程形式不变的坐标变换中，

得到的时空变换形式如下：

庞加莱认识到这个变换要有群的特征，可直截了当地要求φ(v)=1，
于是得到我们熟悉的洛伦兹变换：

类似的描述是狭义相对论中关于时空变换的物理之极度简化版。

在狭义相对论中，时空是平直的闵可夫斯基空间R3,1，其中的时空

距离定义为 ，度规简写为η=(1,1,1,-1)（也有选择

η=(1,-1,-1,-1)的）。闵可夫斯基时空有全局洛伦兹对称性。1907年，闵

可夫斯基发现爱因斯坦的狭义相对论可以理解为四维时空的几何理论。

时空几何由距离平方 ，或者矢量模平方x2+y2+z2-c2t2所

决定，属于双曲空间里的几何。双曲空间里的等距变换与洛伦兹变换相

联系。相关的工作包括此前基灵（Wilhelm Killing,1880,1885），庞加莱

（Henri Poincaré,1881），考克斯（Homersham Cox,1881），麦克法兰

（Alexander MacFarlane,1894）等人的贡献。



三维欧几里得空间的等距变换构成欧几里得群，由转动、平移和镜

面反射等操作构成。加入了时间维度的四维双曲时空，即闵可夫斯基时

空，保度规的转动矩阵Λ，ΛηΛ-1=η，构成洛伦兹群O(3,1)。包括了平移

的完备等距群是庞加莱群。在D维空间，一个度规可以有D(D+1)/2个独

立基灵矢量，因此闵可夫斯基空间的等距群是10维的。庞加莱群是一个

10维的非阿贝尔李群。狭义相对论只同描述时空转动的洛伦兹群相关

联。其实，单单的时空平移也对应相对论的理论，但被有意无意轻视

了。笔者以为，就理论完备性、严谨性（时空是仿射几何而非欧几里得

几何）

和物理现实而言，只涉及平移对称性的朴素相对论也应该认真对待

（参见拙著《相对论（少年版）》）。

群概念加上几何观点，是深入理解相对论思想及其导出物理的有效

工具。狭义相对论作为几何的理论，是广义相对论的前奏。广义相对论

是关于弯曲空间里的物理学，它从一开始就是几何的。时空曲率同引力

等价，光是时空的连接，自然要考虑弯曲空间里的麦克斯韦方程组。广

义相对论的场方程要满足广义协变性，采用的微分是协变微分，物理量

要用张量的形式，这些都决定了群论是理解广义相对论的正确语言。

广义相对论的背景是弯曲时空。一般的时空，可看作半黎曼流形M
上配个度规张量g，记为(M,g)。若微分同胚f:M→M保度规张量g不变，

那就是这个流形的等距变换了。度规的基灵矢量产生度规的一个无穷小

等距变换。基灵矢量满足形成李群之李代数的对易关系。广义相对论关

于固定背景空间的等距理论，可以简述为基灵矢量场用李微分构成李代

数。但是，关于动态空间对称性的群就更复杂了。关于流形的完备群是

流形到自身的所有连续可微映射构成的群，即流形的微分同胚群，其是

无穷维的。对于拓扑为R4的流形，庞加莱群有无限多种方式嵌入到相应

的微分同胚群中去。广义相对论要求的广义协变性，也是一种规范理

论，即引力场的SL(2,C)规范理论，那是后话。



§9.10 多余的话

眼里不揉沙子的读者早已从本章的行文中看出了作者的力不从心。

我本人大学时从未学过群论，研究生时上过固体空间群的课，也是昏昏

课堂中的无从昭昭。及至后来不断零零散散地自学了一点量子力学、相

对论和微分几何，自然地会注意到贯穿于其中的群的概念，也感受到了

群论知识对一个学物理者的重要性。群表示的数学优雅已经足够迷人，

而想到时空对称性竟然能够规定微观粒子的性质还为其提供分类的依

据，这也太令人惊诧了。若是想到我们关于时空几何的观念强烈地为我

们关于物质本性的理论所影响，则这物质与时空几何之间的互反关系恐

怕才是物理学之最根本的内容，也难怪外尔、薛定谔和彭罗斯这种数理

巨擘都会撰写时空结构的专著，维格纳会感慨数学在物理学中有不可理

喻的有效性。

笔者虽然没学会群论，但在学习群论这件事上可是没少花工夫。仔

细想来，除了基础差、脑子笨、无人指点以外，更重要的是我从没能系

统深入地学过。深度学习，从难处学习，系统地学习，才是学习的有效

策略。首先要深度学习，高强度、长时间、专门地学习某个对象到有所

斩获的程度，付出才不算白费；从难处学习，到更困难处浏览一番，回

首从前觉得困难的地方，说不定会有豁然开朗的感觉；至于说到系统学

习，有系统的知识才容易记忆、容易理解，才知道如何应用。

新量子力学的出现基于理解原子谱线之强度的努力。1925年矩阵力

学出现，幸亏玻恩（Max Born,1882―1970）知道矩阵的概念；1926年
薛定谔写出波动方程，虽然其本人已是成名的数学物理教授，据说数学

方面仍需求助于人。然而，外尔，一个职业数学家，在1918年即着手统

一引力与电磁学，1927―1928年冬季学期即在自己用群论发展了量子力



学的基础上开讲“群论与量子力学”。可见建立新物理学如同开荒造田，

手里得有工具。

群论用于量子力学、相对论和规范场论的发展，至今约一百年过去

了。这些近代物理的伟大成就，极大地改变了世界，是人类今日之高度

技术化社会的深层学术基础。我们当怀着感恩的心情，学会之、欣赏之

甚至还应能应用之、拓展之。若我们的学者们也能学着为工业提供技

术，为技术提供科学，为科学提供思想，岂不令人振奋哉？当然啦，这

要求大学能够为思想提供会思考的头脑。

数学、物理是少数天才的创造。人家随便一个人的创造，可能是某

些地方倾举国之力学都学不会的，这样想来，谦虚恐怕该是我们唯一正

确的姿态。
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[2] 关于regular representation之“正则表示”的译法，笔者不敢苟同。regular、canonical这两个物

理关键词还是应该区分的。

[3] identity representation也许译成“全同表示”更直截了当，从字面上就能看出是把所有元素都表

示为同样的操作。

[4] Pascal’s triangle. 因帕斯卡于1654年发表的论文Traité du triangle arithmétique而如此命名。我

国称为杨辉三角，最早出现于杨辉1261所著《详解九章算法》。

[5] 关于引入0-次项的问题，我在决定这样做的半年后读到微分形式的数学，发现与此处有同样

的尴尬和处理。微分形式自微分1-form ω=ξidxi开始，有微分k-form,n-维流形上的微分k-form构

成一个 维的矢量空间。返回头，定义流形上的实值函数f为微分0-form。2021年2月，笔者在

阅读克利福德(William Kingdon Clifford)的《精确科学的常识》(The Common Sense of the Exact
Sciences)一书时注意到了如下内容。对于二项式展开，(a+b)(p+q)=an+…+bn，其中n=p+q，中间项

的一般形式可记为 。如果要求中间项的通式表达对于两头的两项也成立，即对p=0和q=0
也成立，则可以要求或者说定义a0=1，0!=1。这正是笔者要找的为变量是自然数的表达式额外

添加变量为0的情形。同一时期笔者在阅读几何代数时，注意到在几何代数中，求矢量函数

G(a)=f(a)-λa的裁量(determinant)问题时，涉及的特征多项式为 ，为此定义了

∂（0）·f（0）=1。但是∂（s）·f（s）是从s=1开始才有实质性意义的，∂（1）·f（1）=tr(f)。这为笔者要找的为

变量是自然数的表达式额外添加变量为0的情形又添一例合理性证据。顺便提一句，在此过程

中，笔者决定将determinant译为“裁量（liàng）”，以精确表达此概念之正确含义。

[6] spherical harmonics。什么球谐函数，应该是球安装函数。harmony是安装到位的意思。用一

组完备的Ylm(θ,φ)函数可以拼出球对称的分布，这才是其本意。



挪威数学家李

Sophus Lie 1842—1899



匈牙利数学物理学家维格纳

Eugene Wigner 1902—1995



第10章 规范场论

昔者仓颉作书，而天雨粟，鬼夜哭！

——《淮南子》

…le but unique de la science,c’est l’honneur de l’esprit humain
——Carl G. J. Jacobi

科学的唯一目的，是人类精神的荣耀。

——雅可比

Mathematics is a part of physics…
——Vladimir Arnold

数学是物理的一部分。

——阿诺德

摘要 经典电磁学被总结在关于电场和磁场强度的麦克斯韦方程组

中。采用磁矢势Aμ=(φ/c,A)表述电磁学，有一个冗余的自由度。这引入

了规范和规范函数的概念。引力理论采用微分几何的语言，弯曲空间的

协变微分引入了克里斯多夫符号 ，其可由时空的度规gμν得到。从微

分几何的角度，可以把与克里斯多夫符号相类比的联络当作基本量，不

同的联络定义不同的微分几何。引力场方程不能完全确定时空的度规，

还留有6参数洛伦兹变换的自由度。外尔研究广义相对论和电磁学，从



数学形式上注意到了电磁学可能是引力的伴随现象。引入额外的矢量函

数作为联络处理矢量在时空中的平移问题，会带来一个长度的尺度因

子。爱因斯坦以这可能会造成历史（路径）依赖的原子现象为由反对这

个理论。薛定谔于1922年从量子化条件、伦敦于1927年从量子力学波动

方程的角度考虑，建议把尺度因子理解为相因子，为此需要引入 。

1929年外尔再次考虑电子与引力问题，把电磁场理解成了量子场的伴随

现象，从而有了规范场论。在规范场论中，规范场是时空几何的联络，

规范场的场强可表示为与联络相联系的曲率。电荷守恒被证明是规范不

变性——确切地说是相位变换不变性——的结果，从而与能量-动量守

恒有了同样的数学基础。此后，在1954年起短短的两年内，相继出现了

关于E2空间同位旋的规范场论，包括杨-米尔斯场论，肖关于E3和E4空间

同位旋的规范场论，以及内山菱友的广义洛伦兹群意义下规范场论的一

般化推导。SU(2)群和SU(3)群下的非阿贝尔规范场论被用于理解弱相互

作用和强相互作用，继而创立了描述弱电理论和强相互作用的量子色动

力学等理论，从对称性出发揭示了亚原子世界里的诸多基本物理现象。

最后，标准模型统一了强、弱、电磁三种相互作用，被称为

SU(3)×SU(2)×U(1)理论。1974年，杨振宁先生给出了规范理论的积分形

式表述，把引力场作为规范场加以讨论。规范场论与纤维丛的几何与拓

扑有密切联系。规范场论应该还有别的形式。

规范场论是数学物理的巅峰，是数学与物理交替促进的典型，反映

的是人类为了理解自然所进行的不懈努力。欲学会规范场论，一要学会

变分法，二要学会李群与李代数。诺特定理是理论物理的基石。最小作

用量原理、诺特定理和洛伦兹群表示，愚以为这是理解理论物理的三把

钥匙。

关键词 电磁学；麦克斯韦方程组；Lorenz 规范；库伦规范；规范

变换；规范函数；洛伦兹群；广义相对论；引力；引力势；度规；联

络；曲率；微分几何；纤维丛；自旋联络；平行移动；物质场；规范

场；规范群；规范场论；同位旋；量子场论；量子色动力学



关键人物

Maxwell,Coulomb,Lorenz,Lorentz,Riemann,Christoffel,Ricci,Levi-
Civita,Einstein,Noether,Weyl,Schrödinger,Fock,Fritz London,Oscar
Klein,Felix Klein,Proca,杨振宁,Mills,Shaw,内山菱友,Gell-Mann,Higgs



§10.1 物理学是怎么拼凑出来的

物理学是由一群天才的头脑拼凑出来的。面对繁杂的观测数据，开

普勒总结出行星运动三定律的关键是他将参照点从天然的选择，即我们

的脚下，挪到了太阳上。这对应相对论之庞加莱群的纯时空位移部分

（周期运动进一步让时间平移不那么重要），笔者将之名为朴素的相对

论（primitive relativity）。虽然它是平庸的，但它与仿射几何有关，没

有它相对论是不完整的。力学（含经典光学）在积累了足够多的定理的

基础上开始了原理性构造，有了费马原理（光程最短）、莫培图斯

（Pierre Louis Maupertuis,1698―1759）原理（路径取极值），最后形成

了最小作用量原理，有了欧拉-拉格朗日（Euler-Lagrange）方程。哈密

顿-雅可比（Hamilton-Jacobi）方程让经典力学有了学问的样子并为（相

对论性）量子力学打下了基础。作用量原理成了物理学沉淀下来的一个

真正的原理。热力学从一开始就是从原理出发构造的，“一切不以做功

为目的的传热都是浪费”，卡诺的这个原理简单直白但有效。有了卡诺

循环这个神奇的不规则四边形就能得出一个二元一次方程组，分别对应

热力学第一、第二定律[1]。相对于经典力学，那里的主角是质点和刚

体，电磁学的主角是场，麦克斯韦方程组经麦克斯韦波动方程终于塑造

了完整的电磁学体系。麦克斯韦波动方程的对称性变换是狭义相对论的

核心，广义的相对性原理带来了广义相对论，让物理学有了几何的味道

甚至实质。在广义相对论（1915年底诞生）那里，引力和电磁相互作用

已经走到了一起。到此时刻，大自然已知还只有两种相互作用：引力与

电磁相互作用。广义相对论开启了对称性支配相互作用（symmetry
dictates interaction）的模式。

20世纪物理学的特征是量子力学和相对论的出现。1900年开启了的



量子力学时代，到1928年“新”量子力学的三大方程，薛定谔方程、泡利

方程和狄拉克方程，全部横空出世，算是羽翼丰满了。爱因斯坦1905年
的狭义相对论带来了新的时空观，1915年底的引力场方程是将相对性原

理推广到弯曲时空的结果。1918年克莱因和诺特（Emmy
Noether,1882―1935）奠立了对称性的数学理论，特别是诺特的不变的

变分问题（1918年6月26日提交），将物理世界的守恒定律同作用量之

数学形式的对称性联系了起来，从此成为理论物理学的圭臬。在这样的

背景下，外尔1918年在“引力与电”一文中试图统一引力理论与电磁学的

思想[2]，经薛定谔（Erwin Schrödinger，1887―1961）于1922年、伦敦

于1927年的思考与建议，到了外尔1929年的“电子与引力I”（3月7日英

文简报，5月8日德文长文）一文再阐述，已是渐臻成熟，终于形成了规

范场论。规范对称性成为构造物理理论的出发点，物理学有了新的基本

原理以及新的研究范式。

从开普勒的行星定律，经过经典力学（光学）、电磁学、量子力学

到规范场论，伴随着相应数学的诞生，这一路上的拼凑之艰辛与成功，

惊天地、泣鬼神。最小作用量原理、卡诺原理、相对性原理，现在我们

又迎来了规范原理。规范理论肇始于1918年，基于两个独立的思

想：“其一是外尔的电磁场几何理论，其二是诺特的关于如何从对称性

出发构造物理理论之可观测量的基本定理。”当然，广义相对论的出现

提供了原初的动机，让外尔这个大象级职业数学家闯入了物理学的瓷器

店。



§10.2 电磁理论与规范

从前的物理学，很自然地，一开始关注物体（粒子、质点、刚体、

流体）的运动。电磁现象是宏观可见的、有点儿特别的自然现象。随着

对电磁现象认识的深入，电磁场的概念就被提了出来。这个过程的代表

人物是法拉第（Michael Farady,1791―1867）。愚以为，只在当赫兹

（Heinrich Hertz,1857―1894）在1887年，即在法拉第提出电磁场的概

念五十余年后，使用振荡电路在远处也打出了火花，才算确立了电磁场

的概念（这个实验证明有些东西从电路中飞出去了）。场，作为与粒子

的对应物，从此成了物理学的研究对象。设想一块田地（field），长满

了野草繁花，其间还有欢蹦乱跳的兔子，则其上展开的故事都可能被类

比到物理学的场论研究，相关的学问有经典场论、量子场论与规范场

论，等等。场论（fi eld theory; Feldtheorie; théorie des champs），是偏高

难的物理学研究领域。场论学者总让我想起看着庄稼地满脸喜悦或者满

脸愁苦的老农。

电磁场理论到麦克斯韦把此前的电磁感应规律在1861―1862年总结

到一套方程组里（电磁感应规律都是左边一项、右边一项，但麦克斯韦

给第四个方程添加了位移电流项），算是初具雏形。麦克斯韦方程组当

前的形式是亥维赛德给出的。笔者愿再次强调，1.矢量分析是四元数以

后出现的学问。电磁学里用到的矢量是四元数之矢量部分意义上的矢

量，它和狭义相对论里将时空、能量-动量或者电磁势当成4-矢量（4-
vector）的那个矢量，意义上有些不同。电磁学理论的后续发展一再告

诉我们四元数表示才是好的选择；2.电场E是矢量，但是磁场B不是，B
不具有矢量那样的加法。把电场E和磁场B都看作矢量，从而要求麦克

斯韦方程组关于电和磁形式上的对称是对电磁学的误解，是缺乏数学知



识的表现。电、磁，二者一也。

考察真空情形，常见的麦克斯韦方程组如下：

如欲由常见的电磁学麦克斯韦方程组进入协变形式，方程的顺序可

能需要调整。把顺序放对了，麦克斯韦方程组的4-矢量形式是容易看出

来的。将方程(10.1)改写成

就能看出前两个是一组的，而后两个是另一组的，后者与源有关。

采用4-矢量电磁势

和反对称洛伦兹张量

表示场强，则麦克斯韦方程组(10.2)的前两项是∂∧ F=0，或者

；后两项是 ，其中jν是电流4-矢量。用几何代数的语

言，可以进一步写成简单的▽F=J。麦克斯韦方程组的主角是场的强度

量E和B，可为电荷（其实是物理学家）所感知的存在。

这是关于电磁现象的微分表示。可是，麦克斯韦方程组还有积分形



式。这一点提醒我们，关于电磁现象的方程，可能隐藏着某种任意性。

电磁现象有完全从电磁势角度的描述。在静电场情形，eφ 类似引力场

的mφ，表示静电势能，即电荷之间相互作用引起的势能。矢量势A描述

电流元之间相互作用引起的势能，约是在1840年代由纽曼（Franz Ernst
Neumann,1798―1895）和韦伯（Wilhelm Eduard Weber,1804―1891）分

别引入的。1851年，汤姆森（William Thomson,1824―1907），即开尔

文勋爵，也引入了矢量势A（具体的历史细节，电磁学有必要交代）。

1856年，麦克斯韦提出法拉第感生电场就是E=-∂A/∂t+▽φ 中的第一项，

A就是法拉第曾提出的eletrotonic density [3]。电磁势A的引入在麦克斯韦

方程组之前，描述电磁势4-矢量所需的是四元数的概念，是在1846年引

入的，这些历史事实有助于对电磁学的正确理解。现在，我们有了矢量

分析形式的麦克斯韦方程组(10.2)，从矢量分析的角度，引入可相加的

电磁势φ 和A是可理解的。把电磁势φ 和A写成4-矢量

的形式，其实如写成Aμ=（iφ/c,Ax,Ay,Az)的形式则又回到了（双）

四元数，别说相加，相除都是可以的。正确的物理语言，应该是严谨

的、自洽的。

磁矢势A由▽·B=0引入。磁矢势A和电场矢量E一样，确实是四元数

中的矢量部分，有性质▽·▽×A=0，故可令

引入标量势φ，令

则方程▽×E+∂B/∂t=0总成立。显然，使用电磁势φ 和A的语言描述

电磁场要简单许多。用电磁势φ 和A表示的麦克斯韦方程组(10.2)的后两

个（有源）方程为



注意这两个方程是二阶微分方程，而且隐隐约约能看到弦振动方程

的样子。这样，电磁学和牛顿力学就接近了。

麦克斯韦方程组不能唯一地决定电磁势，电磁势φ 和A具有一定的

任意性。作变换

麦克斯韦方程组(10.7)作为动力学方程保持形式不变。标量函数

χ（t，x，y，z)被称为规范函数（gauge function），变换(10.8)称为规范

变换（gauge transformation）。显然，若χ1，χ2是规范函数，则χ1+χ2也是

规范函数。电磁相互作用的规范函数构成一个加法群，属于阿贝尔群。

规范变换允许我们给电磁势加个限制而不影响对电磁场的描述。考

察上述方程(10.7)，▽·A=0可以是一个选择，被称为库伦（Charles-
Augustin de Coulomb,1736―1806）规范，它使得第一个方程(10.7a)变得

简单，即回到了静电场的理论（这可不是好物理）。另一个显然的选择

是

这个称为洛伦茨（Ludvig Valentin Lorenz,1829―1891）规范，它将

方程(10.7a)，(10.7b)形式上变得相同



洛伦茨(Lorenz)规范是个洛伦兹(Lorentz)变换不变的规范条件，与

此相对，库伦规范就不是。愚以为，这个才是电磁学正确的表述方式，

它内含四元数(4-矢量形式）、波动方程以及洛伦兹变换，可以方便地进

入相对论，在现实与抽象的物理层面都体现了高度。关于麦克斯韦方程

组还有其他一些规范，如相对论庞加莱规范等，但笔者看不出其中的物

理或者便利。必须指出，认为电磁学规范的选取是出于方便的考虑是一

种浅薄的看法。采用电磁势Aμ=(φ/c,Ax,Ay,Az)而非电磁场强度E和B描述

电磁学，是自作用量原理这一物理共同原则出发构造电磁学理论的自然

选择。由使用电磁势而来的规范的选取也会带来不同的物理图像，它绝

不是随意的。

请记住，麦克斯韦方程组和波动方程，那是个宝藏，我们在一般电

动力学和狭义相对论教科书中所见到的只是其很少、很小的侧面。就理

解麦克斯韦方程组的多种面目来说，我们一般的数学物理学家所拥有的

数学储备是不够的。时空对称性指向相对论，而场的时空以外的对称性

指向规范场论。规范的中心思想是，物理量有任意性，存在规范变换，

使得动力学方程不变，故而有选择特定规范条件的自由度。

顺便说一句，按照最小作用量原理出发构造物理理论，麦克斯韦方

程组的四矢量形式为 ，可由拉格朗日量密度

，出发作为欧拉-拉格朗日方程得

到。此外，若引入质量项， ，由此得到的方程

为普罗卡方程（Proca equation）， ，描述有质量、

自旋为1的粒子。此是后话。

上面谈论的是经典电磁场理论里的规范自由度问题，电荷在那里还



是个比较模糊的形象。电子作为一个具体的带电荷的粒子，其身份是

1897年才确立的。描述电子同电磁场相互作用的量子力学方程有泡利方

程（1927）， ，其中

波函数是两分量的，代表自旋的两种状态，而电磁势则通过电荷进

入了哈密顿量的表达。磁矢势经过常系数e/c改造后和动量并列，这是个

值得关注的动向（试比较第9章中电子在周期势场下的动量表述）。含

磁矢势的动量是和泡利矩阵σ 相耦合的，这让这个量子力学方程有相对

论的内蕴。

1926年，福克（Vladimir Fock,1898―1974）将经典电磁学的规范理

论拓展到与电磁场相互作用的带电粒子的量子力学中去，为此引入了如

下变换

也即相较于此前的洛伦茨(Lorenz)规范变换添加了波函数的变换

。这意味着电磁势的规范变换伴随波函数的变换

，波函数多出个相因子，而eiθ是U(1)群的表示。福克的这篇

论文是基于薛定谔方程、爱因斯坦的狭义与广义相对论和克莱因

（Oscar Klein,1894―1977）的五维场论讨论相关问题的。注意，规范函

数χ 乘上常数e/c的量纲是作用量。



§10.3 引力场论与微分几何

爱因斯坦的引力场方程

不能唯一地决定时空的度规张量gμν，所以引力也有规范的事儿。能

量守恒可以把能量-动量张量Tμν，μ,ν=0,1,2,3，的独立分量减少到6个。

当爱因斯坦认识到这个问题时，他的结论是广义协变性要有所限制。所

谓限制，即具有广义协变性的场方程要在一类受限的坐标系下考虑，这

是借助度规张量场的四个方程所构成的坐标条件实现的。所谓坐标条

件，就是规范条件。

爱因斯坦的广义相对论开启了对规范不变性的理解。广义相对论的

数学基础是黎曼几何，规范场论的核心则是非黎曼几何。1917年，意大

利数学家列维-齐维塔（Tullio Levi-Civita,1873―1941）认识到黎曼导数

和黎曼张量 的不变性只由这个称为联络

（connection）的克里斯多夫符号

之坐标变换所决定：

正是这个变换的样子（第二项）带来了规范场论以及推广黎曼几何

的故事。在引力理论中，这个联络是由度规导出的，见式(10.14)。但



是，联络可以当作独立的、本原的量。任意函数，只要其满足坐标变换

(10.15)，就可以当作联络。由一个广义的联络 ，定义协变微分

，就有针对特定联络的微分几何。如果没有与之匹配的度规

gμν，那就当作非黎曼几何处理好了。

给定了联络，可以定义该几何下的一个矢量沿曲线的平行移动

（parallel transfer; Fernparallelismus）。矢量v之无穷小平行移动带来的

变化为 （一阶小量，线性形式），而两个不同的无穷小平

行移动变化之差为 （二次型，二阶小量），其中

。构造物理就要这些。如果没有度规（度规允许比较任意分开的两点上

的矢量大小），自然没有测地线，则我们熟悉的测地线方程

就是描述一个矢量一直沿着自己的方向平行移动的曲线。

现在，我们引入广义的联络作为出发点。三指标的联络 比二指

标的度规张量gμν拥有多一重的自由度，因此具有构造理论的更大的灵活

性。它将黎曼几何从度规解放出来，打开了一个微分几何的更广阔天

地。



§10.4 外尔的引力与电理论

§10.4a 引力规范

考虑到黎曼认为空间度规会等效表现为力，与物质有相互作用，爱

因斯坦认为度规同物质间作用的规律就是引力的规律，度规可理解为引

力势。不过，度规gμν，引力势，是一个不变微分二次型 里的

系数，而电磁势4-矢量Aμ是一个不变的线性微分形式dφ=Aμdxμ里的系

数。它们从未被放到一起考虑过，尽管爱因斯坦就是用电磁相互作用的

洛伦兹变换来要求广义相对论的。熟悉微分几何的数学家外尔敏锐地注

意到了这里有物理——它是否提供一个统一电磁学和引力理论的切入点

呢？

黎曼几何可以用平行移动自然地表述。矢量ξi从一点P(x1,x2,…,xn)移
到近邻的一点 ，

带出了一个新的几何量——联络 。设无穷小平行位移造成的矢

量内积之比为1+dφ，

会发现这个联络不仅依赖于二次型 ，而且还依赖于线性

形式 。这是个有趣的数学形式上的发现，也就外尔这样的数学

家会注意到、能注意到。笔者看到这儿时想到的是一元二次方程

axx+bx+c=0，二次项、线性项再加个常数项。嗯，物理定律，好多就长



成这样。

外尔发现， 描述同样的几何（好别致

的一种不变性），而与φidxi对应的不变量是反对称的 ，

这个形式在电磁学中出现过。外尔由此想到可以把φi理解成电磁势矢

量。难道电磁场是引力的伴生现象？

提醒大家注意一个事实，德国数学家希尔伯特（David
Hilbert,1862―1943）、克莱因、诺特和外尔，意大利的数学家里奇

（Gregorio Ricci-Curbastro,1853―1925）、列维-齐维塔和贝尔特拉米

（Eugenio Beltrami,1835―1900），都是研究不变量的大家。不变量、

不变性、不变变换，这是数学物理的思想核心。换成物理的语言，就是

对称性与守恒律，将这两者融为一体的是著名的诺特定理（1918），其

中关键的数学概念是群论。更广泛一点儿的概念是等价性。

1918年，为了建立真正的无穷小几何，也为了统一电磁学和引力，

外尔引入了广义联络的问题。外尔注意到在黎曼几何中，平行移动过程

中矢量的值是不随路径改变的。外尔在时空联络之外再引入一个4-矢量

场vμ(x)，即将联络改造为

矢量依据这样的联络平行移动，连长度都是变的，经移动后会获得

一个尺度因子 。在这篇文章中，规范一词第一次被引入微分几

何。因为相关的微分几何牵扯到长度的量度问题，当然是规范

（gauge，本义是尺规）的事情。

推广广义相对论试图统一引力与电磁学其实不是什么新鲜事。广义

相对论让引力理论有了电磁学的味道，关键点在于洛伦兹变换。如果黎

曼几何是广义相对论的基础，那么一个更广泛的仿射几何也许能同时容

纳引力和电磁学，所需要做的事情就是在引力场(gμν)上再加上一个电磁

矢量场vμ(x)，当然能加到一起那得有个耦合项，表现为拉格朗日量中两

个场的恰当物理量的乘积项。如果这个矢量场是标量函数的梯度，这样



得到的新的几何是平庸的。恰恰当电磁势是标量函数的梯度时，电磁场

是平庸的。这个形式上的相似引导外尔选取 （系数γ 当前身

份不明。注意这里是被当作实数引入的）。由尺度（规范）不变性可得

到电荷流的守恒律，如同从庞加莱不变性得到能量-动量的守恒律，这

些都是诺特定理的展示。能量-动量守恒和电荷守恒竟然都是某种几何

的性质？太神奇了！

外尔注意到，引力理论的表示必须有两重的不变性：1.相对任意的

光滑坐标变换是不变的；2.相对于变换gμν→λgμν是不变的。如前所述，

利用平行移动概念可以证明，时空几何的解析表示形式 加上

等价。变换

即为引力的规范变换。

§10.4b 对外尔理论的批判与诠释

外尔1918年的引力规范理论还能让我们从规范场的视角重新审视电

磁理论，这个理论很神奇，很有道理。但是，时空的量度要因为电磁场

的存在而改变尺度，即存在关系

这一点却让人很难接受。爱因斯坦对外尔的论文就直接提出异

议：“如果这个理论是对的，那原子的性质就必须是历史（路径）依赖

的，这和我们观察到的原子现象不一致……您的想法很美妙，但是我必

须坦白地说，在我看来，那理论不可能对应自然。”这个很酷的理论如



果错得一无是处就太可惜了。谁来救救它呢？

一大拨儿物理天才，薛定谔、福克、伦敦等，正在赶往物理学舞台

中心的路上。

爱因斯坦对外尔理论的反对基于其会导出原子性质是历史（路径）

依赖的结论，算是说到点子上了。1922年，量子力学逐渐成熟的时节，

薛定谔发表了“关于单电子量子轨道的一个值得注意的现象”一文。薛定

谔指出，如果外尔的理论是正确的，长度因为电磁场的存在随平行移动

有个因子，考虑原子中电子的运动，尺度改变因子 （这个同式

（10.20）相比，指数上差个负号）要满足轨道量子化的条件，结果是γ
应为某个常数乘上普朗克常数h，γ∝h。电子经过一个环路后，长度要

乘上因子eh/γ。很难相信这个结果没有物理意义。不过，电子随着运动还

携带着“长度”（的量度），不好理解。薛定谔建议，可以取

这样因子eh/γ（的模）就是1了，电子经历准周期运动后一切如常。

薛定谔在文末说，“我不敢判断这在外尔几何的语境下是否会有意

义。”可惜了，这个犹豫让1925年39岁的薛定谔，在构造薛定谔方程之

前，极度怀疑人生。薛定谔1922年的这个表达式 足够伟大，伟

大到让量子场论的胚胎出现在新量子力学之前。请注意，薛定谔这里引

入的虚因子是 而非i或者-i。
薛定谔建立波动力学的经典论文“作为本征值问题的量子化”于1926

年分四部分发表。薛定谔的经典论文当然不只是带来那个让他名垂青史

的量子力学基本方程。他把相对论电磁学的哈密顿-雅可比方程

推广为了相对论的电磁克莱因-戈登方程[4]：



这里，算符 有了广义相对论中协变导数的影子。俄罗

斯人福克（Vladimir Fock,1898―1974）在1927年就发表了将广义相对论

同量子力学结合的论文“论带电粒子之波与运动方程的不变形式”。这篇

论文是1926年7月24日从列宁格勒寄出的，该文第一个词就是薛定谔方

程，可见他做这篇论文所用时间之短。这篇文章明确引入了规范变换

（原文照录）

指出它保微分1-形式 不变。

他还构造了一个拉普拉斯方程：

其在变换(10.24)和洛伦兹变换下不变。对于规范变换A→A+▽f,

，其效果就是 。这包含了规范场论的完整思想

了。这是量子版的电磁规范理论。福克的这篇文章沿用了克莱因

（Oscar Klein）的五维空间推导，其实没有必要。

伦敦（Fritz London,1900―1954）1927年2月25日提交了“外尔理论



的量子力学诠释”一文，把外尔引入的尺度变换同德布罗意的波动力学

联系起来，明确指出尺度因子的形式为 （原文照录），即

，这样尽管路径是不可积的，但是在每一点上的规范尺度（gauge-
measure）是唯一的。这一下子显得外尔的理论包含了通往波动力学的

逻辑之路。不可积因子同电磁理论联系没问题，但是不应该当作时空的

尺度因子，而应该是当作波动力学的相因子。伦敦最了不起的地方是，

他在文末强调薛定谔1922年就指出了这一点，只是当时未能认识到它的

重要性而已，绝无抢占优先权的想法。在1926年薛定谔的方程作为新量

子力学的基础出现之后，对外尔规范因子的这个诠释就变得重要了。量

子力学让外尔的思想真正导向了规范场论。后来人们谈论伦敦时，往往

津津乐道的是伦敦方程，不知道那个关于超导的唯象方程有什么重要

的。

外尔本人此后在1928年的《群论与量子力学》（Gruppentheorie und
Quantenmechanik）一书和1929年的两篇论文中干脆将电磁作用带来的

尺度因子改称为相因子（phase factor）。相因子同路径有关，这埋下了

存在拓扑相位的伏笔。

有了规范场论，外尔1918年的论文可以作如下理解：克里斯多夫联

络的电磁协变版本可写为

可将规范原理用于狄拉克理论。狄拉克自由场方程为

将Dμ=∂μ-ieAμ（采用了 的惯例）替换∂μ，得到



将规范原理应用于自旋为1/2的粒子的波动方程，会得到方程：

其中

这明显是两个自由场加上一个相互作用项的样子。后来我们会看

到，引入规范理论都是这样做的。



§10.5 外尔的电子与引力理论

外尔是个职业数学家，他在1918年那段时间似乎对1913年就有了的

电子轨道量子化无感，对他来说，那也没啥好值得关注的。他在1918年
将引力理论和电磁学相结合的努力，实际上是传统数学物理的自然延

续，特别引起他关注的是引力理论中的能量-动量守恒和电磁学中的电

荷守恒之得到方式的可相类比。然而，薛定谔于1922年从轨道量子化的

角度审视外尔的几何尺度因子，就有了敲定这个尺度因子的物理依据。

注意，外尔的γ 碰巧是角动量、作用量的量纲。1929年，在薛定谔、伦

敦等人指出选择 可将外尔几何同量子力学联系起来、福克给出电磁

同波函数结合的规范变换之后，外尔发表了世纪经典长文“电子与引

力”，算是奠立了规范理论。这个时候，他对当时的相对论量子力学已

经极为熟悉了。

外尔引入了关于时空的四维标架[5]表述，把不可积尺度因子当成了

场函数的不可积相因子。外尔将规范不变性上升为对称性原理，明确指

出电磁学可以从规范原理导出。其实，是在电磁学的基础上得到的规范

原理，由其可导出电磁学一点儿也不奇怪。规范原理后来被用于理解新

的基本相互作用，那才显出威力来。外尔可以轻松地把规范场论从针对

电磁学的阿贝尔规范情形推广到非阿贝尔规范情形，但那时候没有这方

面的需求，那时物理里还没有弱相互作用和强相互作用。

大体上，外尔先介绍了闵可夫斯基空间的两分量旋量，讨论宇称和

时间反演不变性，引入了标架理论来处理弯曲时空的场论。外尔不只是

要建立弯曲时空中的旋量理论，而且要系统地得出诺特守恒定理，这样

电磁学和引力的类比就有了统一的基础。此后，他引入自旋联络以构建

弯曲流形上的旋量理论，针对广义坐标变换（general coordinate



transformation）和洛伦兹变换得到相应的守恒定律；最后，从规范原理

导出电磁理论。更酷的地方是他把旋量理论也纳入了引力。标架的四条

腿（vierbein）在不同时空点上独立地转动，遵循洛伦兹变换。洛伦兹

变换是关于无质量的光子的。泡利指出这些做法对有质量的狄拉克粒子

也是成立的。

外尔是群论大家，将群论引入量子力学就是他和维格纳（Eugene
Wigner,1902―1995）共同完成的。他先是建立起了泡利矩阵（自旋）

和洛伦兹变换（时空）之间的关系。外尔认为质子-电子问题（后来发

现其实分别是电子-正电子问题和质子-中子问题）同量子力学的对称

性，包括宇称P和时间反演T，有关。外尔还引入了外尔旋量，讨论了粒

子的手性问题。他的这些超前认识要到20世纪50年代才显出其重要性来

——弱相互作用宇称不守恒是1956年被发现的。

广义坐标变换群（微分同胚D）同洛伦兹群不一样，没有2-1覆盖

群，但是维格纳指出使用局域标架能解决这个问题。局域标架把引力的

广义坐标群变换扩展到了半直积群D∧L，L是洛伦兹群。所谓的标架定

义如下：

其中ηab和gμν分别是闵可夫斯基平直时空和弯曲时空的度规。用局域

标架 变换狄拉克矩阵，

则有 有16个单元，度规gμν只有10个，尚余6
个自由度，正好可由6参数的洛伦兹群表征。若有洛伦兹变换

配合式(10.30) ，正是h'ηh=η，此为平直度规的相似变

换。可见，标架可以由度规决定到尚欠一个局域洛伦兹变换的程度。这



个洛伦兹变换的连通部分变换这个标架，是局域的，它保度规不变。这

可看作是对电磁规范的非阿贝尔推广。

电磁规范自由度和引力的洛伦兹变换自由度可相类比。进一步地，

外尔引入标架内部版的联络：

其中 项处于特殊线性群SL(4,R)的李代数中。在这个理论中，

4-矢量Aμ(x)相对于微分同胚D是协变的，但是随洛伦兹群的变换

却不是协变的。这表明引力是规范理论，而且同非阿贝尔理论中联

络的规范变换是类似的，虽然当时不知道其意义。(10.34)式与后来的

杨-米尔斯理论中Bμ场的变换 形式上完全一样。

简单说来，构造规范场论大致可以分为三个步骤：1.把一个场的拉

格朗日量密度所对应的对称群推广为局域群；2.把该局域群的表示指定

给某个规范场；3.改造初始的拉格朗日量，并构造出总拉格朗日量。这

个理论的中心是协变微分。外尔使用这套思想成功地处理了引力场，引

力与旋量，以及引力与电磁场的规范理论。

(a)引力与旋量

外尔把两分量旋量理论纳入引力，这样可以在弯曲时空中处理旋量

问题，或者说建立起弯曲时空的相对论量子力学。旋量在洛伦兹群下的

变换为

其中σab就是SL(2,C)群的生成元。现在来构造旋量的协变微分和在

引力场下的自由旋量作用量。根据平行移动，外尔找到的协变微分形式



为 ，其中σb
a是SL(2,C)群的旋量表示。旋量的

自由作用量为

广义协变微分为 ，其中同位旋算符 是内部SL(2,C)群的

相应表示，而 就称为自旋联络。

(b)引力

当只有引力时，黎曼张量为

形式上可简写为

由此可见黎曼张量同电磁场强度张量之间的类比，这给出了在非阿

贝尔规范理论中场强的正确表达式。相应的爱因斯坦作用量为

(c)弯曲时空里的电磁学

在旋量理论里，有一个内在的阿贝尔自由度。旋量被定义的（洛伦

兹）群属于SL(2,C)，而旋量空间上的线性变换群是GL(2,C)，相应的中

心子群是eiαI,其中I是2×2单位矩阵。如同把刚性闵可夫斯基标架推广为

局域的，也可以把相因子α 推广成局域函数：

把这个相位群的表示指定为费米子场：



其中e可能是电荷。电荷可理解为这个规范群表示的特征。空间的

微分同胚不变性要求 ，而阿贝尔规范变换 进一步

要求 ，也就是说（单分量的）Aμ(x)是阿贝尔群联络。这

样得到的协变微分为 。将原来的拉格朗日量

L(ψ(x）,ψ(x))改造为L(ψ(x),Dψ(x))，再加上自由场的项 ，其

中F=∂∧A，即可得到总拉格朗日量。此处讨论的是U(1)对称性的规范

理论。基本粒子的奇异性（strangeness）这个量子数遵循的也是U(1)对
称性，这是后话。

对所有的规范理论，相互作用的性质都是由群表示决定的。规范场

涉及的角色包括联络和场强，但是引力相互作用还有个度规的问题。规

范场论拖到1950年代才得以繁荣，一方面要等到它大放异彩的舞台（新

的基本相互作用），另一方面是因为数学物理到了这一步，读得懂其中

数学的人已经不多了。



§10.6 规范场论

随着工作的深入，规范理论日渐变得清晰起来。规范理论的基本思

想是，一个体系是关于一个独立于时空的变换群G下不变的，当该群被

改造成局域变换的时候，要求体系依然是不变的。局域变换，则不同点

上做出的区别（比如矩阵不同本征值对应的状态）没有物理意义，这是

规范场论的关键。如此，需要将微分算符∂μ替换为协变微分，Dμ=∂μ

+Aμ(x)，其中Aμ(x)是取值落在该群的李代数中的一个矢量场，场强为

Fμv=［Dμ,Dν］。规范场理论的核心是一个李群，即它的规范群。

外尔等人到1929年的工作涉及的是引力（广义相对论）、电磁学和

量子力学，这是关于规范理论的建立阶段。当规范原理被当作出发点去

构造新相互作用的理论时，它的威力才显现出来。

1938年，克莱因试图建立起引力、电磁和核相互作用（汤川场）的

统一理论时，其用到的数学结构是SU(2)规范结构，引入了常规的SU(2)
规范势Aμ(x)·σ。所引入的场具有

的形式，其中Aμ(x)是电磁势， 分别是带正负电荷的介子

的场。如果欲引入中性介子的场，可取

这样大数学家克莱因就把矢量介子场的李群从SU(2)扩展到了

SU(2)×U(1)。他太超前了。



§10.6a 杨-米尔斯的尝试

为了描述核子之间的强相互作用，海森堡于1932年引入了同位旋

（isotopic spin,isobaric spin）这一新的粒子标签，实验证实核子相互作

用过程中同位旋守恒。同位旋是个与自旋、角动量有着相同李代数的物

理量。对于同位旋为1/2的情形，同位旋算符仍然是泡利矩阵，但作用

在同位旋的希尔伯特空间上。故接下来自旋算符会用σ 表示，同位旋算

符用τ表示，以示区别。

电荷守恒是同相位变换不变性相联系的，电荷场的规范变换表现为

选取电荷场相位因子的任意性。同位旋守恒也该有对应的基本不变性，

即同位旋转动下相互作用的不变性（得写出拉格朗日量）。1954年是规

范场论发展史上的一个标志性节点。参照电磁场相对于电荷的关系，杨

振宁[6]先生（1922―）和米尔斯（Robert Mills,1927―1999）于1954年为

同位旋这个粒子标签引入了相应的B场，以消解同位旋转动不变性同局

域场概念之间的不一致。定义同位旋转动S，要求在变换 下

相互作用不变。对于同位旋为1/2的情形，ψ 是个两分量的波函数（类似

外尔旋量），对该波函数的协变微分为 ，变换不变性要求

，则有

这最后一项和电磁势随洛伦兹变换中的梯度项类似（见式10.34)。
定义场强 ，可见其满足变换 。

具有同样总同位旋的不同的场，都属于同一个S的表示，其和同样

的矩阵场Bμ作用。作为对照，电磁场和电荷相互作用，但不挑剔带电粒

子的其他性质。这个Bμ场实质性的部分总可以表示为相应的同位旋“角
动量”矩阵Tk(k=1,2,3)的展开。对于任意同位旋的情形，矩阵场Bμ可表示

为



相应地， 。我

们会看到，杨-米尔斯场是非阿贝尔规范场理论的一个特例。杨-米尔斯

场理论后来被加上了自发对称破缺机制来处理质量问题。

杨-米尔斯理论是杨振宁先生一直引以为傲的成就。规范场论是杨

振宁先生此后一直都在思考着的问题。到了1974年，杨振宁先生完成了

规范理论的积分形式，证明引力是一种规范场。1975年，吴大峻、杨振

宁两位先生用不可积相位因子建立了电磁学之内禀、全面的描述，指出

规范场即是数学中的主纤维丛上的联络。规范场论中的联络和微分几何

中的纤维丛概念存在对应。规范场论研究沿时空中的曲线移动一个对称

群的方式，并探讨相联系的曲率场。如同纤维丛理论偏离了切丛，规范

场论也偏离了时空。时空有庞加莱群描述的全局对称性，场有局域的内

禀对称性（还是一次型的问题），那就是局域对称性丛的纤维。

§10.6b 广义同位旋变换下的不变性

1955年肖（Ronald Shaw，1929―2016）对规范场论的表述就更加

明白易懂了。拉格朗日量关于时空平移和转动的对称性对应4-矢量Pμ和

角动量张量Mμν的守恒，这穷尽了时空对称性。但是，还存在相对于与

时空无关之欧几里得空间里的转动的拉格朗日量对称性。规范变换可从

这个角度加以考察。

设有两个实的费米子场ψ1和ψ2，即场ψ 是E2空间里的矢量，见于拉

格朗日量

中，其中矩阵B由 定义。这样，ψBψ 是个标量，ψBγαψ 是



个矢量。注意，L0在无穷小转动

下不变，其中c是一个与时空无关的常数。相应的流密度和总荷分

别为

如果要求拉格朗日量在广义规范变换下，即若(10.43)式中的c是时

空的函数c(x)，是不变的，则必须引入相应的（类）电磁场。在广义规

范变换下：

为此引入拉格朗日量 ，其中Aα是和L0定义的流sα耦合的

场，要求当L0在前述规范变换下时，场Aα按如下方式变换：

可以看出这是电磁4-矢量的洛伦茨(Lorenz)规范变换，记住此处的

规范函数c(x)是L0的转动生成元。进一步地再为新引入的场Aα定义场强

，引入拉格朗日量 ，则有总拉格朗日量

L=L0+L1+L2，其在这个广义规范变换下不变。这三项可以解释为两个场

的自由拉格朗日量及其相互间的作用项。数学啊，数学，如维格纳所

言，在物理中具有不可理喻的合理性！

上述是关于E2空间（转动由一个实参数c定义）规范变换的例子。

一般的介子理论，是关于同位旋空间(E3空间，转动由三个实参数ci定

义）中的转动不变性，而在Salam-Polinghorne方案中，强相互作用是关



于E4空间中转动下的不变性。理论的复杂度不同，但思想是一致的。

同位旋空间为E3空间的规范理论可简单阐述如下。费米子场的拉格

朗日量为 。其中ψ 是时空里的四分量旋量和E3空间里的两分

量旋量。在E3空间里的转动 会带来变换

，其中的矢量 。这个拉格朗日量对应

的同位旋流为 ，同位旋荷为 。

现在如果矢量 是时空的函数，L0就不是不变的了。为

此要引入规范场 ，其和原来的流 之间的耦合项为 的变

换为

这仍是电磁场规范变换的样子，但是有了差别。引入场强：

和拉格朗日量 ，即能得到总的拉格朗日量。散度为

零的流为

这说明规范场也携带同位旋。这是新情况，需要特别对待。

§10.6c 内山的一般形式推导

日本物理学家内山菱友（Ryoyu Utiyama,1916―1990）试图找到引

力与电磁这类相互作用的共同结构。他找到的这个结构就是联络。携带



基本作用力的场，所谓规范势，就是数学上的联络。内山菱友把外尔的

规范原理由简单紧致李群的情形推广到广义李群的情形，构造的是广义

规范理论。内山指出，存在于引力和电磁相互作用之间的类比可以推广

以纳入所有的相互作用。他是第一个指出引力理论可以是规范场论的。

内山的理论是一般性的规范理论，而杨-米尔斯场是非阿贝尔规范

场的一个例子。内山的结果于1954年5月或6月即已在京都大学报告，但

文章迟至1955年才投出，1956年发表。无疑地，是杨振宁先生和米尔斯

先发现了一个非阿贝尔的规范理论，但把非阿贝尔规范理论简单地称为

杨-米尔斯理论则有失公允。

内山提出的问题是，一个拉格朗日量，在刚性李群G下是不变的，

那么，引入什么样的规范场，这个拉格朗日量才在局域群G(x)下是不变

的？这个规范场如何在G(x)下变换，新的拉格朗日量长什么样？答案

是，应是这样的规范场Aμ(x)，一个时空矢量场，在李群的伴随表示

（adjoint representation）里取值，使得导数 是协变导数。与此同时，

原来的物质场的拉格朗日量 得改造成 的样子，其

中R(Dμ)是Dμ在群G的表示中的表象函数（representative）[7]。规范场的

拉格朗日量L0（Aμ)是场强Fμν=[Dμ,Dν] 的函数。总拉格朗日量为此两个场

的拉格朗日量之和。

内山认为，带电场Q(x)的电磁相互作用在拉格朗日量中是通过

的方式体现的（参考量子力学的泡利方程），如果作用量

在相位变换 下是不变的，则该系统的规范不变性是保

证的。

这个问题可以反过来看。假设 在变换 ,
下是不变的，现在要求在相因子为α(x)时系统仍是变换不变

的，则必须引入电磁场Aμ。 的变换不变性也决定了电磁场Aμ

的规范变换。相关的知识，诺特在1918年的一篇论文中竟然已经为我们

全准备好了。

推广这一研究程式。对于场的系统QA(x)，考虑在依赖于参数ε1，



ε2，…，εn的群G下的变换不变。将之推广为依赖于ε1(x),ε2(x),…,εn(x)，
的群G' 之下的变换不变。那么，如何得到规范场论意义下的新拉格朗日

量L'(Q,A)呢？

由拉格朗日量 出发，要求作用量 最小，得到欧拉-拉
格朗日方程。此外，其在变换

下也是变换不变的，其中T是常系数，而εa，a=1,2,…,n，是无穷小

参数。前述变换(10.49)构成李群G,常系数T是具有李群特征的李代数，

，结构因子为 ，满足关系式 ，进而满足相应的雅可比

恒等式。作用量在群变换下不变，而积分是在任意的区域Ω 内的积分，

因此实际上是

而这意味着

其中前一项为零是场方程，而后一项定义了矢量流 ，

是守恒的， 。

好了，根据此前的规范场论构造程式，现在假设 ，εa(x)
是无穷小函数，这样



要引入规范场Aa，数学推导表明总可以要求

其结果是，可将原来的 直接改写成 ，其中

，这就是协变微分，后面一项包括规范场以及体系要

遵循的李群之生成元。此外，要加上规范场的自由拉格朗日量L0，其是

场强

的函数，其中 如上是系统之李群的结构常数，只需要满足条件

即可。形式上，总哈密顿量可写为 。定义

流 ，即

则有 ，但是右边括号里的内容就是最小作用量条

件，故有 ，流守恒。这就是规范场论的中心思想。

现在，把上述思想用于相位变换、同位旋空间的转动群和洛伦兹群

等不同情形，可得到不同相互作用的规范场论。

(1)相位变换

设拉格朗日系统考虑电荷（复）场Q,Q*，拉格朗日量在变换

下不变。这个变换是个阿贝尔群，结构常数为零。用函

数λ(x)替代因子α，引入了矢量场 。相应地，协变微分为

，规范场场强为 ，凑成总拉



格朗日量 。守恒流为

(2)同位旋空间转动群

以杨-米尔斯场为例。场为两分量的 ，拉格朗日量在三维

同位旋空间的转动下不变， ，其中τ
是同位旋矩阵，即泡利矩阵，关系式 定义了结构常数。若将

εa用函数εa(x)扩展，则必须引入三重的杨-米尔斯场Bμ
c，其满足的变分为

，对应的场强为 。改造微

分为协变微分 ，从而得到总拉格朗日量

，相应的守恒流为 。

(3)洛伦兹群

洛伦兹群是时空变换群，引力场在洛伦兹变换下不变。不过，引力

理论较复杂。引力特殊的地方在于其联络是从度规得来的，那里度规可

能是更基本的量。再者，引力的拉格朗日量是场强的线性函数。

首先，考察洛伦兹参照框架（reference frame）定义的一个场，其

作用量 在洛伦兹变换下不

变。此处的讨论，局部x坐标用拉丁字母作标识，用于洛伦兹变换；曲

线坐标，u坐标，用希腊字母作标识，便于讨论广义相对论的相关内

容。在每一个世界点上都要赋予一个洛伦兹框架。在局域点上，时空变

换是洛伦兹的， 拉格朗日量用曲线坐标给出，

。考察变换的结果，在洛伦兹变换下



， ；uμ不变；在广

义点变换下， ， 。现在，考

察广义洛伦兹变换， ，故而要

引入一个矢量场 ，其变分为 。这样，原来的

拉格朗日量要被改造成 的样子，其中

。最后一步，为规范场构建自由场的拉格朗日量

。依广义洛伦兹变换下不变的要求，其必有形式

，其中场强为

可改写为 。关系 将引力规范场强同黎曼

张量联系上了。最后，得到流（张量） 。

顺便说一句，按照内山的这套推导，若场QA是狄拉克的四旋量，则

得到的协变微分形式为 ，这其中用到了狄拉克矩

阵。

针对上述三种情形，规范场场强可以统一地写成F=∂∧A+A∧A或

者Fμν=[Dμ,Dν]的形式，这可看成是规范理论的标志性公式。



§10.7 标准模型的数学表示

首先声明，笔者对粒子物理一窍不通。如下内容只是一点粗浅的介

绍，主要是想提请读者注意到规范场论的应用以及关于基本粒子标准模

型的记号SU(3)×SU(2)×U(1)（群直积，意思是每个群各出一个元素组成

的集合所构成的群）。U(1)对称性的相因子变化对应纤维丛理论语境中

的圆丛（circle bundle）转过的角度，比较直观。有兴趣的读者请另行找

途径深入学习。顺带说一句，李群与李代数可能是学习相关内容的必备

功底。

§10.7a 标准模型简介

关于基本粒子的标准模型，首先它是量子场论，关切的量子场包括

费米子场ψ（与物质有关），电-弱玻色子场W1,W2,W3，（三分量场，也

有记为W±,Z的）和B，胶子场Ga和希格斯（Peter Higgs,1929―）场φ。
将这些场及其导数所拼凑而成的拉格朗日量置于最小作用量原理之下可

得到相应的动力学方程。粒子的标准模型还是规范场论，即存在一些自

由度不造成物理状态的变化。标准模型的规范群为SU(3)×SU(2)×U(1)，
其中U(1)作用于φ 和B上，SU(2)作用于W上，SU(3)作用于Ga上。费米子

场ψ也随这些对称性作变换。SU(3)×SU(2)×U(1)只是一个简化的符号，

它所包含的庞大内容是对一个理论物理研究生的巨大挑战（衅，逗）。

标准模型不包括引力，如何实现所有四种相互作用的统一某种意义上是

物理学的终极问题。

量子场论与量子力学的关系类似经典场论同经典力学的关系。量子



场ψ不是波函数。在不同时空点上场的强度没有变化，变化的是相因

子。如同时空4-矢量一样随洛伦兹变换而变化的是矢量场，如电弱玻色

子场W1,W2,W3和B以及胶子场Ga，不随洛伦兹变换变化的是标量场，如

Higgs场φ。特别地，费米子场ψ 是旋量，随洛伦兹变换以共轭的形式变

化。

在低能情形，各类场是自由的。各费米子场ψ 遵循狄拉克方程

，光子遵循波动方程 ，Higgs场遵循克莱因-戈登方程

，弱作用场W±,Z遵循普罗卡（Alexandru
Proca,1897―1955）方程 。这些内容我们要循序渐

进学习。

§10.7b 电弱作用与SU(2)规范场

量子力学是为了理解原子发光特征应运而生的，某种意义上是关于

电磁相互作用的量子理论，主角为电子和光。作为规范理论，电磁作用

的标签是U(1)群。在催生了量子力学的原子物理中，当初的原子形象是

带负电的电子绕着带正电的原子核。中子的发现，提出了一个新的问

题：质子和中子必定是因一种很强的相互作用而挤在一起构成原子核

的，而且不是通过电荷或者质量耦合的。该理论由汤川秀树（Hideki
Yukawa,1907―1981）于1935年奠定。对称性要求中介质子-中子在原子

核深处相互作用的粒子应为介子三重态 。

海森堡在1932年曾建议用群SU(2)的一个表示来描述状态N=(n,p)，
其中n代表中子，p代表质子。这样，同位旋的概念被引入以解释粒子的

多重性。质子-中子二重态(n,p)与π-介子三重态 都张成SU(2)的
不可约表示空间，用 ，术语来说，可表示为

。SU(2)理论描述相互作



用的一组系数为 。它们出现在拉格朗日量中，

对应电磁相互作用中的电荷。

§10.7c 强相互作用与SU(3)规范场

20世纪70年代，关于夸克以及胶子的强相互作用的非阿贝尔规范理

论被创立，盖尔曼（Murray Gell-Mann,1929―2019）称之为量子色动力

学（quantum chromodynamics,QCD）。色是夸克的一个指标。量子色动

力学是基于SU(3)对称性的理论，因为六种味的夸克各以三种色（色

荷，与电荷相类比）存在。8种带色的胶子可类比于光子，胶子中介了

夸克间的强相互作用。夸克和胶子一起被禁闭在各种“无色”的强子

（hadron）中。

色的SU(3)对称性是严格的，是规范对称性。SU(3)群有一个8维表

示。8个盖尔曼矩阵（生成元）构成SU(3)群的李代数（见式9.24）。同

SU(2)群相比，SU(3)群的复杂程度显著提升。SU(2)是SU(3)的子群，所

以前3个盖尔曼矩阵就是用0补成3×3形式的泡利矩阵：

SU(3)群的8个生成元的对易和反对易关系为

盖尔曼矩阵可以用于描述在强相互作用中胶子场的内（色）转动。



规范色转动的就是独立于时空的SU(3)群元素， 。1961
年，当夸克还只有u（up）、d（down）和s（strange）三种味的时候，

SU(3)群还被作为味SU(3)对称性用于理解强相互作用。更多的内容请参

考SU(3)群的表示理论和粒子物理方面的专业著作。



§10.8 多余的话

有必要多强调一下扩展的学问，这几乎是本书的主题曲。其实，通

过扩展进入新的领域、带来新的可能这事儿，在数学和物理的实践中屡

见不鲜。笔者以为，明确地指出这一点是有意义的，试略举几例。1. 导
线圈在带电螺线管中的往复运动（一维的）虽然感应产生了电，但是产

生的电忽多忽少。将导线圈的运动改为在磁场中的转动（二维的），就

能得到稳定的电流。2. 热机一开始是单室的，加热-冷却在一处，极大

地限制了热机的效率。改成两室的结构，加热-冷却独立进行，热机效

率就能提高。3. 用电在远处完成某种机械动作，由于损耗的原因，这个

设备的工作距离相当有限。但是，继电器的发明，将发布指令和实现操

作分开来了，这也是从一维到二维的扩展。由于发布指令所需的电流很

小（如今都小到忽略不计了），远程操纵变得无往不利。4. 在几何代数

中，乘法从数值的乘法扩展到操作同操作对象间的乘积，到共轭型乘

积，即求群元素共轭的乘法以及哈密顿发现的矢量同四元数的乘法

v'=qvq'。几何积由具有同样地位的矢量a和矢量b之间的相乘扩展为具有

不同性质的、任意多矢量之间的相乘，由此获得了更大的描述自然的威

力。学问扩展一事的意义与应用，格拉斯曼有深入的思考（参见拙著

《磅礴为一》)。
爱因斯坦构造广义相对论的努力，让里奇和列维-齐维塔他们的绝

对微分（张量分析）学问有了用武之地。张量形式让爱因斯坦于1915年
底得出了他的引力方程。其实，后来贝尔特拉米证明爱因斯坦场方程形

式上是不变量理论的必然选择（参见拙著《相对论（少年版）》）。将

引力场方程写成最直白的A=B的形式，为



爱因斯坦坦诚他的这个方程左边是象牙做的，是纯几何的，联系着

不变量理论，而方程右边是木制的，是物理的、经验的。爱因斯坦得到

这个方程的过程是仓促的，关于张量Tμν该有怎样的内容与形式是爱咋

咋地的态度。规范场方程

也可作如是观，左侧是几何的而右侧是经验的。这两个方程还是在

阐述因果律。

广义相对论诞生不久，列维-齐维塔于1917年就引入了弯曲空间的

矢量平行移动的概念。基于平行移动的概念容易构造弯曲空间的几何。

矢量的微小平行移动， ，就是比线性关系往前进了一步，作

为系数的克里斯多夫符号 是空间的函数。反过来，选择了特定的联

络 ，就定义了特定的微分几何。针对形式 ，于是有指数

函数形式的路径积分，然后就有了规范相因子。再往后，从电磁学这个

有规范的理论出发，打开脑洞一路思考和构造下去，就有了规范场论。

物理就这么简单，没法再简单了，真的没法再简单了。爱因斯坦说，

alles sollte so einfach wie möglich sein,aber nicht einfacher，此其谓也。微

分二次型加上微分1-形式引出的规范场论故事，与 的

故事差不多一样精彩。

本书的目的之一，是让你知道关于 的知识之已知部分水有多

深。那个由 引出的 问题，在量子力学和规范场论的建立过

程中再次让我们对它可能包有的内涵惊讶不已。1922年，薛定谔用

（同时使用±i）让外尔的尺度因子变成了相因子，规范场论只好硬着头

皮前行最后成就了基本粒子世界的标准模型。1926年，薛定谔只用± 的
可能之一（虚数i）把扩散方程给弄成了量子力学基本方程。笔者要指

出： 是把外尔1918年理论中的实数γ 改写为纯虚数，再现了历史上

纯虚数的引入带来科学广阔新天地的神奇一幕。尤为让笔者佩服得五体

投地的是，在欧拉引入 的记号145年后(1777―1922)，无数人早已



习惯了或者根本看不出其中的不妥之处，薛定谔这位数学物理教授坚持

使用的是 。我相信他要强调的是，至少在这里， 必须同时取i
和-i（不枉了量子力学波函数的叠加性）。笔者写作本书是一次致敬之

旅。能向薛定谔表示理解后的崇敬，是个很美妙的体验。

规范场论，为理解粒子物理世界提供了一个美妙的，甚至统一的理

论。统一的基础来自最小作用量原理以及时空对称性之外的局域化内部

对称性。时空对称性，或者说洛伦兹群的不同表示，很大程度上决定了

理论该有的模样。学了半天物理，原来，一切都深植于我们置身其中的

这个时空（所能允许联络）的结构。由(3,1)-维几何理论带来的关于物

质世界的发现证实了时空就该是(3,1)-维的，这也太奇妙了。

规范场论是数学物理的巅峰，是数学与物理交替促进的典型，反映

的是人类为了理解自然所进行的不懈努力。学会了规范场论，一个人大

约可以无愧地宣称自己是个学物理的。当然，这可能很难做到，但认清

了其数学实质后，似乎又不是如初看起来那么艰涩。笔者个人深切地体

会到，一要学会变分法，二要学会李群与李代数，诺特定理是理论物理

的底色。有了这些工具在手，规范场论至少是我们能够欣赏的。

规范场论的内容很难。如果你坚持看完本书，看到科学家们是如何

从对加减乘除的思考一步一步为我们构建了这样的简单理论的，或许就

不觉得其有难度了。简单性一直是构造物理学理论应遵从的原则。或者

反过来，在掌握了规范场论这种复杂理论以后回首来时路看看加减乘除

所包含的深刻内容，你就不会觉得加减乘除是容易的学问小菜了。如果

你认为规范场论比加减乘除有更多的内容，那你就错到家了。

对于学问，在战略上亲近之，在战术上敬畏之。学吧，朋友！
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[1] 笔者以为，方程Q1/T1-Q2/T2=0才应该是热力学第二定律的正确表述，它和热力学第一定律对

应的方程Q1-Q2=W一起构成联立方程组，才有了关于卡诺循环的严格完备的数学描述。热力学

第二定律的Carathéodory表述也是数学意义上的表述，而所谓的开尔文表述和克劳修斯表述，还



有不常见的普朗克表述等其他表述，只是得到热力学第二定律应遵循的原则或由其得到的推

论，而非热力学第二定律本身。由方程Q1/T1-Q2/T2=0的微分形式 才能导出熵的概念。由热

力学第二定律才有熵的概念，采用熵概念的热力学第二定律表述是对热力学历史和逻辑的颠

倒。

[2] 将引力同电磁学相结合，几乎是物理学发展到19世纪后期的必然。基于高斯、韦伯和黎曼的

电动力学，1870―1900年间有许多科学家试图在引力中加入有限传播速度以解释水星轨道近日

点的漂移速率，这个有限速度指向光速。1915年底成型的广义相对论本身就是引力理论同电磁

理论相结合的结果。

[3] 笔者不知其汉语译名，字面意思是一种与电有关的密度。

[4] 这里可以纳入电子同磁场的相互作用，是薛定谔感兴趣的地方。好几个人写出过这个方程。

[5] Tetrad formulism，德语用词为vierbein，就是4条腿。

[6] 杨振宁先生名字的英文写法为Chen Ning Yang，另有英文名为Frank。特此指出，方便读者查

阅文献。

[7] representative,representative function,有表象函数的译法。representative function产生一个有限

群上的所有函数，一个紧致群的不同不可约表示的表象函数是正交的。



德国数学家、物理学家外尔

Hermann Weyl 1885—1955



诺特德国数学家，有“近世代数之父”的美誉

Emmy Noether 1882—1935



理论物理学家杨振宁先生

Chen Ning Yang 1922—



跋

这本《云端脚下：从一元二次方程到规范场论》在开始构思十年之

后，终于完稿了。搁笔于案，掩卷长叹。当此时也，翻出李义山的《天

涯》绝句，不觉又默念再三：

春日在天涯，天涯日又斜。

莺啼如有泪，为湿最高花。

花儿湿不湿的不敢企望，夕阳里俺的一双老眼这些年倒是时常潸然

有泪——苦涩的、无奈的泪。回想我这一生，名义上进过各色学堂但其

实未曾受过任何象样的教育，做研究时总觉得有心无力也就是顺理成章

的事儿了。固然，限于天资不足，便是天下名校任选我也不会有什么出

息，但我依然认为，假如我曾受过一丁点儿真正的教育，我也不会这般

愚昧无知。

在本书快写完时，看到了《罗素自传》（The Autobiography of
Bertrand Russell）一书中有这么一段：“Three passions,simple but
overwhelmingly strong,have governed my life: the longing for love,the
search for knowledge,and unbearable pity for the suffering mankind. The
three passions,like great winds,have blown me hither and thither,in a
wayward course over a deep ocean of anguish,reaching to the very verge of



despair.”（有三种激情，简单却异常强烈，贯穿我的一生，那就是对爱

的渴望，对知识的追求，以及对人类苦难的不可承受的悲悯。这三种激

情像狂风一样把我吹来吹去，一路飘过痛苦的海洋，直到绝望的边

缘。）原来，悲悯可以成为一种力量。支撑我写完这本书的力量，就是

我对自己的悲悯。

假如时光重来，我会尽可能地去读正经书，读正经学问人写的书。

今夏某日笔耕间隙在单位院子里闲逛，得一大欢喜，曰：

一树一串果，

一叶一片禅，

一花一妩媚，

一蝶一翩然。

有一个大爷，假装上班，其实很闲。

会读书的人，一定能从这本书里读出浓得化不开的无聊。

2020年9月于北京
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